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Universal Approximation Bounds for Superpositions 
of a Sigmoidal Function 

Andrew R. Barron, Member, IEEE 

Abstract- Approximation properties of a class of artificial 
neural networks are established. It is shown that feedforward 
networks with one layer of sigmoidal nonlinearities achieve inte
grated squared error of order O(l/n), where n is the number 
of nodes. The function appruximated is assumed to have a 
bound on the first moment of the magnitude distribution of 
the Fourier transform. The nonlinear parameters associated 
with the sigmoidal nodes, as well as the parameters of linear 
combination, are adjusted in the approximation. In contrast, it 
is shown that for series expansions with n terms, in which only 
the parameters of linear combination are adjusted, the integrated 
squared approximation error cannot be made smaller than order 
1/n2/d uniformly for functions satisfying the same smoothness 
assumption, where d is the dimension of the input to the function. 
For the class of functions examined here, the approximation rate 
and the parsimony of the parameterization of the networks are 
surprisingly advantageous in high-dimensional settings. 

Index Terms- Artificial neural networks, approximation of 
functions, Fourier analysis, Kolmogorov n-widths. 

1. INTRODUCTION 

APPROXIMATION bounds for a class of artificial neural 
networks are derived. Continuous functions on compact 

subsets of Rd can bc uniformly well approximated by linear 
combinations of sigmoidal functions as independently shown 
by Cybenko [1] and Hornik, Stinchcombe, and White [2]. The 
purpose of this paper is to examine how the approximation 
error is related to the number of nodes in the network. 

As in [1], we adopt the definition of a sigmoidal function 
¢;(z) as a bounded measurable function on the real line for 
which ¢;(z) --* 1 as z --* 00 and ¢;( z) --+ 0 as z --* 
-00. Feedforward neural network models with one layer of 
sigmoidal units implement functions on Rd of the form 

n 

fn(x) = l:>k¢;(ak . x + bk) + Co (1) 
k=1 

parameterized by ak E Rd and bk, Ck E R, where a . x 
denotes the inner product of vectors in Rd. The total number 
of parameters of the network is (el + 2)'11, + 1 .  

Manuscript received February 19, 1991. This work was supported b y  ONR 
under Contract N00014-S9-J-1SI1. Material in this paper was presented at the 
IEEE International Symposium on Information Theory, Budapest, Hungary, 
June 1991. 

The author was with the Department of Statistics, the Dcpartment of 
Electrical and Computer Engineering, the Coordinated Science Laboratory, 
and the Beckman Institute, University of Illinois at Urbana-Champaign. He 
is now with the Department of Statistics, Yale University, Box 2179, Yale 
Station, New Haven, CT 06520. 

IEEE Log Number 920696fi. 

A smoothness property of the function to be approximated is 
expressed in terms of its Fourier representation. In particular, 
an average of the norm of the frequency vector weighted by the 
Fourier magnitude distribution is used to measure the extent 
to which the function oscillates. In this Introduction, the result 
is presented in the case that the Fourier distribution has a 
density that is integrable as well as having a finite first moment. 
Somewhat greater generality is permitted in the theorem stated 
and proven in Sections III and IV. 

Consider the class of functions f on Rd for which there is 
a Fourier representation of the form 

f(x) = r eiw.x j(w) dw, JRd (2) 

for some complex-valued function j(w) for which wj(w) is 
integrable, and define 

Of = llwllj(w)1 dw, Rd 
(3) 

where Iwl = (w . w) 1/2. For each 0> 0, let rc be the set of 
functions f such that C f ::; 0, 

Functions with C f finite are continuously differentiable on 
Rd and the gradient of f has the Fourier representation 

6.f(.7:) = jeiw'X6.f(W)dW, (4) 

where 6.f(w) = iwj(w). Thus, condition (3) may be in
terpreted as the integrability of the Fourier transform of 
the gradient of the function f. In Section III, functions are 
permitted to be defined on domains (such as Boolean functions 
on {O, I} d) for which it does not make sense to refer to 
differentiability on iliat domain. Nevertheless, the conditions 
imposed imply that the function has an extension to Rd with 
a gradient that possesses an integrable Fourier representation. 

The following approximation bound is representative of 
the results obtained in this paper for approximation by linear 
combinations of a sigmoidal function. The approximation error 
is measured by the integrated squared error with respect to an 
arbitrary probability measure J.L on the ball Br = {x: Ixl ::; r} 
of radius r > O. The function ((1(z) is an arbitrary fixed 
sigmoidal function. 

Proposition 1: For every function f with Of finite, and 
every n � 1, there exists a linear combination of sigmoidal 
functions fn(x) of the form (1), such that 

r c' 

.fEr 
(f(X) - f,,(X))2J.L(dx)::; : ' (5) 
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where cj = (2rC f )2. For functions in r G, the coefficients 
of the linear combination in (1) may be restricted to satisfy 

2::�=1 ICkl ::; 2rC, and Co = f(O). 
Extensions of this result are also given to handle Fourier 

distributions that are not absolutely continuous, to bound 
the approximation error on arbitrary bounded sets, to restrict 
the parameters ak and bk to be bounded, to handle certain 
infinite-dimensional cases, and to treat iterative optimization of 
the network approximation. Examples of functions for which 
bounds can be obtained for C f are given in Section IX. 

A lower bound on the integrated squared error is given in 
Section X for approximations by linear combinations of fixed 
basis functions. For dimensions d ;::: 3, the bounds demonstrate 
a striking advantage of adjustable basis functions (such as used 
in sigmoidal networks) when compared to fixed basis functions 
for the approximation of functions in r c. 

II. DISCUSSION 

The approximation bound shows that feedforward networks 
with one layer of sigmoidal nonlinearities achieve integrated 
squared error of order 0(1/11,), where 11, is the number of 
nodes, uniformly for functions in the given smoothness class. 

A surprising aspect of this result is that the approximation 
bound of order 0(1/11,) is achieved using networks with 
a relatively small number of parameters compared to the 
exponential number of parameters required by traditional poly
nomia�' spline, and trigonometric expansions. These traditional 
expansions take a linear combination of a set of fixed basis 
functions. It is shown in Section X that there is no choice 
of 11, fixed basis' functions such that linear combinations 
of them achieve integrated squared approximation error of 
smaller order than (1/n)C2/d) uniformly for functions in r c, in 
agreement with the theory of Kolmogorov n-widths for other 
similar classes of functions (see, e.g., [3, pp. 232-233]). This 
vanishingly small approximation rate (2/ d instead of 1 in the 
exponent of 1/11,) is a "curse of dimensionality" that does not 
apply to the methods of approximation advocated here for 
functions in the given class. 

Roughly, the idea behind the proof of the lower bound result 
is that there are exponentially many orthonormal functions 
with the same magnitude of the frequency w. Unless all of 
these orthonormal functions are used in the fixed basis, there 
will remain functions in r G that are not well approximated. 
This problem is avoided by tuning or adapting thc parameters 
of the basis functions to fit the target function as in the 
case of sigmoidal networks. The idea behind the proof of the 
upper bound result (Proposition 1) is that if the function has 
an integrable representation in terms of parameterized basis 
functions, then a random sample of the parameters of the 
basis functions from the right distribution leads to an accurate 
approximation. 

Jones [4] has obtained similar approximation properties 
for linear combinations of sinusoidal functions, where the 
frequency variables are the nonlinear parameters. The class 
of functions he examines are those for which J li(w)ldw 
is bounded, which places less of a restriction on the high
frequency components of the function (but more of a restric-

tion on low-frequency components) than does the integrability 
of Iwlli(w)l. In the course of our proof, it is seen that the 
integrability of Iw 1 1.1 (w) I is also sufficient for a linear combina
tion of sinusoidal functions to achieve the 1/11, approximation 
rate. Siu and Brunk [5] have obtained similar approximation 
results for neural networks in the case of Boolean functions on . 

{O, l}d. Independently, they developed similar probabilistic 
arguments for the existence of accurate approximations in their 
setting. 

It is not surprising that sinusoidal functions are at least as 
well suited for approximation as are sigmoidal functions, given 
that the smoothness properties of the function are formulated 
in terms of the Fourier transform. The sigmoidal functions 
are studied here not because of any unique qualifications in 
achieving the desired approximation properties, but rather to 
answer the question as to what bounds can be obtained for this 
commonly used class of neural network models. 

There are moderately good approximation rate properties in 
high dimensions for other classes of functions that involve a 
high degree of smoothness. In particular, for functions with 
.r li(w)12IwI2s dw bounded, the best approximation rate for 
the integrated squared error achievable by traditional basis 
function expansions using order md parameters is of order 
0(I/m)2S for m = 1, 2"", for instance, see [3] (for 
polynomial methods m is the degree, and for spline methods 
m is the number of knots per coordinate). If 8 = d/2 
and n is of order md, then the approximation rates in the 
two settings match. However, the exponential number of 
parameters required for the series methods still prevent their 
direct use when d is large. 

Unlike the condition J lj(w)i2lwI2s dw < 00, which by Par
seval's identity is equivalent to the square integrability of all 
partial derivatives of order 8, the condition J li(w)llwldw < 
00 is not directly related to a condition on derivatives of 
the function. It is necessary (but not sufficient) that all first
order partial derivatives be bounded. It is sufficient (but not 
necessary) that all partial derivatives of order less than or equal 
to .� be square-integrable on Rd, where s is the least integer 
greater than 1 + d /2, as shown in example 15 of Section IX. In 
the case of approximation on a ball of radius r, if the partial 
derivatives of order 8 are bounded on Br' for some r' > r, 
then there is a smooth extension of f for which the partial 
derivatives of order 8 are square integrable on Rd, thereby 
permitting the approximation bounds to be applied to this case. 

Another class of functions with good approximation prop
erties in moderately high dimensions is the set of functions 
with a bound on J(osd f(x)/ox� ... OXd)2 dx (or equivalent, 
.r IWl12s • •  'IWdI2sli(w W dw). For this class, an approximation 
rate of order 0(1/11,)28 is achieved using 0(n(10gn)d-1) 
parameters, corresponding to a special subset of terms in 
a Fourier expansion (see Korobov [6] and Wahba [7, pp. 
145-146]). Nevertheless, the (logn)d- 1 factor still rules out 
practical use of these methods in dimensions of, say, 10 or 
more. 

Thus far in the discussion, attention is focused on the 
comparison of the rate of convergence. In this respect, methods 
that adapt the basis functions (such as sigmoidal networks) are 
shown to be superior in dimensions d ;::: 3 for the class r c for 
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any value of C, no matter how large. Now it must be pointed 
out that the dimension d can also appear indirectly through the 
constant C f. Dependence of the constant on d does not affect 
the convergence rate as an exponent of lin. Nevertheless, if 
Cf is exponentially large in d, then an exponentially large 
value of n would be required for CJ I n to be small for 
approximation by sigmoidal networks. If C is exponentially 
large, then approximation by traditional expansions can be 
even worse. Indeed, since the lower bound developed in 
Section X is of the form C2 In (2/ d), a superexponentially large 
number of terms n would be necessary to obtain a small value 
of the integrated squared error for some functions in r e. 

The constant Cf involves a d-dimensional integral, and it 
is not surprising that often it can be exponentially large in 
d. Standard smoothness properties such as the existence of 
enough bounded derivatives guarantee that Cf is finite (as dis
cussed above), but alone they are not enough to guarantee that 
C f is not exponentially large. In Section IX, a large number of 
examples are provided for which C f is only moderately large, 
e.g., O(d1/2) or Oed), together with certain closure properties 
for translation, scaling, linear combination, and composition 
of functions. Since in engineering and scientific contexts it is 
not unusual for functions to be built up in this way, the results 
suggest that fe may be a suitable class for treating many 
functions that arise in such contexts. 

Otller classes of functions may ultimately provide better 
characterizations of the approximation capabilities of artificial 
neural networks. The class r e is provided as a first step in 
the direction of identifying those classes of functions for which 
artificial neural networks provide accurate approximations. 

Some improvements to the bound may be possible. Note that 
there can be more than one extension of a function outside of 
a bounded set B that possesses a gradient with an integrable 
transform. Each such extension provides an upper bound for 
tile approximation error. An interesting open question is how 
to solve for the extension of a function outside of Br that 
yields the smallest value for IlwIIRw)ldw. 

For small d, the bound (2rC)2 In on the integrated squared 
error in Proposition 1 is not the best possible. In particular, for 
d = 1, the best bound for approximation by step functions is 
(rCt/n)2 (which can be obtained by standard methods using 
the fact that, for functions in re, the absolute value of the 
derivative is bounded by C). For d > 1, it is recently shown 
in [20] that the rate for sigmoidal networks cannot be better 
than (1/n)1+(2/d) in the worse case for functions in Ie. Note 
that the gap between the upper and lower bounds on the rates 
vanishes in the limit of large dimension. Determination of the 
exact rate for each dimension is an open problem. 

The bound in the proposition assumes that {l is a probability 
measure. More generally, if {l is a measure for which {l( Br) 
is finite, it follows from Proposition 1 that 

(6) 

In particular, with the choice of It equal to Lebesgue measure, 
the bound is of order O(l/n), which is independent of d, but 
the constant {l( Br) is equal to the volume of the ball in d 
dimensions, which grows exponentially in d for r > 1. 
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In the case that the function is observed at sites 
Xl, X 2, .

.
. , XN restricted to Bro Proposition 1 provides a 

bound on the training error 

I N c' � A 

2 j 
N 0(t(Xi) - !n(Xi)) -:;-:;; , 

i=l 
(7) 

where the estimate in = in, N of the form (1) is chosen to 
minimize the sum of squared errors (or to achieve a somewhat 
simpler iterative minimization given in Section VIII). In this 
case, the integral in Proposition 1 is taken to be with respect 
to the empirical distribution. 

The implications for the generalization capability of sig
moidal networks estimated from data are discussed briefly. 
There are contributions to the total mean squared error I Br (f-
in)2 dlt from the mean squared error of approximation I Br (t
fn)2 d{l and the mean squared error of estimation IBr (tn -
in)2 d{l. An index of resolvability provides a bound to the total 
mean squared error in terms of the approximation error and the 
model complexity according to a theorem in [8] and [9] (see 
also [10] for related results). In [11], the approximation result 
obtained here is used to evaluate tIlis index of resolvability 
for neural network estimates of functions in r, assuming a 
smoothness condition for the sigmoid. There it is concluded 
that statistically estimated sigmoidal networks achieve mean 
squared error bounded by a constant multiple of CJ I n + 
(ndIN)logN. In particular, with n � Cj(NI(dlogNW/2, 
the bound on the mean squared error is a constant times 
Cj«dIN) logN)1/2.ln the theory presented in [11], a bound 
of the same form is also obtained when the number of units n 
is not preset as a function of tile sample size N, but rather 
it is optimized from the data by the use of a complexity 
regularization criterion. 

Other relevant work on the statistical estimation of sig
moidal networks is in White [12] and Haussler [13] where 
metric entropy bounds play a key role in characterizing the 
estimation error. For these metric entropy calculations and 
for the complexity bounds in [11], it is assumed that domain 
bounds are imposed for the parameters of the sigmoidal net
work. In order that the approximation theory can be combined 
with such statistical results, the approximation bounds are 
refined in Section VI under constraints on the magnitudes of 
the parameter values . . The size of the parameter domains for 
the sigmoids grows with n to preserve the same approximation 
rate as in the unbounded case. 

For the practitioner, the theory provides the guidance to 
choose the number of variables d, the number of network 
nodes n, and the sample size N, such that lin and 
(ndIN) log N are small. But there are many otller practical 
issues that must be addressed to successfully estimate network 
functions in high dimensions. Some of these issues include 
the iterative search for parameters, the selection of subsets of 
terms input to each node, the possible selection of higher order 
terms, and the automatic selection of the number of nodes on 
the basis of a suitable model selection criterion. See Barron and 
Barron [14] for an examination of some of these issues and 
the relationship between neural network methods and other 
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methods developed in statistics for the approximation and 
estimation of functions. 

After the initial manuscript was distributed to colleagues, 
the methods and results of this paper have found application 
to approximation by hinged hyperplanes (Breiman [15]), slide 
functions (Tibshirani [16]), projection pursuit regression (Zhao 
[17)), radial basis functions (Girosi and Anzellotli [18)), and 
the convergence rate for neural net classification error (Farago 
and Lugosi [19]). Moreover, the results have been refined to 
give approximation bounds for network approximation in Lp 
norms, 1 < p < 00 (Darken et at. [31], in the Loo norm 
(Barron [20], Yukich [32]) and in Sobolev norms (Hornick et 
at. [21)). 

Approximation rates for the sigmoidal networks have re
cently been developed in McGaffrey and Gallant [22], Mhaskar 
and Micchelli [23], and Kurkova [33] in the settings of 
more traditional smoothness classes that are subject to the 
curse of dimensionality. Reference [22] also gives implications 
for statistical convergence rates of neural networks in these 
settings. Jones [24] gives convergence rates and a set of "good 
weights" to use in the estimation of almost periodic functions. 
Zhao [17] gives conditions such that uniformly distributed 
weight directions are sufficient for accurate approximation. 

A challenging problem for network estimation is the opti
mization of the parameters in high-dimensional settings. In 
Section VIII, a key lemma due to Jones [4] is presented 
that permits the parameters of the network to be optimized 
one node at a time, while still achieving the approximation 
bound of Proposition 1. This result considerably reduces the 
computational task of the parameter search. Nevertheless, it is 
not known whether there is a computational algorithm that can 
be proven to produce accurate estimates in polynomial time as 
a function of the number of variables for the class of functions 
studied here. We have avoided the effects of the curse of 
dimensionality in terms of the accuracy of approximation but 
not in terms of computational complexity. 

III. CONTEXT AND STATEMENT OF THE THEOREM 

In this section, classes of functions are defined and then the 
main result is stated for the approximation of these functions 
by sigmoidal networks. The context of Fourier distribution 
permits both series and integral cases. A number of interesting 
examples make use of the Fourier distribution, as will be seen 
in Sections VII and IX. 

The Fourier distribution of a function f(x) on gt is 
a unique complex-valued measure F(dw) = ei8(c;) F(dw), 
where F(dw) denotes the magnitude distribution and B(w) 
denotes the phase at the frequency w, such that 

(8) 

or, more generally, 

f(x) = f(O) + j(eiW'X -l)F(dw), (9) 

for all x E Rd. If J F(dw) is finite, then both (8) and (9) are 
valid and (9) follows from (8). Assuming only that J IwlF(dw) 

is finite, (9) is used instead of (8) since then the required 
integrability follows from leiw.x - 11 :::; 21w . xl :::; 2lwllxl. 
(See the Appendix for the characterization of the Fourier 
representation in this context.) The class of functions on Rd 
for which Cf = J IwIF(dw) is finite is denoted by r. 

Functions are approximated on bounded measurable subsets 
of their domain in Rd. Let B be a bounded set in Rd that 
contains the point x = 0, and let fB be the set of functions 
f on B for which the representation (9) holds for x E B for 
some complex-valued measure F(dw) for which .r IwIF(dw) 
is finite, where F is the magnitude distribution corresponding 
to F. (The right side of (9) then defines an extension of 
the function 1 from B to Rd that is contained in r, and 
F may be interpreted as the Fourier distribution of an a 
continuously differentiable extension of 1 from B to Rd. Each 
such extension provides a possible Fourier representation of 1 
on B.) 

Linear functions I(x) = a· x and, more generally, the class 
, of infinitely differentiable functions on Rd are not contained in 
r, but they are contained in r B when restricted to any bounded 
set B (because such functions can be modified outside of the 
bounded set to produce a function in r; see Section IX). The 
set of functions on Rd with this property of containment in 

r B for every bounded set of B is denoted for convenience 
by r. = nBrB. 

For each C > 0, let r a B be the set of all functions 1 in 
fB such that for some F �eprescnting 1 on B, 

jIWIBF(dW) :::; C, (10) 

where IwlB = SUPxEB Iw . xl· In the case of the ball Br = 
{:r,: Ixl :::; r}, this norm simplifies to IwlBr = rlwl. (See 
Section V for the form of the bound for certain other domains 
such as cubes.) 

The main theorem follows; a bound is given for the inte
grated squared error for approximation by linear combinations 
of a sigmoidal function. 

Theorem 1: For every function f in rB, a,every sigmoidal 
function ,p, every probability measure j.L, and every n :2: 1, 
there exists a linear combination of sigmoidal functions fn(x) 
of the form (1), such that 

The coefficients of the linear combination in (1) may be 
restricted to satisfy 2:�=1 ICkl :::; 2C, and Co = 1(0). 

IV. ANALYSIS 
Denote the set of bounded multiples of a sigmoidal function 

composed with linear functions by 

G¢ = b¢(a ·x+ b): hi:::; 2C, a E Rd, bE R}. (12) 

For functions 1 in r a, B, Theorem 1 bounds the error in the 
approximation of the function J(x) = I(x) - 1(0) by convex 
combinations of functions in the set G ¢. 
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Proof of Theorem 1: The proof of Theorem 1 is based 
on the following fact about convex combinations in a Hilbert 
space, which is attributed to Maurey in Pisier [25]. We denote 
the norm of the Hilbert space by II . II. 

Lemma 1: If 7 is in the closure of the convex hull of a set 
G in a Hilbert space, with Ilgll ::; b for each 9 E G, then for 
every n � 1, and every c' > b2 -117112, there is an In in the 
convex hull of 71, points in G such that 

(13) 

Proof" A proof of this lemma by use of an iterative 
approximation, in which the points of the convex combination 
are optimized one at a time, is due to Jones [4]. A slight 
refinement of his iterative Hilbert space approximation the
orem is in Section VIII. The noniterative proof of Lemma 1 
(credited to Maurey) is based on a law of large numbers bound 
as follows. Given n � 1 and 8 > 0, let 1* be a point in the 
convex hull of G with 117 -1* II ::; 8/71,. Thus, 1* is of the 
form l:Z'=1 'Ykgk with gk E G, Yk � 0, l:Z'=1 'Yk = 1, for 
some sufficiently large m. Let 9 be randomly drawn from the 
set {g�, ... ,g::'} with P{g = gk} = 'Yk; let gl, g2," ',gn 
be independently drawn from the same distribution as g; 
and let In = (l/n) l:�=1 g; be the sample average. Then 
E f n = 1*, and the expected value of the squared norm of 
the error is Eil/n - 1*112 = (l/n)Ellg -1*112, which equals 
(l/n)(EllgI12 -11I'112) and is bounded by (1/n)(b2 -111*112). 
Since the expected value is bounded in this way, there must 
exist gl, g2,'" ,g" for which III" -1*112 ::; (1/n)(b2-
111* 112). Using tile triangle inequality and 117 -f* II ::; 8/n, the 

proof of Lemma 1 is completed by the choice of a sufficiently 
small 8. 0 

Fix a bounded measurable set B that contains the point 
x = 0 and a positive constant G. If it is shown that for 
functions in the class rC,B, the function 7(x) = I(x) -1(0) 
is in the closure of the convex hull of G.p in L2(p" E), then it 
will follow by Lemma 1 that there exists a convex combination 
of n sigmoidal functions such that the square of the L2(p" B) 
norm is bounded by a constant divided by n. Therefore, the 
main task is to demonstrate the following theorem. 

Theorem 2: For every function I in r c, B, and every 
sigmoidal function 1;, the function f(x) - 1(0) is in the 
closure of the convex hull of G1>' where the closure is taken 
in L2(/-l, B». 

The method used here to prove Theorem 2 is motivated by 
the techniques used in Jones [4] to prove convergence rate 
results for projection pursuit approximation, and in Jones [261 
to prove the denseness property of sigmoidal networks in the 
space of continuous functions. 

Proof" Let F(dw) = ei&(wJF(dw) denote the magnitude 
and phase decomposition in the Fourier representation of an 
cxtension of the function I on B for which J Iw I B F( dw) ::; G. 
Let n = {w E Rd:w =J O}. 

From the Fourier representation (9) and the fact that f(.7:) 
is real-valued, it follows that 

f(.7:) - f(O) = Re jeeiW'X -l)F(dw) 
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= Re fo (eiwx -l)eiOCw) F(dw) 

= fo (cos (w· x + B(w» - cos (B(w»)F(dw) 

- 1 Gf,B 
- -

1
-

1
- (cos(w .. 7:+B(w» 

Il WB 
- cos (B(w»)A(dw) 

= fo g(x, w)A(dw), (14) 

for x E B, where Gf, B = J IwIBF(dw) ::; G is tile integral 
assumed to be bounded; A(dw) = IwIBF(dw)/Gf,B is a 
probability distribution; IwlB = sUPxEB Iw . xl; and 

Gf,B 
g(x, w) = 

IwlB (cos (w· x + B(w» - cos (B(w»). (15) 

Note that these functions are bounded by Ig(x, w) 1 ::; Glw, 
xl/lwlB ::; G for x in Band w =J O. 

The integral in (14) represents 7 as an infinite convex 
combination of functions in the class 

Geos = { lw�B 
(cos (w· x + b) - cos (b»: w =J 0, 

I'YI ::; G, bE R}. (16) 

It follows that 7 is in the closure of tile convex hull of Geos. 
This can be seen by Riemann-Stieltjes integration theory in 
the case that F has a continuous density function on Rd. 
More generally, it follows form an L2 law of large numbers. 
Indeed, if WI, W2, ... , Wn is a random sample of n points, 
independently drawn from the distribution A, then by Fubini's 
Theorem the expected square of the L2 (/-l, Br) norm is 

(17) 
n 

Thus, the mean value of the squared L2(/-l, B) norm of a 
convex combination of n points in Geos converges to zero 
as n --> 00. (Note that it converges at rate O(l/n) in 
accordance with Lemma 1.) Therefore, there exists a sequence 
of convex combinations of points in Geos that converges to 7 
in L2(/-l, B). We have proven the following. 

Lemma 2: For each I in LC,B, the function f(x) - f(O) 
is in the closure of the convex hull of Geos. 

Next it is shown that functions in Geos are in the closure 
of the convex hull of G</;. The case that 1; is the unit step 
function is treated first. 

Each function in Geoe is the composition of a one
dimensional sinusoidal function g(z) = 'Y /lwIB(cOS (lwlBz + 
b) -cos (b)) and a linear function z = a·x, where a = w /lwlB 
for some w =J O. For x in E, the variable z = a·x takes values 
in a subset of [-1, 1]. Therefore, it suffices to examine tile 
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approximation of the sinusoidal function 9 on [-1, 1]. Note 
that 9 has derivative bounded by h'l � C. Now since 9 is 
uniformly continuous on [-1, 1], it follows that it is uniformly 
well approximated by piecewise constant functions, for any 
sequence of partitions of [-1, 1] into intervals of maximum 
width tending to zero. Such piecewise constant functions may 
be represented as linear combinations of unit step functions. 
Moreover, it can be arranged that the sum of the absolute 
yalues of the coefficients of the linear combination are bounded 
by 2C. 

In particular, consider first the function g( z) restricted to 
o � z � 1, and note that 9 = (0) = O. For a partition 
o = to < tl < ... < tk = 1, define 

k-l 
gk,+(Z) = �)9(ti) - g(ti-d)l{z�t,}. (18) 

i=1 
This piecewise constant function interpolates the function 
9 at the points ti for i � k - 1. Note that gk, + is a 
linear combination of step functions. Now since the deriva
tive of 9 is bounded by C on [0, 1], it follows that the 
sum of the absolute values of the coefficients Li Ig(ti) -
g(ti-l)1 is bounded by C. In a similar way, define gk, _(z) = 
L:�ll(g( -t;)-g( -ti-d)l{z:O;-t,}. Adding these components 
gn, -(z) + gn, + (z) yields a sequence of piecewise constant 
functions on [-1, 1] that are uniformly dose to 9 (z) (as 
the maximum interval width tends to zero), and each of 
these approximating functions is a linear combination of 
step functions with the sum of the absolute values of the 
coefficients bounded by 2C. It follows that the functions g(z) 
are in the closure of the convex hull of the set of functions 'Y 
step (z-t) and'Y step (-z-t) with I'YI � 2C and It I � 1, where 
step (z) = l{z�o} denotes the unit step function. Defining 

Gstep = bstep (0:' X - t): I'YI � 2C, lodB = 1 , It I � I}, 
(19) 

the following lemma has been demonstrated, where the closure 
property holds with the supremum norm on B, and hence with 
respect to L2(/1, B). 

Lemma 3: Gcos is in the closure of the convex hull of 
Gstep. 

It can be seen that Lemma 3 continues to work if, for each 
0:, the parameter t is restricted to a subset T", that is dense in 
[-1,1]. In particular, restrict t to the continuity points of the 
distribution of z = 0: . x induced by the measure /1 on Rd. Let 
G�tep be the subset of step functions in G.tep with locations 
t restricted in this way. Then the following result holds. 

Lemma 31: Gcos is in the closure of the convex hull of 
G�ep· 

Functions in G�ep are in the closure of the class of 
sigmoidal functions, taking the closure in L2(/1, B). This 
follows by taking the sequence of sigmoidal functions ¢>( I a I ( 0:' 
X - t» with lal --+ 00. This sequence has pointwise limit 
equal to step (0: . x - t) (except possibly for x in the set with 
0: . x - t = 0, which has p, measure zero by the restriction 
imposed on t). Consequently, by the dominated convergence 
theorem, the limit also holds in L2(p" B). Thus the desired 
closure property holds. 

Lemma 4: G�ep is in the closure of Gq,. 
Together, Lemmas 2, 31, and 4 show that in L2(/1, B), 

r� c coGcos C coG�tep C coGq" (20) 

where coG denotes the closure in L2(/1, B) of the convex hull 
of G, and r& is the set of functions in r e with I (0) = O. 
Here the fact is used that the closure of a convex set is convex, 
so that it is not necessary to take the convex hull operation 
twice when combining the Lemmas. This completes the proof 
of Theorem 2. D 

The proof of Theorem 1 is completed by using Lemma 1 
and Theorem 2. To see that the constant in Theorem 1 can 
be taken to equal (2C)2 for functions I in re, B, proceed as 
follows. The approximation bound is trivially true if 11111 = 0, 
where f(x) - 1(0), for then I(x) is equal to a constant /1-
almost everywhere on B. So now suppose that 11111 > O. If 
the sigmoidal function is bounded by one, then the functions in 
Gq, are bounded by b = 2C. Consequently, any cl greater than 
(2C)2 - 111112 is a valid choice for the application of Lemma 
1. The conclusion is that there is a convex combination of n 
functions in Gq, for which the square of the L2(/1, B) norm 
of the approximation error is bounded by d /n. 

If the sigmoidal function ¢>(x) is not bounded by one, first 
use Lemma 1 and the conclusion that r& c coG�tep to obtain 
a convex combination of n functions in G�tep for which the 
squared L2(/1, B) norm of the approximation error is bounded 
by (20)2 -(1/2)111112 divided by n. Then, using Lemma 4, by 
a suitable choice of scale of the sigmoidal function, sufficiently 
accurate replacements to the step functions can be obtained 
such that the resulting convex combination of n functions in 
Gq, yields a square L2(/1, B) norm bounded by (20)2/n. This 
completes the proof of Theorem 1. D 

Note that the argument given above simplifies slightly in the 
case that the distribution of 0: . x . is continuous for every a, 
for then Gstcp can be used in place of G�tep and there would 
be no need for Lemma 31• 

A variant of the theory just developed is to replace the 
function step(z) with the function stepq,(z), which is the same 
as the unit step function! except at z = 0 where it is set to equal 
1>(0). By a modification of the proof of Lemma 3, it can be 
shown that G cos is in the closure of the convex hull of G step� . 
The advantage of this variant is that Gstep/> is in the closure 
of Gq" without any restriction on the location of the points 
tin [-1,1]. But if I¢>(O)I > 1, then an additional argument 
would still be needed (as above, where t is restricted to the 
continuity points of a . x) in order to show that the constant 
cl can be taken to be not larger than (20)2. 

V. APPROXIMATION ON OTHER BOUNDED DOMAINS IN Rd 

In thi� brief section, the form of the constant Cf, B = 
J IwIBIII(w)ldw in the approximation bound is determined for 
various choices of the bounded set B other than the Euclidean 
ball of radius r mentioned in the Introduction. 

Recall that, by definition, IwlB = 8UP"EB Iw . xl. The 
interpretation is that IwlB bounds the domain of the trigono-
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metric component eiw.x that has frequency w in the Fourier 
representation of the function restricted to x in B. 

Clearly, if B is contained in a ball of radius r, that is, if 
Ixl ::; r for x in B, then , by the Cauchy-Schwarz inequality, 
IwlB ::; rlwl. Thus , 

(21) 

However, for some natural sets B, a fairly large radius ball 
would be required for application of the bound in that form. 
It is better to determine IwlB directly in some cases. If B is a 
multiple of a unit ball with respect to some norm on Rd, then 

Iw I B is determined by the dual norm. 
In particular, if B = Boo, r = {x: Ixloo ::; r} is the 1= ball 

of radius r (the cube centered at x = 0 with sidelength 2r), 
then IwlB = rlwll where Iwll is the h norm and 

(22) 

More generally, if B = Bp, r = {x: Ixlp ::; r} is the lp ball of 
radius r, then IwlB = rlwlq where l/p + 1/ q = 1 (as can be 
seen by a standard application of HOlder's inequality). Here the 
Ip norm is given by Ixlp = CL:�=l IXiIP)l/p for 1 ::; p < x, 
and Ixloo = maxi IXi I for p = x. Thus, 

(23) 

The approximation bound becomes 

.Lv. r (f(x) - fn(X))2MCdx) 

::; (2:
)2 (./lwlqIJ(w)1 dW) 2, (24) 

for some network fn of the form (1). 
Note also that the center of the domain of integration may 

be taken to be any point Xo in B not necessarily equal to O. 
(This follows by a simple argument, since the magnitude of the 
Fourier transform is unchanged by translation.) In particular, 
for any cube C of side length s, the result becomes 

for some network fn of the form (1). In like manner, a scaling 
argument shows that if Rect is any rectangle with side lengths 
SI, S2,"', Sd, then there is a network fn such that 

.Lect (f(x) - fnCX»2MCdx) 

::; � (�S}IWiIIJ(w)1 dW) 2 (26) 

In general, for a bounded set fl, the point Xo to take for the 
centering that would lead to the smallest approximation bound 
is one such that Cf, B, Xu = J IwIB, Xo IJ(w)ldw is minimized 
where IwlB,xo = sUPxEB Iw· (x - xo)l. In this context , the 
representation (4) would become 

fCx) = f(xo) + ./ (eiO!x - eiw.xO)J(w) dw. 
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VI. REFINEMENT 

In the above analysis , the approximation results were proved 
by allowing the magnitude of the parameters ak to be ar
bitrarily large. The absence of restrictions on lak I yields a 
difficult problem of searching an unbounded domain. Large 
values of I ak I contribute to large gradients of the sigmoidal 
function which can also lead to difficulties of computation. 
In this section, we control the growth of lak I and bound 
the effect on the approximation error. Knowledge of the 
relationship between the magnitude of the parameters and the 
accuracy of the network makes it possible to bound the index 
of resolvability of sigmoidal networks as in [11]. Bounds 
on the parameters are also required in the metric entropy 
computations as in White [12, Lemma 4.3] and Haussler [13] . 

Given r > 0, C > 0 and a bounded set B, let 

G¢,.,. = b4>(r(a· x + b)): hi::; 2C, 
lalB ::; 1, Ibl ::; I}. (27) 

This is the class of bounded multiples of a sigmoidal function, 
with the scale parameter of the sigmoid not larger than r. We 
desire to bound the approximation error achievable by convex 
combinations of n functions in Gq".,.. 

Theorem 3: For every f E re, B, r > 0, n 2: 1, every 
probability measure po, and every sigmoidal function 4> with 
° S 4>(x) S 1, there is a function fn in the convex hull of n 
functions in G¢,.,. such that 

111- fnll ::; 2C(71,;/2 + D.,.) (28) 

where 11·11 denotes the L2(M, B) norm, lCx) = f(x) - f(O), 
and 

Here, D.,. is a distance between the unit step function and the 
scaled sigmoidal function . Note that D.,. --; 0 as r --; 00. 

If 4> is the unit step function, then b.,. = 0 for all r > 0, and 
Theorem 3 reduces to Theorem 1. 

If 4> is the logistic sigmoidal function 

1 
4>(z) = l+e-z' (30) 

then 14>(rz)+I{z>o}1 S e-TE for Izl2: E. Setting f = (lnr)/r 
yields 

c 1+21nr 
(}.,.S ---r 

(31) 

Therefore, if we set r 2: n1/21n 71" then from Theorem 3, for 
functions f in r c, B, 

(32) 

Similar conclusions hold for other sigmoidal functions. The 
size of rn required to preserve the order (l/n)1/2 approxima
tion depends on the rate at which the sigmoid approach the 
limits of 0 and 1 as x --; ±oo. 
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The proof of Theorem 3 is based on the following result 
for the univariate case. Let g(z) be a function with a bounded 
derivative on [-1, 1]. Assume that 0 is in the range of the 
function g. Let 9r denote a function in the convex hull of 
Gq"r' 

Lemma 5: If 9 is a function on [-1,1] with derivative 
bounded by a constant C, then for every r > 0, 

infgTEeoG •. T sUPlz l�r Ig(z) - gr(z)1 � 2C or. (33) 

Proof: The proof of Lemma 5 is as follows. Given 
o < t � 1/2, let k be an integer satisfying (lit) - 1 < 
k � liE. Partition [-1,1] into k intervals of width 21k. Then 
approximate the function 9 by a linear combination of k unit 
step functions as in the proof of Lemma 3. Since the derivative 
is bounded by C, the error of the approximation is bounded 
by 2C / k for all z in [-1, 1]. Replacing each step function 
l{z�td or l{z$td by the sigmoidal function </>(r(z - til) or 
</>( -r(z - til), respectively, one obtains a function gr in the 
convex hull of k functions in Gq" r, which has error bounded 
by 

2C 
Ig(z) -gT(z)1 � T + 2CsIJPIYI�1/k i</>(ry) -l{y>o} i , 

(34) 
for every z in [-1, 1], where 2C I k bounds the contribution 
to the error from the replacement of the unit step function 
by the sigmoidal function centered at the point ti closest to 
z, and 2CsuPIYI�1/k I</>(ry) -I{y>o}1 bounds the cumulative 
errors from the other sigmoidal functions (each of which is 
centered at distance at least 11k from the point z). Since 
E � 11k � E/(l - f), it follows that 

t 
Ig(z) - gT(z)1 � 2C 

1 _ E 

+2CsuPIYI�rt i</>(ry) -l{y>ol i · (35) 
Using E/(I - t) � 2dor O < t � 1/2, and taking the infimum, 
completes the proof of Lemma 5. 0 

Proof of Theorem 3: The proof of Theorem 3 is as fol
lows. From Lemma 2, 1 is in the closure of the convex hull 
of functions in Geos. The functions in Geos are univariate 
functions g( z) evaluated at a linear combination z = a· x with 
Ig'(z)1 � C and Izl � 1. Each such function 9 is approximated 
by a function gr as in Lemma 5 with supremum error bounded 
by a quantity arbitrarily close to 2C Or. It follows that there is a 
function fT in the closure of the convex hull of Gq" r such that 
111- fTIl � 2CoT. From Lemma 1 there is an fn in the convex 
hull of n points in Gq" T such that lifT - fnll � 2Cln1/2• By 
the triangle inequality, this completes the proof of Theorem 
3. 0 

VII. EXTENSION 

An extension of the theory is to replace Rd by a (possibly 
infinite dimensional) Hilbert space H, where now w· x denotes 
the Hilbert space inner product, and I . I denotes the Hilbert 
space norm. For instance, H may be the space L2 of square 
integrable signals (x(t), 0 � t � 1) with inner product 
w . x = I01 w(t)x(t) dt. A real-valued function f(x) of the 
signal x E H is to be approximated. The Fourier representation 

we require is that there is a complex-valued measure F( dw) = 
ei8(w)F(dw) on H such that f(x) = JH eiw.ItF(dw) or 
f(x) = f(O) + JH(eiw.1t - I)F(dw). 

Theorem 4: Let lex), x E H be a function on a Hilbert 
space H with Cf = JH IwlF(dw) < 00; then for every r > 0, 
every sigmoidal function </> on R1 , every probability measure 
jJ, on H, and every n � 1, there is a linear combination of 
sigmoidal functions fn(x) = L�=l ck</>(ak . x + bk) + co, 
such that JnJf(x) - fn(x»2jJ,(dx) � (2rCf)2/n, where 
Br = {x E H: Ixl � r} is the Hilbert space ball of radius r. 

The parameters ak take. values in the Hilbert space, while 
the other parameters are realcvalued. With modification to the 
approximation bound, the norms of the parameters may be 
restricted in the same way as in Theorem 3. 

For an interesting class of examples in this Hilbert space 
setting, let R(t, s) be a positive definite function on [0, 1]2 (a 
valid covariance function for a Gaussian process on [0, 1], and 
suppose for simplicity that R(t, t) = 1. Let f be the function 
defined by 

f(x) = exp {-101 101 x(s)x(t)R(s, t) ds dt/2} (36) 

for square-integrable x on [0, 1]. Note that f(x) is the 
characteristic fimction of the Gaussian process (w(t), 0 � t � 
1) with mean zero and covariance R(s, t) = E(w(s)w(t)): 
that is, if F is the Gaussian meas)lre on w, j eiwox F(dw) = E[eiwolt] 

= exp { -101 1o\;(S )x(t)R(s, t) ds dt/2} 
= fCc). (37) 

Now, from the identity E(w2(t)) = R(t, t) = 1, it follows 
that Elwl2 = J01 Ew2(t) dt = 1. Therefore, the constant Cf 
in the approximation bound satisfies 

Cf = jlwIF(dw) = Elwl 

� (ElwI2)1/2 
=1. (38) 

Thus, for any probability measure jJ, on x and for any sigmoidal 
function </> on Rl, it follows from the theorem that for this 
infinite-dimensional example there exists fn(x) such that 

r (I(x) - fn(X»)2jJ,(dx) � �. (39) 
J{lxlSll n 

An even more general context may be treated in which 
the nonlinear functions are defined on a normed linear space. 
V�t B be a bounded subset of a normed linear space X, and 
let w take values in a set of bounded linear operators on X 
(the dual space of X). Now w 0 x denotes the operator w 
applied to x and IwlB = 8UPxEB Iw . xl denotes the nanD. 
of the operator restricted to B. If there is a meflSurable set 
of w's and some complex-valued measure F(dw) on this 
set, such that the function f has the representa�i.?n I(x) = 
J eiwx F(dw) or f(x) = f(O) + J(eiwox I)F(dw) with 



938 

Gf, B = f lw IB IF(dw) 1 finite, then for every n > 1, every 
probability measure {t on X, and every sigmoidal function cP, 
there will exist In = 2:�=1 ckcP(ak ' x  + bk) + Co such that 

r (I(x) - In (x))2{t(dx) ::; (2Gf, B )2 , (40) 
JB n 

where now the ak ' s take values in the dual space of X. 
One context for this more general result is the case that 

X is the set of bounded signals (x(t), 0 ::; t ::; 1 ) ,  B = 

{x: supt lx(t) l ::; r}, and w · x  = Io1 w(t)x(t) dt, where 
the bounded linear operators w are identified with integrable 
functions on [0, 1]. Then Iw lll = r fol Iw(t) 1 dt, the Fourier 
distribution F(dw) would be a measure supported on the set 
of w in Llo  and the ak 's would be integrable functions on 
[0, 1]. 

VIII. ITERATIVE APPROXIMATION 

In this section, it is seen that the bounds in Theorems 
1, 3, and 4 can be achieved by an iterative sequence of 
approximations taking the form 

The optimization is restricted to the parameters an, "fn, an , 
and bn of the nth node, with the parameter values from ear
lier nodes held fixed. This iterative formulation considerably 
reduces the complexity of the surface to be optimized at each 
step. 

This reduction in the complexity of the surface is particu
larly useful in the case that the function I is only observed 
at sites Xl , X2 , " ' , XN in a bounded set n. The itera
tive approximation theory shows that to find an estimate 

. rv with average squared error bounded by(11 N) 2:;=1 (l eXi) -
In(Xi))2 ::; c'ln, it suffices to optimize the parameters of the 
network one node at a time, Avoiding global optimization has 
computational benefits. The error surface is still multimodal 
as a function of the parameters of the nth node, but there is 
a reduction in the dimensionality of the search problem by 
optimizing one node at a time. 

A recent result of Jones [4] on iterative approximation in a 
Hilbert space is the key to the iterative approximation bound 
in the neural network case. As in the noniterative case, the 
applicability of Jones' Theorem is based on our demonstration 
that functions in r� are in the closure of the convex. hull of 
G¢. 

To avoid cluttering the notation in this section, the notation 
I (instead of]) is used to denote the point to be approximated 
by elements of the convex hull. As before, for the application 
to the approximation by sigmoidal networks of functions in 

r C, one subtracts off the value of the function at x = ° to 
obtain the function in r� which is approximated by functions 
in the convex hull of G¢. 

Let G be a subset of a Hilbert space. Let In be a sequence 
of approximations to an element I that take the form 

(42) 

where an = (1 - un) and 0 ::; an ::; 1 and gn E C. Here 
an and gn are chosen to achieve a nearly minimal value for 
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l Ialn-l + ag - II I . The iterations (42) are initialized with 
0:1 = 0, so that h is a point gl in G that achieves a nearly 
minimal value for I lgl - I I I . Note that In> as defined in (42), 
is in the convex hull of the points g1 , . . .  , g". 

Jones [4] showed that if I is in the closure of the convex 
hull of G, then I lln - 1 1 12 ::; O(l/n ), for the sequence of 
approximations defined as in (42). Here Jones' theorem and 
proof are presented with a minor refinement. The constant 
in the approximation bound is improved so as to agree with 
the constant in the noniterative version (Lemma 1). As noted 
by Jones, the error I laln-l + (5g - II I  need not be exactly 
minimized; here it is shown that it is enough to achieve a 
value within O(1/n)2 of the infimum on each iteration. 

Theorem 5: Suppose I is in the closure of the convex hull 
of a set G in a Hilbert space, with I lg l l  ::; b for each 9 E G. 
Set bJ = b2 - 1 1/ 1 1 2 . Suppose that h is chosen to satisfy 
I lh - 1 1 1 2 ::; infgEG I Ig - 1 1 1 2 + El and, iteratively, In is 
chosen to satisfy 

I l fn - f l 1 2 ::; info::;o9 infgEG l Ialn-l  + (5g - 1 112 + En 
(43) 

where (5 = 1 - a, c' 2: bJ, p = c'lbJ - 1 ,  and 

pc' En ::; 
n(n + p )" (44) 

Then for every n > 1, 

c' 
I I I - In l 1 2 ::; - . n 

(45) 

Proof' The proof of Theorem 5 is as follows. We show 
that if I is in the closure of the convex hull of G, then, for 
any given In-l  and 0 ::; a ::; 1 ,  

inf I l aln-l  + ag - 1 1 1 2 gEG 
= infgEG I la(ln-l  - I) + (5(g - 1) 1 12 
::; a2 1 1/n_l - 1 1 1 2 + ( 1  - a)2bJ . (46) 

The proof is then completed by setting a = b}/(b} + II In-l  -
1 1 12 )  to get 

2 bJ l l /n-l - 1 1 1 2 I Iln - II I ::; 
bJ + I l /n-l _ 1 1 1 2 + En , 

or, equivalently, 

(47) 

1 1 1 ------,,,--- 2: 2 + 2 '  (48) 
I lln - 1 1 12 - En I l/n-l - II I  bf 

Equation (48) provides what is needed to verify that I lln -
1 1 12 ::; c'ln by an induction argument. Indeed, (46) with Q; = 0 
shows that the desired inequality is true for n = 1. Suppose 
I l /n-1 - 1 1 1 2  ::; c'/(n - 1), then plugging this into (48) and 
using c' = b} ( 1  + p) yields 

1 --------- 2: 
I lln - 1 1 12 - En 

1 1 
2 + b2 I lln- l - II I  f 

n - 1 1 > -- + -- (;, b;' 
n + p  

c' (49) 
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Reciprocating and using the assumed bound on En yields 

as desired. 

c' 
I Ifn - fl 12 :s; -+ + En n p 

c' C'p 
- - - + E - n n(n + p) n 

C' 
< - . - n '  (50) 

Thus, it remains to verify (46). Given 8 > 0, let r be a 
point in the convex hull of G with I l f - 1* 1 1 :s; 8. Thus r is 
of the form L;;'=l "'(k9Z with gZ E G, rk ;:::: 0, L;;'=l rk = 1, 
for some sufficiently large m. Then, 

l Ia(fn-1 - 1) + a(g - 1) 1 1  
:s; I l a(fn-l - 1) + Ci(g - r) 1 I + 8. (51) 

Expanding the square yields 

l Ia(fn-1 - 1) + a(g - 1*) 1 12 
= a2 l 1fn_1 - fl 1 2 + a2 1 1g - 1* 1 1 2 
+ 2aa(fn-1 - f, 9 - f*) , (52) 

where ( . , . ) denotes the inner product. Now the average value 
of the last two terms is, for 9 E {gi , " " g;', } , 

m 

Lrk(a2 1 lgk - f* 1 I2 + 2aa(fn-l - f, gk - f* » 
k=l m 
= a2Lrk l lg;: - f* 11 2 + 0 

k=l 
= a2 (�lk I 19k I l 2 _ 1 11* 1 1 2) 
:s; a2(b2 - 1 11* 1 12 ) . (53) 

Since the average value is bounded in iliis way, there must 
exist 9 E {gi , ' ' ' '  g;;' } , such that 

l Ia(fn-l - 1) + a(g - f*) 112 
:s; a2 l1fn_l - f l 1 2 + a2(b2 - 1I f* 1 1 2) .  (54) 

Now by the triangle inequality, 1 11* I I > I If l l - 8. So using (51) 
and letting fj -> 0, it follows that 

infgEG l Ia(fn-l - f) + a(g - 1) 1 12 
:s; a2 l1fn_l - f l 12 + a2 (b2 - l lf I l 2) , (55) 

as desired. This completes ilie proof of Theorem 5. 0 
Inspection of the proof shows an alternative optimization 

that may provide further simplification in some cases. Instead 
of minimizing the sum of squares I l afn-l +ag - fl 1 2  at each 
iteration, one may instead choose 9 E G ·to maximize the inner 
product (f - fn-l , g). (In this case, one can derive the bound 
I If - fn l l -::; (2b)2/n.) For sigmoids, the search task reduces to 
finding the parameters an and bn such that the inner product 
of ¢(a · x + b) and f - fn-l is maximized. The function fn 
depends linearly on the other parameters an and Cn in (41), 
so they may be determined by ordinary least squares. 

IX. PROPERTIES AND EXAMPLES OF fuNCTIONS IN r 
In this section, several properties and examples of functions 

f(x) are presented for which the Fourier integral Cj = 
J Iw IF(dw) is evaluated or bounded, where F(dw) is the 
magnitude distribution of the Fourier transform. Note that 
Cf = Cj, B in the case that B is the unit ball centered at 
zero. Examples are also given of classes of functions in r *, that 
is, functions on R2 that are contained in r B when restricted 
to any bounded set B. The simpler facts are stated wiiliout 
proof. 

1) Translation: If f(x) E re, then f(.'E + b) E re. 
2) Scaling: If f(x) E re, then f(ax) E rla le .  
3) Combination: If /;(x) E re" then L ;3;f; E rL Ipi lei 
4) Gaussian: If f(x) = e- lx l 2  /2, then Of :s; d1/2 • Indeed, 

jew) = (27r)-d/2e- lwI2/2 and OJ = f Iw lj(w) dw 
which is bounded by (J Iw l2 jew) dw)I/2 = d1/2 . 

5) Positive Definite Functions: Of -::; (-f(0)\72 f(0» 1/2 . 
A positive definite function f ( x) is one such iliat Li, j 
X;Xjf(Xi - Xi) is nonnegative for all Xl ,  X2, ' "  , Xk 
in Rd. Positive definite functions arise as covariance 
functions for random fields and as characteristic 
functions for probability distributions on Rd. The 
essential property (due to Bochner) is that contin
uous positive definite functions are characterized as 
functions that have a Fourier representation f (x) = 
f e;w,,,, F(dw) in terms a positive real-valued measure 
F. If f is a twice continuously differentiable pos
itive definite function, then by the Cauchy-Schwarz 
inequality J Iw \F(dw) :s; (J F(dw) f Iw l2 F(dw» 1/2 = 
(-f(0)\72 f(0» 1/2 , where \72 f(x) = L�=l 82 f(;r;)/8x;. 
(Positive definite functions have a maximum at X = 0, 
so \72 f(O) :s; 0.) What is noteworthy about iliis class 
of functions for our approximation purposes is that the 
C j is bounded in terms of behavior at a single point 
X = O. Moreover, since \72 f(O) is a sum of d terms, it 
is plausible to model a moderate behavior of the constant 
OJ, such as order d1/2 , for positive definite functions of 
many variables. 

6) Integral Representations: Suppose f(·7;) = f K(a(x + 
b) G(da, db) for some location and scale mixture of a 
function K ( x) in r, for a > 0 and b E Rd. (For instance, 
K(x) may be a Gaussian density or other positive 
definite kernel on Rd.) Then OJ :s; OK f laI IGI (da, db). 
In the same way, if the function has a representative 
f(x) = J K(a . . 'E + b)G(da, db), for a E Rd and 
b E Rd, for some K (z) on Rl and some signed measure 
G(da, db), then OJ :s; CK J la I IGI (da, db) . 

7) Ridge Functions: If f(x) = g(a . x) for some direction 
a E Rd with lal = 1 and some univariate function 
g(z) with integrable Fourier transform g on R\ then 
f has a Fourier representation in terms of a singular 
distribution F(dw) concentrated on the set of w in Rd 
in the direction a, iliat is, f (x) = f eita.x g( t) dt. In this 
case, Of = 09 = fR' It l lg(t) 1 dt. If f(x) = g(a . x) 
for some a E Rd with 1 a I = 1 and the derivative of 
9 is a continuous positive definite function on Rl, then 
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Cf = Cg = gl (O). Note that Ct is independent of the 
dimension d. 

8) Sigmoidal Functions on Rd: These are ridge functions of 
the form I(x) = </JCa ' x + b) for some a and b in Rd, for 
some sigmoidal function ¢ (z) on Rl . Generally, such 
sigmoidal functions do not have an integrable Fourier 
transform. Nevertheless, typical choices of smooth sig
moidal functions </J(x) have a derivative </JI (Z) with an 
integrable transform �/(t). In this case, I is in r with 
Ct = la l J 1¢/Ct) 1 dt . Using the closure properties for 
linear combinations and compositions, it is seen that 
certain multiple-layer sigmoidal networks are also in r. 

9) Radial Functions: Suppose I(x) = g( lx l )  is a function 
that depends on x only through the magnitude Ix l  (i.e., 
the angular components of I(x) are constant), and that 
I has a Fourier representation I(x) = J eiw.x l(w) dw. 
Then lCw) is also a radial function; that is, lCw) = 

g( lw l )  for some function 9 on Rl . Integrating IwI IF(w) 
using polar coordinates yields Cf = 8d Jo= ,,.d l9(r) I dr, 
where Sd is the d-1-dimensional volume of the unit 
sphere in Rd. The factor rd in the integrand suggests that 
CJ is typically exponentially large in d; for an exception, 
the Gaussian function in example (4) is a radial function 
with CJ � d1/2

. 
10) Sigmoidal Approximation with an Augmented Input Vec

tor: For a d-dimensional input x, let .7:1 in R2d consist 
of the coordinates of x and the squares of these 
coordinates. Then with the unit step function for </J, 
the terms in the approximation In(xl ) = L Ck</J(ak . 
Xl + bk) with ak> bk E R2d consist of indicators of 
ellipsoidal regions. Functions I(x) on Rd can have a 
significantly smaller value for C f when represented 
as a function of Xl on R2d. In particular, consider 
the functions of the form I(x) = geL aixT) on Rd 
with L aT = 1. These functions include the radial 
functions and may be interpreted as a ridge function in 
the squared components. In this case, if 9 has a Fourier 
transform 9 on Rl, then there is a representation of the 
function I as a function on R2d, with CJ given by the 
one-dimensional integral JIl' I t l lg(t) 1 dt. This potential 
improvement in the constant in the approximation 
bound helps justify the common practice of including 
the squares of the inputs in the sigmoidal network. 

For the following examples, let rca, c) C rc be 
the class of functions 1(:1:) on Rd for which there is 
a Fourier representation I(x) = J eiw·x F(dw) with 
magnitude distribution F( dw) satisfying J F( dw) � a 
and J Iw lF(dw) � c. 

1 1 )  Products of Functions in r: If It E rca] , cd and 
h E r(a2' (2), then the product 11 (x)h(x) is a 
function in r(ala2 , al c2 + CL2cd . This follows by 
applying Young's convolution inequality to the Fourier 
representations of the product I(x )g(x) and its gradient 
f(x)Vg(x) + g(x)V/(x). Together with property (3), 
this shows that the class of functions in r for which 
both J F ( dw ) and J Iw IF ( dw) are finite forms an 
algebra of functions closed under linear combinations 
and products. 
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12) Composition with Polynomials: If 9 E rca, c) , 

then (g(x» k is in rcak , kak-1c). It follows that if 
I (z) is a polynomial function of one variable and 
9 E rca, c) , then the composition f(g(x» is in 
r(fabs(a), cf�bs (a» ) ,  where labs is the polynomial 
obtained from I by replacing each coefficient with its 
absolute value. A similar statement can be made for 
the composition of a polynomial function of severable 
variables with functions in rca, c) . 

13) Composition with Analytic Functions: If 9 E rca, c) 
and 1(:1;) is an analytic function represented by a power 
series J(z) = L;;'=o akzk with radius of absolute 
convergence r > a, then the composition I (g( x) is 
in r(fabs (a) , c/�bs(a) where labs (z) = Lk lak l zk . 

The next examples concern functions in r .-that is, 
functions which can be modified outside of bounded 
sets B to produce functions in r. For I in r., let 
Cj, B = infg Cg, B, where the infimum is over 9 in r 
that agree with I on the set B, eg, B = J Iw IBG(dw), 
and G is the magnitude distribution in the Fourier 
representation of 9 on Rd. For functions in r., the ap
proximation error JB (f(x) - 1,, (x) 2t£(dx) is bounded 
by (2Cj, B)2In, for some sigmoidal network In of the 
form (1). 

14) Linear Functions and Other Polynomials: If I(x) 
a . x, then J is in r • .  Moreover, Cj, B � la ir, for 
every set n contained in the ball {x: Ixl � r}, for 
every radius r > O. This is shown first in the case 
that d = 1 and f(x) = x on [-r, r], by considering 
certain extrapolations hex) . In particular, let h(x) = 
hb(:.r:) have derivative hl(x) that is equal to 1 for 
Ix l � r, equal to 0 for Ix l  ::: r + b, and interpolates 
linearly between 1 and 0 for r � Ix l  � r + b, for 
some b > O. Then hl(x) has a Fourier transform 
that can be calculated to be 2 sin (wb 12) sin ( w (r + 
bI2» /(w27rb). By a change of variables (t = wbl2) 
and an application of the dominated convergence the
orem, it is seen that as b tends to infinity, Chb = 

J Iw l lhb (w) dw = J Isin C t) sin (t(l + 21-jb)) II (t27r) dt 
converges to J(sin (t» 2/(t27r) dt = 1. (This matches 
the intuition that as b tends to infinity, hb( x) approaches 
I (x) which has a constant derivative equal to one, so 
the Fourier transform of h� (x) ought

" 
to approximate a 

"delta function" and the integral of Ih�1 should be close 
to oney Consequently, Cj, [-r, r] � limb�oo rChb = 
r. For I(x) = a .x on Rd, let gb (x) = l a lhb (a·x) where 
a = al la l .  Then for sets B in the ball Br of radius r, 
Cj, B � la l infb Chb , [-r, r] � la ir. Other extrapolations 
of I(:!:) = x on [-r, r] can be constructed for which 
g(w), as well as wg(w), are integrable. Together with 
property (12), this implies that polynomial functions 
(in one or several variables) are contained in ro. 
Manageable bounds on the constraints C j, B can be 
obtained in the case of sparse polynomials and in the 

1 For an alternative treatment in which the Fourier representation is gener
alized to allow for functions with a l inear component on Rd, sec the remarks 
in the Appendix. 
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case of multiple-layer polynomials networks, which are 
polynomials defined in terms of a restricted number of 
elementary compositions (sums and products). 

15) Functions with Derivatives of Sufficiently High Order: 
If the partial derivatives of f (x) of order s = l d /2 J + 2 
are continuous on Rd, then f is in r. .  Consider first 
the case that the partial derivatives of order less than 
or equal to s are square-integrable on Rd. In this case, 
f is in r. Indeed, write li(w) l lw l = a(w)b(w) with 
a(w) = (1 + Iw I 2k)- 1/2 and b(w) = li(w) l lw l (1 + 
Iw 12k)1/2, where k = s - 1. By the Cauchy-Schwarz 
inequality, G f = I a( w ) b( w ) dw is bounded by the 
product of (J a2(w) dw)1/2 and (J b2 (w) dw)1/2 . Now 
the integral I a2(w) dw = 1(1 + Iw I2k)-1 dw is finite 
for 2k > d and, by Parseval's identity, the integral 
I b2(w) dw = I li(wW( lw I 2 + Iw I 2S ) dw is finite when 
the partial derivatives of order s and of order 1 are 
square-integrable on Rd. This demonstrates that f is in 
r. Now suppose that the partial derivatives of order s 
are continuous, but not necessarily square-integrable on 
Rd. Given r > 0, let p(x) be an s-times continuously 
differentiable function that is equal to 1 on Br = 
{x: Ix l :::: r} and equal to ° for Ix l � r' for some 

r' > r. (In particular, we can take p(x) = P1 ( lx l ) 
where p1 (Z) equals 1 for z. :::: r, ° for z � r', 

and interpolates by a (piecewise polynomial) spline 
of order s for r :::: z :::: r'.) Consider the function 
fr (x) = I(x)p(x), which agrees with f(x) on Br. It 
has continuous partial derivatives for order s which are 
equal to zero for Ix l > r', and hence are integrable on 
Rd. Consequently, for each r > 0, the function fr(x) 
is in r. It follows that f is in r •. A disadvantage of 
characterizing approximation capabilities in terms of 
high-order differentiability properties is that the bound 
on the constant G f can be quite large. Indeed, the 
integral I li(w) i 2 lw I 2s dw, as characterized by Parse
val's identity, involves a sum of exponentially many 
terms--one for each partial derivative of order s. 

The last three examples involve functions in r which 
have a discrete domain for either of the variables x or 
w. 

16) Absolutely Convergent Fourier Series: Suppose f is a 
continuous function on [0, l]d;  let A = (27r)-d 1[0, 1j d  
e-i21rk.x I(x) dx be the Fourier series coefficients of f,  
and suppose that A and kik arc absolutely summable 
sequences for k E Zd, where Zd is the set of vectors 
with integer coordinates. Then f is a function in r with 
the Fourier series representation f(x) = L:k ei27rk.x ik 
and Gf = 27r L:k Ik l l ik l ·  Thus, f has a Fourier dis
tribution F restricted to the lattice of points w of the 
form 27rk, with F ( {27r k }) = k In this case, for ik 
and kik to be absolutely summable, it is necessary that 
the function f(x) possess a continuously differentiable 
periodic extension to Rd. It is a simple matter to 
periodically extend a function defined on [0, l]d such 
that I (x + k) = I (x) for all vectors of integers 
k; however, for functions that arise in practice, it is 

rare for this periodic extension to be continuous or to 
possess a continuous derivative on the boundary points 
of [0, l]d .  (It is for this reason that in this paper the 
Fourier distribution has not been restricted exclusively 
to such a lattice; allowing the coordinates of w to take 
arbitrary values relaxes the boundary constraints.) In 
some cases, it is possible to take a function defined 
on a subset of [0, l]d and extend it in a continuously 
differentiable way to a function that is zero and has 
zero gradient on the boundary of [0, l]d, so that the 
requirement of a continuously differentiable periodic 
extension is satisfied. Examples of this are similar to 
those given in 14) and 15). 

17) Functions of Integers: Functions defined on Zd are in 
r B for any finite subset B. of Zd. Indeed, given such a 
set B, set iB (W) to equal (1/27r)d L:xEB e-iw,xf(x) 
for w in [-7r, 7r]d and to equal ° otherwise.2 Then the 
Fourier representation f(x) = I[-1C, 7r]d eiw,xiB (W) dw 
holds for x in B. Now iB (W) is a continuous func
tion on the set [-7r, 7r]d, which implies that liB (W) 1 
is bounded and Gf, B = k", 7rjd Iw IB liB (W) l dw is 
finite. Consequently, .f is in tB. Moreover, Gf, B may 
be bounded in terms of the L1 norm of the Fourier 
transform: that is Gf, B :::: 7rSd �_7r, 1CJd liB (W)l dw, 
where s = maxxEB Ix loo. As a practical matter, if d 
is large, then additional structure needs to be assumed 
of the function to have a moderate value of G f, B. 

18) Boolean Functions: Here, we consider functions 
defined on B {O, l}d and note that, for 
Boolean functions, r c, B is related to a class of 
functions recently examined by Siu and Bruck [5] and 
Kushilevitz and Mansour [27t This leads to a number 
of additional interesting examples of functions with 
not excessively large values of Gf, B . For functions 
f (x) on {O, I} d, the Fourier distribution may be 
restricted to the set of w of the form 7r k with k E 
{O, I} d (for then the functions ei7rk.x , k E {O, I} d 
are orthogonal functions that span the 2dcdimensional 
linear space of real-valued functions on {O, 1 }d). 
�onsequently, f(x) = L:kE{O, l}d ei1rk.x iko where 

f 2-d " -,,,k ,xf( ) H G k = L..,xE{O, l}d e x . ere, f, B = 
7r L:kE {O , l}d Ik l 1 1fk l which is bounded above by 

7rdL(.f), where L(.f) = L:kE{O, l}d lik l is the spectral 
norm. Now the class P L of Boolean j;'unctions, for 
which L(f) is bounded by a polynomial function of d 
(that is, L(f) :::: de for some fixed c � 1), is examined 
in [5] and [27].3 In particular, Siu and Bruck [5] 
show, among other examples, that the Boolean function 
on {O, 1 Fd defined by the comparison of two d-bit 

2If it happens that f(x) is an absolutely summable function n Zd, then the 
transfonn J(w) = (1/21r)d Ex e-iw ' x  f(x), w E [-11', 1I'jd, may be used 
in place of fB(W), 

3 The cited references express the Fourier transform in terms of a polynomial 
basis that turns out to be identical to the Fourier basis used here. Indeed, for x 
restricted to {a, 1 }d, the Fourier basis functions ei�k.x = rr1=1 (eiUj )kj 
may be expressed in the polynomial fonn nd=l ,li ,  where Xj = 1 - 2xj 
equals I, - 1  for x j equal to 0, 1, respectively (in igreement with the values 
assigned by ei�Xl ). 
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integers and the functions defined by (each bit ot) the 
addition of two such integers are functions in P [, with 
L(f) = d+ 1. It follows that C/, B .:; 27rd( d+ 1) for the 
comparison and addition functions. On the other hand, 
they show that the majority function 1 {L::= 1  xj -d/2} 
(which has a simple network representation) is not 
in the class PL. Kushilevitz and Mansour [27] show 
that a class of binary decision trees represent Boolean 
functions satisfying L(f) .:; Tn, where Tn is the nnmber 
of nodes of the tree. It follows that C /, B .:; nnd for 
such decision trees. Bellare [28] generalizes the results 
of [27] by allowing decision trees with more general 
P L functions implemented at the nodes of the tree. 
He gives bounds on L(f) in terms of spectral norms 
of the node functions, from which bounds on C /, B 
follow for the classes of decision trees he considers. 
The implication of polynomial bounds on C/, B, as a 
consequence of the bound 2C /, B / yin from Theorem 1, 
is that a polynomial rather than an exponential number 
of nodes n is sufficient for accurate approximation by 
sigmoidal networks. 

X. LoWER BOUNDS FOR ApPROXIMATION 

BY LINEAR SUBSPACES 

The purpose of this section is to present and derive a lower 
bound on the best approximation error for linear combinations 
of any fixed basis functions for functions in r c. These results, 
taken together with Theorem 1, show that fixed basis function 
expansion must have a worst-case performance that is much 
worse that that which is proven to be achievable by certain 
adaptable basis function methods (such as neural nets). 

Let /L be the uniform probability distribution on the unit 
cube B = [O, I]d , and let d(f, g) = U[o. l]' (f(.x) 
g(x))2 dx) I/2 be the distance between functions in L2 (/L, B). 
For a function f and a set of functions G, let d(f, G) = 
infYEG d(f, g) . For a collection of basis functions h1 , 
h2 , " ' , hn 

(56) 

denotes the error in the approximation of a function f by 
the best linear combination of the functions h1 ,  h2 , " " hn , 
where H" = span (hI ,  h2 , ' . " hn). The behavior of this 
approximation error for functions in r c = r c, B may be 
characterized (in the worse case) by 

(57) 

Here, a lower bound to this approximation error is determined 
that holds uniformly over all choices of fixed basis functions. 
In this formulation, the functions hi are not allowed to depend 
on f (in contrast, sigmoidal basis functions have nonlinear 
parameters that are allowed to be adjusted in the fit to f). Let 

Wn = infh" . .  ,hn SUP/Ere d(f, span (hI , h2 , " ' , hn)) . 
(58) 

This is the Kolmogorov n-width of the class of functions r c. 
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Theorem 6: For every choice of fixed basis functions 
hI , h2 , " ' , hn, 

(59) 

where r;, is a universal constant not smaller than 1/(81re7r-1 ) .  
Thus, the Kolmogorov n-width of  the class of  functions r c 
satisfies 

C ( l ) l/d W > r;,- -n - d n 
(60) 

The proof of Theorem 6 is based on the following Lemma. 
Lemma 6: No linear subspace of dimension n can have 

squared distance less than 1/2 from every basis function in an 
orthonormal basis of a 2n-dimensional space. 

Proof' For the proof of Lemma 6, it is to be shown 
that if e 1 , . . . , e2n is an orthonormal basis and Gn = span 
{gt , . . .  , g,, } is a linear subspace of dimension n, then there is 
an Cj such that the squared distance d2(ej , Gn) � 1/2. Indeed, 
Ie! P denote projection onto Gn. Then, d2(ej , Gn) = I lej 
Pej 1 1 2  = I l ej 1 1 2  - I IPej I l2 = 1 - 1 1 Pej 1 1 2 . Thus it is equivalent 
to show that there is an ej such that the norm squared of the 
projection satisfies I IPej l 1 2 .:; 1/2. Without loss of generality, 
take g1 , . . .  , gn to be an orthonormal basis of Gn. Then the 
projection Pej takes the form L:�=1 (ej , gi)gi . So the norm 
squared of the projection satisfies I IPej l 1 2 = L:�=I (ej ,  gi )2 .  
Taking the average for .i = 1 " " ,  2n, exchanging the order of 
summation, and using I lgi l l  = 1, yields 

-
2n 2 

(61) 

Since the average value of the norm squared of the projection 
I IPej l 1 2 is equal to 1/2, there must exist a choice of the basis 
function ej for some 1 .:; .i .:; 2n for which I IPej 1 1 2 � 1/2. 
This completes the proof of Lemma 6. D 

Proof of Theorem 6: Let ht,  h� , . . . be the functions 
cos (w . x) for w = 27rk for k E {a, 1, . . . }d ordered in terms 
of increasing h norm Ik l 1  = L:�=l lh l · Let H2n denote the 
span of h! , . . .  , h;n ' We proceed as follows. First reduce the 
supremum over rc by restricting to functions in H2n, then 
lower bound further by replacing the arbitrary basis functions 
h i ,  . . .  , hn with their projections onto H2n, which we denote 
by .111 , . . .  , gn ' Then gl , . . . , gn span an n-dimensional linear 
subspace of H2n and a lower bound is obtained by taking 
the infimum over all n-dimensional linear subspaces Gn . The 
supremum is then restricted to multiples of the orthogonal 
functions hi that belong to r c, which permits application of 
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the lemma. Thus, putting it all together, 

Wn = inf sup d(f, span (hI , h2 , · · · , hn)) 
h" . · · ,h" JEre 

� inf sup d(f, span (h1 , h2 , · · : , hn)) h , ,. · · ,h,, JEH;n n rc 
� inf sup d(f, span (gl ,  g2 , ' "  , gn)) 

h , , . · · ,h,, JEH;" n rc 
� inf sup d(f, Gn) 

Gn JEHin nrc 
� inf sup dU, Gn) 

Gn JE{(C/IWj l) cos (Wj "x) , j=l , . · ,2n} 

> min (�) - j=1,. · · ,2n 27r lkj l  
. (infGn sUPJE{COS (Wj .x) , j=1 , . . . ,2n} d(f, Gn)) 

> min (�) � - j=1, . . ,2n 27rlkj l  2 

> �  
- 47rm ' 

(62) 

for m satisfying (m;jd) � 2n (such that the number of 
multiindices with norm Ikl :::: m is at least 2n). A bound from 
Stirling's formula yields (m;jd) � (m/Td)d for a universal 
constant T ::::> e,,-l .  Setting m = ITdnl/dl and adjusting the 
constant to account for the rounding of m to an integer, the 
desired bound is obtained, namely, 

C ( l ) l/d 
W > -- -n - 87rTd n 

This completes the proof of Theorem 6. 

XI. CONCLUSION 

(63) 

o 

The error in the approximation of functions by artificial 
neural networks is bounded. For an artificial neural network 
with one layer of n sigmoidal nodes, the integrated squared 
error of approximation, integrating on a bounded subset of 
d variables, is bounded by cf / n, where cf depends on a 
norm of the Fourier transform of the function being ap
proximated. This rate of approximation is achieved under 
growth constraints on the magnitudes of the parameters of 
the network. The optimization of a network to achieve these 
bounds may proceed one node at a time. Because of the 
economy of number of parameters, order nd instead of nd, 
these approximation rates permit satisfactory estimators of 
functions using artificial neural networks even in moderately 
high-dimensional problems. 

APPENDIX 
In this appendix, equivalent characterizations of the class 

of functions r are given in the context of general Fourier 
distributions on Rd. This appendix is not needed for t!i.e proofs 
of the theorems in the paper. It is intended to supplement 
the understanding of the class of functions for which the 
approximation bounds are obtained. 

Recall that r is defined (in Section III) as the class of 
functions I on Rd such that I(x) = 1(0) + lRd (eiW X  -

I)F(dw) for some complex-valued measure F(dw) for which 
lRd Iw I IF(dw) l · Complex-valued measures take the form 
ei8(w) F(dw), for some real-valued measure F(dw) = IF(dw) 1  
called the magnitude distribution and some function (J(w) 
called the phase (see, for instance, Rudin [29, theorem 
6.12]). A complex vector-valued measure G(dw) on Rd is 
a vector of complex-valued measures (G1 (dw), " ' , Gd(dw)).  
Let IG(dw)h = L:�=l IGk(dw) 1  denote the sum of the 
magnitude distributions of the coordinate measures. 

Proposition: The following are equivalent for a function I 
on Rd. 

a) The gradient of I has the Fourier representation 
\l I(x) = 1 eiw xG(dw) for some complex vector-valued . 
measure G with I IG(dw) 1  < 00 and G({O}) = 0 (in 
which case it follows that G(dw) = iwF(dw) for some 
complex scalar-valued measure F). 

b) The function I has the representation I(x) = 1(0) + 
1 (eiw x - 1  )F( dw) for x E Rd, for some complex-valued 
measure F with l lw I IF(dw) 1  < DC .  

c) The increments of the function I of the form !h(:r;) = 
I(x + h) - I(x) have a Fourier representation Ih (X) = 
1 eiw'X (eiw.h - l)F(dw),  x E �, for each h E Rd, for 
some complex-valued measure F with l lwIF(dw) 1  < 
DC. 

If any one of a), b), or c) is satisfied for some F, then the 
other two representations hold with the same F. 

Proof' The proof of this proposition is as follows. First, 
recall that l eiw.h - 1 1 is bounded by 2hlw l , so 1 IwI IF(dw) 1 < 
00 implies the absolute integrability of the representations in 
b) and c). Now, b) implies c) since the difference of the 
integrands at x and x + h is integrable, and c) implies b) 
by taking a specific choice of x and h; consequently, b) and 
c) are equivalent. Next, a) follows from c) by the dominated 
convergence theorem; c) follows from a) by plugging the 
Fourier representation of the gradient into I(x + h) - I(x) = 

10
1 h . V I(x + th) dt and applying Fubini's theorem. 
It remains to show that in a), if the gradient of I has 

an absolutely integrable Fourier representation \l I (x) = 
1 eiw.xG(dw), and if G assigns no mass to the point w = 
0, then G ( dw) is proportional to w (that is, the measures 
(l/wk)Gk(dw) are the same for k = 1 ,  2, . . . , d). Now, 
if the gradient of I has an absolutely integrable Fourier 
representation, then so do the increments fh . Indeed, !h (x) = 
101 h . \l I(:r; + th) dt = J� h . lRd eiw.(x+th)G(dw) dt, 
and integrating first with respect to t yields Ih (x) = 
J�d eiW X « eiW h _ l)/iw . h)h · G(dw) (the exchange in order 
of integration is valid by Fubini's theorem since the integral 
of eit:.;·h is (eiw .h - l)/iw . h, which has magnitude bounded 
by 2). Thus, II. has a Fourier distribution 

It is argued that the factor h . G(dw)/h . w .determines a 
measure that does not depend on h (from which it follows 
that G(dw) is proportional to w). Now, the increments of I 
satisfy !h (X + Y) = ly+h (X) - Iy(x), so it follows that their 
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Fourier distributions satisfy 

eiw,y A (dw) = Fy+h(dw) + Fy (dw) (65) 

for all y, h E Rd, Examination of this identity suggests that 
A (dw) must be of the form (eiw'h - l)F(dw) for some 
measure l' which does not depend on h. Indeed, by (64), 
the measures Fh are dominated by IG I I  for all h, so (64) and 
(65) may be reexpressed as identities involving the densities 
of these measures with respect to IGl l '  Consequently, 

eiw Y(eiw'h _ 1 ) 
h ·  g(w) 

h · w  
= (eiw, (y-h) _ 1) 

(y + h) · g(w) 
(y + h) · w 

+ (eiw,y - l) y ' g(w)
, (66) y · w  

where g(w) is a complex vector-valued function such that 
G(dw) = g(w) IG(dw) l l '  (For each y and h in Rd, (66) 
holds-except possibly for a set of w of measure zero with 
respect to IG l l-so if y and h are restricted to a countable 
dense set, then there is one I G 1 1 -null set outside of which 
(66) holds for all such y and h.) Now take a derivative in 
(66), replacing h with th, dividing both sides by t, and letting 
i -t 0 (along a countable sequence of values with th restricted 
to the dense set). The identity that results from this derivative 
calculation, after a rearrangement of the terms, is 

W . h ( eiW ,y - 1 _ ieiW,y) ( h ' 9(W) _ y , g(w) ) = 0 . (67) w · y  h · w  y · w  
Therefore, h . g(w)/h · w = y . g(w)/y . w, whenever h . w 
and y . w are not equal to zero (for y and h in the countable 
dense set and for almost every w). Let p( w) = y . g( w) / y . w 
denote the common value of this ratio for all such y (for w 
outside of the null set). Then, y .  (g(w) - wp(w») = 0; so 
taking d points y which span Rd, it fol lows that yew) = wp(w) 
for almost every w. Consequently, G(dw) = wp(wllG(dw) l l , 
which may be expressed in the form G(dw) = iwF(dw) for 
some complex-valued measure l' on Rd. This completes the 
proof of the proposition. 0 

The usefulness of the above proposition is that it provides 
a Fourier characterization of l' for functions in r in the 
case that I 11'( dw) I is not necessarily finite. It is the unique 
complex-valued measure such that G(dw) = iwF(dw), where 
G is the Fourier distribution of the gradient of the function. 
For several of the examples in Section IX of functions in r, 
including sigmoidal functions, the function f does not possess 
an integrable Fourier representation (in the traditional form 
f(x) = I eiw,x F(dw» , but the gradient of f does possess 
an integrable Fourier representation, and in this way F is 
determined for the mQdified Fourier representation f(.T) = 
f(O) + I(eiw.", - l)F(dw) . 

A Remark Concerning Functions with a Linear Component: 
If the Fourier distribution G of the gradient of the function f 
has G( {O}) # 0, that is, if the gradient has a nonzero constant 
component, then (strictly speaking) the function f is not in r, 
Nevertheless, it is possible to treat this more general situation 
by using the representation f(x) = f(O) + a ·  x + I(ei,"'x -
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l)F(dw), where a = G({O}), and F(dw) is characterized by 
G(dw) = iwF(dw) on Rd - {O}. The component a . x is 
approximated by linear combinations of sigmoidal functions 
in the same way as the sinusoidal components as in the proof 
of Theorem 1. Now let Cj• B = I IG(dw) IB,  where IGIB is 
the measure that assigns mass IG( to} ) IB  = la lB at w = 0, 
and that equals IG(dw) IB  = Iw IB I IF(dw) 1  when restricted to 
Rd - {O} (recall that, by definition, lalB = SUPXEB la . xj). It 
can be shown in this context that there is a linear combination 
of n sigmoidal functions fn(x) of the form (1), such that the 
L2 (p" B) norm of the error f - fn is bounded by 2Cj, B/..;n. 
The same bound can also be obtained by the extrapolation 
method in example (14). 

Additional Remarks: In the case that the distribution l' 
has an integrable Fourier density jew), there is a forward 
transform characterization in terms of Gaussian summability, 
that is, 

for almost every w (see, for instance, Stein and Weiss 
[30]). In the same way, iwJcw) is determined as the 
Gauss-Fourier transform of \l f(x) for functions in r in the 
case that Fourier distribution of the gradient is absolutely 
continuous. If f(x) or \l f(x), respectively, is integrable on 
Rd, then j (w) is determined by an ordinary forward transform, 
that is, ](w) = (27f) -d I e-iW'Xf(x) dx or iwJ(w) = 

(27r)-d I e-i"" X\lf(x) dx for almost every w. 
Note Added in Proof: A factor of two improvement in the 

constant in the approximation bound can be obtained.Indeed, 
if rj;(z) is a given sigmoid with range in [0,1 ], then subtracting 
a constant of 1/2 yields a sigmoid with range in [-1/2, 1/2. 
Allowing for a change in the additive constant Co, the class of 
functions represented by superpositions of this new sigmoid 
is the same as represented by superpositions of the original 
sigmoid. Therefore, an approximation bound using the new 
one also is achievable by the original sigmoid. Now the new 
sigmoid has norm bounded by 1/2 instead ofl. Applying this 
fact in the proof of Theorem 1 yields the existence of a network 
function f n (x) of the form (1) such that 

J 2 ch (f(x) - fn(x) ti(dx) � � .  
B 

(69) 

Other scales for the magnitude of the sigmoid are also permit
ted, including popular choices with for whieh rj;(z) has limits 
±1 as z -t ±oo. In that case, the bound (69) holds with the 
constraint on the coefficients of fn that :L:�=1 I Ck I� C, 
provided the spectral norm satifies Cj,B � C, 
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