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Abstract

Theoretical results in the functional linear regression literature have so far focused

on minimax estimation where smoothness parameters are assumed to be known and

the estimators typically depend on these smoothness parameters. In this paper we

consider adaptive estimation in functional linear regression. The goal is to construct

a single data-driven procedure that achieves optimality results simultaneously over

a collection of parameter spaces. Such an adaptive procedure automatically adjusts

to the smoothness properties of the underlying slope and covariance functions. The

main technical tools for the construction of the adaptive procedure are functional

principal component analysis and block thresholding. The estimator of the slope

function is shown to adaptively attain the optimal rate of convergence over a large

collection of function spaces.
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1 Introduction

Due to advances in technology, functional data now commonly arises in many di¤erent

�elds of applied sciences including, for example, chemometrics, biomedical studies, and

econometrics. There has been extensive recent research on functional data analysis. Much

progress has been made on developing methodologies for analyzing functional data. The two

monographs by Ramsay and Silverman (2002 and 2005) provide comprehensive discussions

on the methods and applications. See also Ferraty and Vieu (2006).

Among many problems involving functional data, functional linear regression has re-

ceived substantial attention. Consider a functional linear model where one observes a

random sample f(Xi; Yi) : i = 1; :::ng with

Yi = a+

Z 1

0

Xi(t)b(t)dt+ Zi; (1)

where the response Yi and the intercept a are scalar, the predictor Xi and slope function

b are functions in L2([0; 1]), and the errors Zi are independent and identically distributed

N(0; �2) variables. The goal is to estimate the slope function b(t) and the intercept a based

on the sample f(Xi; Yi) : i = 1; :::ng. Note that once an estimator b̂ of b is constructed, the
intercept a can be estimated easily by

â = �Y �
Z 1

0

�X(t)b̂(t)dt;

where �Y and �X are the averages of Yi andXi respectively. We shall thus focus our discussion

in this paper on estimating the slope function b. The slope function is of signi�cant interest

on its own right. For example, knowing where b takes large or small values provides

information about where a future observation x of X will have greatest leverage on the

conditional mean of y given X = x.

The problem of slope-function estimation is intrinsically nonparametric and the conver-

gence rate under the mean integrated squared error (MISE)

R(b̂; b) = Ekb̂� bk22 = E
Z 1

0

(b̂(t)� b(t))2dt (2)

is typically slower than n�1. Rates of convergence of an estimator b̂ to b have been studied

in, e.g., Ferraty and Vieu (2000); Cuevas et al. (2002); Cardot and Sarda (2003); Li and

Hsing (2007); Hall and Horowitz (2007). In particular, Hall and Horowitz (2007) showed

that the minimax rate of convergence for estimating b under the MISE (2) is determined

by the smoothness of the slope function, and of the covariance function for the distribution
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of explanatory variables. Cai and Hall (2006) considered a related prediction problem and

Müller and Stadtmüller (2005) studied generalized functional linear models.

The theory on slope function estimation has so far focused on the minimax estimation

where these smoothness parameters are assumed to be known. The estimators typically

depend on the smoothness parameters. Although minimax risk provides a useful uniform

benchmark for the comparison of estimators, minimax estimators often require full knowl-

edge of the parameter space which is unknown in practice. A minimax estimator designed

for a speci�c parameter space typically performs poorly over another parameter space. This

makes adaptation essential for functional linear regression.

In the present paper we consider adaptive estimation of the slope function b. The goal is

to construct a single data-driven procedure that achieves optimality results simultaneously

over a collection of parameter spaces. Such an adaptive procedure does not require the

knowledge of the parameter space and automatically adjusts to the smoothness properties

of the underlying slope and covariance functions. In Section 2, we construct a procedure

for estimating the slope function b using functional principal component analysis (PCA)

and block thresholding. The estimator is shown to adaptively achieve the optimal rate of

convergence simultaneously over a collection of function classes.

The main technical tools are functional principal component analysis (PCA) and block

thresholding. Functional PCA is a convenient and commonly used technique in functional

data analysis. See, e.g., Ramsay and Silverman (2002 and 2005). Block thresholding was

�rst developed in nonparametric function estimation. It increases estimation precision and

achieves adaptivity by utilizing information about neighboring coordinates. The idea of

block thresholding can be traced back to Efromovich (1985) in estimating a density func-

tion using the trigonometric basis. It is further developed in wavelet function estimation.

See Hall, Kerkyacharian and Picard (1998) for density estimation and Cai (1999) for non-

parametric regression. Cai, Low and Zhao (2000) used weakly geometrically growing block

size for sharp adaptation over ellipsoids in the context of the white noise model. In this

paper we shall follow the ideas in Cai, Low and Zhao (2000) and use weakly geometrically

growing block size for adaptive functional linear regression. Our results show that block

thresholding naturally connects shrinkage rules developed in the classical normal decision

theory with functional linear regression.

The paper is organized as follows. In Section 2, after basic notation and facts on the

spectral decomposition of the covariance function are reviewed, the block thresholding pro-

cedure for estimating the slope function b is de�ned in Section 2.2. Section 3 investigates the

theoretical properties of the block thresholding procedure. It is shown that the estimator
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enjoys a high degree of adaptivity. The proofs are given in Section 4.

2 Methodology

Estimating the slope function b in function linear regression involves solving an ill-posed

inverse problem. The main di¤erence with the conventional linear inverse problems is that

the operator is not given in the functional linear regression. A major technical step in the

construction of the slope function estimator is to estimate the eigenvalues and eigenfunc-

tions of the unknown linear operator and to bound the errors between the estimates and

the estimands. Necessary technical tools for slope function estimation include functional

analysis and statistical smoothing. Speci�cally, our estimator is based on the functional

principal components analysis and block thresholding techniques. In this section we will

begin with spectral decomposition of the covariance function in terms of eigenvalues and

eigenfunctions. We then introduce in Section 2.2 a blockwise James-Stein procedure to

estimate the slope function b.

2.1 Spectral decomposition

Suppose we observe a random sample f(Xi; Yi) : i = 1; :::ng as in (1). Let (X;Y; Z) denote
a generic (Xi; Yi; Zi). De�ne the covariance function and the empirical covariance function

respectively as

K(u; v) = covfX(u); X(v)g

K̂(u; v) =
1

n

nX
i=1

fXi(u)� �X(u)gfXi(v)� �X(v)g

where �X = 1
n

P
Xi. The covariance function K de�nes a linear operator which maps a

function f to Kf given by (Kf)(u) =
R
K(u; v)f(v)dv. We shall assume that the linear

operator with kernel K is positive de�nite.

Write the spectral decompositions of the covariance functions K and K̂ as

K(u; v) =

1X
j=1

�j�j(u)�j(v); K̂(u; v) =

1X
j=1

�̂j�̂j(u)�̂j(v); (3)

where

�1 > �2 > ::: > 0; and �̂1 � �̂2 � ::: � �̂n+1 = : : : = 0 (4)
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are respectively the ordered eigenvalue sequences of the linear operators with kernels K

and K̂, and f�jg and f�̂jg are the corresponding orthonormal eigenfunction sequences.
The sequences f�jg and f�̂jg each forms an orthonormal basis in L2([0; 1]).
The functional linear model (1) can be rewritten as

Yi = �+

Z
[Xi � E(X)] b+ Zi; i = 1; 2; :::; n (5)

where � = E(Yi) = a + E
R
Xb. The Karhunen-Loève expansion of the random function

Xi � EX is given by

Xi � EX =

1X
j=1

xi;j�j (6)

where the random variable xi;j =
R
(Xi�EX)�j has mean zero and variance Var(xi;j) = �j.

In addition, the random variables xi;j are uncorrelated. Expand the slope function b in the

orthonormal basis f�jg as b =
P1

j=1 bj�j. Then the model (5) can be written as

Yi = �+
1X
j=1

xi;jbj + Zi; i = 1; 2; :::; n (7)

and the problem of estimating the slope function b is transformed into the one of estimating

the coe¢ cients fbjg as well as the eigenfunctions f�jg. Note that in (7) � and xi;j are
unknown, and thus need to be estimated from the data.

The mean � of Y can be estimated easily by the sample mean �̂ = �Y . To estimate the

xi;j, we expand Xi � �X in the orthonormal basis f�̂jg as

Xi � �X =
nX
j=1

x̂i;j�̂j for i = 1; 2; ::n (8)

where the random variables x̂i;j =
R
(Xi � �X)�̂j. Note that

nX
i=1

x̂i;j =
nX
i=1

Z
(Xi � �X)�̂j =

Z " nX
i=1

(Xi � �X)

#
�̂j = 0

and
1

n

nX
i=1

x̂i;jx̂i;k =

Z Z
K̂(u; v)�̂j(u)�̂k(v) = �̂j�j;k (9)

for all j and k, where �j;k is the Kronecker delta with �j;k = 1 if j = k and 0 otherwise.

Since �Y = a+
R 1
0
�X(t)b(t)dt+ �Z, we have

Yi � �Y =

Z �
Xi � �X

�
b+ Zi � �Z; i = 1; 2; :::; n:
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Hence

Yi � �Y =

nX
j=1

x̂i;j�bj + Zi � �Z; i = 1; 2; :::; n (10)

where �bj =
R
b�̂j; and consequently b =

P1
j=1
�bj�̂j. Since the slope function b is unknown,

the coe¢ cients �bj are also unknown and need to be estimated. A typical principal com-

ponents regression approach is to replace �n�in equation (10) by a constant m < n and

estimate �bj by ordinary least squares.

Since the �predictors� (x̂i;j)1�j�n in equation (10) are orthogonal to each other andPn
i=1 x̂

2
i;j = �̂jn from equation (9), for �̂j 6= 0 we may estimate �bj (or bj) by

~bj = �̂
�1
j n

�1
nX
i=1

(Yi � �Y )x̂i;j = �̂
�1
j n

�1
nX
i=1

(Yi � �Y )

Z �
Xi (u)� �X (u)

�
�̂j (u) (11)

= �̂
�1
j

Z
ĝ(u)�̂j (u) = �̂

�1
j ĝj

where

ĝ(u) = n�1
nX
i=1

(Yi � �Y )
�
Xi(u)� �X(u)

�
and ĝj =

Z
ĝ�̂j: (12)

It is expected that ĝ is approximately

g(u) = E [(Y � �) (X(u)� E(X (u))] =
Z Z

K (u; v) b (v) dv.

Write g =
P1

j=1 gj�j. It is easy to check that bj = �
�1
j gj. So the estimator ~bj = �̂

�1
j ĝj in

equation (11) can be regarded as an empirical version of the true coe¢ cient bj. We shall

construct an adaptive estimator of bj based on the empirical coe¢ cients ~bj by using a block

thresholding technique.

2.2 A Block Thresholding Procedure

Block thresholding techniques have been well developed in nonparametric function estima-

tion literature. See, e.g., Efromovich (1985), Hall, Kerkyacharian and Picard (1998) and

Cai (1999). In this paper we shall use a block thresholding method with weakly geomet-

rically growing block size for adaptive functional linear regression. This method was used

in Cai, Low and Zhao (2000) for sharp adaptive estimation over ellipsoids in the classical

white noise model.

The block thresholding procedures work especially well with homoscedastic Gaussian

data. However, in the current setting the empirical coe¢ cients ~bj are heteroscedastic with
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growing variances. We will see in Lemma 3 in Section 4 that the variance of ~bj is approxi-

mately �2��1j n
�1, getting large as j increases. We shall thus rescale the ~bj to stabilize the

variances.

With the notation introduced above the block thresholding procedure can then be de-

scribed in detail as follows. Let

m̂� = argmin
n
m : �̂m=�̂1 � n�1=3

o
. (13)

It will be shown in Section 4 that there is no need ever to go beyond the m̂�-th term under

certain regularity conditions. We de�ne

~gj =

(
ĝj j < m̂�

0 otherwise

and set
~dj = �̂

� 1
2

j ~gj and dj = �
� 1
2

j gj: (14)

Lemma 4 in Section 4 shows that the variance Var( ~dj) = �2

n
(1 + o(1)) and so ~dj are nearly

homoscedastic. We shall apply a blockwise James-Stein procedure to ~dj to construct an

estimator d̂j of dj and then estimate the bj by b̂j = �̂
� 1
2

j d̂j.

The block thresholding procedure for estimating the slope function b has three steps.

1. Divide the indices f1; 2; :::; m̂�g into nonoverlapping blocks B1, B2, ..., BN with

Card(Bi) =
j
(1 + 1= log n)i+1

k
.

2. Apply a blockwise James-Stein rule to each block. For all j 2 Bi set

d̂j = (1�
2Li�

2

nS2i
)+ � ~dj (15)

where S2i =
P

j2Bi
~d2j and Li = Card(Bi).

3. Set b̂j = �̂
� 1
2

j d̂j. The estimator of b is then given by

b̂(u) =
m̂�X
j=1

b̂j�̂j(u) =
m̂�X
j=1

�j~bj�̂j(u) (16)

where �j = (1�
2Lj�

2

nS2i
)+ for all j 2 Bi is the shrinkage factor.
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The block thresholding procedure given above is purely data-driven and is easy to

implement. In particular it does not require the knowledge of the rate of decay of the

eigenvalues �j or the coe¢ cients bj of the slope function b. In contrast, the minimax rate

optimal estimator given in Hall and Horowitz (2007) critically depends on the rates of

decay of �j and bj.

Remark 1 We have used the blockwise James-Stein procedure in (15) because of its sim-
plicity. In addition to the James-Stein rule, other shrinkage rules such as the blockwise

hard thresholding rule

d̂j = ~dj � I(S2i � �Li�2=n)

can be used as well.

Remark 2 In the procedure we assume � is known, since it can be estimated easily. In
equation (10), we may apply principal components regression by replacing �n�in equation

(10) with a constant m = log2 n. Let b̂j be the ordinary least squares estimate of �bj. It can

be shown easily that
Pm

j=1 b̂j�̂j is a consistent estimate of b. Then we obtain a consistent

estimate of �2 with

�̂2 =
1

n

nX
i=1

 
Yi � �Y �

mX
j=1

x̂i;jb̂j

!2
:

3 Theoretical property

We now turn to the asymptotic properties of the block thresholding procedure for the

functional linear regression under the mean integrated squared error (2). The theoretical

results show that the block thresholding estimator given in (16) adaptively attains the exact

minimax rate of convergence simultaneously over a large collection of function spaces.

In this section we shall begin by considering adaptivity of the block thresholding estima-

tor over the following function spaces which have been considered by Cai and Hall (2006)

and Hall and Horowitz (2007) in the contexts of prediction and slope function estimation.

These function classes arise naturally in functional linear regression based on functional

principal component analysis. For more details, see Cai and Hall (2006) and Hall and

Horowitz (2007). See also Hall and Hosseini-Nasab (2006).

Let � > 0 and M� > 0 be constants. De�ne the function class for b by

B�(M�) =

(
b =

1X
j=1

bj �j; with jbjj �M� j
�� for j = 1; 2; :::

)
: (17)
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We can interpret this as a �smoothness class� of functions, where the functions become

�smoother�(measured in the sense of generalized Fourier expansions in the basis
�
�j
	
) as

� increases. We shall also assume the eigenvalues satisfy

M�1
0 j�� � �j �M0 j

��; �j � �j+1 �M�1
0 j���1 for j = 1; 2; :::: (18)

This condition is assumed such that we may possibly obtain a reasonable estimate of

the corresponding eigenfunction of �j. Our adaptivity result also requires the following

condition on X. The process X is assumed to be left continuous (or right-continuous) at

each point and that for each k > 0 and some � > 0

sup
t
E
n
jX (t)jk

o
< Mk and sup

s;t
E
n
js� tj�� jX (t)�X (s)jk

o
< Mk;� (19)

and for each r � 1,

sup
j�1

��rj E
�Z

(X � EX)�j
�2r

�M 0
r (20)

for some constant M 0
r > 0.

Let F (�; �;M) denote the set of distributions F of (X; Y ) that satis�es (17) - (20) with
M = fM�;M0;Mk;Mk;�;M

0
rg. The minimax rate of convergence for estimating the slope

function b over these smoothness classes has been derived by Hall and Horowitz (2007). It

is shown that the minimax risk satis�es

inf
b̂

sup
F(�;�;M)

Ekb̂� bk22 � n
� 2��1
�+2� : (21)

The rate-optimal procedure given in Hall and Horowitz (2007) is based on frequency cut-o¤.

Their estimator is not adaptive; it requires the knowledge of � and �. The following result

shows that the block thresholding estimator b̂ given in (16) is rate optimally adaptive over

the collection of parameter spaces.

Theorem 1 Under the conditions (17) - (20) the block thresholding estimator b̂ given in
(16) satis�es, for all 2 < � < �,

sup
F(�;�;M)

Ekb̂� bk22 � Dn
� 2��1
�+2� (22)

for some constant D > 0.

In addition to the function classes de�ned in (17), one can also consider adaptivity of

the estimator b̂ over other function classes. For example, consider the following function

classes with a Sobolev-type constraint:

S�(M�) =

(
b =

1X
j=1

bj �j; with
1X
j=1

j2��1b2j �M� for j = 1; 2; :::

)
:
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Let F1 (�; �;M) denote the set of distributions of (X; Y ) that satis�es (18) - (20) and
b 2 S�(M�).

Theorem 2 Under assumptions (18) - (20), the estimator b̂ given in (16) satis�es, for all
2 < � < �,

sup
F1(�;�;M)

Ekb̂� bk22 � Dn
� 2��1
�+2� : (23)

for some constant D > 0.

The proof of Theorem 2 is similar to the one for Theorem 1 with some minor modi�ca-

tions.

Remark 3 Theorems 1 and 2 remain true if the shrinkage factor �j in (16) is replaced by
�j = (1�

�Lj�
2

nS2i
)+ for any constant � > 1.

Remark 4 We have so far focused on block thresholding. A simpler term-by-term thresh-

olding rule can be used to yield a slightly weaker result. Let ~bj = �̂
�1
j ĝj as in (11). Set

b̂j =

(
sgn(~bj)(j~bjj � �

q
2 logn

n�̂j
)+ for 1 � j � m̂�

0 for j > m̂�
: (24)

Note that this estimator is equivalent to setting

d̂j =

(
sgn( ~dj)(j~bjj � �

q
2 logn
n
)+ for 1 � j � m̂�

0 for j > m̂�
(25)

and b̂j = �̂
� 1
2

j d̂j. Now let b̂t(u) =
Pm̂�

j=1 b̂j�̂j(u) with b̂j given in (24). Then under the

conditions of Theorem 1, we have

sup
F(�;�;M)

Ekb̂t � bk22 � C
�
log n

n

� 2��1
�+2�

(26)

for some constant C > 0. In other words, the term-by-term thresholding estimator b̂t is

simultaneously with a logarithmic factor of the minimax risk over a collection of function

classes. The same result holds with F(�; �;M) replaced by F1(�; �;M) in (26).
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4 Proofs

We shall only prove Theorem 1. The proof of Theorem 2 is similar and thus omitted.

Before we present the proof of the main result, we �rst collect a few technical lemmas.

These auxiliary lemmas will be proved in Section 4.3. We sharpen some results in Hall and

Horowitz (2007) and give a risk bound for block James-Stein estimator. In this section we

shall denote by C a generic constant which may vary from place to place.

4.1 Technical lemmas

It was proposed in Hall and Horowitz (2007) to estimate b by
Pm

j=1
~bj�̂j with a choice

of cuto¤ m = n
1

�+2� to obtain minimax rate of convergence. The lemma below explains

why there is no need ever to go beyond the m̂�-th term in de�ning the block thresholding

procedure (16).

Lemma 1 Let 
 and 
1 be constants satisfying
1

�+2�
< 
 < 1

3�
< 
1 For all D > 0, there

exists a constant CD such that

P (n
 � m̂� � n
1) � 1� cDn�D

where m̂� is de�ned in (13).

In this section we set

1

�+ 2�
< 
 < min

�
1 + "

�+ 2�
;
1

3�

�
;
1

3�
< 
1 <

1

2 (�+ 1)
(27)

for a small 0 < " < min
�
��2
3
; 2���
3�+1

	
. We give upper bounds to approximate eigenfunction

�j by empirical eigenfunction �̂j for j � n
1.

Lemma 2 For all j � n
1, we have

nE



�̂j � �j


2 � Cj2

and for any given 0 < � < 1 and for all D > 0 there exists a constant CD > 0 such that

P
�
n1��




�̂j � �j


2 � Cj2� � CDn�D:
Lemma 3 gives a variance bound for �bj, which helps us show that the variance of ~dj

is approximately �2

n
. This result is crucial for proposing a practical block thresholding

procedure.
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Lemma 3 For j � n
1 with 
1 < 1
2(�+1)

,

E
�
�bj � bj

�2 � Cj2=n:
In particular, this implies Var(�bj) � Cj2=n and Var(~bj) = �2��1j n�1 (1 + o (1)).

The following lemma gives bounds for the variance and mean squared error of ~dj.

Lemma 4 For j � n
1 with 
1 < 1
2(�+1)

,

Var( ~dj) =
�2

n
(1 + o (1)) and E

�
~dj � �

1
2
j bj

�2
� Cn�1j2��:

The following two lemmas will be used to analyze the factor �j in equation (16).

Lemma 5 Let n
 � m1 � m2 � n
1 and m2 � m1 � n� for some � > 0. De�ne S2 =Pm2

j=m1

~d2j . For any given " > 0 and all D > 0 there exists a constant CD > 0 such that

P(S2 > (1 + ") (m2 �m1)
�2

n
) � CDn�D:

Lemma 6 Let ~dj = d0j + �j where d
0
j = E(

~dj). Let " > 0 be a �xed constant. If the block

size Li = Card(Bi) � n� for some � > 0, then for any D > 0, there exists a constant

CD > 0 such that

P(
X
j2Bi

�2j > (1 + ")Li
�2

n
) � CDn�D: (28)

And for all blocks Bi,

E
X
j2Bi

�2j � CLi
�2

n
: (29)

Conventional oracle inequalities were derived for Gaussian errors. In the current setting

the errors are non-Gaussian. The following lemma gives an oracle inequality for a block

thresholding estimator in the case of general error distributions. See Brown, Cai, Zhang,

Zhao and Zhou (2007) for a proof.

Lemma 7 Suppose yi = �i + �i; i = 1; :::; L, where �i are constants and Zi are random

variables. Let S2 =
PL

i=1 y
2
i and let

�̂i = (1�
�L

S2
)+yi:

Then

Ek�̂ � �k22 � minfk�k22; 4�Lg+ 4Ek�k22I(k�k22 > �L): (30)

12



4.2 Proof of Theorem 1

We shall prove Theorem 1 for a general block thresholding estimator with the shrinkage

factor �j = (1�
�Lj�

2

nS2i
)+ for a constant � > 1.

Let 
 and 
1 be constants satisfying

1

�+ 2�
< 
 < min

�
1 + "

�+ 2�
;
1

3�

�
� 1

3�
< 
1 <

1

2 (�+ 1)

for a small " > 0. Let m� = n

 and write b̂ as

b̂(u) =

m�X
j=1

�j~bj�̂j(u) +

nX
j=m�+1

�j~bj�̂j(u): (31)

We shall show that Ekb̂� bk22 � Cn
� 2��1
�+2� . Note that

Ekb̂� bk22 = Ek
m�X
j=1

b̂j�̂j(u) +
nX

j=m�+1

b̂j�̂j(u)�
m�X
j=1

bj�j(u)�
1X

j=m�+1

bj�j(u)k22

� 3Ek
m�X
j=1

b̂j�̂j(u)�
m�X
j=1

bj�j(u)k22 + 3
nX

j=m�+1

E(b̂2j) + 3
1X

j=m�+1

b2j : (32)

The last term (32) is bounded by Cn�
(2��1) = o
�
n�(2��1)=(�+2�)

�
since 
 > 1

�+2�
. We

�rst show that the second term (32) is small as well. Let m� = n
1 and let i� and i� be

the corresponding block indices of the (m� + 1)-st and m�-th term respectively. (That is,

bm�+1 is in the i�-th block and bm� is in the i�-th block.) Then it follows from Lemmas 1

and 5 that
nX

j=m�+1

E(b̂2j) =

 
m�X

j=m�+1

+
nX

j=m�+1

!
E(�2j~b2j)

�
m�X

j=m�+1

(E�4j)
1
2 (E~b4j)

1
2 +

nX
j=m�+1

(E~b4j)
1
2P

1
2 (m̂� � n
1 + 1)

�
i�X
i=i�

�
P(S2i > �L�2=n)

�1=2X
j2Bi

(E~b4j)
1
2 +

nX
j=m�+1

(E~b4j)
1
2 [P (m̂� � n
1 + 1)]1=2

= o
�
n�

2��1
�+2�

�
:

We now turn to the �rst and dominant term in (32). The Cauchy-Schwarz inequality yields

Ek
m�X
j=1

b̂j�̂j(u)�
m�X
j=1

bj�j(u)k22 � 2Ek
m�X
j=1

(b̂j � bj)�̂j(u)k22 + 2Ek
m�X
j=1

bj(�̂j(u)� �j(u))k22

� 2

m�X
j=1

E(b̂j � bj)2 + 2m�

m�X
j=1

b2jEk�̂j(u)� �j(u)k22:

13



Lemma 2 implies the second term in the equation above is bounded by

C
m�

n

m�X
j=1

b2jj
2 = O

�
n
�1

�
= o

�
n�

2��1
�+2�

�
since

Pm�
j=1 b

2
jj
2 is �nite and 
 < �+1

�+2�
which implies 
 � 1 < � 2��1

�+2�
. Set d0j = E( ~dj). Let

�i be the smallest eigenvalue in the Bi-th block. Then
m�X
j=1

E(b̂j � bj)2 =
m�X
j=1

E(�̂
� 1
2

j d̂j � �
� 1
2

j dj)
2 � 2

m�X
j=1

��1j E(d̂j � dj)2 + 2
m�X
j=1

E
�
d̂2j(�̂

� 1
2

j � ��
1
2

j )2
�

� 2
m�X
j=1

��1j E(d̂j � dj)2 + 2
m�X
j=1

E
�
~d2j(�̂

� 1
2

j � ��
1
2

j )2
�

� 2
i�X
i=1

��1i
X
j2Bi

E(d̂j � d0j)2 + 2
i�X
i=1

��1i
X
j2Bi

(d0j � dj)2 + 2
m�X
j=1

E
�
~d2j(�̂

� 1
2

j � ��
1
2

j )2
�

� T1 + T2 + T3:

From equations (34) and (35) and Lemma 4, it is easy to see

T3 � C
m�X
j=1

Ef ~d2j��3j (�̂j � �j)2g = o
�
n�

2��1
�+2�

�
.

We now turn to the dominant term T1 + T2. This term is most closely related to the

block thresholding rule and we need to show that T1 + T2 � Cn�
2��1
�+2� . To bound T1, it is

necessary to analyze the risk of the block thresholding rule for a single block Bi. It follows

from Lemma 7 thatX
j2Bi

E(d̂j � d0j)2 � minf4�Li�2=n;
X
j2Bi

(d0j)
2g+ 4Ef(

X
j2Bi

�2j) � I(
X
j2Bi

�2j > �Li�
2=n)g (33)

where � > 1 is a constant. Lemma 4 implies�
d0j � �

1
2
j bj

�2
� Cn�1j2��:

Note that for all j in Bi, we have �
�1
j � ��1i . Hence for m� = n


 with 
 < 1+"
�+2�

we have

T2 � C
m�X
j=1

��1j n
�1j2�� � C1

n

�
1 +m3

�
�
= o

�
n�

2��1
�+2�

�
Let m = n

1
�+2� , then equation (33) and Lemma 6 give

T1 � C
mX
j=1

j�

n
+ C

m�X
j=m+1

�
��1j �

�
�
1=2
j bj

�2
+ ��1j n

�1j2��
�
+ C=n � C1n�

2��1
�+2� :

These together imply Ekb̂� bk22 � Cn
� 2��1
�+2� .

14



4.3 Proof of auxiliary lemmas

Let �2 =



K̂ �K




2 = R R �K̂ (u; v)�K (u; v)�2 dudv and � j = mink�j (�k � �k+1) : It is
known in Bhatia, Davis and McIntosh (1983) that

sup
j

����̂j � �j��� � �, sup
j�1

� j




�̂j � �j


 � 81=2�. (34)

For " > 0, it was shown in Hall and Hosseini-Nasab (2006, Lemma 3.3)

P
�
� > n"�1=2

�
= cDn

�D (35)

for each D > 0 under the assumption (19).

It is useful to rewrite ~bj as

~bj = �̂
�1
j ĝj = �̂

�1
j

Z
1

n

nX
i=1

(Yi � �Y )fXi(u)� �X(u)g�̂j (u)

= �̂
�1
j

Z
1

n

nX
i=1

�

Xi � �X; b

�
+ Zi � �Z

�
fXi(u)� �X(u)g�̂j (u)

= �bj + �̂
�1
j

1

n

Z
(X� �X)0�̂j � (Z � �Z) = �bj + �̂

�1
j

1

n
x̂0�;j(Z � �Z):

Using the fact that for any two random variables X and Y , Var(Y ) = E(Var(Y jX)) +
Var(E(Y jX)) and the facts that Z has mean zero and is independent of X, we have

Var(~bj) = Var(�bj) +
�2

n2

nX
i=1

E(�̂
�2
j x̂

2
i;j) = Var(�bj) +

�2

n
E�̂

�1
j :

4.3.1 Proof of Lemma 1

Recall that m̂� = argmin
n
m : �̂m=�̂1 � n�1=3

o
. Note that �j �M�1

0 j��. Since 
 satis�es
1

�+2�
< 
 < 1

3�
, then for m � n
 we have �m � M�1

0 n��
. Since �
 < 1=3, the equations

(34) and (35) imply that for any D > 0 there exists a constant CD > 0 such that

P
�
[n
m=1

n
�̂m=�̂1 � n�1=3

o�
� cDn�D

and hence

P (m̂� � n
) � cDn�D, i.e., P (m̂� � n
) � 1� cDn�D:

Similarly, for m � n
1 we have
�m �M0n

�
1�

15



with �
1 > 1=3, then

P
�
[n�m�n
1

n
�̂m=�̂1 > n

�1=3
o�

� cDn�D

and hence

P (m̂� � n
1) � cDn�D, i.e., P (m̂� � n
1) � 1� cDn�D:

Thus we have

P (n
1 � m̂� � n
) � 1� cDn�D.

4.3.2 Proof of Lemma 2

Let Fj =
n
1
2
j�j � �kj �

����̂j � �k��� � 2 j�j � �kj ; k 6= jo, j � n
1 . From the assumption (18)
we have j�j � �kj �M�1

0 n
�(�+1)
1 with (�+ 1) 
1 <

1
2
. Then equations (34) and (35) imply

that for any D > 0 there exists a constant CD > 0 such that for j � n
1

P
�
F c
j

�
� cDn�D (36)

and consequently

P
�
[j�n
1 ;k 6=j

�
1

2
j�j � �kj �

����̂j � �k��� � 2 j�j � �kj�� � 1� cDn�D: (37)

Note that

�̂j � �j =
X
k

�k

Z �
�̂j � �j

�
�k =

X
k:k 6=j

�k

Z
�̂j�k + �j

Z �
�̂j�j � 1

�
:

The facts
R
K̂(u; v)�̂j (u) du = �̂j�̂j (v) and

R
K(u; v)�k (v) dv = �k�k (u) implyZ

�̂j�k =
�
�̂j � �k

��1 Z Z
K̂(u; v)�K(u; v)�̂j (u)�k (v) dudv:

Now it follows from the elementary inequality 1�x �
p
1� x � 1�x=2 for 0 � x � 1 (we

assume that
R
�̂j�j � 0 WLOG) that

1�
X
k 6=j

�Z
�̂j�k

�2
�
Z
�̂j�j =

vuut1�X
k 6=j

�Z
�̂j�k

�2
� 1� 1

2

X
k 6=j

�Z
�̂j�k

�2
:

Then we have


�̂j � �j


2 � 2X
k:k 6=j

��
�̂j � �k

��1 Z Z �
K̂(u; v)�K(u; v)

�
�̂j (u)�k (v) dudv

�2
16



which on Fj is further bounded by

8
X
k:k 6=j

�
(�j � �k)�1

Z Z �
K̂(u; v)�K(u; v)

�
�̂j (u)�k (v) dudv

�2

� 16
X
k:k 6=j

(�j � �k)�2
8<:
hR R �

K̂(u; v)�K(u; v)
��
�̂j (u)� �j (u)

�
�k (v) dudv

i2
+
hR R �

K̂(u; v)�K(u; v)
�
�j (u)�k (v) dudv

i2
9=;

� Cn2
1(�+1)�2



�̂j � �j


2 + 16X

k:k 6=j

(�j � �k)�2
�Z Z �

K̂(u; v)�K(u; v)
�
�j (u)�k (v) dudv

�2
.

This implies for each D > 0

P

 
1

2




�̂j � �j


2 � 16X
k:k 6=j

(�j � �k)�2
�Z Z �

K̂(u; v)�K(u; v)
�
�j (u)�k (v) dudv

�2!
� 1�cDn�D.

Let �i;j =
R
Xi�j and �j =

1
n

P
i �i;j, then

Xi � �X =
1X
j=1

�
�i;j � �j

�
�j:

Assume without loss of generality that EX = 0 and for k 6= j writeZ Z h
K̂(u; v)�K(u; v)

i
�j (u)�k (v) dudv =

1

n

nX
i=1

�
�i;j � �j

� �
�i;k � �k

�
=
1

n

nX
i=1

�i;j�i;k��k�j

where 1
n

Pn
i=1 �i;j�i;k is the dominating term. From the assumption (20) we have

E

 
1

n

nX
i=1

�i;j�i;k

!2
� n�1E

�
�1;j�1;k

�2 � n�1 �E�41;j�41;k�1=2 � C1n�1�j�k:
Note that the spacing condition in (18) implies �m � �2m � m��, so we have

E



�̂j � �j


2 � C

X
k:k 6=j

(�j � �k)�2 n�1�j�k

� Cn�1�j
X
k:k 6=j

8<:j2� X
k:k�2j

k�� +
X

k:k�j=2

k� + j2(�+1)
X

k:2j�k�j=2

k��

(1 + jj � kj)2

9=;
� C1n

�1j2 (38)

and the �rst part of lemma is proved.
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For the second part of the lemma, equation (38) implies that it su¢ ces to show that

for j � n
1 and all � > 0

P

 
[k

(
n1��k�j�

�Z Z �
K̂(u; v)�K(u; v)

�
�j (u)�k (v) dudv

�2
� 1
)!

� cDn�D: (39)

For a large constant q > 0, we have

E
X
k>nq

(�j � �k)�2
�Z Z �

K̂(u; v)�K(u; v)
�
�j (u)�k (v) dudv

�2

� CE
��2j
n2

X
k>nq

 
nX
i=1

�i;j�i;k

!2
� C1��1j n�1�k � Cq��1j n�1n�q�;

which can be smaller than n�D by setting q su¢ ciently large. It follows from the Markov

inequality that

P

 
[k>nq

(
n1��k�j�

�Z Z �
K̂(u; v)�K(u; v)

�
�j (u)�k (v) dudv

�2
� 1
)!

� cDn�D.

We need now only to consider k � nq. Let w be a positive integer. Then

E

 
1

n

nX
i=1

�i;j�i;k

!2w
� n�wE

�
�1;j�1;k

�2w � n�w �E�4w1;j�4w1;k�1=2 � C1n�w�wj �wk
where the last inequality follows from (20). The Markov Inequality yields that for every

integer k > 0

P

(
n1��k�j�

�Z Z �
K̂(u; v)�K(u; v)

�
�j (v)�k (v) dudv

�2
� 1
)
� C2n�w�:

By choosing w su¢ ciently large, this implies

P

 
[k�nq

(
n1��k�j�

�Z Z �
K̂(u; v)�K(u; v)

�
�j (u)�k (v) dudv

�2
� 1
)!

� cDn�D:

The equation (39) is then proved, and so is the second part of the lemma.

4.3.3 Proof of Lemmas 3 and 4

Since Var(�bj) � E(
R
b�̂j �

R
b�j)

2, we will analyze
R
b�̂j �

R
b�j =

R
b
�
�̂j � �j

�
instead.

By the Cauchy-Schwarz inequality we have

E
�Z

b
�
�̂j � �j

��2
� CE




�̂j � �j


2 � C1j2=n = o�j�n
�
: (40)
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We need to analyze ~dj = �̂
� 1
2

j ~gj. It follows from (12) that

~dj = �̂
� 1
2

j ~gj = �̂
1
2

j
�bj + �̂

� 1
2

j

1

n
x̂0�;j(Z� �Z):

Hence, E( ~dj) = E(�̂
1
2

j
�bj). Same as before, it follows from the fact Var(Y ) = E(Var(Y jX))+

Var(E(Y jX)) for any two random variables X and Y that

Var( ~dj) = Var(�̂
1
2

j
�bj) +

�2

n2

nX
i=1

E(�̂
�1
j x̂

2
i;j) = Var(�̂

1
2

j
�bj) +

�2

n
.

We need to bound Var(�̂
1
2

j
�bj). Note that

Var(�̂
1
2

j
�bj) � E

�
�̂
1
2

j
�bj � �1=2j bj

�2
� 2E

�
�̂
1
2

j � �
1=2
j

�2
b2j + 2�jE

�
�bj � bj

�2
� 2E

�
�̂
1
2

j � �
1=2
j

�2
b2j + Cn

�1j2��

� 2E

 
�̂j � �j
�
1=2
j

!2
b2j + Cn

�1j2��

� Cn�1j�2�+� + Cn�1j2�� � C1n�1j2��. (41)

Here the third inequality follows from (40).

4.3.4 Proof of Lemma 5

Recall that
~dj = �̂

�1=2
j ~gj = �̂

1=2

j
�bj + �̂

�1=2
j

1

n
x̂0�;j(Z� �Z):

The second term is dominant. We consider this term �rst. Since

1

n

nX
i=1

x̂i;jx̂i;k = �̂j�j;k,

we have
m2X
j=m1

�
�̂
�1=2
j

1p
n
x̂0�;jZ

�2
� �2

n
�2m2�m1+1

:

So for any D > 0 there exists a constant CD > 0 such that

P

 
m2X
j=m1

�̂
�1
j

�
1

n
x̂0�;j(Z� �Z)

�2
> (1 + ") (m2 �m1)

�2

n

!
� CDn�D: (42)
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Now we turn to the �rst term. It is easy to see
m2X
j=m1

�jb
2
j � "

m2 �m1

n
,

and for any D > 0

P
�����̂j � �j��� � "�j; j � n
1� � CDn�D:

We need only to show that for any D > 0

P

 
m2X
j=m1

�j

�Z
b
�
�̂j � �j

��2
> " (m2 �m1)

�2

n

!
� CDn�D:

By the Cauchy-Schwarz inequality it su¢ ces to show that for any D > 0

P
�
�j

Z �
�̂j � �j

�2
> "

�2

n

�
� CDn�D: (43)

This follows directly from Lemma 2.

4.4 Proof of Lemma 6

We writeX
j2Bi

�2j =
X
j2Bi

�
~dj � d0j

�2
=
X
j2Bi

�
�̂
1
2

j
�bj � d0j + �̂

� 1
2

j

1

n
x̂0�;j(Z� �Z)

�2
=

X
j2Bi

�
�̂
1
2

j
�bj � d0j

�2
+ 2

X
j2Bi

�
�̂
1
2

j
�bj � d0j

�
�̂
� 1
2

j

1

n
x̂0�;j(Z� �Z) +

X
j2Bi

�
�̂
� 1
2

j

1

n
x̂0�;j(Z� �Z)

�2

�
X
j2Bi

�
�̂
1
2

j
�bj � d0j

�2
+ 2

(X
j2Bi

�
�̂
1
2

j
�bj � d0j

�2X
j2Bi

�
�̂
� 1
2

j

1

n
x̂0�;j(Z� �Z)

�2)1=2

+
X
j2Bi

�
�̂
� 1
2

j

1

n
x̂0�;j(Z� �Z)

�2
We �rst show equation (28). From equation (42) it su¢ ces to prove that, when � = 1+"

and Li � jBij � n� for some � > 0,

P

(X
j2Bi

�
�̂
1
2

j
�bj � d0j

�2
>
"

3
Li
�2

n

)
� cDn�D

for any D > 0 where CD > 0 is a constant. Note that, when j � n
1 , for any D > 0 there

exists a constant CD > 0 such that

P
�����̂j � �j��� � "2�j� � CDn�D
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and

E
�
�̂
1
2

j
�bj � d0j

�2
= o

�
1

n

�
as j !1:

It then su¢ ces to show that for all D > 0

P

 X
j2Bi

�j

�Z
b
�
�̂j � �j

��2
> "Li

�2

n

!
� CDn�D:

This is true following similar arguments as in the proof of Lemma 5 with Li � n� for some
� > 0.

Equation (29) follows easily from the fact

E
X
j2Bi

�2j = E
X
j2Bi

�
�̂
1
2

j
�bj � d0j

�2
+ E

X
j2Bi

�
�̂
� 1
2

j

1

n
x̂0�;j(Z� �Z)

�2
where the �rst term is bounded by C

n
Li from equation (41) and the second term is exactly

�2

n
Li.
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