
Submitted to the Annals of Statistics

RATE EXACT BAYESIAN ADAPTATION WITH
MODIFIED BLOCK PRIORS∗

By Chao Gao and Harrison H. Zhou

Yale University

A novel block prior is proposed for adaptive Bayesian estima-
tion. The prior does not depend on the smoothness of the function
or the sample size. It puts sufficient prior mass near the true signal
and automatically concentrates on its effective dimension. A rate-
optimal posterior contraction is obtained in a general framework,
which includes density estimation, white noise model, Gaussian se-
quence model, Gaussian regression and spectral density estimation.

1. Introduction. Bayesian nonparametric estimation is attracting more
and more attention in a wide range of applications. We consider a fundamen-
tal question in Bayesian nonparametric estimation: Is it possible to construct
a prior such that the posterior contracts to the truth with the exact optimal
rate and at the same time is adaptive regardless of the unknown smooth-
ness? We provide a positive answer to this question by designing a block
prior on coefficients of orthogonal series expansion of the function.

Specifically, we obtain adaptive Bayesian estimation under a Sobolev ball
assumption. Assume that f is a function on the unit interval [0, 1]. Let {φj}
be the trigonometric orthogonal basis of L2[0, 1], and define θj =

∫
fφj for

each j. The Sobolev ball is specified as

Eα(Q) =

f ∈ L2[0, 1] :
∞∑
j=1

j2αθ2
j ≤ Q2, with θj =

∫
fφj for each j

 .

Under a general framework, we construct a prior Π, which satisfies the
Kullback-Leibler (KL) property and it automatically concentrates on the
effective dimension of the signal f0, then as a consequence, the minimax
posterior contraction rate is obtained, i.e.,

(1) P
(n)
f0

Π

(
||f − f0|| > Mn−

α
2α+1 |Xn

)
−→ 0,
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where the loss function || · || is the l2-norm.
Adaptive Bayesian estimators over Sobolev balls or Hölder balls are con-

sidered in the literature. There are two main approaches in these works.
The first one is to put a hyper-prior on the smoothness index α. As is
shown in Scricciolo (2006) and Ghosal, Lember and van der Vaart (2008),
minimax rate can be achieved, but the set of α is restricted to be count-
able or even finite. The second approach is to put a prior on k, where k is
the number of basis functions for approximation, or the model dimension.
This is called sieve prior in Shen and Wasserman (2001). Examples of using
sieve prior includes Kruijer and van der Vaart (2008) and Rivoirard and
Rousseau (2012). Their procedures are adaptive over all α, but the rates
have extra logarithmic terms. Other recent works in Bayesian adaptive es-
timation include van der Vaart and van Zanten (2007), van der Vaart and
van Zanten (2009), de Jonge and van Zanten (2010), Kruijer, Rousseau and
van der Vaart (2010), Rousseau (2010), Shen, Tokdar and Ghosal (2013)
and Castillo, Kerkyacharian and Picard (2014), but the posterior contrac-
tion rates in these works all miss a logarithmic factor.

The investigation of whether a logarithmic term is necessary in the pos-
terior contraction rate has fundamental implications. The results can lead
to answers to two important questions. First, is the presence of a loga-
rithmic term an intrinsic problem to Bayesian adaptive nonparametric es-
timation? Second, is the presence of a logarithmic term an artifact due to
the current proof technique? The answer to the first question should have
an impact on statisticians’ views of the frequentist/Bayesian debate. The
answer to the second question will provide a better understanding on the
famous “prior mass and testing” framework (Barron, Schervish and Wasser-
man,1999; Ghosal, Ghosh and van der Vaart, 2000) that is widely used to
establish posterior contraction results.

Compared to the previous results in the literature, the proposed block
prior is adaptive over a continuum of smoothness, and its posterior contrac-
tion is exactly rate-optimal. The framework for the applications of the block
prior is very general. It includes density estimation, white noise, Gaussian
sequence, regression and spectral density estimation.

At the point when the first draft of the paper was finished, we received
a manuscript by Hoffmann, Rousseau and Schmidt-Hieber (2015) on Bayes
adaptive estimation. They considered the similar problem as ours and ob-
tain the exact minimax rate by using a spike and slab prior. However, their
adaptation result for the l2 loss only holds for the white noise model. Since
their proof technique takes advantage of the Gaussian sequence structure,
it cannot be immediately extended to other model settings. In contrast, by
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designing a block prior that especially work under the “prior mass and test-
ing” framework, we are able to establish results for models including density
estimation, nonparametric regression and spectral density estimation.

The major difficulty of adaptation with the exact rate in various model
settings is the design of a prior distribution that satisfies the conditions of
the general prior mass and testing framework, which can be applied to a
wide range of models. This framework was pioneered by Le Cam (1973)
and Schwartz (1965), and was later extended to the nonparametric setting
by Barron (1988), Barron, Schervish and Wasserman (1999) and Ghosal,
Ghosh and van der Vaart (2000). They proved as long as the prior sat-
isfies a Kullback-Leibler property and there exists a testing procedure on
the essential support of the prior, the posterior distribution contracts to
the truth with certain rate of convergence. Though it is possible to ana-
lyze the posterior distribution according to the Bayes formula directly as in
Hoffmann, Rousseau and Schmidt-Hieber (2015), the prior mass and test-
ing framework imposes the weakest assumption on the likelihood function,
which makes it flexible to various model settings. The price of such flexi-
bility to model settings is the rather strong requirements on the prior. In
our opinion, the design of a prior that satisfies the prior mass and testing
framework is the major difficulty of achieving rate-optimal adaptation over
various model settings. The block prior we propose in this paper gives a
solution to this problem. We show that it possesses the strong properties
required by the prior mass and testing framework. Therefore, not only does
it give rate-optimal adaptation, the good posterior behavior also extends to
the settings beyond the white noise model.

The paper is organized as follows. In Section 2, we first introduce a pre-
liminary block prior Π̄, which satisfies the Kullback-Leibler property and
concentrates on the effective dimension of the truth, and then we present
the key result of this paper, adaptive rate-optimal posterior contraction for
a slightly modified prior Π under a general framework. As applications of
the main results, we study adaptive Bayesian estimation of various nonpara-
metric models in Section 3. Section 4 discussed the posterior tail probability
bound and an extension of the theory to Besov balls. It also includes discus-
sion on why a logarithmic factor is usually present in the Bayes nonpara-
metric literature. The main body of the proofs are presented in Section 5.
Simulation and some auxiliary results of the proofs are given in the supple-
ment (Gao and Zhou, 2015b).

1.1. Notations. Throughout the paper, P and E are generic probability
and expectation operators, which are used whenever the distribution is clear
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in the context. Small and big case letters denote constants which may vary
from line to line. We won’t pay attention to the values of constants which
do not affect the result, unless otherwise specified. Notice these constants
may or may not be universal, which we shall make clear in the context. The
function f and its Fourier coefficients θ = {θj} are used interchangeably. We
say f is distributed by Π if the corresponding θ ∼ Π. In the same way, the
function space and the parameter space of f and θ will not be distinguished.
The norm || · || denotes both the l2-norm of f and the l2-norm of θ. For
two probabilities P1 and P2 with densities p1 and p2, we use the following
divergences throughout the paper,

D(P1, P2) = P1 log
p1

p2
,

V (P1, P2) = P1

(
log

p1

p2
−D(P1, P2)

)2
,

H(P1, P2) =

(∫ (√
p1 −

√
p2

)2)1/2

.

We use θj and θ0j to indicate the j-th entries of vectors θ = {θj} and
θ0 = {θ0j} respectively. The bold notation θk represents the vector {θj}j∈Bk
for the k-th block. The rate εn is always the minimax rate ε2n = n−

2α
2α+1 .

2. Main Results. In this section, we first give some necessary back-
grounds of Bayes nonparametric estimation, then introduce a block prior
and the result of adaptive posterior contraction.

2.1. Background. Suppose we have data Xn ∼ P (n)
f0

, and the distribution

P
(n)
f0

has density p
(n)
f0

with respect to a dominating measure. The posterior
distribution for a prior Π is defined to be

Π(A|Xn) =

∫
A

p
(n)
f

p
(n)
f0

(Xn)dΠ(f)

∫ p
(n)
f

p
(n)
f0

(Xn)dΠ(f)

, where Xn ∼ P (n)
f0

.

We need to bound the expectation of Π
(
d(f, f0) > Mεn|Xn

)
in this paper.

To bound this quantity, it is sufficient to upper bound the numerator and
lower bound the denominator. Following Barron, Schervish and Wasserman
(1999) and Ghosal, Ghosh and van der Vaart (2000), this involves three
steps:
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1. Show the prior Π puts sufficient mass near the truth, i.e., we need

Π(Kn) ≥ exp
(
−C1nε

2
n

)
,

where Kn =
{
D(P

(n)
f0
, P

(n)
f ) ≤ nε2n, V (P

(n)
f0
, P

(n)
f ) ≤ nε2n

}
.

2. Choose an appropriate set Fn, and show the prior is essentially sup-
ported on Fn in the sense that

Π(Fcn) ≤ exp
(
−C2nε

2
)
.

This controls the complexity of the prior.
3. Construct a testing function φn for the following testing problem

H0 : f = f0 vs. H1 : f ∈ supp(Π) ∩ Fn and d(f, f0) > Mεn.

The testing error needs to be well controlled in the sense that

P
(n)
f0
φn ∨ sup

f∈H1

P
(n)
f (1− φn) ≤ exp

(
−C3nε

2
)
.

Note that the constants C1, C2,and C3 are different in these three steps
above. Step 1 lower bounds the prior concentration near the truth, which

leads to a lower bound for the denominator
∫ p

(n)
f

p
(n)
f0

(Xn)dΠ(f). It is originated

from Schwartz (1965). Step 2 and Step 3 are mainly for upper bounding

the numerator
∫
A

p
(n)
f

p
(n)
f0

(Xn)dΠ(f). The testing idea in Step 3 is initialized by

Le Cam (1973) and Schwartz (1965). Step 2 goes back to Barron (1988), who
proposes the idea to choose an appropriate Fn to regularize the alternative
hypothesis in the test, otherwise the testing function for Step 3 may never
exist (see Le Cam (1973) and Barron (1989)).

2.2. The Block Prior Π̄. Given a sequence θ = (θ1, θ2, ...) in the Hilbert
space l2. Define the blocks to be Bk = {lk, ..., lk+1 − 1}, and {1, 2, 3, ...} =
∪∞k=0Bk. Define the block size of the k-th block to be nk = lk+1 − lk = |Bk|.
Remember the notation θk represents the vector {θj}j∈Bk . The block prior
Π̄ on the function f is induced by a distribution on its Fourier sequence
{θj}. For each k, let gk be a one-dimensional density function on R+.

We describe Π̄ as follows.

Ak ∼ gk independently for each k,

θk|Ak ∼ N(0, AkInk) independently for each k,
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where Ink is the nk × nk identity matrix. In this work, we specify lk to be
lk = [ek]. The sequence of densities {gk} is used to mix the scale parameter
Ak for each block, and we call them mixing densities. Our theory covers
a class of mixing densities. The mixing density class G contains all {gk}
satisfying the following properties:

1. There exists c1 > 0 such that, for any k and t ∈ [e−k
2
, e−k],

(2) gk(t) ≥ exp
(
− c1e

k
)
.

2. There exists c2 > 0, such that for any k,

(3)

∫ ∞
0

tgk(t)dt ≤ 4 exp
(
− c2k

2
)
.

3. There exists c3 > 0, such that for any k,

(4)

∫ ∞
e−k2

gk(t)dt ≤ exp
(
− c3e

k
)
.

For a function f0 ∈ Eα(Q), define the set

(5) Fn = Fn(β) =

θ :
∑

j>(nβ−1)
1

2α+1

(θj − θ0j)
2 ≤ ε2n

 .

We have the following theorem characterizing the property of Π̄.

Theorem 2.1. For the block prior Π̄ with mixing densities {gk} ∈ G, let
f0 ∈ Eα(Q) for some α,Q > 0, then there exists a constant C > 0 such that

(6) Π̄


∞∑
j=1

(θj − θ0j)
2 ≤ ε2n

 ≥ exp
(
− Cnε2n

)
,

and

(7) Π̄
(
Fcn
)
≤ 2 exp

(
− (C + 4)nε2n

)
,

for sufficiently large n whenever β ≤

(
min

{
c3

2(C+4) , (4Q
2)−2α

})2α+1

, with

c3 defined in (4).
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Remark 2.1. The theorem presents two properties of the block prior Π̄.
Property (6) says the prior gives sufficient mass near the true signal f0. This
is also recognized as the K-L condition once the Kullback-Leibler divergence
is upper bounded by the l2-norm in the support of the prior. Property (7)
says the prior concentrates on the effective dimension of the true signal
f0 automatically. In Bayesian nonparametric theory, a testing argument is
needed to prove posterior contraction rate. Such test can be established on
a sieve receiving most of the prior mass. In (7), the set Fn can be used as
such a sieve.

Remark 2.2. When the smoothness α is known, a well-known prior
Πα =

⊗∞
j=1N(0, j−2α−1) is used in the literature. It can be shown that this

prior satisfies (6). The block prior Π̄ satisfies (6) and (7), and it does not
depend on the smoothness α. Thus it is fully adaptive.

We claim that the mixing density class G is not empty by presenting an
example (Figure 1).

(8) gk(t) =


ek

2
(

exp
(
− ek

)
− Tk

)
t+ Tk, 0 ≤ t ≤ e−k2

;

exp
(
− ek

)
, e−k

2
< t ≤ e−k;

0, t > e−k.

The value of Tk is specified as

(9) Tk = 2ek
2 − 2 exp

(
− ek + k2 − k

)
+ exp

(
− ek

)
.

The following proposition is proved in the supplementary material (Gao
and Zhou, 2015b).

Proposition 2.1. The densities {gk} defined in (8) satisfies (2), (3)
and (4). Thus, G is not empty.

2.3. Adaptive Posterior Contraction of the Modified Block Prior Π. In
order to prove posterior contraction rate, it is essential to construct a suitable
test. A preliminary test is first constructed in a local neighborhood. Then
a global test is established by combining all the local tests when the metric
entropy is well controlled. We say the distance d satisfies the testing property
with respect to the prior Π and the truth f0 if and only if there exists some
constants L > 0 and ξ ∈ (0, 1/2), such that for any f1 ∈ supp(Π) satisfying
d(f0, f1) > εn, we have

(10) P
(n)
f0
φn ≤ exp

(
− Lnd2(f0, f1)

)
,
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t

g k
(t)

0 e−k
2

e−k

ex
p(
−
ek
)

T k

Fig 1. The plot of the mixing density function Ak ∼ gk defined in (8).

(11) sup
{f∈supp(Π):d(f,f1)≤ξd(f0,f1)}

P
(n)
f (1− φn) ≤ exp

(
− Lnd2(f0, f1)

)
,

for some testing function φn. Then, a global test can be constructed for
H0 : f = f0 against H1 = {f ∈ Fn ∩ supp(Π) : d(f, f0) > Mεn} as long as
d(f1, f2) � ||f1−f2|| for any f1 and f2. The equivalence of d and ||·||may not
be true for d being Hellinger distance or total variation. We thus consider
a modification of the block prior Π̄, denoted as Π, so that d and || · || are
equivalent in the support of the modified block prior Π. Define

Π(A) =
Π̄(D ∩A)

Π̄(D)
,

where the constraint set D needs to be designed case by case such that

D
(
P

(n)
f1
, P

(n)
f2

)
≤ bn||f1 − f2||2, V

(
P

(n)
f1
, P

(n)
f2

)
≤ bn||f1 − f2||2,

b−1d(f1, f2) ≤ ||f1 − f2|| ≤ bd(f1, f2),

for some constant b > 1. We give a specific choice of D for each model
considered in this paper. Another crucial property of D we need is that Π
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inherits properties (6) and (7) from Π̄. It is obvious that (7) is still true for
Π as long as Π̄(D) > 0. Therefore, one only needs to check (6), which is
usually not hard as we will see in all the examples in Section 3. A general
theorem covers all examples in Section 3 is stated as follows.

Theorem 2.2. For the block prior Π̄ with mixing densities {gk} ∈ G,

define Π(A) = Π̄(D∩A)
Π̄(D)

with the constraint set D satisfying the properties

above. Let the distance d satisfy the the testing property (10) and (11). As-
sume that, for any f0 ∈ Eα(Q) ∩D with α ∈ (α∗,∞) and Q ∈ (0, Q∗), the
prior Π inherits properties (6) and (7) from Π̄ for some C > 0. Then, for
any such f0, there exists M > 0, such that

P
(n)
f0

Π

(
d(f, f0) > Mn−

α
2α+1

∣∣∣Xn

)
−→ 0.

Remark 2.3. We note that the range α ∈ (α∗,∞) and Q ∈ (0, Q∗) is
the adaptive region for the prior Π. It is determined by the constraint set
D and by whether properties (6) and (7) can be inherited from Π̄ to Π. In
some examples such as the white noise model, the modification by D is not
needed, so that we have Π = Π̄. This will result in α∗ = 0 and Q∗ = ∞,
and thus the prior may adapt to all Sobolev balls. In the regression and the
density estimation models, α∗ needs to be larger than 1/2, and Q∗ can be
chosen arbitrarily large by properly picking the corresponding D. For the
spectral density estimation, we need α∗ > 3/2. See Section 3 for details.

Remark 2.4. Theorem 2.2 requires the assumption f0 ∈ Eα(Q) ∩ D.
In all the nonparametric estimation examples we consider in Section 3, we
consider very specific forms of D, and we are going to show that such D
can be removed from the assumption because of the relation Eα(Q) ⊂ D for
α > α∗. This implies Eα(Q) ∩D = Eα(Q) and we only need f0 ∈ Eα(Q) in
the assumption.

3. Applications. Given the experiment
((
X (n),A(n), P

(n)
f

)
: f ∈ Eα(Q)

)
,

and observation Xn ∼ P
(n)
f0

, we estimate the function f0 by an adaptive
Bayesian procedure. The goal is to achieve the minimax posterior contrac-
tion rate without knowing the smoothness α. In this section, we consider
the following examples:

1. Density Estimation. The observations X1, ...., Xn are i.i.d. distributed
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according to the density

pf (t) =
ef(t)∫
ef(t)dt

,

for some function f in a Sobolev ball.

2. White Noise. The observation Y
(n)
t is from the following process

dY
(n)
t = f(t)dt+

1√
n
dWt,

where Wt is the standard Wiener process.
3. Gaussian Sequence. We have independent observations

Xi = θi + n−1/2Zi, i ∈ N,

where {θi} are Fourier coefficients of f , and {Zi} are i.i.d. standard
Gaussian variables.

4. Gaussian Regression. The design is uniform X ∼ U [0, 1]. Given X,
Y |X ∼ N(f(X), 1). The observations are i.i.d. pairs (X1, Y1), ..., (Xn, Yn).

5. Spectral Density. The observations are stationary Gaussian time series
X1, ..., Xn with mean 0 and auto-covariance ηh(g) =

∫ π
−π e

ihλg(λ)dλ.

The spectral density g is modeled by g = exp
(
f
)

for some symmetric
f in a Sobolev ball.

The above models have similar frequentist estimation procedures, which
is due to the deep fact that they are asymptotically equivalent to each other
under minor regularity assumptions. References for asymptotic equivalence
theory include Brown and Low (1996), Nussbaum (1996), Brown et al. (2002)
and Golubev, Nussbaum and Zhou (2010).

3.1. Density Estimation. Let P
(n)
f be the product measure P

(n)
f =

⊗n
i=1 Pf .

The data is i.i.d. Xn = (X1, ..., Xn) ∼
⊗n

i=1 Pf0 . Let Pf be dominated by

Lebesgue measure µ, and it has density function pf (t) = ef(t)∫ 1
0 e

f(t)µ(dt)
. Con-

sider the Fourier expansion f =
∑

j θjφj , and the density pf can be written
in the form of infinite dimensional exponential family

pf (t) = exp

(∑
j

θjφj(t)− ψ(θ)

)
,

where

ψ(θ) =

∫ 1

0
e
∑
j θjφj(t)µ(dt).
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Notice the first Fourier base function is φ1(t) = 1. It is easy to see that
different θ1’s correspond to the same pf . For identifiability, we set θ1 = 0,
so that we have

∫
f(t)µ(dt) =

∑
j≥2 θj

∫
φj(t)dt = 0. We use the modified

block prior Π(A) = Π̄(D∩A)
Π̄(D)

with the constraint set

(12) D =

θ :

∞∑
j=1

|θj | < B

 ,

for some constant B > 0. The next lemma shows that the modified block
prior Π inherits properties (6) and (7) from Π̄.

Lemma 3.1. For α∗ > 1/2, define the constant

(13) γ =
( ∞∑
j=1

j−2α∗
)1/2

<∞.

For any f0 ∈ Eα(Q), with α ≥ α∗ and 3γQ ≤ B, there is a constant C > 0,
such that

Π


∞∑
j=1

(θ0j − θj)2 ≤ ε2n

 ≥ exp
(
− Cnε2n

)
,

and
Π
(
Fcn
)
≤ 2 exp

(
− (C + 4)nε2n

)
.

For density estimation, it is natural to use Hellinger distance as the testing
distance d. According to the testing theory in Le Cam (1973) and Ghosal,
Ghosh and van der Vaart (2000), it satisfies testing property (10) and (11).
The next lemma establishes equivalence among various distances and diver-
gences under D defined in (12).

Lemma 3.2. On the set D, there exists a constant b > 1, such that

D(Pf1 , Pf2) ≤ b||θ1 − θ2||2, V (Pf1 , Pf2) ≤ b||θ1 − θ2||2,

b−1H(Pf1 , Pf2) ≤ ||θ1 − θ2|| ≤ bH(Pf1 , Pf2).

We will prove the above two lemmas in the supplementary material (Gao
and Zhou, 2015b). The main result of posterior contraction for density esti-
mation is stated as follows.
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Theorem 3.1. Let α∗ > 1/2 be fixed, and γ is the associated constant
defined in (13). For any α,Q satisfying α ≥ α∗ and B ≥ 3γQ, there is a
constant M > 0, such that

sup
f0∈Eα(Q)

Pnf0
Π
(
H(Pf , Pf0) > Mεn|X1, ..., Xn

)
−→ 0.

Remark 3.1. The prior Π depends on the value of B, which determines
the range of adaptation. For any α∗ > 1/2 and Q∗ > 0, we can choose B
satisfying B ≥ 3γQ∗ (γ depends on α∗), such that the prior Π is adaptive
for all Eα(Q) with α ≥ α∗ and Q ≤ Q∗.

3.2. White Noise. We let P
(n)
f be the distribution of the following process

dY
(n)
t = f(t)dt+

1√
n
dWt, t ∈ [0, 1].

where Wt is the standard Wiener process and the signal has Fourier ex-
pansion f =

∑
j θjφj . This model is the simplest and most studied non-

parametric model. It is equivalent to the Gaussian sequence model, and we
have

D(P
(n)
f0
, P

(n)
f ) =

1

2
n||f − f0||2, V (P

(n)
f0
, P

(n)
f ) = n||f − f0||2.

In the white noise model, it is natural to use the l2 norm as the testing
distance d. The following lemma is from Lemma 5 in Ghosal and van der
Vaart (2007).

Lemma 3.3. Let φn =
{

2
∫

(f1(t)− f0(t))dY
(t)
t > ||f1|2 − ||f0||2

}
. Then

we have
P

(n)
f0
φn ≤ 1− Φ

(√
n||f1 − f0||/2

)
sup

{f :||f−f1||≤||f1−f0||/4}
P

(n)
f (1− φn) ≤ 1− Φ

(√
n||f1 − f0||/4

)
,

where Φ is the standard Gaussian cumulative distribution function.

By the property of Gaussian tail, we have 1 − Φ
(√
nL||f1 − f0||

)
≤

e−
1
2
L2n||f1−f0||2 , provided

√
nL||f1 − f0|| > 1, which is true because we only

need to test those f1 with ||f1−f0|| > Mεn, and we have
√
nεn →∞. There-

fore, in the white noise model, the distance satisfying (10) and (11) is the l2

norm. Considering that the divergence D(P
(n)
f0
, P

(n)
f ) and V (P

(n)
f0
, P

(n)
f ) are

also l2 norm, we reach the following conclusion.



BAYESIAN ADAPTIVE BLOCK PRIOR 13

Theorem 3.2. In the white noise model, for any α > 0 and Q > 0,
there exists a constant M > 0, such that

sup
f0∈Eα(Q)

P
(n)
f0

Π̄
(
||f − f0|| > Mεn|Y (n)

t

)
−→ 0.

Hence, this is a case that we have adaptation for all Sobolev balls.

3.3. Gaussian Sequence. The Gaussian sequence model is equivalent to
the while noise model. We present this case just for illustration of the theory.

Given f =
∑

j θjφj , the model P
(n)
f is in a product form

(14) P
(n)
f =

∞⊗
i=1

P
(n)
θi

=

∞⊗
i=1

N(θi, n
−1).

Thus, the observations are independent Gaussian variables in the form

Xi = θi + n−1/2Zi, i ∈ N,

where {Zi} are i.i.d. standard Gaussian variables. The divergence in this case

is easy to calculate. That is, D(P
(n)
f0
, P

(n)
f ) = n

2 ||θ0−θ||2 and V (P
(n)
f0
, P

(n)
f ) =

n||θ0 − θ||2, and they are exactly the l2 norm. Define

φn(X) =
{
||X − θ1||2 < ||X − θ0||2

}
=
{
XT (θ1 − θ0) > ||θ1||2 − ||θ0||2

}
.

We observe this is exactly the same test in the white noise model, and thus
Lemma 3.3 applies here. Therefore,

P
(n)
f0
φn ≤ e−

1
8
n||θ0−θ1||2 ,

sup
{θ:||θ−θ1||≤||θ1−θ0||/4}

P
(n)
f (1− φn) ≤ e−

1
32
n||θ0−θ1||2 .

The d satisfying the testing property (10) and (11) can be chosen as the l2

norm. We thus reach the following conclusion.

Theorem 3.3. In the Gaussian sequence model, for any α > 0 and
Q > 0, there exists a constant M > 0, such that

sup
f0∈Eα(Q)

P
(n)
f0

Π̄
(
||θ − θ0|| > Mεn|X1, X2, ...

)
−→ 0.

We have adaptation for all Sobolev balls.
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3.4. Gaussian Regression. We consider uniform random design instead
of fixed design, because the random design allows simple connection be-

tween various divergences and the l2 distance. The model P
(n)
f gives i.i.d.

observations (X1, Y1), ..., (Xn, Yn) with distribution

X ∼ U [0, 1], Y |X ∼ N
(
f(X), 1

)
.

The theory is easily extended to general random design with X ∼ q for some
density q on [0, 1] bounded from above and below. We choose the uniform
design for simplicity of presentation. The function has Fourier expansion f =∑

j θjφj so that we can apply the modified block prior on f . Let Pf be the
distribution of a single observation, and we need to calculate D(Pf0 , Pf ) and
V (Pf0 , Pf ). Let φ be the standard normal density, and it can be shown that

D(Pf0 , Pf ) ≤ 1
2 ||f−f0||2 and V (Pf0 , Pf ) ≤

(
1+ 1

2

(
||f ||2∞+||f0||2∞

))
||f−f0||2.

As what we have done in the density estimation case, we use the modified

block prior Π(A) = Π̄(A∩D)
Π̄(D)

with the constraint set D =
{∑∞

j=1 |θj | < B
}

.

According to Lemma 3.1, the prior Π inherits properties (6) and (7) from

Π̄. Therefore, for f and f0 ∈ D, V (Pf0 , Pf ) ≤
(

1+2B2
)
||f −f0||2. Next, we

deal with the testing procedure. We use likelihood ratio test as in the white
noise and Gaussian sequence model cases, and the error is bounded in the
following lemma.

Lemma 3.4. There exists a constant L > 0, such that for any f0, f1 ∈ D
satisfying

√
n||f1 − f0|| > 1, there exits a testing function φn with error

probability bounded as

P
(n)
f0
φn ≤ e−Ln||f0−f1||2 ,

sup
{f∈supp(Π):||f−f0||2≤ 1

32
||f1−f0||2}

P
(n)
f (1− φn) ≤ e−Ln||f0−f1||2 .

The lemma will be proved in later sections. It says l2 norm satisfies the
testing property (10) and (11). Using Theorem 2.2, we reach the following
conclusion.

Theorem 3.4. Let α∗ > 1/2 and γ be the constant defined in (13). In
the Gaussian regression model with uniform random design, for any α,Q
satisfying α ≥ α∗ and 3γQ ≤ B, there exists a constant M > 0, such that

sup
f0∈Eα(Q)

P
(n)
f0

Π
(
||f − f0|| > Mεn|X1, ..., Xn, Y1, ..., Yn

)
−→ 0.
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Remark 3.2. The prior Π depends on the value of B, which determines
the range of adaptation. For any α∗ > 1/2 and Q∗ > 0, we can choose B
satisfying B ≥ 3γQ∗ (γ depends on α∗), such that the prior Π is adaptive
for all Eα(Q) with α ≥ α∗ and Q ≤ Q∗.

3.5. Spectral Density Estimation. Suppose the probability P
(n)
f gener-

ates stationary Gaussian time series data X1, ..., Xn with mean 0 and spec-
tral density g = ef , with f(t) = f(−t). We assume the spectral density to be
a function on [−π, π]. The auto-covariance is ηh =

∫ π
−π e

ihtg(t)dt. Thus, the

observation (X1, ..., Xn) follows P
(n)
f = N

(
0,Γn(g)

)
, where the covariance

matrix is

Γn(g) =


η0 η1 · · · ηn−1

η1 η0 · · · ηn−2
...

...
. . .

...
ηn−1 ηn−2 · · · η0

 .

We model the exponent of the spectral density by f(t) =
∑∞

j=0 θj cos(jt).

According to Parseval’s identity, we have 2π||g||2 = ||η||2 and 2π||f ||2 =

||θ||2. We use the modified block prior Π(A) = Π̄(D∩A)
Π̄(D)

with the constraint
set

(15) D =


∞∑
j=0

j|θj | < B

 ,

The constraint set (15) is stronger than (12). Thus, in order that the modified
prior Π̄ inherits properties (6) and (7) from the block prior Π, we need
α > 3/2. The following lemma will be proved in the supplementary material
(Gao and Zhou, 2015b).

Lemma 3.5. For an arbitrary α∗ > 3/2, and the constant γ defined as

(16) γ =
∞∑
j=1

j2−2α∗ .

For any f0 ∈ Eα(Q), with α ≥ α∗ and 3γQ ≤ B, there is a constant C > 0,
such that

Π


∞∑
j=1

(θ0j − θj)2 ≤ ε2n

 ≥ exp
(
− Cnε2n

)
,

and
Π
(
Fcn
)
≤ 2 exp

(
− (C + 4)nε2n

)
.
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The following lemma, comparing the l2 norm with D(P
(n)
f0
, P

(n)
f ) and

V (P
(n)
f0
, P

(n)
f ), will be proved in the supplementary material (Gao and Zhou,

2015b).

Lemma 3.6. For any f0, f1 ∈ D, we have

D(P
(n)
f0
, P

(n)
f1

) ≤ bn||f0 − f1||2,

V (P
(n)
f0
, P

(n)
f1

) ≤ bn||f0 − f1||2,

where b > 1 is a constant only depending on Π.

The testing distance satisfying the testing properties (10) and (11) is the
l2-norm.

Lemma 3.7. There exists constants L > 0 and 0 < ξ < 1/2, such that
for any f0, f1 ∈ D with ||f0 − f1||2 ≥ ε2n, there exists a testing function φn
such that

P
(n)
f0
φn ≤ exp

(
− Ln||f0 − f1||2

)
,

sup
{f∈supp(Π):||f−f1||≤ξ||f1−f0||}

P
(n)
f (1− φn) ≤ exp

(
− Ln||f0 − f1||2

)
.

The lemma will be proved in later sections. We state the main result of
posterior contraction of spectral density estimation as follows.

Theorem 3.5. In the spectral density estimation problem, let (X1, ..., Xn) ∼
P

(n)
f0

. For any α and Q satisfying Lemma 3.5, there is a constant M > 0,
such that

sup
f0∈Eα(Q)

P
(n)
f0

Π
(
||f − f0|| > Mεn|X1, ..., Xn

)
−→ 0.

Remark 3.3. The prior Π depends on the value of B, which determines
the range of adaptation. For any α∗ > 3/2 and Q∗ > 0, we can choose B
satisfying B ≥ 3γQ∗ (γ depends on α∗), such that the prior Π is adaptive
for all Eα(Q) with α ≥ α∗ and Q ≤ Q∗. Notice the definition of γ in (16) is
different from that in (13).

4. Discussion.
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4.1. Exponential Tail of the Posterior. The conclusion of the main pos-
terior contraction result in Theorem 2.2 does not specify a decaying rate of
the posterior tail. In fact, by scrutinizing the its proof, it has the following
polynomial tail

P
(n)
f0

Π
(
||θ − θ0|| > Mεn|Xn

)
≤ C ′

nε2n
.

However, to obtain a point estimator such as posterior mean with the same
rate of convergence as εn, faster posterior tail probability is needed (see, for
example, Ghosal, Ghosh and van der Vaart (2000) and Shen and Wasserman
(2001)). In this section, we show that this polynomial tail can be improved
to exponential tail in all the examples we consider in Section 3. The critical
step is the following lemma, which improves Lemma 5.6 in the proof of the
general result of Theorem 2.2.

Lemma 4.1. For all statistical models we consider in Section 3 and the
corresponding modified block prior Π, let C be the constant with which Π
satisfies (6) and (7). Define

(17) Hn =


∫
p

(n)
f

p
(n)
f0

(Xn)dΠ(f) ≥ exp
(
− (C + b+ 1)nε2n

) .

Then we have P
(n)
f0

(Hcn) ≤ exp
(
− C̄nε2

)
for f0 ∈ Eα(Q) ∩ D and some

C̄ > 0.

From Lemma 4.1, we have the following improved result for posterior
contraction.

Theorem 4.1. The conclusions of Theorem 3.1, Theorem 3.2, Theorem
3.3, Theorem 3.4 and Theorem 3.5 can be strengthened as

P
(n)
f0

Π
(
||θ − θ0|| > Mεn|Xn

)
≤ exp

(
− C ′nε2n

)
,

under their corresponding settings.

As a consequence, the posterior mean serves as a rate-optimal point esti-
mator.

Corollary 4.1. Under the setting of Theorem 3.1, Theorem 3.2, The-
orem 3.3, Theorem 3.4 and Theorem 3.5, we have

P
(n)
f0
‖EΠ̄(θ|Xn)− θ0‖2 ≤M ′ε2n,

for some constant M ′ > 0.
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The proofs of Lemma 4.1, Theorem 4.1 and Corollary 4.1 are presented
in the supplementary material (Gao and Zhou, 2015b).

4.2. Extension to Besov Balls. Besov balls provides a more flexible col-
lection of functions than Sobolev balls. They are related to wavelet bases.
The block prior we propose in this paper naturally takes advantage of the
multi-resolution structure of Besov balls. Given a sequence {θj}, define

θk = {θ2k+l}2
k−1
l=0 for k = 0, 1, 2, .... We can view the signals on each res-

olution level θk as a natural block with size nk = 2k. The Besov ball is
defined as

Bα
p,q(Q) =

{
θ :
∑
k

2skq||θk||qp ≤ Qq
}
,

where s = α + 1
2 −

1
p and || · ||p is the vector lp-norm. We consider the

non-sparse case where the parameters are restricted by

(18) (α, p, q,Q) ∈ (0,∞)× [2,∞]× [1,∞]× (0,∞).

Under such restriction, the block prior is suitable for estimating the signal
in Bα

p,q(Q). We describe the prior Π̄ as follows.

Ak ∼ gk independently for each k,

θk|Ak ∼ N(0, AkInk) independently for each k,

where Ink is the 2k × 2k identity matrix. The mixing densities {gk} are
defined through (8) and (9) with the constant e replaced by 2. It is clear
that the new mixing densities {gk} satisfies (2), (3) and (4) with every e
replaced by 2. Define the new sieve

Fn =

 ∑
k>(2α+1)−1 log2(nβ−1)

||θk − θ0k||2 ≤ ε2n

 .

We state the property of the block prior Π̄ targeting at Besov balls below.

Theorem 4.2. For the block prior Π̄ defined above, let θ0 ∈ Bα
p,q(Q)

with (α, p, q,Q) satisfying (18), then there exists a constant C > 0 such that

(19) Π̄


∞∑
j=1

(θj − θ0j)
2 ≤ ε2n

 ≥ 2−Cnε
2
n ,
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and

(20) Π̄
(
Fcn
)
≤ 21−(C+4)nε2n ,

for sufficiently large n whenever β ≤

(
min

{
c3

2(C+4) , (4Q
2)−2α

})2α+1

, with

c3 defined in (4) where e is replaced by 2.

We apply the prior to the Gaussian sequence model. For other models,
some slightly extra works are needed.

Theorem 4.3. For the Gaussian sequence model (14) with any θ0 ∈
Bα
p,q(Q), where (α, p, q,Q) satisfies (18), then there exists M > 0, such that

sup
θ0∈Bαp,q(Q)

P
(n)
θ0

Π̄

(
||θ − θ0|| > Mεn

∣∣∣X1, X2, ...

)
−→ 0.

Thus, the prior is adaptive for all Besov balls satisfying (18).

We prove the results of the extension in the supplementary material (Gao
and Zhou, 2015b).

4.3. Difficulty of Achieving the Exact Rate. The literature of Bayes non-
parametric adaptive estimation usually reports an extra logarithmic term
along with the minimax rate ε2n. In this section, we provide examples of
two priors and illustrate the reasons for them to have the extra logarithmic
term. In the first example, the difficulty lies in the prior itself. In the second
example, the difficulty lies in the method of proof. The analysis also sheds
light on why the block prior is able to achieve the exact minimax rate.

4.3.1. Difficulty due to the Prior. One of the most elegant prior on f
is the rescaled Gaussian process studied by van der Vaart and van Zan-
ten (2007) and van der Vaart and van Zanten (2009). Consider the cen-
tered Gaussian process (Wt : t ∈ [0, 1]) with the double exponential kernel
EWtWs = exp

(
− (s− t)2

)
. The rescaled Gaussian process is defined as Wt/c

for some c either fixed or sampled from a hyper-prior. The reason for the
rescaling is that the original Wt has an infinitely differentiable sample path
almost surely. The rescaling step makes it rougher so that it is appropriate
for estimating a signal in Sobolev or Hölder balls. In van der Vaart and

van Zanten (2007), the number c is fixed as
(
n/(log n)2

)−1/(2α+1)
, and in
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van der Vaart and van Zanten (2009) c is sampled from a Gamma distribu-

tion. The posterior convergence rates are ε2n
(

log n
) 4α

2α+1 and ε2n
(

log n
) 4α+1

2α+1 ,
respectively.

Recently, this prior was extended by Castillo, Kerkyacharian and Picard
(2014) for estimation of a function living on a general manifold M. They
constructed a rescaled Gaussian process on M and obtained an improved

posterior convergence rate ε2n
(

log n
) 2α

2α+1 . Moreover, they also showed that
such a rate cannot further be improved by a rescaled Gaussian process with
a reasonable distribution on the rescaling parameter c. To be specific, they
proved that under mild conditions, there exists a function f0 ∈ Bα

2,∞(Q) and
a constant C > 0, such that

P
(n)
f0

Π
(
||f − f0|| ≤ Cε2n(log n)

2α
2α+1

∣∣∣Xn
)
→ 0,

for a rescaled Gaussian process Π. Hence, the posterior convergence rate

cannot be faster than ε2n(log n)
2α

2α+1 .
To summarize, in this example, the difficulty lies in the prior. It is shown

that a certain class of prior distribution is unable to achieve the exact min-
imax rate.

4.3.2. Difficulty due to the Proof. The sieve prior is another popular
prior used in Bayes nonparametric estimation. It first samples an integer
J , which is the model dimension. Conditioning on J , θj is sampled from
some distribution p independently for all j ≤ J and is set to zero for j > J .

Rivoirard and Rousseau (2012) considered both fixed J = [n
1

2α+1 ] and J
sampled from a distribution with exponential tail. In the first case, the
posterior convergence rate is ε2n(log n)2 and a slightly slower rate is obtained
for the second case.

We argue that the difficulty for obtaining the exact minimax rate is not
due to the sieve prior itself, but due to the technique of the proof. Using
the prior mass and testing (see Section 2.1) proof technique developed by
Barron, Schervish and Wasserman (1999) and Ghosal, Ghosh and van der
Vaart (2000), it is impossible to get the exact minimax rate. Let us consider
the Gaussian sequence model. In this case, the prior mass condition for the
truth θ0 ∈ Eα(Q) and the rate ε2n is

(21) Π
(
||θ − θ0||2 ≤ ε2n

)
≥ exp

(
− Cnε2n

)
,

for some constant C > 0. Even in the simplest sieve prior where J is chosen
to be fixed, (21) cannot hold. This is established in the following lemma.
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Lemma 4.2. Consider a sieve prior with fixed J and density p. Assume
||p||∞ ≤ G for some constant G > 0. Then, for any δn → 0 satisfying
log δ−1

n � log n and any θ0, we have

Π
(
||θ − θ0||2 ≤ δ2

n

)
≤ exp

(
− CJ log n

)
,

for some constant C > 0.

In the ideal case where J = [n
1

2α+1 ], the best possible δ2
n for (21) to hold

is δ2
n � n−

2α
2α+1 log n. The extra log n term cannot be avoided to establish

the desired prior mass condition.
On the other hand, we show that the sieve prior in Lemma 4.2 does achieve

the exact minimax rate when p is taken as N(0, 1).

Lemma 4.3. For Gaussian sequence model, consider the prior distribu-

tion Π =
⊗J

j=1N(0, 1), with J = [n
1

2α+1 ]. Then, we have for any θ0 ∈
Eα(Q),

P
(n)
f0

Π
(
||θ − θ0||2 ≥Mε2n

∣∣∣Xn
)
≤ exp

(
− Cnε2n

)
,

for some constants C,M > 0.

The proof of this results takes advantage of the conjugacy and calculates
the posterior probability directly from the posterior distribution formula.
Both the proofs of Lemma 4.2 and Lemma 4.3 are stated in the supplemen-
tary material (Gao and Zhou, 2015b).

Moreover, we also establish an adaptive version of Lemma 4.3. Namely,
consider the prior distribution k ∼ π and conditioning on k,

√
nθj ∼ g i.i.d.

for 1 ≤ j ≤ k and θj = 0 for j > k.

Theorem 4.4. Assume maxj
π(j)
π(j−1) ≤ c, − log π(n

1
2α+1 ) ≤ Cn

1
2α+1 ,

| log g(x) − log g(y)| ≤ C(1 + |x − y|) and | log g(0)| ≤ C for some con-
stants c ∈ (0, 1) and C > 0. Then, for Gaussian sequence model with any
θ0 ∈ Eα(Q), we have

P
(n)
f0

Π
(
k > Mn

1
2α+1

∣∣∣Xn
)
≤ exp

(
− C ′nε2n

)
,(22)

P
(n)
f0

Π
(
||θ − θ0||2 ≥Mε2n

∣∣∣Xn
)
≤ exp

(
− C ′nε2n

)
,

for some constants M,C ′ > 0.
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The assumption on the prior distribution in Theorem 4.4 is mild. For
example, we may choose π(j) ∝ e−Dj for some constant D > 0 and choose
g to be the double exponential density. The resulting posterior distribution
contracts to the true signal at the minimax rate adaptively for all α > 0.
The success of this prior crucially depends on the result (22), which allows

us to establish an optimal testing procedure on the set J ≤ Mn
1

2α+1 . How-
ever, the proof of (22) takes advantage of the independence structure of the
Gaussian sequence model and we are not able to establish (22) for other
models. For the same reason, the block spike and slab prior proposed in
Hoffmann, Rousseau and Schmidt-Hieber (2015) works only for the Gaus-
sian sequence model as well. Their argument in establishing (22) also uses
the independence structure of Gaussian sequence model and thus does not
work in other settings.

To summarize, the sieve prior is an example showing that the current proof
technique may result in the sub-optimal posterior convergence rate, while
for Gaussian sequence model, special techniques can be used to overcome
the difficulty.

4.3.3. The Block Prior Overcomes Both Difficulties. The above discus-
sion leads to two fundamental questions. 1. Is there a prior which can achieve
the exact minimax posterior convergence rate without knowing α? 2. Can
the prior mass and testing proof technique handle a minimax optimal adap-
tive prior? While the importance of the first question is evident, the second
question seems not that relevant at first thought. However, the prior mass
and testing method has a great advantage that it is not specific to the choice
of the prior or the form of the model. Though we use direct calculation to
show the optimal posterior convergence in Lemma 4.3 and Theorem 4.4,
the same proof cannot be extended to a setting beyond Gaussian sequence
model. The independence structure of Gaussian sequence model plays an
important role in the proof. In contrast, the prior mass and testing method
is very general so that it can be applied in various settings.

The block prior provides affirmative answers to both questions. Not only
can it achieve the exact minimax rate, its proof also relies on the prior mass
and testing method, which makes it easy to apply in many complex settings
beyond Gaussian sequence model. We provide various examples in Section 3
including regression, density estimation and spectral density estimation to
illustrate the benefit of using the prior mass and testing method. Without the
prior mass and testing method, an adaptive prior cannot be easily extended
to the case beyond Gaussian sequence model.
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In fact, the inequality (22) can be written as

(23) P
(n)
f0

Π(Fcn|Xn) ≤ exp(−C ′nε2n),

where Fn can be of a more general form than that in (22) as long as an
optimal testing procedure can be established in Fn. Then, both the sieve
prior and the block spike and slab prior in Hoffmann, Rousseau and Schmidt-
Hieber (2015) satisfy (23). In contrast, the block prior proposed in this paper
satisfies

(24) Π(Fcn) ≤ exp(−C ′nε2n),

which is one of the three conditions required by the prior mass and testing
technique. It can be shown that generally (24) is a stronger condition than
(23) in the sense that (24) combining the prior mass lower bound imply (23).
In this sense, the block prior in this paper is a stronger prior than the sieve
prior and the block spike and slab prior in Hoffmann, Rousseau and Schmidt-
Hieber (2015). To put it in another way, (23) is not only a condition on the
prior distribution, it is also a condition on the likelihood, which imposes
certain model structure. On the other hand, (24) is a condition only on the
prior. This is why it works in various models besides Gaussian sequence
model.

5. Proofs of Main Results.

5.1. Proof of Theorem 2.1. We first outline the proof and list some
preparatory lemmas, and then state the proof in details. We introduce the
notation Π̄A to be defined as

(25) Π̄A =

∞⊗
k=1

N(0, AkInk).

Given a scale sequence A = {Ak}, the random function f =
∑

j θjφj is

distributed by Π̄A if for each block Bk, θk = {θj}j∈Bk ∼ N(0, AkInk). Then,
Π̄A is a Gaussian process for a given A, and the block prior is a mixture of
Gaussian process with A distributed by the mixing densities {gk} ∈ G.

Since Π̄ itself is not a Gaussian process, the result for the l2 small ball
probability asymptotics for Gaussian process cannot be applied directly. Our
strategy is to pick a collection Vα, and by conditioning, we have

(26) Π̄
(
·
)
≥ P(Vα)E

(
Π̄A
(
·
)∣∣∣A ∈ Vα).
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Then as long as for each A ∈ Vα, there is constants C1, C2 > 0 independent
of A, such that

(27) Π̄A


∞∑
j=1

(θj − θ0j)
2 ≤ ε2n

 ≥ exp
(
− C1nε

2
n

)
,

and

(28) P(Vα) ≥ exp
(
− C2nε

2
n

)
,

then the property (6) is a direct consequence with C = C1 + C2. Thus,
picking such Vα is important. Generally speaking, for each A ∈ Vα, we need
Π̄A to behave just like a Gaussian prior designed for estimating f0 ∈ Eα(Q)
when α is known.

The distribution Π̄A may be hard to deal with. Our strategy is to use the
following simple comparison result so that we can study a simpler distribu-
tion instead. The lemma will be proved in the supplementary material (Gao
and Zhou, 2015b).

Lemma 5.1. For standard i.i.d. Gaussian sequence {Zj} and sequences
{aj}, {bj} and {cj}, suppose there is a constant R > 0 such that

R−1aj ≤ bj ≤ Raj , for all j,

then we have

P

(∑
j

bj(Zj−cj)2 ≤ R−1ε2

)
≤ P

(∑
j

aj(Zj−cj)2 ≤ ε2
)
≤ P

(∑
j

bj(Zj−cj)2 ≤ Rε2
)
.

Define Jα to be the smallest integer such that Jα ≥ (8Q2)
1

2αn
1

2α+1 . Let K
to be the smallest integer such that eK > Jα, and define J = [eK ]. Inspired
by the comparison lemma, we define

(29) Vα = Vα,R =

{
A : R−1 ≤ min

1≤k≤K

Ak
Aα,k

≤ max
1≤k≤K

Ak
Aα,k

≤ R
}
,

with

Aα,k =
l−2α
k − l−2α

k+1

2α(lk+1 − lk)
, for k = 1, 2, ...,K.

Define the truncated Gaussian process,

(30) Π̄Aα
K =

K⊗
k=1

N(0, Aα,kInk).
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A random function f =
∑

j θjφj is distributed by Π̄Aα
K if θk ∼ N(0, Aα,kInk)

for each k = 1, ...,K and θk = 0 for k > K. The comparison lemma implies
that we can control Π̄A for each A ∈ Vα by the truncated Gaussian process
Π̄Aα
K . Additionally, the small ball probability of Π̄Aα

K can be established. The
argument is separated in the following lemmas, which will be proved in later
sections.

Lemma 5.2. For any α > 0, and f0 ∈ Eα(Q), there exists C3 > 0, such
that

Π̄Aα
K


∞∑
j=1

(θj − θ0j)
2 ≤ ε2n

 ≥ exp
(
− C3nε

2
n

)
.

Lemma 5.3. For each k, let Ak ∼ gk, with {gk} ∈ G. we have

P(Vα) ≥ exp
(
− C2nε

2
n

)
.

Lemma 5.4. For J defined above, and f0 ∈ Eα(Q), we have

Π̄

∑
j>J

(θj − θ0j)
2 ≤ ε2n

2

 ≥ 1

2
,

for sufficiently large n.

Proof of (6) in Theorem 2.1. We first introduce the truncated version
of Π̄A to be

Π̄A
K =

K⊗
k=1

N(0, AkInk).

By Lemma 5.4, we have

Π̄


∞∑
j=1

(θj − θ0j)
2 ≤ ε2n

 ≥ Π̄


J∑
j=1

(θj − θ0j)
2 ≤ ε2n

2
,
∑
j>J

(θj − θ0j)
2 ≤ ε2n

2


= Π̄


J∑
j=1

(θj − θ0j)
2 ≤ ε2n

2

 Π̄

∑
j>J

(θj − θ0j)
2 ≤ ε2n

2


≥ 1

2
Π̄


J∑
j=1

(θj − θ0j)
2 ≤ ε2n

2

 ,
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where we have used independence between different blocks in the above
equality. In the spirit of (26), we have
(31)

Π̄


J∑
j=1

(θj − θ0j)
2 ≤ ε2n

2

 ≥ P(Vα)E

(
Π̄A
K


∞∑
j=1

(θj − θ0j)
2 ≤ ε2n

2

∣∣∣A ∈ Vα
)
.

By Lemma 5.1, for each A ∈ Vα,

Π̄A
K


∞∑
j=1

(θj − θ0j)
2 ≤ ε2n

2

 ≥ Π̄Aα
K


∞∑
j=1

(θj − θ0j)
2 ≤ ε2n

2R

 .

By Lemma 5.2, we have

Π̄Aα
K


∞∑
j=1

(θj − θ0j)
2 ≤ ε2n

2R

 ≥ exp
(
− C ′nε2n

)
.

Combining what we have derived and Lemma 5.3, (6) is proved.
Proof of (7) in Theorem 2.1. We fix the constant C in (6), and we

are going to prove (7) with the same C. Remember the sieve Fn is defined
by (5). Define the set

An =

{
Ak ≤ e−k

2
for all k >

1

2α+ 1
log(nβ−1)

}
.

Then,
Π̄(Fcn) ≤ sup

A∈An
Π̄A(Fcn) + P(Acn).

Condition (4) implies

P(Acn) ≤
∑

k>(2α+1)−1 log(nβ−1)

P
(
Ak > e−k

2
)

≤
∑

k>(2α+1)−1 log(nβ−1)

exp
(
− c3e

k
)

≤ exp

(
− 1

2
c3n

1
2α+1β−

1
2α+1

)
≤ exp

(
− (C + 4)nε2n

)
.
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The last inequality is because β ≤

(
c3

2(C+4)

)2α+1

. We bound Π̄A(Fcn) for

each A ∈ An,

Π̄A(Fcn) = Π̄A


∑

j>(nβ−1)
1

2α+1

(θj − θ0j)
2 > ε2n


≤ Π̄A

2
∑

j>(nβ−1)
1

2α+1

θ2
j + 2

∑
j>(nβ−1)

1
2α+1

θ2
0j > ε2n


≤ Π̄A


∑

j>(nβ−1)
1

2α+1

θ2
j ≥

1

4
ε2n

(32)

≤ Π̄A

 ∑
k>(2α+1)−1 log(nβ−1)

||θk||2 ≥
1

4
ε2n


≤

∑
k>(2α+1)−1 log(nβ−1)

Π̄A
{
||θk||2 ≥ akε2n

}
,

where
∑

k ak ≤ 1/4 and we choose ak = ak−2. The inequality (32) is because

θ0 ∈ Eα(Q) and β ≤ (4Q2)−
2α+1

2α . Define χ2
d to be the chi-square random

variable with degree of freedom d.∑
k>(2α+1)−1 log(nβ−1)

Π̄A
{
||θk||2 ≥ akε2n

}
=

∑
k>(2α+1)−1 log(nβ−1)

P
{
a−1
k Akχ

2
nk
≥ ε2n

}
=

∑
k>(2α+1)−1 log(nβ−1)

P
{
ε−2
n C ′eka−1

k Akχ
2
nk
≥ C ′ek

}
≤

∑
k>(2α+1)−1 log(nβ−1)

exp
(
− C ′ek

)(
1− 2ε−2

n C ′eka−1
k Ak

)−nk
2
,

where we can choose C ′ sufficiently large. On the set Ak, for n sufficiently
large,

Ak ≤ e−k
2 ≤ 1

4C ′
ake
−kε2n, for all k >

1

2α+ 1
log(nβ−1).
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Therefore, ∑
k>(2α+1)−1 log(nβ−1)

exp
(
− C ′ek

)(
1− 2ε−2

n C ′eka−1
k Ak

)−nk
2

≤
∑

k>(2α+1)−1 log(nβ−1)

exp
(
− C ′ek

)(√
2
)nk

≤
∑

k>(2α+1)−1 log(nβ−1)

exp
(
−
(
C ′ − 1

2
log 2

)
ek
)

≤ exp

(
− 1

2

(
C ′ − 1

2
log 2

)
β−

1
2α+1nε2

)
≤ exp

(
− (C + 4)nε2n

)
,

with sufficiently large C ′ and n. Hence,

sup
A∈An

Π̄A(Fcn) ≤ exp
(
− (C + 4)nε2n

)
,

and we have
Π
(
Fcn
)
≤ 2 exp

(
− (C + 4)nε2n

)
.

Thus the proof is complete.

5.2. Proof of Theorem 2.2. Before stating the proof of Theorem 2.2, we
need to establish a testing result. It will be proved in later sections.

Lemma 5.5. Let d be a distance satisfying the testing property (10) and
(11). Suppose that there is b > 0 such that for all f1, f2 ∈ D,

b−1d(f1, f2) ≤ ||f1 − f2|| ≤ bd(f1, f2).

Then for any sufficiently large M > 0, there exists a testing function φn,
such that

P
(n)
f0
φn ≤ 2 exp

(
− 1

2
LM2nε2n

)
,

sup
{f∈Fn∩supp(Π):d(f,f0)>Mεn}

P
(n)
f (1− φn) ≤ exp

(
− L2nε2n

)
.

The following result is Lemma 10 in Ghosal and van der Vaart (2007). It
lower bounds the denominator of the posterior distribution in probability.
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Lemma 5.6. Consider Hn defined in (17), as long as

Π
{
D(P

(n)
f0
, P

(n)
f ) ≤ bnε2n, V (P

(n)
f0
, P

(n)
f ) ≤ bnε2n

}
≥ exp

(
− Cnε2n

)
,

we have P
(n)
f0

(Hcn) ≤ 1
C̄2nε2n

for some C̄ > 0.

Proof of Theorem 2.2. Notice the prior Π inherits the properties

(6) and (7) from Π̄. Since both D(P
(n)
f0
, P

(n)
f ) and V (P

(n)
f0
, P

(n)
f ) are upper

bounded by bn||θ0 − θ||2, we have

Π
{
D(P

(n)
f0
, P

(n)
f ) ≤ bnε2n, V (P

(n)
f0
, P

(n)
f ) ≤ bnε2n

}
≥ Π


∞∑
j=1

(θj − θ0j)
2 ≤ ε2n

 ≥ exp
(
− Cnε2n

)
,

for the constant C with which Π satisfies (6) and (7). By Lemma 5.6, the

K-L property of prior implies P
(n)
f0

(Hcn) ≤ 1
C̄2nε2n

. Let Fn be the sieve defined

in (5) and we have Π
(
Fcn
)
≤ 2 exp

(
−(C+4)nε2n

)
. Letting φn be the testing

function in Lemma 5.5, we have P
(n)
f0

Π
(
d(f, f0) > Mεn|Xn

)
≤ P

(n)
f0

(Hcn) +

P
(n)
f0
φn + P

(n)
f0

Π
(
d(f, f0) > Mεn|Xn

)
(1− φn)1Hn , where the first two terms

go to 0. The last term has bound

P
(n)
f0

Π
(
d(f, f0) > Mεn|Xn

)
(1− φn)1Hn

≤ exp
(

(C + 2)nε2n

)
P

(n)
f0

∫
{f∈Fn:d(f,f0)>Mεn}

p
(n)
f

p
(n)
f0

(Xn)(1− φn)(Xn)dΠ(f)

+ exp
(

(C + 2)nε2n

)
P

(n)
f0

∫
Fcn

p
(n)
f

p
(n)
f0

(Xn)dΠ(f)

≤ exp
(

(C + 2)nε2n

)∫
{f∈Fn:d(f,f0)>Mεn}

P
(n)
f0

p
(n)
f

p
(n)
f0

(Xn)(1− φn)(Xn)dΠ(f)

+ exp
(

(C + 2)nε2n

)∫
Fcn
P

(n)
f0

p
(n)
f

p
(n)
f0

(Xn)dΠ(f)

≤ exp
(

(C + 2)nε2n

)
sup

{f∈Fn∩supp(Π):d(f,f0)>Mεn}
P

(n)
f (1− φn)

+ exp
(

(C + 2)nε2n

)
Π
(
Fcn
)

≤ exp
(
− (LM2 − C − 2)nε2n

)
+ 2 exp

(
− 2nε2n

)
.
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We pick M satisfying M >
√
L−1(C + 2), and then every term goes to 0.

The proof is complete.
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SUPPLEMENT TO “RATE EXACT BAYESIAN ADAPTATION
WITH MODIFIED BLOCK PRIORS”

Chao Gao and Harrison H. Zhou

Yale University

APPENDIX A: NUMERICAL STUDIES

In this section, we conduct a numerical study of the block prior under the
Gaussian sequence model. We first introduce a Gibbs sampling method in
Section A.1 and then compare our method to some other Bayes nonparamet-
ric methods by simulation in Section A.2. To facilitate the presentation, we
introduce some new notation. We use fa,b,s(t) to indicate density function of
a truncated inverse-Gamma distribution with parameters (a, b) supported
in (0, s). In particular,

fa,b,∞(t) =
ba

Γ(a)
t−a−1 exp

(
−b
t

)
and fa,b,s(t) =

fa,b,∞(t){t ≤ s}∫ s
0 fa,b,∞(t)dt

.

Sampling from the inverse-Gamma distribution and computing the value of
its distribution function can be done in a standard way in R.

A.1. A Gibbs Sampling Algorithm. An interesting feature of the
block prior is that it is a mixture of Gaussian distribution. Combined with
Gaussian sequence model, efficient sampling algorithm can be developed.
The joint distribution of (X, θ,A) has factorization p(X|θ)p(θ|A)p(A). This
motivates a Gibbs sampling algorithm where we sample θ|(X,A) and A|θ
alternatively. According to the block structure, the algorithm is separable
among blocks, and it is sufficient to derive the distribution of θk|(Xk, Ak)
and the distribution of Ak|θk, respectively. By conjugacy of prior with
respect to Gaussian distribution, the conditional distribution of θk given
(Xk, Ak) is

(33) N

(
n

A−1
k + n

Xk,
1

A−1
k + n

Ink

)
.

With the prior density Ak ∼ gk, the conditional density of Ak given θk is

proportional to t−nk/2e−
||θk||

2

2t gk(t). For simplicity of implementation, let us
consider

gk(t) = T1k{t ≤ e−k
2}+ T2k{t ≤ e−k},
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where T1k = exp(k2)− exp(−ek − k + k2) and T2k = exp(−ek). It is easy to
check that the choice of gk satisfies (2)-(4). Now let us derive the explicit

sampling procedure of Ak|θk. Define ak = nk
2 − 1 and bk = ||θk||2

2 . With the
notation fa,b,s(t) indicating the truncated inverse-Gamma density function,
the conditional density of Ak|θk can be written as

fak,bk,∞(t)gk(t)∫∞
0 fak,bk,∞(t)gk(t)dt

= λk1fak,bk,e−k2 (t) + λk2fak,bk,e−k(t),

with

λk1 =
T1k

∫ e−k2

0 fak,bk,∞(t)dt

T1k

∫ e−k2

0 fak,bk,∞(t)dt+ T2k

∫ e−k
0 fak,bk,∞(t)dt

and λk2 = 1− λk1.

Hence, to sample Ak given θk, we first sample a uniform distribution Uk ∼
Unif[0, 1]. If Uk ≤ λk1, we sample Ak from f

ak,bk,e−k
2 , otherwise, we sample

from fak,bk,e−k . Note that for the inverse-Gamma distribution to be well-
defined, we need ak = nk

2 − 1 > 0. This requires nk > 2. In practice, for the
first few blocks (usually the first and the second block), we directly estimate
θk by Xk and apply the above Gibbs sampler to the blocks after that. The
Gibbs sampling algorithm also works for the modified block prior. The only
change is that the sampling of θk|(Xk, Ak) is replaced by the renormalized
version of (33) on the set D.

A.2. Simulation. To investigate the numerical performance of the block
prior, We compare it with the rescaled Gaussian process on simulated data
sets. To introduce the rescaled Gaussian process, we first introduce the
centered Gaussian process on (Wt : t ∈ [0, 1]) with double exponential
kernel EWtWs = exp

(
− (s − t)2

)
. Then, a rescaled Gaussian process is

Wt/c for some number c > 0. van der Vaart and van Zanten (2007) choose

c �
(
n/(log n)2

)−1/(2α+1)
and van der Vaart and van Zanten (2009) put

a Gamma distribution on c. In what follows, we use RGPF to represent the
rescaled Gaussian process with a fixed c and use RGPG to represent that with
a Gamma distributed c. The block prior is denoted as BLOCK. The modified
block prior is denoted as mBLOCK. Moreover, to study the effect of block size,
we also experiment the block prior with constant block sizes. cBLOCK16 and
cBLOCK32 denote block prior with constant block sizes 16 and 32, respec-
tively.

We apply the six priors on a polynomially decaying signal. Namely, f0 =∑
j θ0jφj with θ0j = 5 × ξjj−β with ξj randomly chosen as −1 or 1 with

equal probabilities. It is easy to see that there exists a Q > 0, such that



BAYESIAN ADAPTIVE BLOCK PRIOR 3

α Method ||θ̂ − θ||2 Method ||θ̂ − θ||2

0.5 RGPF 3.858 (0.066) mBLOCK 2.539 (0.128)
RGPG 3.659 (0.550) cBLOCK16 3.004 (0.053)
BLOCK 2.523 (0.114) cBLOCK32 3.314 (0.040)

1 RGPF 1.226 (0.053) mBLOCK 0.449 (0.031)
RGPG 1.229 (0.218) cBLOCK16 2.874 (0.050)
BLOCK 0.444 (0.031) cBLOCK32 3.252 (0.041)

1.5 RGPF 0.251 (0.051) mBLOCK 0.129 (0.013)
RGPG 0.273 (0.067) cBLOCK16 2.864 (0.050)
BLOCK 0.129 (0.014) cBLOCK32 3.243 (0.041)

Table 1
Estimation errors for n = 256: Median and MAD (in parentheses).

α Method ||θ̂ − θ||2 Method ||θ̂ − θ||2

0.5 RGPF 2.623 (0.037) mBLOCK 2.161 (0.089)
RGPG 2.590 (0.193) cBLOCK16 2.981 (0.053)
BLOCK 2.089 (0.108) cBLOCK32 3.120 (0.037)

1 RGPF 0.649 (0.026) mBLOCK 0.306 (0.023)
RGPG 0.652 (0.120) cBLOCK16 2.857 (0.059)
BLOCK 0.368 (0.030) cBLOCK32 3.175 (0.040)

1.5 RGPF 0.142 (0.023) mBLOCK 0.082 (0.009)
RGPG 0.151 (0.031) cBLOCK16 2.862 (0.061)
BLOCK 0.065 (0.011) cBLOCK32 3.178 (0.047)

Table 2
Estimation errors for n = 512: Median and MAD (in parentheses).

f0 ∈ Eα(Q) as long as β > α+ 1
2 . In particular, we choose β = α+ 0.6 for a

given α > 0.
The simulated result is presented in Table 1 and Table 1 for n = 256

and n = 512 respectively. We consider α = 0.5, α = 1 and α = 1.5. For

RGPF, we set c = 1
2

(
n/(log n)2

)−1/(2α+1)
as suggested from a theoretical

aspect. We have tried different constants other than 1/2. It seems that 1/2
gives a reasonable results. The modified block prior mBLOCK considers the
set D = {θ :

∑
j |θj | ≤ 30}. Gibbs samplers are implemented for RGPG,

BLOCK, mBLOCK, cBLOCK16 and cBLOCK32. In all six cases, the final estimator
is a random sample from the posterior, because the theoretical analysis
guarantees concentration of the posterior distributions. The experiments are
repeated by a sufficiently large number until the estimated risk in l2 norm
has small enough median absolute deviation (MAD).

In all cases, BLOCK and mBLOCK are the best two among the six meth-
ods. From a theoretical point of view, BLOCK and mBLOCK have slightly
faster posterior rate of convergence than RGPF and RGPG. Though the dif-
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ference is just a logarithmic factor, the slight advantage should benefit the
performance for large n. The simulation study reported in this section for a
relatively small n complement the theoretical results, and shows that BLOCK
and mBLOCK also enjoy good practical properties. The results of cBLOCK16
and cBLOCK32 show that constant block sizes do not work for the block prior.

APPENDIX B: PROOFS OF AUXILIARY RESULTS

B.1. Proofs of Some Technical Lemmas. We present the proofs of
Lemma 5.2, Lemma 5.3 and Lemma 5.4 below.

Proof of Lemma 5.2. For the Gaussian measure Π̄Aα
K , let HAα be its

reproducing kernel Hilbert space (RKHS) with norm || · ||HAα defined by

||θ||2HAα =

K∑
k=1

A−1
α,k||θk||

2.

Define the quantity

φAαθ0 (ε) = inf
θ∈HAα :||θ−θ0||<ε

||θ||2HAα − log Π̄Aα
K

{
K∑
k=1

||θk||2 ≤ ε2
}
.

According to Lemma 5.3 in van der Vaart and van Zanten (2008),

(34) φAαθ0 (εn) ≤ − log Π̄Aα
K

{
K∑
k=1

||θk − θ0k||2 ≤ ε2n

}
≤ φAαθ0 (εn/2).

Define bj = j−(2α+1) and aj =
∑

k{j ∈ Bk}Aα,k. Let Zj be i.i.d. Gaus-

sian sequence. We first use Lemma 5.1 to compare P
(∑

j ajZ
2
j ≤ ε2n

)
with

P
(∑

j bjZ
2
j ≤ ε2n

)
. According to the definition of Aα,k, we have

e−(2α+1)(k+1) ≤ Aα,k ≤ e−(2α+1)k, for each k.

Therefore, for each j ∈ Bk,

aj
bj
≤ e(2α+1)(k+1)e−(2α+1)k ≤ e2α+1,

and
bj
aj
≤ e−(2α+1)ke(2α+1)(k+1) ≤ e2α+1.
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The bound does not depend on k. Thus, by Lemma 5.1 we have

Π̄Aα
K

{
K∑
k=1

θ2
k ≤ ε2n

}
≥ P

(∑
j

ajZ
2
j ≤ ε2n

)
≥ P

(∑
j

bjZ
2
j ≤ e−2α−1ε2n

)
.

By Zolotarev (1986), there exists C > 0 such that

P

(∑
j

bjZ
2
j ≤ e−2α−1ε2n

)
≥ exp

(
− Cnε2n

)
.

Thus, we have

(35) Π̄Aα
K

{
K∑
k=1

θ2
k ≤ ε2n

}
≥ exp

(
− Cnε2n

)
.

Then, we calculate the RKHS approximation of θ0.

inf
θ∈HAα :||θ−θ0||<ε

||θ||2HAα ≤ ||θ0||2HAα =
K∑
k=1

A−1
α,k||θ0k||2 ≤

J∑
j=1

a−1
j θ2

0j

≤ e2α+1
J∑
j=1

b−1
j θ2

0j = e2α+1
J∑
j=1

j2α+1θ2
0j ≤ e2α+1J

J∑
j=1

j2αθ2
0j

≤ Q2e2α+1J ≤ Cnε2n.

Combining (35), we have φAαθ0 (εn) ≤ Cnε2n. By (34), we reach the desired
conclusion.

Proof of Lemma 5.3. We need (2) to lower bound P(Vα,R),

P(Vα,R) =
K∏
k=1

P
(
R−1Aα,k ≤ Ak ≤ RAα,k

)
=

K∏
k=1

∫ RAα,k

R−1Aα,k

gk(t)dt

≥
K∏
k=1

e−c1e
k
(
e−k −R−1Aα,k

)
≥

K∏
k=1

exp
(
− c′ek

)
= exp

(
− c′

K∑
k=1

ek
)
≥ exp

(
− C ′eK

)
≥ exp

(
− C ′′nε2n

)
.
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Proof of Lemma 5.4. We have

Π̄

∑
j>J

(θj − θ0j)
2 ≤ ε2n

2

 = Π̄

{∑
k>K

||θk − θ0k||2 ≤
ε2n
2

}

≥ Π̄

{∑
k>K

||θk||2 ≤
ε2n
8
,
∑
k>K

||θ0k||2 ≤
ε2n
8

}
= Π̄

{∑
k>K

||θk||2 ≤
ε2n
8

}

≥ 1−
8
∑

k>K E||θk||2

ε2n
= 1−

8
∑

k>K nkEAk
ε2n

.

The second equality above is because∑
k>K

||θ0k||2 =
∑
j>J

θ2
0j ≤ J−2α

α

∑
j>J

j2αθ2
0j ≤

1

8
ε2n.

The last inequality is Markov inequality. By (3),∑
k>K

nkEAk ≤
∑
k>K

ek+1e−c2k
2 ≤ e−CK2

= O(n−1),

for sufficiently large n, and therefore,

Π̄

∑
j>J

(θj − θ0j)
2 ≤ ε2n

2

 −→ 1.

B.2. Proofs of Some Testing Results.

B.2.1. Proof of Lemma 5.5. We divide the alternative set into rings

{f ∈ Fn ∩ supp(Π) : d(f, f0) > Mεn}
⊂

⋃
l>M

{f ∈ Fn ∩ supp(Π) : lεn < d(f, f0) ≤ (l + 1)εn} .

For each ring indexed by l, we cover it with balls of radius ξlεn. Denote
N(δ,H, ρ) to be the covering number of H with δ-balls under distance ρ.
The following proposition bounds the covering number of each ring. It will
be proved in Appendix D.

Proposition B.1. For each integer l > M with sufficiently large M , we
have

logN
(
ξlεn, {f ∈ Fn ∩ supp(Π) : lεn < d(f, f0) ≤ (l + 1)εn} , d

)
≤ C(β,b,ξ)nε

2
n,

with some constant C(β,b,ξ) > 0.
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By the conclusion of Proposition B.1, for each l > M , there exists {fli}Nli=1 ⊂
{f ∈ Fn ∩ supp(Π) : lεn < d(f, f0) ≤ (l + 1)εn}, such that

{f ∈ Fn ∩ supp(Π) : lεn < d(f, f0) ≤ (l + 1)εn}

⊂
Nl⋃
i=1

{f ∈ Fn ∩ supp(Π) : d(f, fli) ≤ ξlεn} ,

with Nl bounded by C(β,b,ξ)nε
2
n. Since for each fli, d(fli, f0) > lεn, we have

{f ∈ Fn ∩ supp(Π) : d(f, fli) ≤ ξlεn} ⊂ {f ∈ Fn ∩ supp(Π) : d(f, fli) ≤ ξd(f0, fli)} .

The final decomposition of the alternative set is

{f ∈ Fn ∩ supp(Π) : d(f, f0) > Mεn}

⊂
⋃
l>M

Nl⋃
i=1

{f ∈ Fn ∩ supp(Π) : d(f, fli) ≤ ξd(f0, fli)} .

According to the testing property (10) and (11), there exists φli such that

P
(n)
f0
φli ≤ exp

(
− Ll2nε2n

)
,

sup
{f∈supp(Π):d(f,fli)≤ξd(f0,fli)}

P
(n)
f (1− φli) ≤ exp

(
− Ll2nε2n

)
.

Define φ = maxl>M max1≤i≤Nl φli, and its error bound is

P
(n)
f0
φ ≤

∑
l>M

Nl∑
i=1

P
(n)
f0
φli

≤
∑
l>M

Nl∑
i=1

exp
(
− Ll2nε2n

)
≤ exp

(
C(β,b,ξ)nε

2
n

)∑
l>M

exp
(
− Ll2nε2n

)
≤ 2 exp

(
− LM2nε2n + C(β,b,ξ)nε

2
n

)
≤ 2 exp

(
− 1

2
LM2nε2n

)
,

for sufficiently large M . We also have

sup
{f∈supp(Π)∩Fn:d(f,f0)>Mεn}

P
(n)
f (1− φ) ≤ exp

(
− LM2nε2n

)
.

Thus, the proof is complete.
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B.2.2. Proof of Lemma 3.4. We first state the Bernstein’s inequality in
van der Vaart (1998, Page 285), which will be used in the proof.

Lemma B.1. Let X1, ..., Xn be i.i.d. observations. For any bounded, mea-
surable function f ,

P

(
n−1/2

∣∣∣∣∣
n∑
i=1

(
f(Xi)− Ef(Xi)

)∣∣∣∣∣ > x

)
≤ 2 exp

(
−1

4

x2

Ef2(X1) + x||f ||∞/
√
n

)
,

for each x > 0.

Proof of Lemma 3.4. For design points X1, ..., Xn i.i.d. from U [0, 1],
we define Pn to be the associated empirical distribution. Our analysis first
condition on the design points. Define the testing function to be

φn =

{
n∑
i=1

Yi
(
f1(Xi)− f0(Xi)

)
≥ 1

2

n∑
i=1

f2
1 (Xi)−

1

2

n∑
i=1

f2
0 (Xi)

}
,

with the testing statistic to be

Tn =

n∑
i=1

Yi
(
f1(Xi)− f0(Xi)

)
− 1

2

n∑
i=1

f2
1 (Xi) +

1

2

n∑
i=1

f2
0 (Xi).

The distribution of Tn under P
(n)
f0

(·|X1, ..., Xn) isN
(
−n

2Pn(f1−f0)2, nPn(f1−

f0)2
)

. Therefore,

P
(n)
f0

(φn|X1, ..., Xn) ≤ 1− Φ
(√

n
(
Pn(f1 − f0)2

)1/2
/2
)
,

which implies the unconditional bound

P
(n)
f0
φn ≤ P

(
1− Φ

(√
n
(
Pn(f1 − f0)2

)1/2
/4
))

.

We can also find the distribution of Tn under P
(n)
f (·|X1, ..., Xn). As long as

f satisfies Pn(f − f0)2 ≤ 1
16Pn(f1 − f0)2, the mean is bounded below by

1
4Pn(f0 − f1)2. Therefore,

sup
{f :Pn(f−f0)2≤ 1

16
Pn(f1−f0)2}

P
(n)
f (1−φn|X1, ..., Xn) ≤ 1−Φ

(√
n
(
Pn(f1−f0)2

)1/2
/4
)
.
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This error probability is conditioning on the design points. To derive a bound
without such conditioning, we need f satisfy ||f − f0||2 ≤ 1

32 ||f1 − f0||2. By
Lemma B.1, for any f ∈ {f : ||f − f0||2 ≤ 1

32 ||f1 − f0||2}, we have

P
(
Pn(f − f0)2 >

1

16
Pn(f1 − f0)2

)
≤ exp

−
n
(

1
16 ||f1 − f0||2 − ||f − f0||2

)2

4P
(

(f − f0)2 − 1
16(f1 − f0)2

)2
+ 5B2

(
1
16 ||f1 − f0||2 − ||f − f0||2

)


≤ exp


−
n
(

1
16 ||f1 − f0||2 − ||f − f0||2

)
4P
(

(f−f0)2− 1
16

(f1−f0)2

)2(
1
16
||f1−f0||2−||f−f0||2

) + 5B2



≤ exp


−

n
(

1
16 ||f1 − f0||2 − ||f − f0||2

)
20B2

(
||f−f0||2+ 1

16
||f1−f0||2

)
(

1
16
||f1−f0||2−||f−f0||2

) + 5B2


≤ exp

{
−n||f1 − f0||2

2080B2

}
.

Therefore,

sup
{f :||f−f0||2≤ 1

32
||f1−f0||2}

P
(
Pn(f−f0)2 >

1

16
Pn(f1−f0)2

)
≤ exp

{
−n||f1 − f0||2

2080B2

}
.

Using this result, we can bound the unconditional error probability by

sup
{f :||f−f0||2≤ 1

32
||f1−f0||2}

P
(n)
f (1− φn)

≤ sup
{f :||f−f0||2≤ 1

32
||f1−f0||2}

P

({
Pn(f − f0)2 ≤ 1

16
Pn(f1 − f0)2

}
P

(n)
f (1− φn|X1, ..., Xn)

)

+ sup
{f :||f−f0||2≤ 1

32
||f1−f0||2}

P
(
Pn(f − f0)2 >

1

16
Pn(f1 − f0)2

)
≤ P

(
1− Φ

(√
n
(
Pn(f1 − f0)2

)1/2
/4
))

+ exp

{
−n||f1 − f0||2

2080B2

}
.
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Now, to bound both error probability, it is sufficient to bound

P

(
1− Φ

(√
n
(
Pn(f1 − f0)2

)1/2
/4
))

.

Using Bernstein’s inequality again, we have

P

(
1− Φ

(√
n
(
Pn(f1 − f0)2

)1/2
/4
))

≤ P

{{
Pn(f1 − f0)2 ≥ 1

4
||f1 − f0||2

}(
1− Φ

(√
n
(
Pn(f1 − f0)2

)1/2
/4
))}

+P

(
Pn(f1 − f0)2 <

1

4
||f1 − f0||2

)

≤ 1− Φ
(√

n||f1 − f0||/8
)

+ exp

{
−1

4

n||f1 − f0||4

P(f1 − f0)4 + 2B2||f1 − f0||2

}
≤ 1− Φ

(√
n||f1 − f0||/8

)
+ exp

{
−1

4

n||f1 − f0||4

4B2||f1 − f0||2 + 2B2||f1 − f0||2

}
≤ exp

(
− n||f1 − f0||2

128

)
+ exp

(
− n||f1 − f0||2

24B2

)
,

where the treatment of the Gaussian tail is the same as what we did for the
white noise model. Thus, the proof is complete.

B.2.3. Proof of Lemma 3.7. Remember for the spectral density estima-

tion, we have observation (X1, ..., Xn) ∼ P (n)
f = N

(
0,Γn(g)

)
, where g = ef .

Define ||Γn(g)||2F = tr
(
Γn(g)Γn(g)T

)
to be the matrix Frobenius norm. We

first present a testing result under Frobenius norm. The following lemma is
a special version of Lemma 5.9 in Gao and Zhou (2015a).

Lemma B.2. Let M be the covariance matrix class

M =
{

Γ = (γij)n×n : Γ = ΓT , L−1 ≤ λmin(Γ) ≤ λmax(Γ) ≤ L
}
.

For any two covariance matrices Γ0,Γ1 ∈M, there exists a testing function
φ, such that for n large enough,

PΓ0φ ≤ exp
(
− C||Γ0 − Γ1||2F

)
,

sup
{Γ∈M:||Γ−Γ1||F≤δ||Γ0−Γ1||F }

PΓ(1− φ) ≤ exp
(
− C||Γ0 − Γ1||2F

)
,
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where PΓ = N(0,Γ) is a n-variate Gaussian distribution, and C, δ are con-
stants only depending on L.

The testing result for l2-norm can be established by exploring the equiv-
alence between l2-norm and Frobenius norm. The following two lemmas are
proved in Appendix E.

Lemma B.3. Given any f1, f2 and g1 = ef1 and g2 = ef2, we have

2πn||g1−g2||2−
n

2

∑
|h|≥n/2

(η1h−η2h)2 ≤ ||Γn(g1)−Γn(g2)||2F ≤ 2πn||g1−g2||2.

Lemma B.4. As long as
∑∞

j=0 j|θj | < B, there exists B′ > 0, such that

|ηh| ≤ B′|h|−1, for all h.

Proof of Lemma 3.7. For any f ∈ D, it is uniformly bounded. There-
fore, the spectral density g = ef is uniformly bounded from up and below.
The spectrum of the covariance matrix Γ(g) is also uniformly bounded.
There exists sufficiently large L, such that the support of Π is a subset of
the matrix class M defined in Lemma B.2. Consider the following testing
problem

H0 : f = f0, H1 : f ∈ supp(Π) and ||f − f1|| ≤ ξ||f0 − f1||.

We use the notations g = ef , Γ = Γ(g), and gi = efi , Γi = Γ(gi) for i = 0, 1.
There exists b > 0 such that b−1||f0 − f1|| ≤ ||g0 − g1|| ≤ b||f0 − f1||. The
alternative set is

{f ∈ supp(Π) : ||f − f1|| ≤ ξ||f0 − f1||} ⊂
{
f ∈ supp(Π) : ||g − g1|| ≤ b2ξ||g0 − g1||

}
.

By Lemma B.3,

2πn||g0 − g1||2 −
n

2

∑
|h|>n/2

(η1h − η2h)2 ≤ ||Γ0 − Γ1||2F ≤ 2πn||g0 − g1||2

By Lemma B.4, there is C > 0 such that n
2

∑
|h|>n/2(η1h− η2h)2 ≤ C. Thus,

2πn||g0 − g1||2 − C ≤ ||Γ0 − Γ1||2F ≤ 2πn||g0 − g1||2.

Therefore, the alternative set is a subset of{
f ∈ supp(Γ) : ||Γ− Γ1||2F ≤ b2ξ

(
||Γ0 − Γ1||2F + C

)}
.
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Since ||Γ0 − Γ1||2F ≥ C ′nε2n →∞, C < ||Γ0 − Γ1||2F for a sufficiently large n.
Thus, the alternative set is contained in{

f ∈ supp(Γ) : ||Γ− Γ1||2F ≤ 2b2ξ||Γ0 − Γ1||2F
}
.

Choose ξ < δ(2b2)−1, and according to Lemma B.2, there exists a testing
function φ, such that

P
(n)
f0
φ ≤ exp

(
− C||Γ1 − Γ0||2F

)
,

sup
{f∈supp(Π):||f−f1||≤ξ||f0−f1||}

P
(n)
f (1− φ) ≤ exp

(
− C||Γ1 − Γ0||2F

)
.

The final conclusion follows the relation

||Γ0 − Γ1||2F ≥ C ′−1n||f0 − f1||2 − C ≥
1

2
C−1n||f0 − f1||2,

as n||f0 − f1||2 ≥ nε2n →∞.

APPENDIX C: PROOF OF PROPOSITION 2.1

According to the definition, (2) is obviously true for c1 = 1. We also have∫ ∞
e−k2

gk(t)dt =
(
e−k − e−k2

)
exp

(
− ek

)
≤ exp

(
− (k + ek)

)
≤ exp

(
− ek

)
,

and thus (4) is true for c3 = 1. We finally check (3).

∫ ∞
0

tgk(t)dt =

∫ e−k
2

0
tgk(t)dt+

∫ e−k

e−k2
tgk(t)dt

≤ e−2k2
Tk + e−2k exp

(
− ek

)
≤ e−2k2

(
2ek

2
+ exp

(
− ek

))
+ e−2k exp

(
− ek

)
≤ 2 exp

(
− k2

)
+ exp

(
− 2k2 − ek

)
+ exp

(
− 2k − ek

)
≤ 4e−k

2
.

Thus, (3) is true for c2 = 1.
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APPENDIX D: PROOF OF PROPOSITION A.1

We use || · ||∗ to denote the l2 norm in RNβ , where Nβ is defined by

Nβ = [(nβ−1)
1

2α+1 ]. According to the definition of Fn, for any θ1, θ2 ∈ Fn,
we have√∑

j>Nβ

(θ1j − θ2j)2 ≤
√∑
j>Nβ

(θ1j − θ0j)2 +

√∑
j>Nβ

(θ0j − θ2j)2 ≤ 2εn.

Combining the equivalence between d and || · ||, a || · ||∗-ball is contained in
a d-ball. That is, for any θ∗ ∈ Fn ∩ supp(Π), we have

{θ ∈ Fn ∩ supp(Π) : d(θ, θ∗) ≤ lξεn}
⊃

{
θ ∈ Fn ∩ supp(Π) : ||θ − θ∗||∗ ≤

(
b−1lξ − 2

)
εn
}
.

We bound each d-ring by

{f ∈ Fn ∩ supp(Π) : lεn < d(f, f0) ≤ (l + 1)εn}
⊂ {f ∈ Fn : ||f − f0|| ≤ b(l + 1)εn}
⊂ {θ ∈ Fn : ||θ − θ0||∗ ≤ b(l + 1)εn} .

Therefore, we have

logN
(
ξlεn, {f ∈ Fn ∩ supp(Π) : lεn < d(f, f0) ≤ (l + 1)εn} , d

)
≤ logN

((
b−1lξ − 2

)
εn, {θ ∈ Fn : ||θ − θ0||∗ ≤ b(l + 1)εn} , || · ||∗

)
≤ Nβ log

(
6b(l + 1)

b−1lξ − 2

)
,

where the last inequality is a covering number calculation in RNβ , due to
Lemma 4.1 of Pollard (1990). Since l > M , for M sufficiently large, the
above quantity can be upper bounded by

Nβ log
(12b(l + 1)

b−1lξ

)
≤ Nβ log

(
24b2ξ−1

)
≤ C(β,b,ξ)nε

2
n.

Thus, the proof is complete.

APPENDIX E: PROOFS OF SOME AUXILIARY LEMMAS

The proof of the Lemma 3.1 and Lemma 3.5 are similar. We present the
first proof and sketch the second.
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Proof of Lemma 3.1. We keep using the notations in the proof of
Theorem 2.1. We are going to prove (6) and (7) for the prior Π. By the
property of conditioning, we have

Π


∞∑
j=1

(θ0j − θj)2 ≤ ε2n


≥ Π̄


∞∑
j=1

(θ0j − θj)2 ≤ ε2n,
∞∑
j=1

|θj | < B


≥ Π̄


Jα∑
j=1

(θ0j − θj)2 ≤ ε2n
2
,

Jα∑
j=1

|θj | <
B

2
,
∑
j>Jα

(θ0j − θj)2 ≤ ε2n
2
,
∑
j>Jα

|θj | <
B

2


= Π̄


Jα∑
j=1

(θ0j − θj)2 ≤ ε2n
2
,

Jα∑
j=1

|θj | <
B

2

 Π̄

∑
j>Jα

(θ0j − θj)2 ≤ ε2n
2
,
∑
j>Jα

|θj | <
B

2

 ,

where we redefine Jα by Jα = Gn
1

2α+1 , and we choose G large enough such
that G−2αQ2 ≤ 1

8 . We round the number Jα to the nearest boundary of
block so that independence of blocks can be used in the last equality. For
the second term in the previous display,

Π̄

∑
j>Jα

(θ0j − θj)2 ≤ ε2n
2
,
∑
j>Jα

|θj | <
B

2

 ≥ Π̄

∑
j>Jα

θ2
j ≤

ε2n
8
,
∑
j>Jα

|θj | <
B

2


≥ 1− Π̄

∑
j>Jα

θ2
j >

ε2n
8

− Π̄

∑
j>Jα

|θj | >
B

2

 ,

where the first inequality above is because

2
∑
j>Jα

θ2
0j ≤ J−2α

α Q2 ≤ ε2nG−2αQ2 ≤ ε2n
8
.

Since EAk ≤ e−c2k
2

from (3), it is easy to show by Markov inequality,

Π̄

∑
j>Jα

θ2
j >

ε2n
8

+ Π̄

∑
j>Jα

|θj | >
B

2

 −→ 0.
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Therefore,

Π


∞∑
j=1

(θ0j − θj)2 ≤ ε2n

 ≥ 1

2
Π̄


Jα∑
j=1

(θ0j − θj)2 ≤ ε2n
2
,

Jα∑
j=1

|θj | <
B

2


=

1

2
Π̄


Jα∑
j=1

(θ0j − θj)2 ≤ ε2n
2

 .

The last equality is because

(36)


Jα∑
j=1

(θ0j − θj)2 ≤ ε2n
2

 ⊂


Jα∑
j=1

|θj | <
B

2

 ,

which is from calculation

Jα∑
j=1

|θj | ≤
Jα∑
j=1

|θj−θ0j |+
Jα∑
j=1

|θ0j | ≤
√
Jα

( Jα∑
j=1

(θj−θ0j)
2
)1/2

+
( Jα∑
j=1

j2α∗θ2
0j

)1/2( Jα∑
j=1

j−2α∗
)1/2

≤
√
Jαε2n +Qγ =

(
Gn−

2α−1
2α+1

)1/2
+
B

3
≤ B

2
,

where we have used the assumption α ≥ α∗ > 1/2 and 3Qγ ≤ B. Use the
same method in the proof of Theorem 2.1, it can be shown that

Π̄


Jα∑
j=1

(θ0j − θj)2 ≤ ε2n
2

 ≥ exp
(
− Cnε2n

)
.

Therefore, (6) is proved for Π. We proceed to bound Π(Fcn), which is rela-
tively easy.

Π(Fcn) =
Π̄
(
Fcn ∩

{∑∞
j=1 |θj | < B

})
Π̄
{∑∞

j=1 |θj | < B
} ≤

Π̄
(
Fcn
)

Π̄
{∑∞

j=1 |θj | < B
} .

Notice the denominator Π̄
{∑∞

j=1 |θj | < B
}

is a positive constant indepen-

dent of n. Therefore, we can bound Π(Fcn) by the same argument in the proof
of Theorem 2.1 and obtain the same bound as that of Π̄(Fcn) by choosing
sufficiently small β in (5). The proof is complete.
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Proof of Lemma 3.5. The only difference of the proof from that of
Lemma 3.1 is (36). Here we need

Jα∑
j=1

(θ0j − θj)2 ≤ ε2n
2

 ⊂


Jα∑
j=1

j|θj | <
B

2

 ,

which is from

Jα∑
j=1

j|θj | ≤
Jα∑
j=1

j|θj − θ0j |+
Jα∑
j=1

j|θ0j |

≤ Jα
3/2
( Jα∑
j=1

(θj − θ0j)
2
)1/2

+
( Jα∑
j=1

j2α∗θ2
0j

)1/2( Jα∑
j=1

j−2α∗+2
)1/2

≤
√
J3
αε

2
n +Qγ =

(
Gn−

2α−3
2α+1

)1/2
+
B

3
≤ B

2
.

Repeat other parts in the proof of Lemma 3.1, we reach the desired conclu-
sion.

Proof of Lemma 3.2. For pf = ef∫
ef

, we denote ψ(f) = log
∫
ef , and

then we have pf = exp
(
f − ψ(f)

)
. Notice that

||f ||∞ =

∥∥∥∥∥∥
∑
j

θjφj

∥∥∥∥∥∥
∞

≤
√

2
∑
j

|θj | ≤
√

2B,

which implies exp(−2
√

2B) ≤ pf (x) ≤ exp(2
√

2B) for any x. We use an
inequality from Lemma 1 in Barron and Sheu (1991). For any constant c,

D(Pf1 , Pf2) ≤ 1

2
e|| log(pf1/pf2 )−c||∞

∫
pf1(x)

(
log

pf1(x)

pf2(x)
− c

)2

dx.

Choose c = ψ(f1)− ψ(f2), we have

H2(Pf1 , Pf2) ≤ D(Pf1 , Pf2)

≤ e2
√

2B

∫
pf1(f1 − f2)2 ≤ e4

√
2B||f1 − f2||2.

Also, by using the reverse version of the inequality in Lemma 1 in Barron
and Sheu (1991), we have

V (Pf1 , Pf2) ≤ e
1
2
|| log(pf1/pf2 )||∞D(Pf1 , Pf2) ≤ e6

√
2B||f1 − f2||2.
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On the other hand,

V (Pf1 , Pf2) =

∫
pf1

(
f1 − f2 − ψ(f1) + ψ(f2)

)2

≥ e−2
√

2B

∫ (
f1 − f2 − ψ(f1) + ψ(f2)

)2

= e−2
√

2B

∫
(f1 − f2)2 + e−2

√
2B
(
ψ(f1)− ψ(f2)

)2
−2e−2

√
2B
(
ψ(f1)− ψ(f2)

) ∫
(f1 − f2)

≥ e−2
√

2B||f1 − f2||2,

because
∫

(f1 − f2) =
∫
f1 −

∫
f2 = 0. Using Lemma 8.2 in Ghosal, Ghosh

and van der Vaart (2000), we have

D(Pf1 , Pf2) ≤ 2H2(Pf1 , Pf2)

∥∥∥∥pf1

pf2

∥∥∥∥
∞
≤ 2e4

√
2BH2(Pf1 , Pf2).

Therefore,

H2(Pf1 , Pf2) ≥ 1

2
e−4
√

2BD(Pf1 , Pf2) ≥ 1

2
e−6
√

2BV (Pf1 , Pf2) ≥ 1

2
e−8
√

2B||f1−f2||2.

The proof is complete.
Proof of Lemma 3.6. Consider the multivariate Gaussian distribution

PΓ = N(0,Γ). Then, we have

D
(
PΓ1 , PΓ2

)
= PΓ1

(
− 1

2
log det(Γ1Γ−1

2 )− 1

2
tr
(

(Γ−1
1 − Γ−1

2 )XXT
))

= −1

2
log det(Γ1Γ−1

2 )− 1

2
tr
(
I − Γ1Γ−1

2

)
= −1

2
log det

(
Γ
−1/2
2 Γ1Γ

−1/2
2

)
+

1

2
tr
(

Γ
−1/2
2 Γ1Γ

−1/2
2 − I

)
≤ 1

4
||Γ−1/2

2 Γ1Γ
−1/2
2 − I||2F

≤ 1

4
||Γ−1

2 ||
2||Γ1 − Γ2||2F ,
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where we use || · || to denote the matrix spectral norm here. We also have

V (PΓ1 , PΓ2) = VarPΓ

(
1

2
XT (Γ−1

1 − Γ−1
2 )X

)
=

1

4
VarPΓ

(
XT (Γ−1

1 − Γ−1
2 )X

)
=

1

2
||I − Γ

1/2
1 Γ−1

2 Γ
1/2
1 ||

2
F

=
1

2
||I − Γ

−1/2
2 Γ1Γ

−1/2
2 ||2F

≤ 1

2
||Γ−1

2 ||
2||Γ1 − Γ2||2F .

In the spectral density estimation, we have P
(n)
f1

= PΓ1 and P
(n)
f2

= PΓ2 with

Γ1 = Γ(g1) and Γ2 = Γ(g2). Then, we have ||Γ−1
2 || ≤ (2π)−1||g−1

2 ||∞ ≤ eB.
We also have ||Γ1 − Γ2||2F =

∑
|h|<n(n− |h|)(η1h − η2h)2 ≤ 2πn||g1 − g2||2 ≤

CB||f1 − f2||2. Therefore, we have

D
(
PΓ1 , PΓ2

)
≤ bn||f1 − f2||2 and V (PΓ1 , PΓ2) ≤ bn||f1 − f2||2,

with b = 1
2e

2BCB.
Proof of Lemma 5.1. Notice

P

(∑
j

aj(Zj − cj)2 ≤ ε2
)

= P

(∑
j

aj
bj
bj(Zj − cj)2 ≤ ε2

)

≤ P

(
R−1

∑
j

bj(Zj − cj)2 ≤ ε2
)
,

where the inequality is because∑
j

aj
bj
bj(Zj − cj)2 ≥ R−1

∑
j

bj(Zj − cj)2.

The other side is similar. Thus, the proof is complete.
Proof of Lemma B.3. By definition,

||Γn(g1)− Γn(g2)||2F =
∑
|h|<n

(n− |h|)
(
η1h − η2h

)2
.

The upper bound is by∑
|h|<n

(n− |h|)
(
η1h − η2h

)2 ≤ n ∑
|h|<n

(η1h − η2h

)2 ≤ 2πn||g1 − g2||2.
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The lower bound is given by∑
|h|<n

(n− |h|)
(
η1h − η2h

)2 ≥
∑
|h|<n/2

(n− |h|)
(
η1h − η2h

)2
≥ n

2

∑
|h|<n/2

(
η1h − η2h

)2
= πn||g1 − g2||2 −

n

2

( ∑
|h|≥n/2

(
η1h − η2h

)2)
.

Thus, the proof is complete.
Proof of Lemma B.4. We use the notation φj(t) = cos(jt) and ψj(t) =

sin(jt) for each j. According to the setting, f =
∑

j θjφj and g =
∑

j ηjφj .
Since we assume α > 3/2, the derivatives of both f and g exist. Using the
relation gf ′ = g′, we have

(37)

(∑
j

jθjψj

)(∑
j

ηjφj

)
=
∑
j

jηjψj .

Using the relation ψmφn = 1√
2

(
ψm+n + ψm−n

)
, the left side of (37) is∑

m,n

mθmηnψmφn =
1√
2

∑
m,n

mθmηnψm+n +
1√
2

∑
m,n

mθmηnψm−n

=
1√
2

∞∑
k=2

( ∑
m+n=k

mθmηn

)
ψk

+
1√
2

∞∑
k=1

( ∑
m−n=k

mθmηn −
∑

n−m=k

mθmηn

)
ψk

=
1√
2

∞∑
k=1

(
k−1∑
l=1

lθlηk−l +

∞∑
l=k+1

lθlηl−k −
∞∑
l=1

lθlηl+k

)
ψk.

Since {ψk} is orthogonal, we must have

kηk =
1√
2

k−1∑
l=1

lθlηk−l +
1√
2

∞∑
l=k+1

lθlηl−k −
1√
2

∞∑
l=1

lθlηl+k

=
1√
2

∞∑
l=1

lθlηk−l −
1√
2

∞∑
l=1

lθlηl+k

=
1√
2

∞∑
l=1

lθl
(
ηk−l − ηk+l

)
,



20 C. GAO AND H.H. ZHOU

which establishes the relation between {ηj} and {θj}. For each j,

|ηj | =
∣∣∣∣∫ gφj

∣∣∣∣ ≤ eB.
Therefore,

|kηk| =

∣∣∣∣∣ 1√
2

∞∑
l=1

lθl
(
ηk−l − ηk+l

)∣∣∣∣∣ ≤ √2eB
∞∑
l=1

l|θl| ≤
√

2BeB.

The proof is complete.

APPENDIX F: PROOFS OF LEMMA 5.1, THEOREM 5.1 AND
COROLLARY 5.1

Proof of Lemma 4.1. Define Kn =
{
D(P

(n)
f0
, P

(n)
f ) ≤ bnε2n

}
and the

renormalized prior Π̃(A) = Π(A∩Kn)
Π(Kn) . We have

P
(n)
f0

(Hcn) ≤ P
(n)
f0

(∫
p

(n)
f

p
(n)
f0

(Xn)dΠ̃(f) ≤ exp
(
− (b+ 1)nε2n

))

≤ P
(n)
f0

(∫
log

p
(n)
f0

p
(n)
f

(Xn)dΠ̃(f) ≥ (b+ 1)nε2n

)
,

where the last inequality is Jensen’s inequality. From now on, we prove
each statistical model in Section 3 respectively. First, for the density esti-
mation model, define Yi =

∫
log

pf0
pf

(Xi)dΠ̃(f). Then, it is easy to see that∫
log

p
(n)
f0

p
(n)
f

(Xn)dΠ̃(f) =
∑n

i=1 Yi and Pf0Yi ≤ bnε2n. Since f, f0 ∈ D, Yi is

bounded as |Yi| ≤ 4
√

2B for i = 1, 2, ..., n. Using Hoeffding’s inequality, we
have

P
(n)
f0

(Hcn) ≤ P
(n)
f0

(
1

n

n∑
i=1

(Yi − EYi) ≥ ε2n

)
≤ exp

(
− C̄nε2n

)
.

Next, we consider Gaussian sequence model. By definition,

log
p

(n)
f0

p
(n)
f

(Xn) =
√
n

n∑
i=1

Zi(θi0 − θi) +
n

2
||θ0 − θ||2,
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where Zi =
√
n(Xi − θi0) ∼ N(0, 1) under P

(n)
f0

. Letting EΠ̃ be the expecta-

tion under Π̃, we have

P
(n)
f0

(Hcn) ≤ P

( ∞∑
i=1

Zi(θi0 − EΠ̃θi) ≥
√
nε2n

)

≤ P

(∑∞
i=1 Zi(θi0 − EΠ̃θi)

||θ0 − EΠ̃θ||
≥
√
nεn√
2b

)
≤ exp

(
− C̄nε2n

)
.

The calculation for the white noise model is the same. We consider Gaussian
regression now. By definition, we have

log
p

(n)
f0

p
(n)
f

(Xn) =
n∑
i=1

Zi

(
f0(Xi)− f(Xi)

)
+

1

2

n∑
i=1

(
f0(Xi)− f(Xi)

)2
,

where Zi = Yi − f0(Xi) ∼ N(0, 1) under P
(n)
f0

. Define

Yi = Zi

(
f0(Xi)−

∫
f(Xi)dΠ̃(f)

)
+

1

2

∫ (
f0(Xi)− f(Xi)

)2
dΠ̃(f).

Then, we have
∫

log
p

(n)
f0

p
(n)
f

(Xn)dΠ̃(f) =
∑n

i=1 Yi and Pf0Yi ≤ bnε2n. Since

f, f0 ∈ D, we have ||f ||∞ ∨ ||f0||∞ ≤
√

2B, Yi is sub-Gaussian random
variable. Hence,

P
(n)
f0

(Hcn) ≤ P
(n)
f0

(
1

n

n∑
i=1

(Yi − EYi) ≥ ε2n

)
≤ exp

(
− C̄nε2n

)
.

The case for spectral density estimation falls into the general Gaussian
covariance matrix estimation theory. The proof is similar to the proof of
Lemma 5.1 in Gao and Zhou (2015a), and is omitted here.

Proof of Theorem 4.1. This is just repeating the argument in the

proof of Theorem 2.2 by using an improved bound for P
(n)
f0

(Hcn) provided
by Lemma 4.1.

Proof of Corollary 4.1. In the cases of density estimation, Gaussian
regression and spectral density estimation, the norm || · || is bounded in the
support of the prior. Therefore, the conclusion follows the same argument in
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Ghosal, Ghosh and van der Vaart (2000). In the cases of Gaussian sequence
model and white noise model, we have

P
(n)
f0

∥∥EΠ̃(θ|Xn)− θ0

∥∥2

≤ P
(n)
f0

EΠ̃

(
‖θ − θ0‖2 |Xn

)
≤

∑
j≥M

P
(n)
f0

EΠ̃

(
‖θ − θ0‖2 IAj |Xn

)
,

where Aj =
{
jε2n < ‖θ − θ0‖2 ≤ (j + 1)ε2n

}
for each j. Bounding each sum-

mand by (j + 1)ε2nP
(n)
f0

Π̄(Aj |Xn), the proof is complete. The details are
omitted here.

APPENDIX G: PROOFS OF THEOREM 5.2 AND THEOREM 5.3

The proof of Theorem 4.2 mimics the proof of Theorem 2.1. For each k,
we redefine

Aα,k =
2−2αk − 2−2α(k+1)

2α2k

Define K to be the smallest integer such that

K ≥ 1

2α
log2

(
4α

4α − 1
8Q2

)
+

1

2α+ 1
log2(n).

Lemma G.1. For any θ ∈ Bα
p,q(Q), with α > 0, p ≥ 2, q ≥ 1, Q > 0, we

have ∑
k≥K
||θk||2 ≤

4α

4α − 1
Q22−2αK ,

for any K.

Lemma G.2. For any α > 0, and θ0 ∈ Bα
p,q(Q), there exists C3 > 0,

such that

Π̄Aα
K


∞∑
j=1

(θj − θ0j)
2 ≤ ε2n

 ≥ 2−C3nε2n .

Lemma G.3. For each k, let Ak ∼ gk, with {gk} satisfying (2)-(4). we
have

P(Vα) ≥ 2−C2nε2n .
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Lemma G.4. For K defined above, and θ0 ∈ Bα
p,q(Q), we have

Π̄

{∑
k>K

||θk − θ0k||2 ≤
ε2n
2

}
≥ 1

2
,

for sufficiently large n.

Proof of Theorem 4.2. The proof is the same as the proof of Theorem
2.1 by combining the above lemmas.

Proof of Theorem 4.3. This is a direct implication of Theorem 2.2.
Among the above four lemmas, we only prove Lemma G.1 and Lemma

G.2. The proof of the other two are the same as the proof of Lemma 5.3 and
Lemma 5.4.

Proof of Lemma G.1. For any θ ∈ Bα
p,q(Q), since Bα

p,q(Q) ⊂ Bα
2,∞(Q),

we have θ ∈ Bα
2,∞(Q), where

Bα
2,∞(Q) =

{
θ : max

k

(
2αk||θk||

)
≤ Q

}
.

Thus, ∑
k≥K
||θk||2 ≤ Q2

∑
k≥K

2−2αk =
4α

4α − 1
Q22−2αK .

Proof of Lemma G.2. The proof is essentially the same as in the proof
of Lemma 5.2. The only slight difference is the approximation of θ0 by the
RKHS of the Gaussian process. For each k, we have

2−(2α+1)(k+1) ≤ Aα,k ≤ 2−(2α+1)k.

Thus, using the fact that θ0 ∈ Bα
p,q(Q) ⊂ Bα

2,∞(Q), we have

||θ0||2HAα =

K∑
k=1

A−1
α,k||θ0k||2 ≤ Q2

K∑
k=1

22α+k+1 ≤ Q222α+22K ≤ Cnε2n,

for some C > 0.
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APPENDIX H: PROOFS OF LEMMA 5.2, LEMMA 5.3 AND
THEOREM 5.4

Proof of Lemma 4.2. We have

Π
(
||θ − θ0||2 ≤ δ2

n

)
≤ Π

 J∑
j=1

(θj − θ0j)
2 ≤ δ2

n


=

∫
{
∑J
j=1(zj−θ0j)2≤δ2

n}

J∏
j=1

p(zj)dz

=

∫
{
∑J
j=1 z

2
j≤G2δ2

n}

J∏
j=1

p(G−1zj + θ0j)G
−1dz

≤ Vol

√√√√ J∑
j=1

z2
j ≤ Gδn


≤

(
C1Gδn

)C2J

≤ exp
(
− CJ log n

)
.

Proof of Lemma 4.3. By conjugacy, the posterior distribution is

θ|X ∼
J⊗
j=1

N

(
nXj

n+ 1
,

1

n+ 1

)
.

Let us introduce i.i.d. N(0, 1) random variables {Wj} and {Zj}. Then, θj
has representation

θj =
nXj

n+ 1
+

√
1

n+ 1
Wj =

n

n+ 1
θj0 +

√
n

n+ 1
Zj +

√
1

n+ 1
Wj , j ≤ J.

Use notation

Tj =

√
n

n+ 1
Zj +

√
1

n+ 1
Wj ∼ N

(
0,

2n+ 1

(n+ 1)2

)
.

Then we have

P
(n)
θ0

Π
(
||θ−θ0||2 ≤Mε2n|X

)
= P

 J∑
j=1

(
Tj −

1

n+ 1
θj0

)2
+
∑
j>J

θ2
j0 ≤Mε2n

 .
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Thus, it suffices to study the distribution of

J∑
j=1

(
Tj −

1

n+ 1
θj0

)2
.

By direct calculation, we have

J∑
j=1

(
Tj −

1

n+ 1
θj0

)2

=
1

(n+ 1)2

J∑
j=1

θ2
j0 −

2

n+ 1

J∑
j=1

θj0Tj +
J∑
j=1

T 2
j .

Notice that 1
(n+1)2

∑J
j=1 θ

2
j0 ≤ O(n−1). By Hoeffding’s inequality,

P

∣∣∣∣∣∣ 2

n+ 1

J∑
j=1

θj0Tj

∣∣∣∣∣∣ > n−1

 ≤ exp
(
− Cn

)
.

Thus, the dominating term is
∑J

j=1 T
2
j . Since

∑
j>J θ

2
j0 . ε2n, we have

P
(n)
θ0

Π
(
||θ − θ0||2 ≤Mε2n|X

)
≥ 1− P

(
1

J
χ2
J > M ′

)
− exp

(
− Cn

)
,

where χ2
J is a chi-square distributed random variable with degree of freedom

J . Hence, the behavior of the posterior convergence is fully determined by
P
(

1
Jχ

2
J > M ′

)
. By Bernstein’s inequality,

P
(

1

J
χ2
J > M ′

)
≤ exp

(
− CJ

)
= exp

(
− Cnε2n

)
.

To summarize, we have shown

P(n)
θ0

Π
(
||θ − θ0||2 ≤Mε2n|X

)
≥ 1− exp

(
− Cnε2n

)
.

Proof of Theorem 4.4. Let us consider the set

Hn =

{
−n
∑
i>J

θi0(Xi − θi0) ≥ nQ2(J)−2α

}
.
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When Hn is true, we have

log
∏
i>J

e−
n
2
X2
i

e−
n
2

(Xi−θi0)2 = −n
2

∑
i>J

(θi0)2 − n

2

∑
i>J

2θi0(Xi − θi0)

≥ −CQ2n(J)−2α,

where we have used the fact that
∑

j>J(θ∗j )
2 ≤ Q2(J)−2α. The probability

that the event Hn does not hold is bounded as

P
(n)
θ0

(Hcn) = P

{
−
√
n
∑
i>J

θi0Zi ≥ nQ2(J)−2α

}

= P

√n
√∑

i>J

(θi0)2
−
∑

i>J θi0Zi√∑
i>J(θi0)2

≥ nQ2(J)−2α


= P

√n
√∑

i>J

(θi0)2Z ≥ nQ2(J)−2α


≤ P

{
Z ≥

√
nQ2(J)−2α

}
≤ exp(−CnQ2(J)−2α),

where Z ∼ N(0, 1) and the last inequality holds when nQ2(J)−2α ≥ c for
some c > 0.

With the property of Hn, let us bound Π(k > AJ |X). Let us define f
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according to the relation g(x) = n−1/2f(n−1/2x). By definition, we have

P
(n)
θ0

Π(k > AJ |X)

≤ P
(n)
θ0

Π(k > AJ |X)IHn + exp(−CnQ2(J)−2α)

= P
(n)
θ0

∑
k>AJ π(k)

(∏k
i=1

∫
e−

n
2

(Xi−θi)2
f(θi)dθi

)
e−

n
2

∑
i>kX

2
i∑

k π(k)
(∏k

i=1

∫
e−

n
2

(Xi−θi)2
f(θi)dθi

)
e−

n
2

∑
i>kX

2
i

IHn + exp(−CnQ2(J)−2α)

≤ P
(n)
θ0

∑
k>AJ π(k)

(∏k
i=1

∫
e−

n
2

(Xi−θi)2
f(θi)dθi

)
e−

n
2

∑
i>kX

2
i

π(J)
(∏J

i=1

∫
e−

n
2

(Xi−θi)2
f(θi)dθi

)
e−

n
2

∑
i>J X

2
i

IHn + exp(−CnQ2(J)−2α)

=
∑
k>AJ

π(k)

π(J)
P

(n)
θ0

k∏
i=J+1

(∫
e−

n
2

(Xi−θi)2

e−
n
2
X2
i

f(θi)dθi

)
IHn + exp(−CnQ2(J)−2α)

≤ exp(CnQ2(J)−2α)
∑
k>AJ

π(k)

π(J)
P

(n)
θ0

k∏
i=J+1

(∫
e−

n
2

(Xi−θi)2

e−
n
2

(Xi−θi0)2 f(θi)dθi

)∏
i>k

(
e−

n
2
X2
i

e−
n
2

(Xi−θi0)2

)
+ exp(−CnQ2(J)−2α)

= exp(CnQ2(J)−2α)
∑
k>AJ

π(k)

π(J)
+ exp(−CnQ2(J)−2α)

≤ exp
(
C1n(J)−2α − C2J

)
+ exp(−CnQ2(J)−2α),

under the assumption that maxk
π(k)
π(k−1) ≤ c < 1. Letting J = n

1
2α+1 , we

have
P

(n)
θ0

Π
(
k > An

1
2α+1 |X

)
≤ exp

(
−C ′n

1
2α+1

)
,

which is (22).
To prove posterior contraction, we use the general bound (see, for example

Castillo and van der Vaart, 2012),

P
(n)
θ0

Π
(
‖θ − θ0‖2 > Mη2|X

)
≤ P

(n)
θ0
φ+

∑
j

sup
θ∈Bj

Pθ(1− φj)
Π(Bj)

e−nη2Π (‖θ − θ‖ ≤ η)
+ e−nη

2/8 + P
(n)
θ0

Π(Fcn|X),

for {
‖θ − θ0‖2 > Mη2

}
∩ Fn ⊂

⋃
j

Bj , φ = max
j
φj .

In view of the dimension result, we choose

Fn =
{
k ≤ An

1
2α+1

}
,
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and the rate η2 = n−
2α

2α+1 . Consider the following decomposition{
‖θ − θ0‖2 > Mη2

}
∩ Fn ⊂

⋃
k′≤An

1
2α+1

⋃
l≥
√
M

Bk′,l,

where
Bk′,l =

{
lη < ‖θ − θ0‖ ≤ (l + 1)η, k = k′

}
.

Furthermore,

Bk′,l ⊂
Nk′,l⋃
l=1

Bk′,l,t,

where

Bk′,l,t =

{∥∥∥θ − θ(k′,l,t)
∥∥∥ ≤ lη

2
, k = k′

}
,

for some θ(k′,l,t) ∈ Bk′,l and |Nk′,l| ≤ eCk
′
. The likelihood ratio test φk′,l,t

gives the testing error

P
(n)
θ0
φk′,l,t + sup

θ∈Bk′,l,t
P

(n)
θ (1− φk′,l,t) ≤ exp(−Cl2η2).

Finally, it is sufficient to bound

Π(Bk′,l,t)

Π(‖θ − θ0‖ ≤ η)
.

Note that

Π(Bk′,l,t) ≤ Π

√∑
i≤k′

(θi − θ(k′,l,t)
i )2 ≤ lη

2

 ,

and

Π(‖θ − θ0‖ ≤ η) ≥ π(J)Π

√∑
i≤J

(θi − θi0)2 ≤ η

 ,

where J = n
1

2α+1 . We use the assumption − log π(J) ≤ CJ , and it is suffi-
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cient to bound the small-ball probability ratio. Since

Π

(√∑
i≤k′(θi − θ

(k′,l,t)
i )2 ≤ lη

2

)
Π
(√∑

i≤J(θi − θi0)2 ≤ η
)

≤
max

{∏
i≤k′ g(x′i) :

√∑
i≤k′(x

′
i −
√
nθ

(k′,l,t)
i )2 ≤

√
nlη
2

}
min

{∏
i≤J g(xi) :

√∑
i≤k′(xi −

√
nθ∗i )

2 ≤
√
nη
}

×
Vol

{√∑
i≤k′ x

2
i ≤

√
nlη
2

}
Vol

{√∑
i≤J x

2
i ≤
√
nη
} ,

it is sufficient to bound the density ratio and the volume ratio. The density
ratio is bounded by∏

i≤k′ g(x′i)∏
i≤J g(xi)

=

∏
i≤k′ g(x′i)∏

i∈[k′]∩[J ] g(x′i)

∏
i∈[k′]∩[J ] g(x′i)∏
i∈[k′]∩[J ] g(xi)

∏
i∈[k′]∩[J ] g(xi)∏
i≤J g(xi)

≤ exp

C
|[k′]\[J ]|+

∑
i∈[k′]\[J ]

|x′i|


× exp

C
|[k′] ∩ [J ]|+

∑
i∈[k′]∩[J ]

|x′i − xi|


× exp

C
|[J ]\[k′]|+

∑
i∈[J ]\[k′]

|xi|


≤ exp

C
|[k′] ∪ [J ]|+

∑
i∈[k′]∪[J ]

|xi − x′i|


≤ exp

(
C1

(
J +

∑
i

|xi − x′i|2
))

≤ exp(C2nl
2η2),

where we have used the assumption that

| log g(x)− log g(y)| ≤ C(1 + |x− y|), | log g(0)| ≤ C.
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The volume ratio is bounded by

Vol
{√∑

i≤k′ x
2
i ≤

√
nlη
2

}
Vol

{√∑
i≤J x

2
i ≤
√
nη
}

≤ e1/6(2eπ)k
′/2(k′)−k

′/2−1/2

(2eπ)J/2(J)−J/2−1/2
× (
√
nlη/2)k

′

(
√
nη)J

≤ exp(CJ)

(
nl2η2

4k′

)k′/2(
J

nη2

)J/2
≤ exp(CJ)

(
nl2η2

4k′

)k′/2
≤ exp(C1nl

2η2).

The proof is completed by summing everything up.
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