SUPPLEMENT TO “RATE-OPTIMAL POSTERIOR
CONTRACTION FOR SPARSE PCA”
By CHAO GAO AND HARRISON H. ZHOU

Yale University

In this text, we present proofs of Proposition 2.1, Lemma 5.1,
Lemma 5.8, Lemma 5.10, Theorem 4.2, Theorem 4.3, Proposition 5.1
and Lemma 5.9 in Gao and Zhou (2013).

APPENDIX A: PROOF OF PROPOSITION 2.1

Define the concentration set H, = {||[VV? — VyV{ ||% < Me?}. Then, by
Jensen’s inequality, we have

P ||En(vVTIX™) VoV

< REa(|VVT - vV |x")
= PEEa(IVVT ~ VoV [, [ X7) + B |V = VoV |31 | X")
< M +sup (VYT = VoVl |[3) PRTL(HE| X")

|4

< Mé*+2(p+7)d,

where supy, (HVVT - VOVOTH%) < 2(p+r) because V and V are unitary

matrices. Take supycg (
complete.

ps,r) On both sides of the inequality, the proof is

APPENDIX B: PROOF OF LEMMA 5.1

We renormalize the prior IT as IT = TI(K,,) ~'II so that II is a distribution
with support within K,. Write Ez to be the expectation using probability
II. We define the random variable

dPF Lor(v-1 71) .
Ve 1o S (Xpallr) = e+ LxT (57— EGr )X, i=1m
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Then, Y; is a sub-exponential random variable with mean

Ry, - / D(Py||Pr)dIi(T)

_ 1 —12vp—1/2) 4 L (r—1/2vp—1/2 ~
_/<—210gdet(r ST >+2tr(I‘ Sr —1) dII(T)

F E

< 2/4.

IN

Therefore, by Jensen’s inequality, we have

PQ(/ZiZ(X”)dH( )<exp<—(b+1)ne2)>
( ZY < —(b+1)e )
< Pg(;im—&mg—bez).

=1

IN

Define Z; through the relation X; = 21/221-, so that Z1,...,Z, are i.i.d.
drawn from N (0, ) under Ps. Then Y; can be written as

1 _
Yi=c+ 327 (1 - Bz risY?) 2
Applying eigenvalue decomposition, we have
[ -Eg2Y?r 152 = ypu”,

where D = diag(dy, ..., dp). Denote Zi = UTZ;, it is easy to see that Zi ~
N(0,1) under Ps. Hence,

1 n
Py <n > (Vi - PeY;) < —b€2>

i=1

n p
_ P(ZZ (422 —Ea;22) < —2bn62>
=17

1

o C'min 4b2 24 2bne?
*P nyt_ 1d2 max; d; ’

IN
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by Bernstein’s inequality (Proposition 5.16 of Vershynin (2010)). Note that

p
ddi = I -Egn'PTIsl2)%
j=1

< Egl|I - =Y2r1el2)3

IT — %)%

< KE-, 1= ~1F

B H)\min(]-—‘)2

< Ké.

By the fact that € — 0, we have

P / ﬁ(Xi)df[(F) < exp < —(b+ 1)n52) < exp < - 4Cgb2K’1n62).
dPy

The conclusion follows the fact that

dP:

< P§</dPF(Xi)df[(F) §exp<—(b+1)ne2>).

P§< / A (X0)dII(T) < T(K, ) exp (-0+ l)ne2)>

P2

APPENDIX C: PROOF OF LEMMA 5.8

By the definition of spectral norm, we have

IS -2l = sup o7 (2~ ),
vesd—1
where S%1 is the d — 1-dimensional unit sphere. Let Sf/gl be a 1/2 net of
S4=1 With the same calculation as in the proof of Lemma 3 in Cai, Zhang
and Zhou (2010), we have

IS —%|| <4 sup UT(E - ),

veSld;zl
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and |Sl/2 | < 59 Hence,

pg(||i—2||>t|yi||> < Pg(4 sup v (i—i)v>t||i||)

d—1
v651/2

< U pg(v (2_i)v>tuiu/4)
vESld/Ql
1 2 —
< U ( EZZZ- -1 >HEH/4>
UESf/Ql i=1
< ysf/; ( 222—1 >t/4>

< exp(—C’3(—d+n(t/\t2))),
where 71, ..., Z; are i.i.d. N(0, 1) variables. The proof is complete.

APPENDIX D: PROOF OF LEMMA 5.10

We are going to derive an upper bound for the following metric entropy
logN(Rle, (V:di(U,V) < R2e},dA>.
We first prove a technical lemma, and then prove the main bound.

LEMMA D.1. ForanyU,V € U(d,r) withd > r, and A = diag(A1, ..., \)
with Ay > Ao > ... > A\, we have

AAUV) < 20U = Vg, and  inf  |JUP = VQ||r < di(U, V).
P,QeU(r,r)

Proof. The first inequality is because

da(U, V) < |[[UAUT —UAVT||p + [JUAVT = VAV ||
< (WAl + VA 1T = Vi|e
< 20U = V]|p.

Now we prove the second part. Choosing P, Q € U(r,r) satisfying

PTUTvQ =T = diag(y1, ..., ).
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the left hand side of the above equation can be written as
vt = vvIiE = [UPPTUT - VQQ'VT|[E
- 2tr(fw - PTUTVQQTVTUP)
= 2tr(Lpr — %)
= 2> (1-7).
1=1
For the same P, (Q, we also have
IUP-VQ|2 = 2tr(IrxT - PTUTVQ>

- 2tr([rxr _ F)

r

= 2) (1-m).

=1

Since maxy<;<, 7y = ||T]| = [|[PTUTV Q]| < 1, we have

T T

A=) => 1= +w) =D (1-n).

=1 =1 =1

Therefore,

inf  |[[UP-=VQ|lr <|[UP-VQ||r <|[UUT —VVT||p.
P,QeU(r,r)

|
Proof of Lemma 5.10. Define p1(U,V) = infpgey(r,) [|UP — VQ||F
and p2(U,V) = ||U — V||p. Then by Lemma D.1, we have

(U, V) <dr(U, V), da(U, V) < 2Xip2(U, V).
Therefore,
N(Rie AV 5 di(U,V) < Rae}, i)
< N((2>\1)_1R16, (V:p(U,V) < Rge},p2>.
According to the definition of p;, we have

Vip(UV) <Rt = |J {V:|IV-UQIlr < Rac}.
QeU(r,r)
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We first cover U(r,r) by {Q1,...,Qn} C U(r,r) with norm || - ||p. Since
U(r,r) C {U ceU(r,r) : ||U||r < \/17},

the bound of M is determined by

6
log N (eU(r,1), || ||) < r?log <f>

Therefore, for any @ € U(r,r), there exists Q; € {Q1, ..., Qum}, such that
IV =UQjllr < IV -UQIlr +IUQ—Qj)llr <[IV-UQ|F+e
Hence,
M
{V:p1(U,V) < Roe} C | J{V < [V = UQjllp < (B2 + 1)e}.
j=1
Let us cover the right hand side. Consider UQ);. Then, there exists {Wl, . V_VN} C

U(d,r), with log N < drlog <6(R727+1)>, such that

N
(VlV-UQllr < (Re+1)e} [ J{V IV -Willr <n}.

=1

Define W; = W;Q¥ for i = 1,..., N. Then

N
(Vi IV-UQllr < (Re+ e} C |J{V 1 IV = WiQullr < n}.
=1

Now consider any j € {1,2,..., M}, we have

{VillV=UQjllFr < (R2+1)e}
= {V: HVQ?Q1 —Uh||r < (R2+ 1)e}

N
c J{V:IVQT Qi1 — Wiulr < n}

Jj=1

N
= UV v -wigilir <n).
i=1
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Taking union over j, we have

M
UV IV - UQilIF < (Ra + )¢}
j=1

M N
C U U{V: [V = W;iQjllr < n}

j=1i=1
M N
= J UV (v, WiQy) <},
j=1i=1
which implies

M N

{(V:p(U,V) < Roe} € |J IV 2 p2(V, W3Qy) <}
j=1i=1

We may pick n to be n = (2X\1) "' Ry. Since W; € U(d,r) and Q; € U(r,r),
we have W;Q; € U(d,r), and thus {W;Q;}i<i<ni1<j<wm is the covering set.
The metric entropy is bounded by

12\ (Ro + 1 6
log N + log M < drlog <1(RQ+)> + r? logi.
1 €

The proof is complete. I

APPENDIX E: PROOF OF THEOREM 4.2 AND THEOREM 4.3

The proofs of Theorem 4.2 and 4.3 are almost the same as the proof of
Theorem 4.1. We only state the proof for Theorem 4.2. The proof of Theorem
4.3 will be sketched in the end of the section. Since we use a different prior,
we need two new lemmas to replace Lemma 5.2 and Lemma 5.6.

LEMMA E.1.  Forany A > 0, we have I1(|S| > As) < 4exp (—%slogp).

Proof. We write 7(q) = N,;; exp (—/iq logp> , where NV, , = 22:1 exp (—

kqlog p). For sufficiently large p, we have

1
ipin S Nmp S 2p7n‘
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Therefore,

II(|S| > As) < Z q) < 2p” Z exp (—rqlogp) < dexp (—%slogp).

LEMMA E.2. As long as € — 0 and n < p™ for some constant m > 0,

we have H(% §e> > %exp(— (2m+/£+2)n52).

Proof. The proof is similar to the proof of Lemma 5.2. Notice Apin(T') =
1, and we have

= %] _
(E.1) H(AmMDF§6>—HOW—§mF§Q.

Using conditional argument, we have
(I = Sllp <€) > 0|0 = Sl[r < el(g, S) = (5,5) )11((a,5) = (5. 5))-

When (g,5) = (s, 80), we have || = X||p = [ln" — 06"||p = |Ins,ng, —
esoegou F. Thus, the first term in the product is

(|0 = Sllr < el(a. S) = (5,50)) = 1 |Insgn, — 05005, |l < c).
Suppose ||ns, — 0s,|| < (3K1/2)~ e, then we have

T T T T T T
Insons, — Os00s,llr = |1nsons, — 15005, + M50, — 05005, 17
(1163011 + lImsoll ) lins, — 0,

IA

< (2010s5l1 + lInsy = Osall ) lIns, — O
< (2K1/2 3K1/2) >(3K1/2)—1
< e
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Therefore,
1(Ilnsong, = 05,05 llr <€) = 11(lIns, — Osy]] < (3K/2)7e)
1 1
exp | — 5“9” — slog i slog (2v/s/3)

1
exp <— 2(K+slogn+slogs)>

> exp ( — 2mslog p)

AV

AV

by Lemma F.1 and the assumption n < p™. We also have

% Xp(— (ﬁ+2)slogp).

H((Q» S) = (SaSO)) = 7
()

Hence, H(HF —Y|r < e) > Lexp ( —(2m+ Kk + 2)7162>. 1
Proof of Theorem 4.2. Using the same method in the proof of Theorem
4.2 by Combining Lemma 5.1, Lemma E.2, Lemma E.1 and Lemma 5.4, we

have
(Hr _3|| > M’E\X”) < exp ( - CneQ).

Aslong as |[L —X|| < M'e, we have |||n||* — [|0]|?| < M’e by Weyl’s theorem.

We also have ||[T' — X||p < v2M’e because T' — ¥ = nnT — 007 is a rank-

mr 00T SR M e

two matrix. By sin-theta theorem (Lemma 77), T2
F

According to Proposition 2.2 in Vu and Lei (2013),

[

-6l = H ST
e+ o

linll = 16111 + 18] H - H

il 1161l
1|12 — 116]]?]

1o HH—\
[[n[l + [10]] [l 110]]
< (KM’ +2K%M')e,

1 g =2

Therefore,

o) —eH

IN
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as long as Hﬁ — ﬁ” < 2K M'e. The same argument also works for ||n+06||.

Therefore, we have
7= 01| Al + 0] < (KM’ +2K*M')e.
Hence, we have
Py (”77 — 0| A|n+ 0] > M'6|X") < exp ( - CneQ).

|
Proof of Theorem 4.3. The only modification needed is to establish

H( HASoA:éCo — AO,SOAOT,SOHF < e) > exp ( — C’slogp),

where Sy = U]_,Sq;, for some constant C' > 0. This can be done similarly
as in the proof of Lemma E.2. Then, combining this result with Lemma
5.1, Lemma E.1 and Lemma 5.4, we have obtained (E.1). In view of the
inequality

IVVT = VoV [|r < CVr|IT = 3|,

for some constant C' > 0, the proof is complete. |

APPENDIX F: PROOF OF PROPOSITION 5.1

We first present a lemma on Gaussian small ball probability.

LemMmA F.1. For Z ~ N(0,1,) and any 6 € R, we have
P(11Z 0l <) > exp | — 161 — dlog - — dlog (2v/d/3)
— - 2 € )

for any e < 1/2.
Proof. By Theorem 3.1 in Li and Shao (2001), we have
B(112 -0l < €) > exp (= [I6]/2)P(112]] < ).

For the centered small ball probability, we have

d d
Pzl <) > EP(ZiQSGQ/d>:( /|ZI<EM(2W)_1/26_ZZ/%>

2 I 2 4
€ o) le—€t/2d €
<\/E(2 ) ) = (3\/3)

= exp <— dlog% —dlog (2\/&/3))

v
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1
Proof of Proposition 5.1. We are going to lower bound G(7;|7;-1).
We use the following notation

(ula ey U, ul-i-l) = (nl,So,th ceey 771750,1_;,_1 ) nH-l,So,H_l)’

(V1 ooy 01, V141) = (01,850 1515+ 01,50 1415 O141,50.141)-

Define the projection matrix

We also define ;11 = (I — Hy)uyy1 and 0141 = (1 — Hj)vyy. By definition
of the prior, we have uj;1 = 1. We have

1,980,110 — O1,80,0 |l = s = Vg1 — Hivpga ||
!
- - T Uj
< g = gl + D Juf o] || 77—
— il
! T
N - u; — v;)t v
< g — def) + 32 10— v
= |ul|
l
o 1|
< g = D] +Z [|ui — vil|
— |Jui|

IN

l
a1 = Bl + V2K Y Jlus — il
i=1

IN

l
[t +1 — V| + V2K Z [175,50; = 0,50, |-
=1

Conditioning on 7;, we have

_ _ V2 ipe
|"’7l+1,50,1+1 - 91+1750,l+1H < g1 — Vg1l + o 1K / z_;ﬁz

Therefore,

l
G(Ti1|T1) = Gisy o -1e <(\/§+ DK [i 1 — O ||+ V2K Y e < €l+1>'

=1
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Remember the sequence {¢;};_; satisfies

l
Z el+1, and ZEZ<6'

=1

Thus,

X - . 1
G(Tis1|T) = [S0,141|—1* ((\54‘ 1)K1/2|\Ul+1 — Ol < 2€l+1>

— 10141

_ H Ui1Z141
1 Z141]]

1
< -
T 2(V2+ 1)K 6”1)

+ | Z141 — Ti0 41| <

Uis1Z141
H — Zi111

1 Z14 ]

1
2(v2 + K2

1
—2(\/§+ K1 €l+1>

v

Uir1 = 1 Zi1ll] < 1 Z141 — 0 || <

= P( U1 = 1 Ziaalll + 1 Zig1 — Titqa ] <

—4(\@ TR €141

1
P 1Z11 = Tt < —————— 101 |
(H 11— Do || < CERRE z+1)

where Zip1 ~ N(0,Ijg,,, |—), and Uy ~ Unif[(2K)~Y/2,(2K)"/?]. By
Lemma F.1, we have

1
Pl || Z —Tv < ¢
(H 141 — Do || < VIt )E? l+1>

N A(V2+1)K/?
> exp ( — [[isl2/2) exp <._(s._z*>1og<>
€i+1
where we have used ||0;11]| = ||T;0;4+1||- By the definition of uniform distri-

bution, we have

1
P{ U1 —||Z < ————€
(l 1 = [ Zialll < Y DRI

Hence, we have

GmmmzC“@@ﬁmmm{4&mm“ﬂ+mﬂ1w¢maw%W@)

2(2 4 V2)ek/2

c(r,e)

1
Zio1 — ]| € ——
12 =0l = 37 1)K1/2€l+1> 22+ V2)K

)

1

A2+ K12

— (s —1")1og (2V's — l*/3)>,

G411

)
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The results follows from the fact I* < s. Similarly, G(;) can be lower
bounded by the above formula with [ = 0. §

APPENDIX G: PROOF OF LEMMA 5.9

For simplifying the notation, we drop the bar and write (X,I",T") as their
low-dimensional counterparts (X,17,T'). Consider the likelihood ratio test,

¢=1I {le zn; YT (571 =T 1)Y; > logdet (7'T) } .

Define p = tr(F’_l/QEF’_I/Q - I) — log det (F’_1/2EF’_1/2). Then because
of Py (571 = " 1)Y; = tx (1~ I'7V251 Y2 — 1), we have

6 =1 {:L i <Y;T (z*l _ r’*1>Yi _ Py (2*1 . 1“’1)1/,-) > p} .

=1

Let {lj}?:1 be the eigenvalues of the matrix IV~1/2%T"~1/2 Since for each
i, lj € [(2K)™1, K], we have

d
p=>" (L= 1=1ogly) = o D1 — 1?2 o (4K B - T 3,
j=1 j=1

where 0 > 0 is a constant only depending on K. Let {hj};l:l be the
eNigenvalues of the matrix Y/21"-131/2 and write Y, = 21/221- so that
Z;i ~ N(0,I). Then we have

1 — B B B B
EZ (}/;T(E 1 _1—\/ 1))/; —PE}/;T<E 1 _1—\/ 1)}/;1)
=1
1 n
- -y (Zf <I — 21/2r’—121/2>2i g <I - 21/2r’—121/2>2i>.
n
=1

Apply SVD to the matrix I — XY/21"-151/2 and we have I — »i2p-1y1/2 —
UT(I - H)U, with H = diag(h1, ..., hy). Define Z; = UZ; ~ N(0,1), and the

above formula can be written as

% zn: (z}(z _H)Z —EZT(I - H)ZZ)
=1

n d
= Sz -,

i=1 j=1
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where Z;; are i.i.d. N(0,1). Therefore, we have

n d
(330 2)

i=1 j=1

Peo

n d
= P(ZZ(l — hj)(Z5; — 1) > ndr(4K?) 7|2 - F'H%)

i=1 j=1
252 (4K 2||S — V|4 néx(4K2)7L|S — TV| 2
< 2exp | — Cymind PORUED AR ~ Tl ndw(K7) ||E = Iy
n3 i1 (1—hy)? max; |1 — hy|
62 (4K2)2||T = TV||2 néx(4K2)7L||S — TV||2
< 2€Xp<—C5min{n K )KH HF,nK< 1>+L|{ HF}

< 2exp ( — C50%n||Z — F'H%>7

where we have used Bernstein’s inequality (Proposition 5.16 in Vershynin
(2010)) with C5 being an absolute constant and % only depending on K.
Similarly, for any I' in the alternative set,

S e T e IS

where h

5 = logdet (Er’*l) — tr(]f(l“”l — 2*1))

logdet (X'~ — tr (T ("~ = 37 ) 4 tx (I = T) (1! = =71
tr(S7V2S T2 - ) < logdet (3 7VA0E V) (1 - ) (' - 7))

Ok |[STVPTE T2 —I|[F — I = D|p| T = 271 |p
O K728 =TI — (2K*) 7Y = Tllp||% — | p.

AVANIY

Therefore, as long as ||[I' —T'||r < 0x]||X — I"||p, we have
1 _
P> H0kK %S~ T|E
Similar argument as bounding P5}¢ also gives
Pr(1—¢) <2exp ( — C50n|[2 - F'H%)-

Thus, the proof is complete.
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