
A General Framework for Bayes Structured Linear Models ∗

Chao Gao1, Aad W. van der Vaart2, and Harrison H. Zhou1

1 Yale University
2 Leiden University

June 3, 2015

Abstract

High dimensional statistics deals with the challenge of extracting structured informa-

tion from complex model settings. Compared with the growing number of frequentist

methodologies, there are rather few theoretically optimal Bayes methods that can deal

with very general high dimensional models. In contrast, Bayes methods have been exten-

sively studied in various nonparametric settings and rate optimal posterior contraction

results have been established. This paper provides a unified approach to both Bayes high

dimensional statistics and Bayes nonparametrics in a general framework of structured

linear models. With the proposed two-step model selection prior, we prove a general

theorem of posterior contraction under an abstract setting. The main theorem can be

used to derive new results on optimal posterior contraction under many complex model

settings including stochastic block model, graphon estimation and dictionary learning. It

can also be used to re-derive optimal posterior contraction for problems such as sparse

linear regression and nonparametric aggregation, which improve upon previous Bayes

results for these problems. The key of the success lies in the proposed two-step prior

distribution. The prior on the parameters is an elliptical Laplace distribution that is

capable to model signals with large magnitude, and the prior on the models involves an

important correction factor that compensates the effect of the normalizing constant of

the elliptical Laplace distribution.

Keywords. Oracle inequality, Stochastic block model, Graphon, Sparse linear re-

gression, Aggregation, Dictionary learning, Posterior contraction

1 Introduction

Theory for posterior distribution has been extensively investigated in Bayes nonparametrics

recently. Important works such as [6, 5, 24, 25, 48, 53, 27, 13] established that the posterior

distribution contracts to a small neighborhood of the truth under proper conditions on like-

lihood functions and priors. These works bridge the gap between frequentist and Bayesian

views of statistics from a fundamental perspective.

∗funding
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Despite the success of theoretical advancements of Bayes nonparametrics, there are not

many theories developed for Bayes high dimensional statistics. A few exceptions are [14] on

sparse Gaussian sequence model, [4] on bandable precision matrix estimation and [22] on

sparse PCA. Recently, [15] established posterior contraction rates for sparse linear regression

with a spike and slab prior under comparable assumptions of the Lasso estimator [49, 7].

The results of [15] include posterior contraction rates for prediction error and estimation

error, oracle inequalities and model selection consistency. However, sparse linear regression

is only one example of high dimensional statistics. There is an indispensable demand of

a Bayes theory on more complicated model settings such as dictionary learning, stochastic

block model and multi-task learning, etc. It is not clear whether the method and the analysis

used in [15] can be extended to these more complex settings.

This paper provides a unified approach for both Bayes high dimensional and Bayes non-

parametric statistics in a general framework of structured linear models. We first establish

a unified view of various high-dimensional and nonparametric models, and then propose a

single prior distribution for all models considered in our framework. We establish optimal

rates of convergence of the posterior distributions under appropriate conditions. The results

directly lead to minimax posterior contraction rates in stochastic block model, biclustering,

sparse linear regression, regression with group sparsity, multi-task learning and dictionary

learning. Moreover, we also derive a general posterior oracle inequality that allows arbitrary

model misspecification. Applications of the posterior oracle inequality let us obtain posterior

contraction rates even for models that are not included in our framework. Examples consid-

ered in this paper are nonparametric graphon estimation, linear regression with approximate

sparsity, wavelet estimation under Besov space and various forms of nonparametric aggrega-

tion.

In the heart of our general theory is a proposed two-step prior distribution, which nat-

urally accommodates the structured linear model by first modeling the structure and then

modeling the parameters. This two-step modeling strategy was first investigated by [14]

for Gaussian sequence models. A key ingredient of the prior distribution is that the tail of

the distribution on the model parameter Q cannot be too light [14, 15], which motivates

[14, 15] to use the independent Laplace prior with density proportional to exp(−λ‖Q‖1) on

the parameter. Though the prior distribution leads to optimal posterior contraction rates in

Gaussian sequence model [14], it requires some excessive assumptions on the design matrix

when it is applied to sparse linear regression [15]. The proposal in this paper is the elliptical

Laplace distribution with density proportional to exp(−λ‖X (Q)‖) for some linear operator

X (·). Note that we use the `2 norm instead of the `1 norm. With this choice, not only

are we able to weaken the assumptions in [15], but we can also solve a more general class

of problems in a unified way. To compensate the influence of the normalizing constant of

an elliptical Laplace distribution, a correction factor on the prior mass is considered in the

model selection step.

The paper is organized as follows. Section 2 introduces the general framework of struc-

tured linear models. A general prior distribution is proposed in Section 3. Section 4 presents
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the main results of the paper including rate optimal posterior oracle inequality and posterior

contraction. The main results are applied to ten examples ranging from nonparametric and

high dimensional statistics in Section 5. In Section 6, we present further results on sparse

linear regression. All technical proofs are gathered in Section 7-10.

We close this section by introducing some notation. Given an integer d, we use [d]

to denote the set {1, 2, ..., d}. For a set S, |S| denotes its cardinality and IS denotes the

indicator function. For a vector u = (ui), ‖u‖ =
√∑

i u
2
i denotes the `2 norm. For a matrix

A = (Aij) ∈ Rn×p, and a subset T ⊂ [n] × [p], AT denotes the array {At}t∈T . For any

I ⊂ [n] and J ⊂ [p], we let AI∗ = AI×[p] and A∗J = A[n]×J . The Frobenius norm, `1 norm

and `∞ norm are defined by ‖A‖F =
√∑

ij A
2
ij , ‖A‖1 =

∑
ij |Aij | and ‖A‖∞ = maxij |Aij |,

respectively. When A = AT ∈ Rp×p is symmetric, the operator norm ‖A‖op is defined by its

largest singular value and the matrix `1 norm ‖A‖`1 is defined by the maximum row sum.

The inner product is defined by 〈u, v〉 =
∑

i uivi when applied to vectors and is defined

by 〈A,B〉 =
∑

ij AijBij when applied to matrices. Given two numbers a, b ∈ R, we use

a ∨ b = max(a, b) and a ∧ b = min(a, b). The floor function bac is the largest integer no

greater than a, and the ceiling function dae is the smallest integer no less than a. For two

positive sequences {an}, {bn}, an . bn means an ≤ Cbn for some constant C > 0 independent

of n, and an � bn means an . bn and bn . an. The symbols P and E denote generic

probability and expectation operators whose distribution is determined from the context.

2 Structured linear models

Let us consider the following structured linear model

Y = XZ(Q) +W ∈ RN ,

where W ∈ RN is a noise vector and XZ(·) is a linear operator. The signal XZ(Q) has

two elements, the parameter Q and the structure/model Z that indexes the linear operator

XZ(·). The structure Z is in some discrete space Zτ , which is further indexed by τ ∈ T
for some finite set T . We introduce a function `(Zτ ) that determines the dimension of the

parameter Q. In other words, Q ∈ R`(Zτ ), and `(Zτ ) is referred to as the effective dimension

of the structured linear model. The complexity of the model is defined by the quantity

`(Zτ ) + log |Zτ |, (1)

the sum of the effective dimension and the logarithmic cardinality of the structure space.

As we are going to show later, (1) will be the posterior contraction rate that we target at.

Moreover, in all the examples considered in the paper, (1) will be the minimax rate under the

prediction loss. The only requirement we impose on the model is the linearity of the operator

XZ(·). That is, given any Z ∈ Zτ , we have

XZ(Q1 +Q2) = XZ(Q1) + XZ(Q2), for all Q1, Q2 ∈ R`(Zτ ). (2)
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Therefore, we can also view XZ as a matrix in RN×`(Zτ ). From now on, whenever we apply a

matrix operation with XZ , the operator XZ is understood to be a matrix with slight abuse

of notation.

The above framework of structured linear models includes many examples. In this paper,

we consider the following six representative instances.

1. Stochastic block model. Consider XZ(Q) ∈ [0, 1]n×n to be the mean matrix of a random

graph with specification [XZ(Q)]ij = Qz(i)z(j). The object z ∈ [k]n is the labels of

nodes. Moreover, it is easy to see that the parameter Q is of dimension k2. Therefore,

stochastic block model is a special case of our general framework in view of the relation

Z = z, τ = k, T = [n], Zk = [k]n and `(Zk) = k2.

2. Biclustering. For a matrix XZ(Q) ∈ Rn×m, a biclustering model means that both

rows and columns have clustering structures. That is, [XZ(Q)]ij = Qz1(i)z2(j) for some

z1 ∈ [k]n and z2 ∈ [l]m. The parameter Q has dimension kl. Thus, biclustering model

is a special case of our general framework by the relation Z = (z1, z2), τ = (k, l),

T = [n]× [m], Zk,l = [k]n × [l]m and `(Zk,l) = kl.

3. Sparse linear regression. A p-dimensional sparse linear regression model refers to Xβ,

where β ∈ Rp has a subset of nonzero entries and it can be represented by βT = (βTS , 0
T
Sc)

for some S ⊂ [p]. In other words, Xβ = X∗SβS . It can be represented in a general way

by letting Z = S, τ = s, T = [p], Zs = {S ⊂ [p] : |S| = s}, `(Zs) = s and Q = βS .

Moreover, XZ(Q) = X∗SβS .

4. Linear regression with group sparsity. It refers to the model XB with B ∈ Rp×m being

a matrix with nonzero rows in some subset S ⊂ [p]. It can be represented in a general

form similarly as the sparse linear regression except that `(Zs) = ms.

5. Multi-task learning. Similar to the last example, multi-task learning is the collection of

m regression problems. That is, we consider XB for some B ∈ Rp×m. The jth column

of B is represented as B∗j = Q∗z(j) for some z ∈ [k]m and Q ∈ Rp×k. Thus, it is a

special case of our general framework by letting Z = z, τ = k, T = [m], Zk = [k]m and

`(Zk) = pk.

6. Dictionary learning. Consider the model XZ(Q) = QZ ∈ Rn×d for some Z ∈ {−1, 0, 1}p×d

and Q ∈ Rn×p. Each column of Z is assumed to be sparse. Therefore, dictionary

learning can be viewed as sparse regression without knowing the design. It can be

written in a general form by letting τ = (p, s), T = {(p, s) ∈ [n ∧ d] × [n] : s ≤ p},
Zp,s = {Z ∈ {−1, 0, 1}p×d : maxj∈[d] |supp(Z∗j)| ≤ s} and `(Zp,s) = np.

3 The prior distribution

In this section, we introduce a prior distribution on the structured linear model. The prior

distribution has a two-step sampling procedure. First, we are going to sample a structure
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Z. Second, given Z, we sample the parameter Q. Let us first present the prior distribution

on the parameter Q ∈ R`(Zτ ). We propose the elliptical Laplace distribution with density

function proportion to exp (−λ‖XZ(Q)‖). By direct calculation of the normalizing constant,

the density function is

f`(Zτ ),XZ ,λ(Q) =

√
det(X T

Z XZ)

2

(
λ√
π

)`(Zτ ) Γ(`(Zτ )/2)

Γ(`(Zτ ))
exp (−λ‖XZ(Q)‖) . (3)

Recall that XZ is understood as a matrix in RN×`(Zτ ) whenever a matrix operation is applied.

The elliptical Laplace distribution belongs to the elliptical family [20] with scatter matrix

proportional to (X T
Z XZ)−1. Compared with an i.i.d. distribution on Q, the density function

(3) involves an extra factor Γ(`(Zτ )/2)
Γ(`(Zτ )) in the normalizing constant. This factor needs to be

corrected in the model selection step.

Let ε(Zτ ) be a function satisfying

ε(Zτ ) ≥ `(Zτ ) + log |Zτ |, (4)

and then the sampling procedure of the prior distribution Π on XZ(Q) is given by:

1. Sample τ ∼ π from T , where π(τ) ∝ Γ(`(Zτ ))
Γ(`(Zτ )/2) exp (−Dε(Zτ ));

2. Conditioning on τ , sample Z uniformly from the set Z̄τ = {Z ∈ Zτ : det(X T
Z XZ) > 0};

3. Conditioning on (τ, Z), sample Q ∼ f`(Zτ ),XZ ,λ.

Step 1 weighs the structure index τ by the function ε(Zτ ) that satisfies (4). For all the

examples considered in the paper, ε(Zτ ) is chosen to be at the same order of the model

complexity (1). The quantity Γ(`(Zτ ))
Γ(`(Zτ )/2) is called the correction factor that is imposed to

compensate the influence of Γ(`(Zτ )/2)
Γ(`(Zτ )) in the elliptical Laplace distribution. Without the

correction factor, exp (−Dε(Zτ )) is the complexity prior used by [14, 15] in Gaussian sequence

model and sparse linear regression. Since the support T is a finite set, π is always a valid

probability mass function. Step 2 samples a structure Z uniformly in Z̄τ . It is sufficient to

consider such Z that det(X T
Z XZ) > 0 for all the examples considered in this paper. Such

restriction leads to a proper density function (3) and thus Step 3 is well defined.

After defining the prior, we also need to specify the likelihood function. The six exam-

ples in Section 2 have different distributions. For example, stochastic block model usually

assumes a Bernoulli random graph, while sparse linear regression often works with general

sub-Gaussian noise distributions. To pursue a unified approach, we propose to use the Gaus-

sian likelihood Y |(Z,Q) ∼ N(XZ(Q), IN ). Then, the posterior distribution is

Π (XZ(Q) ∈ U |Y )

=

∑
τ∈T e

−Dε(Zτ )
∑

Z∈Z̄τ

√
det(X T

Z XZ)

|Z̄τ |

(
λ√
π

)`(Zτ ) ∫
XZ(Q)∈U e

− 1
2
‖Y−XZ(Q)‖2−λ‖XZ(Q)‖dQ∑

τ∈T e
−Dε(Zτ )

∑
Z∈Z̄τ

√
det(X T

Z XZ)

|Z̄τ |

(
λ√
π

)`(Zτ ) ∫
e−

1
2
‖Y−XZ(Q)‖2−λ‖XZ(Q)‖dQ

.
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Note that in the above formula of posterior distribution, the factor Γ(`(Zτ )/2)
Γ(`(Zτ )) in the Laplace

normalizing constant has been cancelled out by the correction factor Γ(`(Zτ ))
Γ(`(Zτ )/2) in the model

selection prior.

4 Main results

In this section, we analyze the posterior distribution for the general structured linear model.

Though the prior specifies a model XZ(Q), we do not need to assume that the data is

generated from the same model. Instead, we allow the data to be generated by an arbitrary

signal with sub-Gaussian noise. That is,

Y = θ∗ +W,

where W = Y − θ∗ is the noise vector with a sub-Gaussian tail satisfying

P (|〈W,K〉| > t) ≤ e−ρt2/2 for all ‖K‖ = 1. (5)

The sub-Gaussianity number ρ > 0 is assumed to be a constant throughout the paper. We

also assume a mild assumption on the function ε(Zτ ). That is,

|{τ ∈ T : t− 1 < ε(Zτ ) ≤ t}| ≤ t for all t ∈ N. (6)

Recall that λ and D are parameters of the prior distribution Π, and the main result of the

paper is stated in the following theorem.

Theorem 4.1. Assume (4), (5) and (6). Given any θ∗ ∈ RN , any τ∗ ∈ T , any Z∗ ∈ Z̄τ∗,
any Q∗ ∈ R`(Zτ∗ ), any constants λ, ρ > 0 and any sufficiently small constant δ ∈ (0, 1), there

exists some constant Dλ,δ,ρ > 0 only depending on λ, δ, ρ, such that

EΠ
(
ε(Zτ ) > (1 + δ1)ε(Zτ∗) + δ1‖XZ∗(Q

∗)− θ∗‖2
∣∣∣Y )

≤ exp
(
−C ′

(
ε(Zτ∗) + ‖XZ∗(Q

∗)− θ∗‖2
))

(7)

and

EΠ
(
‖XZ(Q)− θ∗‖2 > (1 + δ2)‖XZ∗(Q

∗)− θ∗‖2 +Mε(Zτ∗)
∣∣∣Y )

≤ exp
(
−C ′′

(
ε(Zτ∗) + ‖XZ∗(Q

∗)− θ∗‖2
))

(8)

for any constant D > Dλ,δ,ρ with δ1 = δ, δ2 = 8
√
δ/ρ and some constants M,C ′, C ′′ only

depending on λ, δ, ρ,D.

Remark 4.1. The results of Theorem 4.1 hold for all ε(Zτ ) satisfying (4). By choosing ε(Zτ )

at the same order of (1), we obtain the rate `(Zτ∗)+log |Zτ∗ | under the posterior distribution.

From now on, we refer to both (1) and ε(Zτ ) as the complexity function.
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Remark 4.2. By scrutinizing the proof of Theorem 4.1, the assumption (6) can be weakened.

In fact, we only require |{τ ∈ T : t− 1 < ε(Zτ ) ≤ t}| ≤ atb for arbitrary constants a, b > 0

for the result of Theorem 4.1 to hold. However, the current form (6) is much simpler and is

sufficient for all the examples considered in the paper.

Theorem 4.1 contains two results of an oracle type, where XZ∗(Q
∗) is understood to be

the oracle model that best approximates the true signal θ∗. The first result (7) shows that

the model complexity selected by the posterior distribution is not greater than the sum of the

complexity of the oracle and a model misspecification term quantified by ‖XZ∗(Q
∗)− θ∗‖2.

The second result (8) is a posterior oracle inequality for the squared error loss ‖XZ(Q)− θ∗‖2.

Compared with that of the oracle XZ∗(Q
∗), the squared error loss of XZ(Q) has an extra

term proportional to ε(Zτ∗). It is worth noting that the constant (1 + δ2) in (8) can be

arbitrarily close to 1, as long as D is chosen sufficiently large. Since our procedure involves

a model selection step, an oracle inequality with constant exactly 1 is impossible, which is

implied by a counter-example in [45] for sparse linear regression. Besides, we do not impose

any assumption on the operator XZ(·) except its linearity (2). In the regression model, this

means the results are assumption-free for the design matrix.

When the model is well specified in the sense that θ∗ = XZ∗(Q
∗), Theorem 4.1 reduces

to the following results on posterior contraction.

Corollary 4.1. Assume (4), (5) and (6). For any θ∗ = XZ∗(Q
∗) with any Z∗ ∈ Z̄τ∗,

any τ∗ ∈ T , any Q∗ ∈ R`(Zτ∗ ), any constants λ, ρ > 0 and any sufficiently small constant

δ ∈ (0, 1), there exists some constant Dλ,δ,ρ > 0 only depending on λ, δ, ρ, such that

EΠ
(
ε(Zτ ) > (1 + δ)ε(Zτ∗)

∣∣∣Y ) ≤ exp
(
−C ′ε(Zτ∗)

)
and

EΠ
(
‖XZ(Q)− θ∗‖2 > Mε(Zτ∗)

∣∣∣Y ) ≤ exp
(
−C ′′ε(Zτ∗)

)
for any constant D > Dλ,δ,ρ with some constants M,C ′, C ′′ only depending on λ, δ, ρ,D.

Therefore, the posterior contraction rate under the squared error loss is ε(Zτ∗), which can

be taken at the order of `(Zτ∗) + log |Zτ∗ |. As we are going to show in the next section, the

rate is minimax optimal for all the examples considered in the paper.

5 Applications

5.1 Stochastic block model

Stochastic block model was proposed by [28] to model random graphs with a community

structure. Given a symmetric adjacency matrix A = AT ∈ {0, 1}n×n that codes an undirected

network with no self loops in the sense that Aii = 0 for all i ∈ [n], stochastic block model

assumes {Aij}i>j are independent Bernoulli random variables with mean θij = Qz(i)z(j) ∈
[0, 1] with some matrix Q ∈ [0, 1]k×k and some label vector z ∈ [k]n. In other words, the
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probability that there is an edge between the ith and the jth nodes only depends on their

community labels z(i) and z(j). Recently, the problem of estimating the success matrix θ

receives much attention. The minimax rate of estimating θ under the Frobenius norm was

established by [23]. However, the upper bound in [23] was achieved by a procedure assuming

the knowledge of the true number of community k∗, and is not adaptive. The Bayes framework

proposed in this paper provides a natural solution to adaptive estimation for stochastic block

model.

Let us write the stochastic block model in a general from as θij = [XZ(Q)]ij = Qz(i)z(j)
for all i 6= j. We do not need to model the diagonal entries because Aii = 0 for all i ∈ [n]

as convention. Then, Z = z, τ = k, T = [n] and Zk = [k]n. Though the true parameter Q∗

is symmetric, we do not impose symmetry for the prior distribution. Hence, `(Zk) = k2 and

(4) is satisfied with ε(Zk) = k2 + n log k. The general prior distribution Π can be specialized

to this case as

1. Sample k ∼ π from [n], where π(k) ∝ Γ(k2)
Γ(k2/2)

exp
(
−D(k2 + n log k)

)
;

2. Conditioning on k, sample z uniformly from [k]n;

3. Conditioning on (k, z), sample Q ∼ fk,z,λ, where fk,z,λ(Q) ∝ e−λ
√∑

i 6=j Q
2
z(i)z(j) ;

4. Set θij = Qz(i)z(j) for all i 6= j and θii = 0 for all i ∈ [n].

Note that in Step 2, we use Zk = [k]n instead of Z̄k. This is because (Q1)z(i)z(j) = (Q2)z(i)z(j)
for all i 6= j implies Q1 = Q2, and thus Zk = Z̄k = [k]n. To better understand the density

function fk,z,λ, consider the case where n/k is an integer and the community sizes |{i ∈ [n] :

z(i) = u}| = n/k are equal for all u ∈ [k]. Then fk,z,λ(Q) ∝ e−
nλ
k
‖Q‖F , if we also include the

diagonal entries. The exponent of the general form of fk,z,λ involves a weighted norm of Q

depending on the community sizes.

To study the posterior distribution, let us assume that the adjacency matrix is generated

by the true mean θ∗ij = Q∗z∗(i)z∗(j) = Q∗z∗(j)z∗(i) ∈ [0, 1] for i 6= j and θ∗ii = 0 for all i ∈ [n].

Assume z∗ ∈ [k∗]n for some k∗ ∈ [n]. It is easy to see that the noise W = A − θ∗ satisfies

(5) for some constant ρ > 0 by Hoeffding’s inequality. Moreover, the complexity function

ε(Zτ ) = k2 + n log k satisfies (6). Hence, Corollary 4.1 can be specialized for the stochastic

block model.

Corollary 5.1. For any θ∗ and k∗ specified above, any constant λ > 0 and any sufficiently

small constant δ ∈ (0, 1), there exists some constant Dλ,δ > 0 only depending on λ, δ such

that

EΠ
(
k2 + n log k > (1 + δ)

(
(k∗)2 + n log k∗

) ∣∣∣A) ≤ exp
(
−C ′((k∗)2 + n log k∗)

)
and

EΠ
(
‖θ − θ∗‖2F > M((k∗)2 + n log k∗)

∣∣∣A) ≤ exp
(
−C ′′((k∗)2 + n log k∗)

)
for any constant D > Dλ,δ with some constants M,C ′, C ′′ only depending on λ, δ,D.
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To the best of our knowledge, this is the first Bayes estimator for stochastic block model

with theoretical justification. The posterior contraction rate is (k∗)2 + n log k∗. According

to [23], this is the minimax rate of the problem. When k∗ ≤
√
n log n, the rate is dominated

by n log k∗, which grows only logarithmically as k∗ grows. When k <
√
n log n, the rate is

dominated by (k∗)2, corresponding to the number of parameters. Since posterior contraction

implies the existence of a point estimator with the same rate [25], the posterior mean is

automatically a rate-optimal adaptive estimator.

5.2 Biclustering

The biclustering model, originated in [26], can be viewed as an asymmetric extension of the

stochastic block model. The data matrix Y ∈ Rn×m is assumed to be generated by a signal

matrix θ = {θij} with form θij = Qz1(i)z2(j) for some label vectors z1 ∈ [k]n and z2 ∈ [l]m. In

other words, the rows of θ have k clusters and the columns of θ have l clusters. The values

of {θij} that belong to the same row-cluster and the same column-cluster are constant. The

goal is to recover the true signal matrix θ∗ from the observation Y .

To put it in our general form, observe that Z = (z1, z2), τ = (k, l), T = [n]× [m], Zk,l =

[k]n×[l]m and `(Zn,l) = kl. Moreover, the complexity function is ε(Zk,l) = kl+k log n+l logm,

which satisfies (4) and (6). The general prior Π can be specialized to this case as

1. Sample (k, l) ∼ π from [n]×[m], where π(k, l) ∝ Γ(kl)
Γ(kl/2) exp (−D(kl + n log k +m log l));

2. Conditioning on (k, l), sample (z1, z2) uniformly from [k]n × [l]m;

3. Conditioning on (k, l, z1, z2), sampleQ ∼ fk,l,z1,z2,λ with fk,l,z1,z2,λ(Q) ∝ e−λ
√∑

ij Q
2
z1(i)z2(j) ;

4. Set θij = Qz1(i)z2(j) for all (i, j).

In Step 2, we use Zk,l because Zk,l = Z̄k,l for the same reason as we have argued for the

stochastic block model. To analyze the posterior distribution, consider data Y = θ∗ + W ,

where the signal θ∗ admits a biclustering structure such that θ∗ij = Q∗z∗1 (i)z∗2 (j) for Q∗ ∈ Rk∗×l∗

and (z∗1 , z
∗
2) ∈ [k∗]n × [l∗]m, and the noise W is assume to satisfy (5).

Corollary 5.2. For any θ∗ and (k∗, l∗) specified above, any constants λ, ρ > 0 and any

sufficiently small constant δ ∈ (0, 1), there exists some constant Dλ,δ,ρ > 0 only depending on

λ, δ, ρ such that

EΠ
(
kl + n log k +m log l > (1 + δ) (k∗l∗ + n log k∗ +m log l∗)

∣∣∣Y )
≤ exp

(
−C ′(k∗l∗ + n log k∗ +m log l∗)

)
and

EΠ
(
‖θ − θ∗‖2F > M(k∗l∗ + n log k∗ +m log l∗)

∣∣∣Y ) ≤ exp
(
−C ′′(k∗l∗ + n log k∗ +m log l∗)

)
for any constant D > Dλ,δ,ρ with some constants M,C ′, C ′′ only depending on λ, δ, ρ,D.
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The posterior contraction rate for recovering a signal matrix with a biclustering structure

is k∗l∗ + n log k∗ + m log l∗, which is minimax optimal according to [23]. To the best of our

knowledge, this is the first adaptive estimation result for biclustering with optimal rate.

5.3 Sparse linear regression

Consider a regression problem with fixed design Xβ, where X ∈ Rn×p and β ∈ Rp. The

regression coefficient is assumed to be sparse so that βT = (βTS , 0
T
Sc) for some S ⊂ [p]. Recov-

ering the mean vector Xβ and the regression vector β with a sparse prior has been considered

in [15]. However, the results of [15] imposed strong assumptions that are commonly used for

the Lasso estimator [7]. In this section, we show that the general prior distribution that we

propose in Section 3 leads to optimal posterior contraction rates with minimal assumptions.

First, we note that the sparse linear regression model is a special case of the general

structured linear model by letting Z = S, τ = s, T = [p], Zs = {S ⊂ [p] : |S| = s},
`(Zs) = s and Q = βS . Then, we have the representation XZ(Q) = X∗SβS = Xβ. Since

log |Zs| = log
(
p
s

)
≤ s log ep

s , the complexity function ε(Zs) = 2s log ep
s satisfies the condition

(4). It is also easy to check that ε(Zτ ) satisfies (6). We specialize the general prior Π in

Section 3 as follows.

1. Sample s ∼ π from [p], where π(s) ∝ Γ(s)
Γ(s/2) exp

(
−2Ds log ep

s

)
;

2. Conditioning on s, sample S uniformly from {S ⊂ [p] : |S| = s, det(XT
∗SX∗S) > 0};

3. Conditioning on (s, S), sample βS ∼ fs,S,λ with fs,S,λ(βS) ∝ e−λ‖X∗SβS‖ and set βSc = 0.

Note that in Step 1, we use ε(Zs) = 2s log ep
s instead of the exact form of `(Zτ ) + log |Zτ |

in the exponent for simplicity. In Step 2, we sample S from the set Z̄s = {S ⊂ [p] : |S| =

s, det(XT
∗SX∗S) > 0}. In this way, the density fs,S,λ in Step 3 is not degenerate. Since

X∗S ∈ Rn×s, when s > n, we must have Zs = ∅. Hence, we may also replace π in Step 1

by its renormalized version supported on [n]. Furthermore, note that the exponent on the

density of βS is −λ‖X∗SβS‖, compared to −λ‖βS‖1 in [15]. We let the prior depend on

the design matrix X to obtain assumption-free optimal posterior prediction rate. The idea

of design-dependent prior was also employed by [40] in an empirical pseudo-Bayes frame-

work. Moreover, e−λ‖X∗SβS‖ implies an exponential tail, which is capable of modeling a large

regression coefficient.

The prior distribution involves a correction factor Γ(s)
Γ(s/2) in the model selection step to

compensate the normalizing constant of the elliptical Laplace distribution. Without this

factor, exp
(
−2Ds log ep

s

)
is the common prior distribution on the model dimension used in

[45, 14, 22, 15, 40]. Since exp
(
−2Ds log ep

s

)
is a decreasing function of s, it gives less weights

for more complex models. However, with the correction factor, this is not true because

π(s) ∝ Γ(s)
Γ(s/2) exp

(
−2Ds log ep

s

)
is not necessarily a decreasing function of s. For a large

D > 0, we have π(
√
p) < π(p), which leads to a counter-intuitive prior modeling strategy.

Let us proceed to specify the truth. That is, Y = Xβ∗ + W for some β∗ with support

S∗ and sparsity |S∗| = s∗. The noise vector is assumed to be sub-Gaussian in the sense of
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(5). Without loss of generality, we may assume S∗ ∈ Z̄s∗ . This is because if X∗S∗ is collinear

in the sense that det(XT
∗S∗X∗S∗) = 0, there always exists a β1 with support S1 and sparsity

s1 = |S1| such that Xβ∗ = Xβ1 and det(XT
∗S1
X∗S1) > 0. We may simply redefine (s∗, S∗) by

(s1, S1).

Corollary 5.3. For any β∗, S∗ ∈ Z̄s∗ and s∗ specified above, any constants λ, ρ > 0 and any

sufficiently small constant δ ∈ (0, 1), there exists some constant Dλ,δ,ρ > 0 only depending on

λ, δ, ρ such that

EΠ
(
s > (1 + δ)s∗

∣∣∣Y ) ≤ exp
(
−C ′s∗ log

ep

s∗

)
(9)

and

EΠ
(
‖Xβ −Xβ∗‖2 > Ms∗ log

ep

s∗

∣∣∣Y ) ≤ exp
(
−C ′′s∗ log

ep

s∗

)
(10)

for any constant D > Dλ,δ,ρ with some constants M,C ′, C ′′ only depending on λ, δ, ρ,D.

The result (9) is implied by (7) that s log ep
s ≤ (1 + δ1)s∗ log ep

s∗ under the posterior

distribution. It improves the corresponding bounds in [14, 15] at a constant level. The result

(10) achieves the minimax optimal prediction rate with no assumption on the design matrix

X, which is comparable to the frequentist result in [8]. Slight improvement of (10) will be

discussed in Section 5.10.

Besides optimal prediction rate, we are ready to obtain optimal estimation rates given

(10) and (9). Define

κ2 = min
{b6=0:‖b‖0≤(2+δ)s∗}

‖Xb‖√
n‖b‖

and κ1 = min
b 6=0:‖b‖0≤(2+δ)s∗

√
s∗‖Xb‖√
n‖b‖1

. (11)

Note that κ2 is the restricted eigenvalue constant [12, 7] and κ1 is the compatibility constant

[10].

Corollary 5.4. Under the setting of Corollary 5.5, we have

E
(
‖β − β∗‖2 > M

s∗ log ep
s∗

nκ2
2

∣∣∣Y ) ≤ 2 exp
(
−(C ′ + C ′′)s∗ log

ep

s∗

)
and

E
(
‖β − β∗‖21 > M

(s∗)2 log ep
s∗

nκ2
1

∣∣∣Y ) ≤ 2 exp
(
−(C ′ + C ′′)s∗ log

ep

s∗

)
for the same constants M,C ′, C ′′ in Corollary 5.5.

Compared with the minimax rates [18, 54], Corollary 5.4 obtains optimal estimation rates

for both `2 and `1 loss functions. Moreover, the dependence on the quantities κ2 and κ1 are

optimal [44], compared with the Lasso estimator and the spike and slab prior [15]. When

κ � κ1 � κ2, the rates of Lasso depend on κ through κ4 for both the loss ‖·‖2 [7] and the loss

‖·‖21 [52], and the rates of the spike and slab prior depend on κ through κ6 for the loss ‖·‖2

and κ8 for the loss ‖·‖21 [15], while we obtain the optimal dependence κ2 in Corollary 5.4.

The results on `∞ convergence and model selection for sparse linear regression are not

implied by the general theory. We are going to treat it separately in Section 6.
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5.4 Linear regression with group sparsity

Let us consider a multiple regression set up XB for X ∈ Rn×p and B ∈ Rp×m. The matrix

B collects regression coefficients from m regression problems. We assume the m regression

coefficients share the same support. That is, there is some S ⊂ [p] such that BSc∗ = 0. In

other words, S is the nonzero rows of B. The concept of group sparsity was proposed by

[3, 58], and frequentist statistical properties were analyzed by [34].

To apply a Bayes procedure, let us write the problem in a general form by Z = S, τ = s,

T = [p], Z = {S ⊂ [p] : |S| = s}, `(Zs) = ms and Q = BS∗. Then, we have the representation

XZ(Q) = X∗SBS∗ = XB. The choice ε(Zs) = s
(
m+ log ep

s

)
satisfies the conditions (4) and

(6). The prior distribution Π is similar to that used in Section 5.3.

1. Sample s ∼ π from [p], where π(s) ∝ Γ(s)
Γ(s/2) exp

(
−Ds

(
m+ log ep

s

))
;

2. Conditioning on s, sample S uniformly from {S ⊂ [p] : |S| = s, det(XT
∗SX∗S) > 0};

3. Conditioning on (s, S), sample BS∗ ∼ fs,S,λ with fs,S,λ(BS∗) ∝ e−λ‖X∗SBS∗‖F and set

BSc∗ = 0.

Note that we also use Z̄s in Step 3 as what we have done for sparse linear regression. Assume

the data is generated by Y = XB∗ + W for some matrix B∗ with support S∗ and sparsity

s∗. Again, without loss of generality, we assume S∗ ∈ Z̄s∗ . The noise matrix W is assumed

to be the sub-Gaussian in the sense of (5).

Corollary 5.5. For any B∗, S∗ ∈ Z̄s∗ and s∗ specified above, any constants λ, ρ > 0 and any

sufficiently small constant δ ∈ (0, 1), there exists some constant Dλ,δ,ρ > 0 only depending on

λ, δ, ρ such that

EΠ
(
s > (1 + δ)s∗

∣∣∣Y ) ≤ exp
(
−C ′s∗

(
m+ log

ep

s∗

))
and

EΠ
(
‖XB −XB∗‖2F > Ms∗

(
m+ log

ep

s∗

) ∣∣∣Y ) ≤ exp
(
−C ′′s∗

(
m+ log

ep

s∗

))
for any constant D > Dλ,δ,ρ with some constants M,C ′, C ′′ only depending on λ, δ, ρ,D.

The posterior contraction rate for the prediction loss is s∗
(
m+ log ep

s∗

)
, which is minimax

optimal according to [34, 39]. Posterior contraction for various estimation loss functions can

also be derived in a similar way as in Section 5.3, and we omit the details.

5.5 Multi-task learning

Multi-task learning is another name for multiple linear regression in the form of XB with

X ∈ Rn×p and B ∈ Rp×m. As opposed to m independent linear regression problems, a

typical multi-task learning setting assumes some dependent structure among the columns

of the coefficient matrix B. The group sparsity assumption considered in Section 5.4 is an

example where the columns of B share the same support. In this section, we assume a
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clustering structure among the columns of B. That is, B∗j = Q∗z(j) for some z ∈ [k]m and

Q ∈ Rp×k. In other words, the m regression coefficient vectors are allowed to choose from k

possibilities. When the design X is an identity matrix, it reduces to an ordinary clustering

problem.

Let us write the multi-task learning problem in the general form. This can be done

by letting Z = z, τ = k, T = [m], Zk = [k]m and `(Zk) = pk. Moreover, we have the

representation [XZ(Q)]∗j = XQ∗z(j). The complexity function ε(Zτ ) = pk +m log k satisfies

the conditions (4) and (6). The general prior distribution Π can be specialized to this case.

Consider a full rank design matrix that det(XTX) > 0.

1. Sample k ∼ π from [p], where π(k) ∝ Γ(pk)
Γ(pk/2) exp (−D(pk +m log k));

2. Conditioning on k, sample z uniformly from [k]m;

3. Conditioning on (k, z), sample Q ∼ fk,z,λ with fk,z,λ(Q) ∝ e−λ
√∑

j ‖XQz(j)∗‖2 ;

4. Set B∗j = Q∗z(j) for all j ∈ [m].

Note that in Step 2, we use Zk = [k]m because Z̄k = Zk, which is due to det(XTX) > 0.

The full rankness of the design matrix implicitly implies p ≤ n. In fact, the assumption

det(XTX) > 0 is without loss of generality, because whenever det(XTX) = 0, one can simply

use a subset of the variables that are linearly independent without affecting the prediction

error.

To state the result of posterior contraction, let us assume that the data is generated as

Y = XB∗ + W for some matrix B∗ satisfying B∗∗j = Q∗∗z∗(j) with some Q∗ and z∗ ∈ [k∗]m.

The noise matrix is assumed to satisfy (5).

Corollary 5.6. For any B∗ and k∗ specified above, any constants λ, ρ > 0 and any sufficiently

small constant δ ∈ (0, 1), there exists some constant Dλ,δ,ρ > 0 only depending on λ, δ, ρ such

that

EΠ
(
pk +m log k > (1 + δ)(pk∗ +m log k∗)

∣∣∣Y ) ≤ exp
(
−C ′(pk∗ +m log k∗)

)
and

EΠ
(
‖XB −XB∗‖2F > M(pk∗ +m log k∗)

∣∣∣Y ) ≤ exp
(
−C ′′(pk∗ +m log k∗)

)
for any constant D > Dλ,δ,ρ with some constants M,C ′, C ′′ only depending on λ, δ, ρ,D.

The posterior contraction rate for multi-task learning is pk∗ +m log k∗, which is smaller

than the rate pm for m independent linear regressions. When m log k∗ ≤ pk∗, the rate

becomes pk∗ + m log k∗ � pk∗. In this case, the procedure performs as well as when the

clustering structure z∗ is known. According to [38], the rate pk∗ + m log k∗ is minimax

optimal.
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5.6 Dictionary learning

Dictionary learning can be viewed as a linear regression problem without knowing the design

matrix. Mathematically, the signal matrix θ ∈ Rn×d can be represented as θ = QZ for some

Q ∈ Rn×p and Z ∈ Rp×d. Both the dictionary Q and the coefficient matrix Z are unknown.

A common assumption is that each column of Z is sparse, and the goal is to learn the latent

sparse representation of the signal. Thus, the problem is also referred to as sparse coding [43].

Recently, the minimax rate of dictionary learning has been established by [38] for estimating

the true signal matrix θ∗. In this section, we provide a Bayes solution to the adaptive

estimation problem of dictionary learning. Following [1], we consider a discrete version of

the problem. Namely, Z ∈ {−1, 0, 1}p×d. Then, the problem can be represented in a general

form by letting τ = (p, s), T = {(p, s) ∈ [n ∧ d]× [n] : s ≤ p}, Zp,s = {Z ∈ {−1, 0, 1}p×d :

maxj∈[d] |supp(Z∗j)| ≤ s} and `(Zp,s) = np. Moreover, we have the representation XZ(Q) =

QZ. The complexity function is `(Zp,s)+log |Zp,s| = np+d
(
log
(
p
s

)
+ 3 log s

)
. With ε(Zp,s) =

3
(
np+ ds log ep

s

)
, (4) and (6) are satisfied. The general prior distribution Π can be specialized

into the following sampling procedures.

1. Sample (p, s) ∼ π from T with π(p, s) ∝ Γ(np)
Γ(np/2) exp

(
−3D

(
np+ ds log ep

s

))
;

2. Given (p, s), sample Z uniformly from Z̄p,s =
{
Z ∈ Zp,s : det(ZZT ) > 0

}
;

3. Given (p, s, Z), sample Q ∼ fp,s,Z,λ with fp,s,Z,λ(Q) ∝ e−λ‖QZ‖;

4. Set θ = QZ.

Note that we have used ε(Zp,s) = 3
(
np+ ds log ep

s

)
instead of the exact `(Zτ ) + log |Zτ | in

Step 1 for simplicity.

In order to state posterior rate of contraction, we assume that the data is generated by

Y = θ∗ + W for some noise matrix W satisfying (5). The signal θ∗ is assumed to admits a

sparse representation θ∗ = Q∗Z∗. Without loss of generality, we can always let the matrix

Z∗ belong to the set Z̄p∗,s∗ . This is because when det(Z∗(Z∗)T ) = 0, there must exist some

Q1 ∈ Rn×p1 and Z1 ∈ Z̄p1,s1 such that θ∗ = Q∗Z∗ = Q1Z1.

Corollary 5.7. For any θ∗ = Q∗Z∗ with Z∗ ∈ Z̄p∗,s∗ specified above, any constants λ, ρ > 0

and any sufficiently small constant δ ∈ (0, 1), there exists some constant Dλ,δ,ρ > 0 only

depending on λ, δ, ρ such that

EΠ

(
np+ ds log

ep

s
> (1 + δ)

(
np∗ + ds∗ log

ep∗

s∗

) ∣∣∣Y ) ≤ exp

(
−C ′

(
np∗ + ds∗ log

ep∗

s∗

))
and

EΠ

(
‖θ − θ∗‖2F > M

(
np∗ + ds∗ log

ep∗

s∗

) ∣∣∣Y ) ≤ exp

(
−C ′′

(
np∗ + ds∗ log

ep∗

s∗

))
for any constant D > Dλ,δ,ρ with some constants M,C ′, C ′′ only depending on λ, δ, ρ,D.
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The rate we have obtained from (5.7) is np∗ + ds∗ log ep∗

s∗ , which is minimax optimal

according to [38]. The result can be extended to the case where the entries of Z∗ are allowed

to take values in an arbitrary discrete set with finite cardinality. To the best of our knowledge,

this is the first adaptive estimation result for dictionary learning with optimal prediction rate.

5.7 Nonparametric graphon estimation

Consider a random graph with adjacency matrix {Aij} ∈ {0, 1}n×n, whose sampling proce-

dure is determined by

(ξ1, ..., ξn) ∼ Pξ, Aij |(ξi, ξj) ∼ Bernoulli(θ∗ij), where θ∗ij = f∗(ξi, ξj). (12)

For i ∈ [n], Aii = θ∗ii = 0. Conditioning on (ξ1, ..., ξn), Aij = Aji is independent across

i > j. The function f∗ on [0, 1]2, which is assumed to be symmetric, is called graphon. The

concept of graphon is originated from graph limit theory [29, 37, 17, 36] and the studies of

exchangeable arrays [2, 31]. It is the underlying nonparametric object that generates the

random graph.

Let us proceed to specify the function class of graphons. Define the derivative operator

by

∇jkf(x, y) =
∂j+k

(∂x)j(∂y)k
f(x, y),

and we adopt the convention ∇00f(x, y) = f(x, y). The Hölder norm is defined as

||f ||Hα = max
j+k≤bαc

sup
x,y∈D

|∇jkf(x, y)|+ max
j+k=bαc

sup
(x,y)6=(x′,y′)∈D

|∇jkf(x, y)−∇jkf(x′, y′)|
||(x− x′, y − y′)||α−bαc

,

where D = {(x, y) ∈ [0, 1]2 : x ≥ y}. Then, the graphon class with Hölder smoothness α is

defined by

Fα(L) = {0 ≤ f ≤ 1 : ‖f‖Hα ≤ L, f(x, y) = f(y, x) for all x ∈ D} ,

where L > 0 is the radius of the class, which is assumed to be a constant. Recently, a minimax

optimal estimator of f∗ was proposed by [23] given the knowledge of α. In this section, we

propose to solve the adaptive graphon estimation via a Bayes procedure.

As argued in [23], it is sufficient to approximate a graphon with Hölder smoothness

by a piecewise constant function, which turns out to be the stochastic block model in the

random graph setting. Therefore, we apply the prior distribution in Section 5.1 by equating

f(ξi, ξj) = θij . The oracle inequality in Theorem 4.1 gives the desired bias-variance tradeoff

of the problem.

Corollary 5.8. Consider the prior distribution specified in Section 5.1. For the class Fα(L)

with α,L > 0 define above and any constant λ > 0, there exists some constant Dλ > 0 only
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depending on λ such that

sup
f∗∈Fα(L)

sup
Pξ

EΠ

 1

n2

∑
i,j∈[n]

(f(ξi, ξj)− f∗(ξi, ξj))2 > M

(
n−

2α
α+1 +

log n

n

) ∣∣∣A


≤ exp
(
−C ′

(
n

1
α+1 + n log n

))
for any constant D > Dλ with some constants M,C ′ only depending on λ,D,L.

Remark 5.1. The expectation in Corollary 5.8 is associated with the joint distribution (12)

over both {Aij} and {ξi}. Moreover, we do not assume any assumption on the distribution

on the design, and the result of Corollary 5.8 holds uniformly over all Pξ.

The posterior contraction rate we have obtained for graphon estimation is n−
2α
α+1 + logn

n ,

which is minimax optimal according to [23]. When α ∈ (0, 1), the rate is dominated by n−
2α
α+1 ,

which is the typical two-dimensional nonparametric regression rate. When α ≥ 1, the rate

becomes logn
n , which does not depend on α anymore. The key difference between graphon

estimation and nonparametric regression lies in the knowledge of the design sequence {ξi}. A

nonparametric regression problem observes the pair {(ξi, ξj), Aij}, while graphon estimation

only observes the adjacency matrix {Aij}, resulting in an extra term logn
n in the rate. To

the best of our knowledge, Corollary 5.8 is the first adaptive estimation result on graphon

estimation with optimal convergence rate.

5.8 Linear regression under weak `q ball

Section 5.3 studied high dimensional linear regression under exact sparsity. In this section,

we assume the regression coefficients are approximately sparse. Theorem 4.1 allows us to

derive optimal posterior rates of contraction even when the prior only charges signals with

exact sparsity via a bias variance tradeoff argument. Let us assume the data is generated by

Y = Xβ∗ + W ∈ Rp with some design X ∈ Rn×p and some noise vector satisfying (5). We

assume β∗ is approximately sparse by letting

β∗ ∈ Bq(k) =

{
β ∈ Rp : max

j∈[p]
j|β|q(j) ≤ k

}
with some q ∈ [0, 1], where we order the absolute values of the entries of β by |β|(1) ≥ |β|(2) ≥
... ≥ |β|(p). Namely, β∗ is assumed to have weak `q radius at most k. To facilitate the

presentation, let us define the effective sparsity by s∗ = dx∗e, where

x∗ = max

{
0 ≤ x ≤ p : x ≤ k

(
n

log(ep/x)

)q/2}
.

The effective sparsity s∗ is a function of q, k, p, n. Note that in the exact sparse case where

q = 0, we have s∗ = k. Let us use the prior distribution specified in Section 5.3, and we have

the following result.
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Corollary 5.9. Assume maxj∈[p] n
−1/2‖X∗j‖ ≤ L for some constant L > 0. For any q ∈

[0, 1], k and s∗ specified above and any constants λ, ρ > 0, there exists some constant Dλ,ρ > 0

only depending on on λ, ρ such that

sup
β∗∈Bq(k)

EΠ
(
‖Xβ −Xβ∗‖2 > Ms∗ log

ep

s∗

∣∣∣Y ) ≤ exp
(
−C ′s∗ log

ep

s∗

)
for any constant D > Dλ,ρ with some constants M,C ′ only depending on λ, ρ,D,L.

With s∗ being the effective sparsity, the posterior rate of contraction has the same form

as that of Corollary 5.5. The rate is known to be minimax optimal [18, 44]. In the special

case when k ≤ p1−η
(

log p
n

)q/2
for some constant η ∈ (0, 1), the rate has an explicit formula

in terms of k, which is s∗ log(ep/s∗)
n � k

(
log p
n

)1−q/2
. When X is an identity matrix, Corollary

5.9 reduces to the results for sparse Gaussian sequence model in [14]. Besides the prediction

error, estimation error under approximate sparsity can be derived in the same as Corollary

5.4, and we omit this part due to the similarity.

5.9 Wavelet estimation under Besov space

In this section, we apply the general prior distribution in Section 3 to establish optimal Bayes

wavelet estimation under Besov space. Assume the data is generated as

Yjk = θ∗jk +
1√
n
Wjk, k = 1, ..., 2j ; j = 0, 1, 2, ..., (13)

where {Wjk} are i.i.d. N(0, 1) variables. It is well known that the sequence model is equivalent

to Gaussian white noise model [30], and it is closely related to nonparametric regression and

density estimation [9, 42]. Under a wavelet basis, {θjk} are understood as wavelet coefficients.

We assume the true signal θ∗ = {θ∗jk} belongs to the Besov ball defined by

Θα
p,q(L) =

θ :
∑
j

2ajq‖θj∗‖qp ≤ Lq
 (14)

for some p, q, α, L > 0 and a = α + 1
2 −

1
p . The Besov ball (14) naturally induces a multi-

resolution structure of the signal. This inspires to use a sparse prior distribution indepen-

dently at each resolution level. That is, we consider a prior distribution Π on θ satisfying

Π(dθ) =
∏
j

Πj(dθj∗).

The prior distribution Πj on the jth level for j < log2 n is specified as follows:

1. Sample sj ∼ π from [2j ], where π(sj) ∝ Γ(sj)
Γ(sj/2) exp

(
−Dsj log e2j

sj

)
;

2. Conditioning on sj , sample Sj uniformly from {Sj ⊂ [2j ] : |Sj | = sj};
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3. Conditioning on (sj , Sj), sample θjSj ∼ fsj ,Sj ,λ with fsj ,Sj ,λ(θjSj ) ∝ e
−λ
√
n‖θjSj ‖ and

set θjScj = 0.

For j ≥ log2 n, let Πj(θj∗ = 0) = 1. Using Theorem 4.1 at each resolution level, we are able

to establish the posterior contraction rate in the following corollary.

Corollary 5.10. For any costants p, q, α satisfying 0 < p, q ≤ ∞, L > 0 and α ≥ 1
p and any

constant λ > 0, there exists some constant Dλ only depending on λ such that

sup
θ∗∈Θαp,q(L)

EΠ
(
‖θ − θ∗‖2 > Mn−

2α
2α+1

∣∣∣Y ) ≤ exp
(
−C ′n

1
2α+1 / log n

)
.

for any D > 0 with some constants M,C ′ only depending on λ,D, α, p, L.

The result of Corollary 5.10 can be regarded as a Bayes version of Theorem 12.1 of

[30] under the same condition. The rate n−
2α

2α+1 is minimax optimal over the class Θα
p,q(L).

Posterior contraction for (13) over the class Θα
p,q(L) has been investigated by [53, 47, 21, 27]

only for a restricted configuration of (p, q, α). In comparison, Corollary 5.10 obtains adaptive

optimal posterior contraction rates to all possible combinations of (p, q, α) considered in the

frequentist literature [30].

When p = q = 2, the class Θα
p,q(L) is equivalent to a Sobolev ball. It is worth noting

that in this case the prior distribution can be greatly simplified. Let us recast (13) into the

sequence model with single index. That is, consider data generated by

Yj = θ∗j +
1√
n
Wj , j = 1, 2, 3, ...,

with {Wj} being i.i.d. N(0, 1) variables. Assume the true signal θ∗ = {θ∗j} belongs to the

Sobolev ball defined by

Sα(L) =

θ :
∑
j

j2αθ2
j ≤ L2

 .

We use the following version of the general prior Π in Section 3.

1. Sample k ∼ π from [n], where π(k) ∝ Γ(k)
Γ(k/2) exp (−Dk);

2. Conditioning on k, sample θ[k] = (θ1, ..., θk) ∼ fk,λ with fk,λ(θ[k]) ∝ e−λ
√
n‖θ[k]‖ and set

θj = 0 for all j > k.

Note that the prior distribution has a missing step compared with the general prior in Section

3. This is because Zk = {[k]} is a set of singleton so that the model is determined by k and

we do not need to perform a further selection. Specializing Theorem 4.1 to this case, we

obtain the following result.

Corollary 5.11. For any constants α,L > 0 and any constant λ > 0, there exists some

constant Dλ only depending on λ such that

sup
θ∗∈Sα(L)

EΠ
(
‖θ − θ∗‖2 > Mn−

2α
2α+1

∣∣∣Y ) ≤ exp
(
−C ′n

1
2α+1

)
.

for any D > 0 with some constants M,C ′ only depending on λ,D, α, L.
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Thus, we have obtained rate-optimal adaptive posterior contraction over the Sobolev ball

through a very simple prior distribution.

5.10 Aggregation

Aggregation in nonparametric regression has been considered by [41, 50, 16, 56, 33] among

others. Let us start with the nonparametric regression setting with fixed design. That is, the

data is generated by

Yi = f∗(xi) +Wi, i = 1, ..., n, (15)

where the noise vector W = {Wi} is assumed to satisfy (5). The goal of nonparametric

regression is to estimate the true regression function f∗ by some estimator f̂ under the loss

‖f̂ − f‖2n =
1

n

n∑
i=1

(
f̂(xi)− f∗(xi)

)2
,

where ‖·‖n stands for the empirical `2 norm. Assume we are given a collection of functions

{f1, ..., fp}, called the dictionary, and we are also given a subset Θ ⊂ Rp. For β ∈ Θ,

define fβ =
∑p

j=1 βjfj . The goal of aggregation is to find an estimator f̂ such that its error

‖f̂ − f∗‖2n is comparable to that given by the best among the class {fβ : β ∈ Θ}. To be

specific, one seeks an f̂ that satisfies the following oracle inequality

‖f̂ − f∗‖2n ≤ (1 + δ) inf
β∈Θ
‖fβ − f∗‖2n + ∆n,p(Θ) (16)

with high probability with some arbitrarily small constant δ ∈ (0, 1) and some optimal

rate function ∆n,p(Θ) determined by the class Θ. Various types of aggregation problems

include linear, convex and model selection aggregation, etc., which is determined by the

choice of the class Θ. In this section, we provide a single Bayes solution to various types

of aggregation problems simultaneously and establish the oracle inequality (16) under the

posterior distribution.

Since the vector fβ = (fβ(x1), ..., fβ(xn)) can be represented as Xβ with the matrix X

having entries Xij = fj(xi) for all (i, j) ∈ [n]× [p], the aggregation problem can be recast as a

linear regression problem. Define r = rank(X). Without loss of generality, we assume the first

r columns of X span the column space of X. That is, span({X∗j}j∈[r]) = span({X∗j}j∈[p]).

We are going to use a modified version of the prior distribution defined in Section 5.3.

1. Sample s ∼ π from [r], where π(s) = N Γ(s)
Γ(s/2) exp

(
−Ds log ep

s

)
for s < r and π(r) =

N Γ(r)
Γ(r/2) exp(−Dr) with some normalizing constant N ;

2. Conditioning on s, sample S uniformly from Z̄s = {S ⊂ [p] : |S| = s, det(XT
∗SX∗S) > 0}

if s < r and set S = [r] if s = r;

3. Conditioning on (s, S), sample βS ∼ fs,S,λ with fs,S,λ(βS) ∝ e−λ‖X∗SβS‖ and set βSc = 0.
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The prior Π is similar to the exponential weights used for sparsity pattern aggregation by

[45, 46]. Compared with the prior in Section 5.3, it has a modified weight on the model S = [r],

which captures the intrinsic dimension of the matrixX. Assuming the data generating process

(15), we have the following result implied by Theorem 4.1.

Corollary 5.12. For any β∗ with support S∗ ∈ Z̄s∗ and sparsity s∗ = |S∗| ≤ r, any f∗, any

constants λ, ρ > 0 and any sufficiently small constant δ ∈ (0, 1), there exists some constant

Dλ,δ,ρ only depending on λ, δ, ρ such that

EΠ

(
‖fβ − f∗‖2n > (1 + δ)‖fβ∗ − f∗‖2n +M

(
r

n
∧ s
∗ log(ep/s∗)

n

) ∣∣∣Y )
≤ exp

(
−C ′

(
n‖fβ − f∗‖2n + r ∧ s∗ log

ep

s∗

))
for any constant D > Dλ,δ,ρ with some constants M,C ′ only depending on λ, δ, ρ,D.

Since rank(X) = r, it is sufficient to establish the posterior oracle inequality for all β∗

with sparsity s∗ ≤ r. Due to the modified prior weight on the model S = [r], Corollary

5.12 has a better convergence rate than Corollary 5.5. The corresponding frequentist results

[45, 46] have leading constant 1 instead of the (1 + δ) in Corollary 5.12. Since our prior

induces a subset selection procedure, the presence of an extra small constant δ cannot be

avoided [45].

Let us specialize Corollary 5.12 to various types of aggregation problems. Following

the notation in [51], define the simplex Λp = {β ∈ Rp :
∑

j βj = 1, βj ≥ 0} and the `0
ball B0(s∗) = {β ∈ Rp : |supp(β)| ≤ s∗}. Then, we consider model selection aggregation

Θ(MS) = B0(1) ∩ Λp, convex aggregation Θ(C) = Λp, linear aggregation Θ(L) = Rp, sparse

aggregation Θ(Ls) = B0(s∗) and sparse convex aggregation Θ(Cs) = B0(s∗) ∩ Λp. For these

aggregation problems, define the rate function

∆n,p(Θ) =



log p
n , Θ = Θ(MS);√

1
n log

(
1 + p√

n

)
Θ = Θ(C);

r
n , Θ = Θ(L);
s∗log ep

s∗
n , Θ = Θ(Ls);√
1
n log

(
1 + p√

n

)
∧ s∗log ep

s∗
n , Θ = Θ(Cs).

Corollary 5.13. Assume maxj∈[p] ‖fj‖n ≤ 1. For any f∗, any Θ ∈
{

Θ(MS),Θ(C),Θ(L),Θ(Ls),Θ(Cs)

}
,

any constants λ, ρ > 0 and any sufficiently small constant δ ∈ (0, 1), there exists some con-

stant Dλ,δ,ρ only depending on λ, δ, ρ such that

EΠ

(
‖fβ − f∗‖2n > (1 + δ) inf

β∈Θ
‖fβ − f∗‖2n +M

(
∆n,p(Θ) ∧ r

n

) ∣∣∣Y )
≤ exp

(
−C ′n

(
inf
β∈Θ
‖fβ − f∗‖2n + ∆n,p(Θ) ∧ r

n

))
for any constant D > Dλ,δ,ρ with some constants M,C ′ only depending on λ, δ, ρ,D.
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Corollary 5.13 provides a universal aggregation result with a single posterior distribution.

The rate is minimax optimal according to [45, 55]. Bayes aggregation was recently studied

by [57] under the model misspecification framework [32]. Corollary 5.13 is a stronger result

of posterior oracle inequality under weaker assumptions compared with that of [57]. Other

types of aggregation results such as `q aggregation can also be derived directly from Corollary

5.12. The details are omitted in this paper.

6 More results on sparse linear regression

In this section, we provide some further results on posterior contraction rates for linear

regression under the `∞ norm ‖·‖∞. First, let us consider the sparse linear regression setting

Y = Xβ +W in Section 5.3. Convergence under the `∞ norm requires stronger assumptions

than convergence under the `2 norm. Following [19, 35], we assume the mutual coherence

condition:

n−1XT
∗jX∗j = 1 for all j ∈ [p] and max

j 6=k
n−1XT

∗jX∗l ≤ τ. (17)

Assuming the data is generated by Y = Xβ∗ + W for some regression coefficient β∗ with

sparsity s∗ and some noise vector W satisfying (5), the posterior contraction under the `∞
norm by using the prior distribution specified in Section 5.3 is given in the following theorem.

Theorem 6.1. For any τ > 0 and any β∗ with sparsity s∗ satisfying τs∗ ≤ 1/9 and any

constants λ, ρ > 0, there exists some constant Dλ,ρ > 0 only depending on λ, ρ such that

EΠ

(
‖β − β∗‖∞ > M

√
log p

n

∣∣∣Y) ≤ p−C′
for any constant D > Dλ,ρ with some constants M,C ′ only depending on λ, ρ,D.

The result of convergence under the `∞ norm is obtained under the assumption τs∗ ≤ 1/9.

Such assumption was also made in [19, 11, 35, 15], and it implies the restricted eigenvalue κ2

defined in (11) to be bounded away from 0 [59]. The convergence rate
√

log p
n is optimal under

the `∞ norm. Moreover, with a standard minimal signal strength assumption, Theorem 6.1

immediately implies consistent model selection under the posterior distribution.

While the optimal convergence result for `∞ norm is well known in the frequentist liter-

ature for sparse linear regression, an analogous result for regression with group sparsity is

perhaps still open. We provide a Bayes solution to this problem. For simplicity of presenta-

tion, we consider the case of identity design Y = B +W ∈ Rp×m, and the result for the case

of a more general design can be derived in a similar way. For any subset T ⊂ [p] × [m], let

r(T ) = {i ∈ [p] : ({i} × [m]) ∩ T 6= ∅} denote the the rows selected by the set T . The prior

Π we use is defined through the following sampling procedure.

1. Sample T ∼ π in {T : T ⊂ [p]× [m]} with

π(T ) ∝ Γ(|T |)
Γ(|T |/2)

exp

(
−D

(
m|r(T )|+ |r(T )| log

ep

|r(T )|
+ |T | log

em|r(T )|
|T |

))
; (18)
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2. Conditioning on T , sampleBT ∼ fT,λ with fT,λ(BT ) ∝ e−λ
√∑

(i,j)∈T B
2
ij and setBT c = 0.

Compared to the prior distribution specified in Section 5.4, the model selection step for

the above prior has a two-level structure. Apart from the correction factor Γ(|T |)
Γ(|T |/2) , the

probability mass (18) can be viewed as the product of e
−D|S|

(
m+log ep

|S|

)
and e

−D|T | log
em|S|
|T |

with S = r(T ) denote the row support. Therefore, (18) can be understood as first picking a

row support S, and then further select a finer support from S× [m]. In comparison, the prior

specified in Section 5.4 does not have the second step. While it only produces B with support

with the form S × [m] for some S, (18) can give an arbitrary support T , which is critical

to obtain optimal convergence rate under the `∞ loss. Let us assume the data is generated

from Y = B∗ +W for some B∗ with row support S∗ and noise matrix W satisfying (5), the

posterior contraction rate is given in the following theorem.

Theorem 6.2. For any B∗ with row support S∗ and sparsity s∗ = |S∗|, any arbitrarily

small constant δ > 0 and any constants λ, ρ > 0, there exists some constant Dλ,δ,ρ > 0 only

depending on λ, δ, ρ such that

EΠ
(
|r(T )| > (1 + δ)s∗

∣∣∣Y ) ≤ exp
(
−C ′s∗

(
m+ log

ep

s∗

))
, (19)

EΠ
(
‖B −B∗‖2F > Ms∗

(
m+ log

ep

s∗

) ∣∣∣Y ) ≤ exp
(
−C ′′s∗

(
m+ log

ep

s∗

))
(20)

and

EΠ
(
‖B −B∗‖∞ > M

√
log(p+m)

∣∣∣Y ) ≤ (pm)−C
′′′

(21)

for any constant D > Dλ,δ,ρ with some constants M,C ′, C ′′, C ′′′ only depending on λ, δ, ρ,D.

To the best our knowledge, this is the first procedure that achieves the optimal rates

simultaneously for both `2 and `∞ losses. The e
−D|S|

(
m+log ep

|S|

)
part in (18) preserves the

group sparse structure and results in the optimal `2 result (20). The e
−D|T | log

em|S|
|T | part in

(18) does a further model selection in a finer resolution, thus giving optimal rate for each

coordinate in (21). The subtlety of the simultaneous adaptation under both global and local

loss functions is not reflected in an ordinary sparsity setting. When m = 1, group sparsity

reduces to ordinary sparsity and the two-level model selection prior Π is equivalent to the

prior in Section 5.3, so that a one-level model selection is sufficient for the task.

7 Proof of Theorem 4.1

Let us first introduce some notation and give the outline of the proof. Using the fact that

e−
1
2
‖Y−XZ(Q)‖2

e−
1
2
‖Y−XZ∗ (Q∗)‖2

= e−
1
2
‖XZ(Q)−XZ∗ (Q∗)‖2+〈Y−XZ∗ (Q∗),XZ(Q)−XZ∗ (Q∗)〉,

we can rewrite the posterior distribution as

Π (XZ(Q) ∈ U |Y ) =

∑
τ∈T exp(−Dε(Zτ )) 1

|Z̄τ |
∑

Z∈Z̄τ R(Z,U)∑
τ∈T exp(−Dε(Zτ )) 1

|Z̄τ |
∑

Z∈Z̄τ R(Z)
, (22)

22



where R(Z,U) is defined by√
det(X T

Z XZ)

(
λ√
π

)`(Zτ ) ∫
XZ(Q)∈U

e−
1
2
‖XZ(Q)−XZ∗ (Q∗)‖2+〈Y−XZ∗ (Q∗),XZ(Q)−XZ∗ (Q∗)〉−λ‖XZ(Q)‖dQ,

and R(Z) = R(Z,RN ). Moreover, for a class of structure indexes A ⊂ T , its posterior

distribution can be written as

Π (τ ∈ A|Y ) =

∑
τ∈A exp(−Dε(Zτ )) 1

|Z̄τ |
∑

Z∈Z̄τ R(Z)∑
τ∈T exp(−Dε(Zτ )) 1

|Z̄τ |
∑

Z∈Z̄τ R(Z)
. (23)

We are going to work with the formulas (23) and (22) to prove (7) and (8), respectively.

The main strategy is to lower bound R(Z∗) in the denominator and upper bound R(Z) or

R(Z,U) in the numerator given some events holding with high probability. For each Z ∈ Zτ ,

consider the following events

EZ =
{
|〈W,XZ(Q)−XZ∗(Q

∗)〉| ≤
√
ε∗(Zτ )‖XZ(Q)−XZ∗(Q

∗)‖ for all Q ∈ R`(Zτ )
}
,

FZ =
{
|〈W,XZ(Q)−XZ∗(Q

∗)〉| ≤
√
ε∗(Zτ∗)‖XZ(Q)−XZ∗(Q

∗)‖ for all Q ∈ R`(Zτ )
}
,

where ε∗(Zτ ) = C1ε(Zτ )+C2‖XZ∗(Q
∗)− θ∗‖2 and ε∗(Zτ∗) = C1ε(Zτ∗)+C2‖XZ∗(Q

∗)− θ∗‖2

for some constants C1, C2 to be specified later. The next lemma shows that both events hold

with high probability.

Lemma 7.1. For any constants C1 > 1 and C2 > 0, the conditions (4) and (5) imply

P(EcZ) ≤ 2 exp
(
−(ρC1/16− 5)ε(Zτ )− ρC2‖XZ∗(Q

∗)− θ∗‖2/16
)
,

P(F cZ) ≤ 2 exp
(
5`(Zτ )− ρC1ε(Zτ∗)/16− ρC2‖XZ∗(Q

∗)− θ∗‖2/16
)
.

We also need a lemma to characterize the growing rate of ε(Zτ ).

Lemma 7.2. For any β ≥ 2 and α ≥ 1, the condition (6) implies∑
{τ∈T :ε(Zτ )≤α}

exp (βε(Zτ )) ≤ 4dαe exp(βdαe);

∑
{τ∈T :ε(Zτ )>α}

exp (−βε(Zτ )) ≤ 4α exp (−βbαc) ;

∑
{τ∈T :ε(Tτ )≤α}

exp (−βε(Zτ )) ≤ 6.

The proofs of Lemma 7.1 and Lemma 7.2 are given in Section 9.
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Lower bounding R(Z∗). For Z∗ ∈ Z̄τ∗ with any τ∗ ∈ T , we lower bound R(Z∗) by(√
π

λ

)`(Zτ∗ )

R(Z∗)

=
√

det(X T
Z∗XZ∗)

∫
e−

1
2
‖XZ∗ (Q)−XZ∗ (Q∗)‖2+〈Y−XZ∗ (Q∗),XZ∗ (Q)−XZ∗ (Q∗)〉−λ‖XZ∗ (Q)‖dQ

=
√

det(X T
Z∗XZ∗)

∫
e−

1
2
‖XZ∗ (Q)‖2+〈Y−XZ∗ (Q∗),XZ∗ (Q)〉−λ‖XZ∗ (Q)+XZ∗ (Q∗)‖dQ (24)

≥ e−λ‖XZ∗ (Q∗)‖
√

det(X T
Z∗XZ∗)

∫
e−

1
2
‖XZ∗ (Q)‖2+〈Y−XZ∗ (Q∗),XZ∗ (Q)〉−λ‖XZ∗ (Q)‖dQ (25)

= e−λ‖XZ∗ (Q∗)‖
∫
e−

1
2
‖b‖2+〈Y−XZ∗ (Q∗),b〉−λ‖b‖db (26)

≥ e−λ‖XZ∗ (Q∗)‖
∫
e−

1
2
‖b‖2−λ‖b‖db exp

(∫
〈Y −XZ∗(Q

∗), b〉 e−
1
2
‖b‖2−λ‖b‖∫

e−
1
2
‖b‖2−λ‖b‖db

db

)
(27)

= e−λ‖XZ∗ (Q∗)‖
∫
e−

1
2
‖b‖2−λ‖b‖db. (28)

The equalities (24) and (26) are due to changes of variables. We also use triangle inequality

and Jensen’s inequality to derive (25) and (27), respectively. The last equality (28) uses the

fact that the distribution e−
1
2 ‖b‖

2−λ‖b‖∫
e−

1
2 ‖b‖

2−λ‖b‖db
is spherically symmetric so that its mean is zero.

Finally, let us lower bound the integral
∫
e−

1
2
‖b‖2−λ‖b‖db by∫

e−
1
2
‖b‖2−λ‖b‖db =

2π`(Zτ∗ )/2

Γ(`(Zτ∗)/2)

∫ ∞
0

r`(Zτ∗ )−1e−
1
2
r2−λrdr

≥ 2π`(Zτ∗ )/2

Γ(`(Zτ∗)/2)
e−

1
2
`(Zτ∗ )−λ

√
`(Zτ∗ )

∫ √`(Zτ∗ )

0
r`(Zτ∗ )−1dr

=
2π`(Zτ∗ )/2

`(Zτ∗)
[`(Zτ∗)]`(Zτ∗ )/2

Γ(`(Zτ∗)/2)
e−

1
2
`(Zτ∗ )−λ

√
`(Zτ∗ )

≥ 2(2π)`(Zτ∗ )/2

`(Zτ∗)
e−

1
2
`(Zτ∗ )−λ

√
`(Zτ∗ ).

Combining the above lower bound with (28), we reach the conclusion

R(Z∗) ≥ e−λ‖XZ∗ (Q∗)‖−(1+λ+λ−1)`(Zτ∗ ). (29)

Note that (29) is a deterministic lower bound for the denominator R(Z∗). The arguments

we have used to derive (29) are greatly inspired by the corresponding ones in [14, 15].

Upper bounding R(Z)IEZ . To facilitate the analysis, we introduce the object

Q̄Z = argmin
Q∈R`(Zτ )

‖XZ(Q)−XZ∗(Q
∗)‖2. (30)

The property of least squares implies the following Pythagorean identity,

‖XZ(Q)−XZ∗(Q
∗)‖2 = ‖XZ(Q)−XZ(Q̄Z)‖2 + ‖XZ(Q̄z)−XZ∗(Q

∗)‖2. (31)

24



We first analyze the exponent in the definition of R(Z) on the event EZ by

−1

2
‖XZ(Q)−XZ∗(Q

∗)‖2 + 〈Y −XZ∗(Q
∗),XZ(Q)−XZ∗(Q

∗)〉 − λ‖XZ(Q)‖

= −1

2
‖XZ(Q)−XZ∗(Q

∗)‖2 + 〈W,XZ(Q)−XZ∗(Q
∗)〉

+ 〈θ∗ −XZ∗(Q
∗),XZ(Q)−XZ∗(Q

∗)〉 − λ‖XZ(Q)‖

≤ −1

2
‖XZ(Q)−XZ∗(Q

∗)‖2 + (
√
ε∗(Zτ ) + λ)‖XZ(Q)−XZ∗(Q

∗)‖ (32)

+‖θ∗ −XZ∗(Q
∗)‖‖XZ(Q)−XZ∗(Q

∗)‖
−λ‖XZ(Q)‖ − λ‖XZ(Q)−XZ∗(Q

∗)‖

≤ 2
(√

ε∗(Zτ ) + λ
)2
−
(

1

2
− 1

8

)
‖XZ(Q)−XZ∗(Q

∗)‖2 (33)

+2‖θ∗ −XZ∗(Q
∗)‖2 +

1

8
‖XZ(Q)−XZ∗(Q

∗)‖2 − λ‖XZ∗(Q
∗)‖

≤ (4 + 2/C2)ε∗(Zτ ) + 8λ2 − 1

4
‖XZ(Q)−XZ∗(Q

∗)‖2 − λ‖XZ∗(Q
∗)‖ (34)

≤ (4 + 2/C2)ε∗(Zτ ) + 8λ2 − 1

4
‖XZ(Q)−XZ(Q̄Z)‖2 − λ‖XZ∗(Q

∗)‖. (35)

We have used Cauchy-Schwarz inequality and the event EZ to get (32). The inequality (33)

is due to the fact ab ≤ 2a2 + b2/8 for all a, b ≥ 0 and triangle inequality. By rearrangement

and the fact C2‖θ∗ −XZ∗(Q
∗)‖2 ≤ ε∗(Zτ ), we obatin (34). Finally, the inequality (35) is by

the identity (31). The above upper bound implies

R(Z)IEZ ≤
(
λ√
π

)`(Zτ )

e(4+2/C2)ε∗(Zτ )+8λ2−λ‖XZ∗ (Q∗)‖

×
√

det(X T
Z XZ)

∫
e−

1
4
‖XZ(Q)−XZ(Q̄Z)‖2dQ

=

(
λ√
π

)`(Zτ )

e(4+2/C2)ε∗(Zτ )+8λ2−λ‖XZ∗ (Q∗)‖
∫
e−

1
4
‖b‖2db

=
(
2λ
√
π
)`(Zτ )

e(4+2/C2)ε∗(Zτ )+8λ2−λ‖XZ∗ (Q∗)‖.

Using the fact that `(Zτ ) ≤ ε∗(Zτ ) by (4), we reach the conclusion

R(Z)IEZ ≤ e
(4+2/C2+log(2λ

√
π))ε∗(Zτ )+8λ2−λ‖XZ∗ (Q∗)‖. (36)

Upper bounding R(Z,U)IFZ . Let us fix U to be

U =
{
‖XZ(Q)− θ∗‖2 > (1 + δ2)‖XZ∗(Q

∗)− θ∗‖2 +Mε(Zτ∗)
}
.
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Let ξ ∈ (0, 1/4) be a constant to be specified later. When both FZ and U hold, the exponent

in the definition of R(Z,U) is bounded by

−1

2
‖XZ(Q)−XZ∗(Q

∗)‖2 + 〈Y −XZ∗(Q
∗),XZ(Q)−XZ∗(Q

∗)〉 − λ‖XZ(Q)‖

= −1

2
ξ‖XZ(Q)−XZ∗(Q

∗)‖2 + 〈W,XZ(Q)−XZ∗(Q
∗)〉+ 〈θ∗ −XZ∗(Q

∗),XZ(Q)−XZ∗(Q
∗)〉

−1

2
(1− ξ)‖XZ(Q)−XZ∗(Q

∗)‖2 − λ‖XZ(Q)‖

≤ −1

2
ξ‖XZ(Q)−XZ∗(Q

∗)‖2 + (
√
ε∗(Zτ∗) + λ)‖XZ(Q)−XZ∗(Q

∗)‖ (37)

〈θ∗ −XZ∗(Q
∗),XZ(Q)−XZ∗(Q

∗)〉 − 1

2
(1− ξ)‖XZ(Q)−XZ∗(Q

∗)‖2

−λ‖XZ(Q)−XZ∗(Q
∗)‖ − λ‖XZ(Q)‖

≤ ξ−1
(√

ε∗(Zτ∗) + λ
)2
− 1

4
ξ‖XZ(Q)−XZ∗(Q

∗)‖2 (38)

−1

2
(1− ξ)‖XZ(Q)− θ∗‖2 +

1

2
(1 + ξ)‖XZ∗(Q

∗)− θ∗‖2 + ξ 〈XZ(Q)− θ∗, θ∗ −XZ∗(Q
∗)〉

−λ‖XZ∗(Q
∗)‖

≤ ξ−1
(√

ε∗(Zτ∗) + λ
)2
− 1

4
ξ‖XZ(Q)−XZ∗(Q

∗)‖2 − λ‖XZ∗(Q
∗)‖ (39)

−1

2
(1− 2ξ)‖XZ(Q)− θ∗‖2 +

1

2
(1 + 2ξ)‖XZ∗(Q

∗)− θ∗‖2

≤ 8δ−1
2 λ2 − 1

8
Mε(Zτ∗)−

1

2
δ2‖XZ∗(Q

∗)− θ∗‖2 (40)

1

16
δ2‖XZ(Q)−XZ(Q̄Z)‖2 − λ‖XZ∗(Q

∗)‖.

We have used Cauchy-Schwarz inequality and the event FZ to get (37). The inequality (38)

is due to the fact ab ≤ a2 + b2/4 for all a, b ≥ 0 and triangle inequality. Then, (39) is by

rearranging (38). Finally, we have set

ξ =
1

4
δ2 and C2 =

1

32
δ2

2 (41)

and used (31) to obtain (40) on the event U for all M > 64δ−1
2 C1. Using the above bound,

we have

R(Z,U)IFZ ≤
(
λ√
π

)`(Zτ )

e−λ‖XZ∗ (Q∗)‖+8δ−1
2 λ2− 1

8
Mε(Zτ∗ )− 1

2
δ2‖XZ∗ (Q∗)−θ∗‖2

×
√

det(X T
Z XZ)

∫
e−

1
16
δ2‖XZ(Q)−XZ(Q̄Z)‖2dQ

=

(
4λ√
δ2

)`(Zτ )

e−λ‖XZ∗ (Q∗)‖+8δ−1
2 λ2− 1

8
Mε(Zτ∗ )− 1

2
δ2‖XZ∗ (Q∗)−θ∗‖2 .

by the same argument in deriving (36). By `(Zτ ) ≤ ε∗(Zτ ) from (4), we reach the conclusion

R(Z,U)IFZ ≤ e
−λ‖XZ∗ (Q∗)‖− 1

16
Mε(Zτ∗ )− 1

2
δ2‖XZ∗ (Q∗)−θ∗‖2 , (42)
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for all M > max
{

64δ−1
2 C1, 16 log(4λ/

√
δ2) + 128δ−1

2 λ2
}

.

After obtaining the bounds (29), (36) and (42), we are really to prove the main results.

Proof of (7). First, we use (29) and (36) to bound the ratio R(Z)IEZ/R(Z∗).

|Z̄τ∗ |
R(Z)IEZ
R(Z∗)

≤ e8λ2 |Zτ∗ |
e[4C1+2C1/C2+C1 log(2λ

√
π)]ε(Zτ )+[4C2+2+C2 log(2λ

√
π)]‖XZ∗ (Q∗)−θ∗‖2

e−(1+λ+λ−1)`(Zτ∗ )

≤ e8λ2 exp
(
(1 + λ+ λ−1)ε(Zτ∗) + C ′1ε(Zτ ) + C ′2‖XZ∗(Q

∗)− θ∗‖2
)
,

where C ′1 = 4C1 + 2C1/C2 +C1 log(2λ
√
π) and C ′2 = 4C2 + 2 +C2 log(2λ

√
π). Let us use the

formula (23) with

A =
{
ε(Zτ ) > (1 + δ1)ε(Zτ∗) + δ1‖XZ∗(Q∗)− θ∗‖2

}
.

By Z∗ ∈ Z̄τ∗ , we have

EΠ(τ ∈ A|Y ) ≤
∑
τ∈A

exp (−Dε(Zτ ))

exp (−Dε(Zτ∗))
|Z̄τ∗ |
|Z̄τ |

∑
Z∈Z̄τ

E
R(Z)IEZ
R(Z∗)

(43)

+
∑
τ∈A

∑
Z∈Z̄τ

P(EcZ). (44)

We use Lemma 7.2 to bound (43) by

exp
(
8λ2 + (D + λ+ λ−1 + 1)ε(Zτ∗) + C ′2‖XZ∗(Q

∗)− θ∗‖2
)∑
τ∈A

exp
(
−(D − C ′1)ε(Zτ )

)
≤ 4eD+8λ2 exp

(
−
(
(D − C ′1 − 1)δ1 − C ′2

)
‖XZ∗(Q

∗)− θ∗‖2
)

× exp
(
−
(
(D − C ′1 − 1)(1 + δ1)− (D + λ+ λ−1 + 1)

)
ε(Zτ∗)

)
≤ 4eD+8λ2 exp

(
−δ1D

2
‖XZ∗(Q

∗)− θ∗‖2 − δ1D

2
ε(Zτ∗)

)
,

for D > max
{
λ+λ−1+1+2(C′1+1)

δ1/2
, 2(C ′1 + 1) +

2C′2
δ1

}
. Using Lemma 7.1, Lemma 7.2 and (4),

the second term (44) is bounded by

2 exp
(
−C2‖XZ∗(Q

∗)− θ∗‖2/16
)∑
τ∈A

exp (−(ρC1/16− 6)ε(Zτ ))

≤ 8e14 exp

(
− δ2

2

512
‖XZ∗(Q

∗)− θ∗‖2 − 7ε(Zτ∗)
)
,

for C1 = max{1, 224/ρ} and the value of C2 is set in (41). Letting δ2 = 8
√
δ1/ρ = 8

√
δ/ρ,

we obtain the desired result by combining the bounds of (43) and (44).

Proof of (8). Let us first use (29) and (42) to bound the ratio R(Z,U)IFZ/R(Z∗). That is,

R(Z,U)IFZ
R(Z∗)

≤ exp

(
−
(
M/16− (1 + λ+ λ−1)

)
ε(Zτ∗)−

1

2
δ2‖XZ∗(Q

∗)− θ∗‖2
)

≤ exp

(
−M

32
ε(Zτ∗)−

1

2
δ2‖XZ∗(Q

∗)− θ∗‖2
)
,
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for M > max
{

64δ−1
2 C1, 16 log(4λ/

√
δ2) + 128δ−1

2 λ2, 32(1 + λ+ λ−1)
}

. By the formula (22),

we have

EΠ(U |Y ) ≤
∑

τ∈T ∩Ac

exp (−Dε(Zτ ))

exp (−Dε(Zτ∗))
|Z̄τ∗ |
|Z̄τ |

∑
Z∈Z̄τ

E
R(Z,U)IFZ
R(Z∗)

(45)

+
∑

τ∈T ∩Ac

∑
Z∈Z̄τ

P(F cZ) (46)

+EΠ(τ ∈ A|Y ) (47)

The bound of (47) has been derived in the proof of (7). Using Lemma 7.2, we bound (45) by

exp

(
−
(
M

32
−D

)
ε(Zτ∗)−

1

2
δ2‖XZ∗(Q

∗)− θ∗‖2
) ∑
τ∈T ∩Ac

exp (−Dε(Zτ ))

≤ 6 exp

(
−M

64
ε(Zτ∗)−

1

2
δ2‖XZ∗(Q

∗)− θ∗‖2
)
,

for M > max
{

64δ−1
2 C1, 16 log(4λ/

√
δ2) + 128δ−1

2 λ2, 32(1 + λ+ λ−1), 64D
}

. Using Lemma

7.1, Lemma 7.2 and (4), the term (46) is bounded by

2 exp
(
−ρC1ε(Zτ∗)/16− ρC2‖XZ∗(Q

∗)− θ∗‖2
) ∑
τ∈T ∩Ac

exp (5ε(Zτ ))

≤ 8e6 exp

(
−
(
ρC1

16
− 2

)
ε(Zτ∗)− (ρC2 − δ1) ‖XZ∗(Q

∗)− θ∗‖2
)

= 8e6 exp
(
−12ε(Zτ∗)− δ1‖XZ∗(Q

∗)− θ∗‖2
)
,

by the relation C2 = δ2
2/32, C1 = max{1, 224/ρ} and δ2 = 8

√
δ1/ρ = 8

√
δ/ρ. The proof is

complete by combining the bounds of (45), (46) and (47).

8 Proofs of corollaries

Proofs of Corollary 4.1 and Corollaries 5.1-5.7. Corollary 4.1 is a direct consequence of The-

orem 4.1 by letting θ∗ = XZ∗(Q
∗). Except Corollary 5.4, Corollaries 5.1-5.7 are special

cases of Corollary 4.1 in different model settings. By the definitions of κ1 and κ2, we have

‖β − β∗‖2 ≤ κ−2
2 ‖Xβ −Xβ∗‖2/n and ‖β − β∗‖21 ≤ κ−2

1 s∗‖Xβ −Xβ∗‖2/n, which implies

Corollary 5.4 from Corollary 5.5.

Proof of Corollary 5.8. For any ξ, recall that f(ξi, ξj) = θij = Qz(i)z(j). Then, (8) of Theorem

4.1 implies that∑
i,j

(f(ξi, ξj)− f∗(ξi, ξj))2 ≤ (1 + δ2)
∑
i,j

(
Q∗z∗(i)z∗(j) − f

∗(ξi, ξj)
)2

+M
(
(k∗)2 + n log k∗

)
under the posterior distribution for any k∗ ∈ [n], any z∗ ∈ [k∗]n and any Q∗ ∈ R(k∗)2 . Lemma

2.1 of [23] implies there exist some z∗ ∈ [k∗]n and some Q∗ ∈ R(k∗)2 such that∑
i,j

(
Q∗z∗(i)z∗(j) − f

∗(ξi, ξj)
)2
≤ C3L

2n2

(
1

k∗

)α∧1

,
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for any f∗ ∈ Fα(L) and some absolute constant C3 > 0. Therefore,

1

n2

∑
i,j

(f(ξi, ξj)− f∗(ξi, ξj))2 ≤M ′
((

1

k∗

)α∧1

+

(
k∗

n

)2

+
log k∗

n

)
.

The proof is complete by choosing k∗ = dn
1

α∧1+1 e.

Proof of Corollary 5.9. The case q = 0 is Corollary 5.5. We consider q ∈ (0, 1]. For the

effective sparsity defined in Section 5.8, (8) of Theorem 4.1 implies that

‖Xβ −Xβ∗‖2 ≤ (1 + δ2)‖Xβ0 −Xβ∗‖2 +Ms∗ log
ep

s∗

under the posterior distribution for all β0 ∈ B0(s∗). By the “Maurey argument” (see Lemma

7.2 in [51]),
1

n
‖Xβ0 −Xβ∗‖2 ≤ L2k2/q(s∗)1−2/q,

for all β∗ ∈ Bq(k). Therefore,

1

n
‖Xβ −Xβ∗‖2 ≤M ′

(
k2/q(s∗)1−2/q +

s∗ log ep
s∗

n

)
.

By the definition of the effective sparsity s∗, we obtain the desired result.

Proof of Corollary 5.10. First, we note that by slightly modifying the proof of Theorem 4.1,

we can have a more general version of (8), which is

EΠ
(
‖XZ(Q)− θ∗‖2 > (1 + δ2)‖XZ∗(Q

∗)− θ∗‖2 +Mε(Zτ∗) + t
∣∣∣Y )

≤ exp
(
−C ′′

(
ε(Zτ∗) + ‖XZ∗(Q

∗)− θ∗‖2 + t
))
, (48)

for all t ≥ 0. For every j < log2 n, the model induced by the prior can be represented in

the general framework by letting Zj = Sj , τj = sj , Tj = [2j ], Zsj = {Sj ⊂ [2j ] : |Sj | = sj},
`(Zsj ) = sj and Qj =

√
nθjSj . Then, we have the representation XZj (Qj) =

√
n(θTjSj , 0

T
jScj

)T .

The complexity function is εj(Zsj ) = 2sj log e2j

sj
, which satisfies (4) and (6). By (48) and

letting t = n
1

2α+1 / log2 n, we have

EΠ

(
n‖θj∗ − θ∗j∗‖2 > (1 + δ2)n‖θ̄j∗ − θ∗j∗‖2 + 2Ms∗j log

e2j

s∗j
+
n

1
2α+1

log2 n

∣∣∣Yj∗)

≤ exp

(
−C ′′n

1
2α+1

log2 n

)
,

for any θ̄j∗ ∈ R2j with sparsity s∗j . Since θ∗ ∈ Θα
p,q(L) implies ‖θ∗j∗‖p ≤ L2−aj , we have

‖θ̄j∗ − θ∗j∗‖2 ≤ C∗r2j ,p(L2−aj , n−1/2)
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for some absolute constant C∗ > 0 by the proof of Theorem 11.7 in [30], where r2j ,p(L2−aj , n−1/2)

is the control function defined in Section 11.5 of [30]. Therefore,

EΠ(Gcj |Yj∗) ≤ exp

(
−C ′′n

1
2α+1

log2 n

)

for all j < log2 n, where

Gj =

{
‖θj∗ − θ∗j∗‖2 ≤M ′r2j ,p(L2−aj , n−1/2) +

n−
2α

2α+1

log2 n

}
.

Moreover, Π(θj∗ = 0|Yj∗) = 1 for all j ≥ log2 n by the definition of the prior. Using the

independence structure of the posterior distribution, we have

EΠ
((
∩j<log2 nGj

)c |Y ) ≤ ∑
j<log2 n

EΠ(Gcj |Y ) =
∑

j<log2 n

EΠ(Gcj |Yj∗)

≤ (log2 n) exp

(
−C ′′n

1
2α+1

log2 n

)
≤ exp

(
−C̄ n

1
2α+1

log n

)
.

Finally, the event ∩j<log2 nGj and θj∗ = 0 for all j ≥ log2 n implies

‖θ − θ∗‖2 ≤
∑

j<log2 n

‖θj∗ − θ∗j∗‖2 +
∑

j≥log2 n

‖θ∗j∗‖2

≤ M ′
∑

j<log2 n

(
r2j ,p(L2−aj , n−1/2) +

n−
2α

2α+1

log2 n

)
+

∑
j≥log2 n

‖θ∗j∗‖2

≤ M ′′n−
2α

2α+1 ,

where the last inequality follows the proof of Theorem 12.1 in [30] under the assumption

α ≥ 1
p . Hence, the proof is complete.

Proof of Corollary 5.11. Let us write the model induced by the prior distribution in the

general framework by letting Z = [k], τ = k, T = [n], Zk = {[k]}, `(Zk) = k and Q =
√
nθ[k].

Then, we have the representation XZ(Q) =
√
n(θT[k], 0

T
[k]c)

T . The complexity function ε(Zk)
is 2k, which satisfies (4) and (6). Then, (8) of Theorem 4.1 implies that

EΠ
(
n‖θ − θ∗‖2 > (1 + δ2)n‖θ̄ − θ∗‖2 + 2Mk∗

∣∣∣Y ) ≤ exp
(
−C ′′

(
k∗ + ‖θ̄ − θ∗‖2

))
for any θ̄ satisfying θ̄j = 0 for j > k∗. Since θ∗ ∈ Sα(L), there exists some θ̄ satisfying θ̄j = 0

for j > k∗ such that ‖θ̄ − θ∗‖2 ≤ L2(k∗)−2α. Therefore, ‖θ − θ∗‖2 ≤M ′
(
(k∗)−2α + k∗

n

)
under

the posterior distribution. Letting k∗ = dn
1

2α+1 e, the proof is complete.

Proof of Corollary 5.12. Note that the model induced by the prior distribution can be written

in a general way by letting Z = S, τ = s, T = [r], Zs = {S ⊂ [p] : |S| = s} if s < r and

Zr = {[r]}, `(Zs) = s and Q = βS . Then, we have the representation XZ(Q) = X∗SβS = Xβ.
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The complexity function we choose is ε(Zs) = 2s log ep
s for s < r and ε(Zr) = 2r. It is easy

to check that ε(Zs) satisfies (4) and (6). Using (8) of Theorem 4.1, we have

EΠ

(
‖fβ − f∗‖2n > (1 + δ2)‖fβ∗ − f∗‖2n + 2M

s∗ log(ep/s∗)

n

∣∣∣Y )
≤ exp

(
−C ′′

(
n‖fβ∗ − f∗‖2n + s∗ log

ep

s∗

))
,

for any β∗ with sparsity s∗. For this β∗, there exists some β1 such that supp(β1) ⊂ [r] and

fβ∗ = fβ1 . Therefore, (8) of Theorem 4.1 implies

EΠ
(
‖fβ − f∗‖2n > (1 + δ2)‖fβ1 − f∗‖2n + 2M

r

n

∣∣∣Y )
≤ exp

(
−C ′′

(
n‖fβ1 − f∗‖2n + r

))
.

Combining the two results by union bound, the proof is complete.

Proof of Corollary 5.13. Using the corresponding arguments in [46, 51], Corollary 5.13 is

implied by Corollary 5.12.

9 Proofs of technical results

Proof of Lemma 7.1. Consider Q̄Z defined in (30). Then, we have the bound

|〈W,XZ(Q)−XZ∗(Q
∗)〉|

≤ ‖XZ(Q)−XZ(Q̄Z)‖
∣∣∣∣〈W, XZ(Q)−XZ(Q̄Z)

‖XZ(Q)−XZ(Q̄Z)‖

〉∣∣∣∣
+‖XZ(Q̄Z)−XZ∗(Q

∗)‖
∣∣∣∣〈W, XZ(Q̄Z)−XZ∗(Q

∗)

‖XZ(Q̄Z)−XZ∗(Q∗)‖

〉∣∣∣∣
≤ max

{∣∣∣∣〈W, XZ(Q)−XZ(Q̄Z)

‖XZ(Q)−XZ(Q̄Z)‖

〉∣∣∣∣ , ∣∣∣∣〈W, XZ(Q̄Z)−XZ∗(Q
∗)

‖XZ(Q̄Z)−XZ∗(Q∗)‖

〉∣∣∣∣}
×
√

2
√
‖XZ(Q)−XZ(Q̄Z)‖2 + ‖XZ(Q̄Z)−XZ∗(Q∗)‖2

=
√

2 max

{∣∣∣∣〈W, XZ(Q)−XZ(Q̄Z)

‖XZ(Q)−XZ(Q̄Z)‖

〉∣∣∣∣ , ∣∣∣∣〈W, XZ(Q̄Z)−XZ∗(Q
∗)

‖XZ(Q̄Z)−XZ∗(Q∗)‖

〉∣∣∣∣} ‖XZ(Q)−XZ∗(Q
∗)‖,

where the last equality is due to (31). By (5),
∣∣∣〈W, XZ(Q̄Z)−XZ∗ (Q∗)

‖XZ(Q̄Z)−XZ∗ (Q∗)‖

〉∣∣∣ ≤ 1√
2

√
ε∗(Zτ ) with

probabilty at least 1− exp(−ρε∗(Zτ )/4). Now it is sufficient to bound.

sup
Q∈R`(Zτ )

∣∣∣∣〈W, XZ(Q)−XZ(Q̄Z)

‖XZ(Q)−XZ(Q̄Z)‖

〉∣∣∣∣ = sup
Q∈R`(Zτ ),‖XZ(Q)‖≤1

|〈W,XZ(Q)〉| .

A standard discretization argument as Lemma A.1 in [23] gives

sup
Q∈R`(Zτ ),‖XZ(Q)‖≤1

|〈W,XZ(Q)〉| ≤ 2 max
1≤l≤L

|〈W,XZ(Ql)〉| ,
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where {Ql}1≤l≤L is a subset of {Q ∈ R`(Zτ ) : ‖XZ(Q)‖ ≤ 1} such that for any Q ∈ R`(Zτ )

with ‖XZ(Q)‖ ≤ 1, there exists an l ∈ [L] that satisfies ‖XZ(Q−Ql)‖ ≤ 1/2 and a covering

number argument gives the bound L ≤ exp (5`(Zτ )). Using union bound together with (5),

we have max1≤l≤L |〈W,XZ(Ql)〉| ≤ 1
2
√

2

√
ε∗(Zτ ) with probability at least

1− exp (5`(Zτ )− ρε∗(Zτ )/16) ≥ 1− exp
(
−(ρC1/16− 5)ε(Zτ )− ρC2‖XZ∗(Q

∗)− θ∗‖2/16
)
,

where we have used the condition (4). Using union bound again, we have

√
2 max

{∣∣∣∣〈W, XZ(Q)−XZ(Q̄Z)

‖XZ(Q)−XZ(Q̄Z)‖

〉∣∣∣∣ , ∣∣∣∣〈W, XZ(Q̄Z)−XZ∗(Q
∗)

‖XZ(Q̄Z)−XZ∗(Q∗)‖

〉∣∣∣∣} ≤ C1

√
ε∗(Zτ ),

with probability at least 1 − 2 exp
(
−(ρC1/16− 5)ε(Zτ )− ρC2‖XZ∗(Q

∗)− θ∗‖2/16
)
. This

leads to the bound P(EcZ) ≤ 2 exp
(
−(ρC1/16− 5)ε(Zτ )− ρC2‖XZ∗(Q

∗)− θ∗‖2/16
)
. A simi-

lar argument also leads to the bound P(F cZ) ≤ 2 exp
(
5`(Zτ )− ρC1ε(Zτ∗)/16− ρC2‖XZ∗(Q

∗)− θ∗‖2/16
)
.

Proof of Lemma 7.2. The first inequality holds because

∑
{τ∈T :ε(Tτ )≤α}

exp (βε(Zτ )) ≤
dαe∑
t=1

∑
{τ∈T :t−1<ε(Zτ )≤t}

eβε(Zτ ) + eβ

≤
dαe∑
t=1

teβt + eβ

≤ 2dαe eβ

eβ − 1
eβdαe

≤ 4dαe exp(βdαe),

by β ≥ 2. The second inequality holds because∑
{τ∈T :ε(Zτ )>α}

exp (−βε(Zτ )) ≤
∞∑

t=bαc

∑
{τ∈T :t<ε(Zτ )≤t+1}

e−βε(Zτ )

≤
∞∑

t=bαc

(t+ 1)e−βt

≤ 2
∞∑

t=bαc

exp

(
−
(
β − log bαc

bαc

)
t

)
(49)

≤ 4α exp(βbαc),

for β ≥ 2 and α ≥ 1. The inequality (49) is because log t ≤ log bαc
bαc t for all t ≥ bαc. Finally,

∑
{τ∈T :ε(Tτ )≤α}

exp (−βε(Zτ )) ≤ 1 +
∞∑
t=1

te−β(t−1)

≤ 1 + eβ
∞∑
t=1

e−(β−1)t

≤ 6,
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for β ≥ 2.

10 Proofs in Section 6

Proof of Theorem 6.1. The assumption τs∗ ≤ 1/9 and the argument in the proof of Theorem

1 of [35] implies

max
|S|≤(2+δ)s∗

‖
(
n−1XT

∗SX∗S
)−1 ‖op ≤ max

|S|≤(2+δ)s∗
‖
(
n−1XT

∗SX∗S
)−1‖`1 ≤ 4 (50)

for δ ≤ 1/4. Define β̂S = minb ‖Y −X∗Sb‖2. Then it is easy to see that ‖Y −X∗SβS‖2 =

‖Y −X∗S β̂S‖2 + ‖X∗S(βS − β̂S)‖2. Define the distribution L(β̂S , X∗S , λ) of βS that has

density function

exp
(
−1

2‖X∗SβS −X∗S β̂S‖
2 − λ‖X∗SβS‖

)
∫

exp
(
−1

2‖X∗SβS −X∗S β̂S‖2 − λ‖X∗SβS‖
)
dβS

. (51)

Then, according to the formula of the posterior distribution, to sample β from the posterior

distribution is equivalent to first sample S from Π(S|Y ) and then sample βS ∼ L(β̂S , X∗S , λ)

to form βT = (βTS , 0
T
Sc). Hence, the posterior distribution can be represented as∑
S

Π(S|Y )ΠS(·|Y ) =
∑
S

ω(S)L(β̂S , X∗S , λ)⊗ δSc ,

where Π(S|Y ) = ω(S) and ΠS(·|Y ) = L(β̂S , X∗S , λ)⊗ δSc with

ω(S) ∝ π(|S|)
|Z̄|S||

(
λ√
π

)|S|
NX∗S β̂S ,λe

− 1
2
‖Y−X∗S β̂S‖2I{|Z̄|S|| > 0}. (52)

The number Ny,λ for any vector y and any scalar λ is defined as

Ny,λ =

∫
exp

(
−1

2
‖t− y‖2 − λ‖t‖

)
dt. (53)

Define the event

E =

{
max
j∈[p]

∣∣∣∣∣XT
j W√
n

∣∣∣∣∣ ≤ C1

√
log p

}
(54)

for some constant C1 > 0 to be determined later. We have

EΠ

(
‖β − β∗‖∞ > M

√
log p

n

∣∣∣Y)

= E
∑

|S|≤(1+δ)s∗

ω(S)ΠS

(
‖βS − β∗S‖∞ ∨ ‖β∗Sc‖∞ > M

√
log p

n

∣∣∣Y)+ EΠ(|S| > (1 + δ)s∗|Y )

≤ E
∑

|S|≤(1+δ)s∗

‖β∗Sc‖∞≤C2

√
log p
n

ω(S)ΠS

(
‖βS − β̂S‖∞ >

1

2
M

√
log p

n

∣∣∣Y) IE + E
∑

|S|≤(1+δ)s∗

‖β∗Sc‖∞>C2

√
log p
n

ω(S)IE

+P(Ec) + EΠ(|S| > (1 + δ)s∗|Y ) (55)
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for some constant C2 > 0 to be determined later. The inequality (55) is due to the inequality

‖βS − β∗S‖∞ ≤ ‖βS − β̂S‖∞ + ‖β̂S − β∗S‖ and

E ⊂

{
‖β̂S − β∗S‖∞ ≤

1

2
M

√
log p

n

}
, (56)

for all S that satisfies |S| ≤ (1 + δ)s∗ and ‖β∗Sc‖∞ ≤ C2

√
log p
n . Let us give a proof for (56).

By the definition of β̂S , we have XT
∗SX∗S β̂S = XT

∗SY = XT
∗SX∗Sβ

∗
S + XT

∗SX∗Scβ
∗
Sc + XT

∗SW ,

which implies

‖β̂S − β∗S‖∞ ≤ 4‖XT
∗SX∗S(β̂S − β∗S)‖∞/n ≤

4

n
‖XT
∗SX∗Scβ

∗
Sc‖∞ +

4

n
‖XT
∗SW‖∞.

Note that 4
n‖X

T
∗SX∗Scβ

∗
Sc‖∞ = 4

n‖X
T
∗SX∗S∗∩Scβ

∗
S∗∩Sc‖∞ ≤ 8s∗τ‖β∗Sc‖∞ ≤ C2

√
log p
n due to

‖β∗Sc‖∞ ≤ C2

√
log p
n . We also have 4

n‖X
T
∗SW‖∞ ≤

4
n maxj∈[p] |XT

j W | ≤ 4C1

√
log p
n . There-

fore, (56) is proved for some M/2 ≥ 4C1 + C2.

In view of (55), it is sufficient to bound the four terms in (55). The last term is bounded

as a result of (9). The third term is bounded by p
−
(
C1ρ
2
−1
)

using (5) and a union bound

argument. Let us give a bound for the first term.

ΠS

(
‖βS − β̂S‖∞ >

1

2
M

√
log p

n

∣∣∣Y)

≤
∑
j∈S

ΠS

(
|βj − β̂j | >

1

2
M

√
log p

n

∣∣∣Y)

≤
∑
j∈S

exp

(
−1

2
tM
√

log p

)
EΠS

(
e
√
nt|βj−β̂j |

∣∣∣Y ) , (57)

where EΠS (·|Y ) is the posterior expectation with the distribution ΠS(·|Y ) = L(β̂S , X∗S , λ)

and t > 0 is some number to be specified later. Using the formula of the density (51), for
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any unit vector v ∈ R|S|, we have

EΠS

(
e
√
ntvT (βS−β̂S)

∣∣∣Y )
=

∫
exp

(√
ntvT (βS − β̂S)− 1

2‖X∗SβS −X∗S β̂S‖
2 − λ‖X∗SβS‖

)
dβS∫

exp
(
−1

2‖X∗SβS −X∗S β̂S‖2 − λ‖X∗SβS‖
)
dβS

= e
1
2
t2‖(n−1XT

∗SX∗S)−1/2v‖2
∫

exp
(
−1

2‖X∗S(βS − β̂S − tn−1/2(n−1XT
∗SX∗S)−1v)‖2 − λ‖X∗SβS‖

)
dβS∫

exp
(
−1

2‖X∗S(β − β̂S)‖2 − λ‖X∗SβS‖
)
dβS

≤ exp

(
1

2
t2‖(n−1XT

∗SX∗S)−1/2v‖2 + λt‖(n−1XT
∗SX∗S)−1/2v‖

)
(58)

≤ exp

(
1

2
λ2 + t2‖(n−1XT

∗SX∗S)−1/2v‖2
)

≤ exp

(
1

2
λ2 + 16t2

)
, (59)

where the inequality (58) is due to a change of variable and triangle inequality and the

inequality (59) is by (50). Specializing v so that vT (βS − β̂S) = ±(βj − β̂j), we have

EΠS

(
e
√
nt|βj−β̂j |

∣∣∣Y ) ≤ EΠS

(
e
√
nt(βj−β̂j)

∣∣∣Y )+ EΠS

(
e−
√
nt(βj−β̂j)

∣∣∣Y ) ≤ 2e
1
2
λ2+16t2 .

Letting t =
√

log p, we have

ΠS

(
‖βS − β̂S‖∞ >

1

2
M

√
log p

n

∣∣∣Y) ≤ 2eλ
2/2p−(M2 −17),

which bounds the first term of (55).

Now, let us give a bound for the second term of (55). Given j = argmaxl∈[p] |β∗j |, for any

S ⊂ [p] such that j /∈ S, define S′ = S∪{j}. We are going to provide a bound for ω(S)/ω(S′)

on the event E to argue the model S′ is favored over the model S under the posterior

distribution if |β∗j | is large. Because of (50), |Z̄|S|| = |Z|S|| =
( p
|S|
)

for all |S| ≤ (1 + δ)s∗. By

(52), we have

ω(S)

ω(S′)
=
π(|S|)
π(|S′|)

( p
|S′|
)( p

|S|
) √π
λ

NX∗S β̂S ,λ
NX∗S′ β̂S′ ,λ

e−
1
2
‖Y−X∗S β̂S‖2+ 1

2
‖Y−X∗S′ β̂S′‖2 .

Since π(|S|)
π(|S′|) ≤ exp (2D log(ep)),

( p
|S′|)
( p
|S|)
≤ p,

NX∗Sβ̂S,λ
NX∗S′ β̂S′ ,λ

≤ eλ‖X∗S β̂S−X∗S′ β̂S′‖ by the definition

(53) and a change of variable, and −1
2‖Y −X∗S β̂S‖

2 + 1
2‖Y −X∗S′ β̂S′‖

2 = 1
2‖X∗S β̂S‖

2 −
1
2‖X∗S′ β̂S′‖

2, we have

ω(S)

ω(S′)
≤
√
π

λ
(ep)2D+1eλ‖X∗S β̂S−X∗S′ β̂S′‖+

1
2
‖X∗S β̂S‖2− 1

2
‖X∗S′ β̂S′‖2 . (60)
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Let PS and PS′ stand for the projection matrix onto the column spaces of X∗S and X∗S′ ,

respectively. Then X∗S β̂S = PSY and X∗S′ β̂S′ = PS′Y . Let F be the orthogonal complement

of the columns space of X∗S in the column space of X∗S′ , and then define PF to be the

associated projection matrix. It is easy to see that PS′ = PS + PF and PSPF = 0. Thus,

the exponent of (60) equals λ‖PFY ‖ − 1
2‖PFY ‖

2 ≤ −1
4‖PFY ‖

2 + λ2 ≤ −1
8‖PFXβ

∗‖2 +
1
4‖PFW‖

2 + λ2. We are going to give a lower bound on ‖PFXβ∗‖2 and an upper bound on

‖PFW‖2. To facilitate the proof, we bound ‖PSX∗j‖2 as

‖PSX∗j‖2 = XT
∗jX∗S(XT

∗SX∗S)−1XT
∗SX∗j

≤ 4n‖n−1XT
∗SX∗j‖2

≤ 8ns∗τ2 ≤ n

10
(61)

by (50) and τs∗ ≤ 1/9. The noise part ‖PFW‖2 is bounded as

‖PFW‖2 =

∥∥∥∥∥(I − PS)X∗jX
T
∗j(I − PS)

‖(I − PS)X∗j‖2
W

∥∥∥∥∥
2

≤
|XT
∗j(I − PS)W |2

‖(I − PS)X∗j‖2

≤
2|XT

∗jW |2 + 2|XT
∗jPSW |2

9n/10
(62)

≤ 8C2
1 log p, (63)

where (62) is because of (61) and (63) is derived from the event E and the following argument

that

|XT
∗jPSW |2 = |XT

∗jX∗S(XT
∗SX∗S)−1XT

∗SW |2

≤ 16n‖XT
∗jX∗S/n‖2‖XT

∗SW/
√
n‖2

≤ 32C2
1 (s∗τ)2n log p ≤ 1

2
C2

1n log p

by (50) and the event E. The signal part ‖PFXβ∗‖2 is lower bounded by

‖PFXβ∗‖ ≥ ‖(I − PS)X∗j‖|β∗j | −
∑

l∈S∗∩(S∪{j})c

|XT
∗j(I − PS)X∗l|
‖(I − PS)X∗j‖

|β∗l |,

where the first term on the right hand side above is lower bounded by
√

9n/10|β∗j | by (61),

and the second term is upper bounded by

∑
l∈S∗∩{j}c

|β∗l |
|XT
∗jX∗l|

‖(I − PS)X∗j‖
+

∑
l∈S∗∩Sc

|β∗l |
|XT
∗jPSX∗l|

‖(I − PS)X∗j‖
≤ 7
√
n|β∗j |/9

due to (61), (50), τs∗ ≤ 1/9 and the fact |β∗j | = maxl∈[p] |β∗l |. Therefore, ‖PFXβ∗‖ ≥
√
n|β∗j |/7. When |β∗j | ≥ 400C1

√
log p
n , we have −1

8‖PFXβ
∗‖2 + 1

4‖PFW‖
2 ≤ −2C2

1 log p.
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Plugging this bound into (60), we have ω(S)
ω(S′) ≤

√
π
λ e

2D+1+λ2p−(2C2
1−2D−1), which implies∑

|S|≤(1+δ)s∗

j /∈S

ω(S)IE =
∑

|S|≤(1+δ)s∗

j /∈S

ω(S)

ω(S ∪ {j})
ω(S ∪ {j})IE ≤

√
π

λ
e2D+1+λ2p−(2C2

1−2D−1).

By letting C2 = 400C1, a mathematical induction argument in [15] leads to a bound on the

second term of (55) that ∑
|S|≤(1+δ)s∗

‖β∗Sc‖∞>C2

√
log p
n

ω(S)IE ≤ p−C3 ,

for some constant C3 depending on C1, D, λ. Moreover, C3 is increasing with C1.

Finally, combining the bounds for the four terms in (55), we get

EΠ

(
‖β − β∗‖∞ > M

√
log p

n

∣∣∣Y)

≤ 2eλ
2/2p−(M2 −17) + p−C3 + p

−
(
C1ρ
2
−1
)

+ e−C
′s∗ log ep

s∗

≤ p−C4 ,

for some M,C4 depending on ρ, λ,D.

Proof of Theorem 6.2. For BT , we use ‖·‖ to denote the `2 norm as ‖BT ‖ =
√∑

(i,j)∈T B
2
ij .

Let us first establish (19) and (20). The proof is close to that of Theorem 4.1. By the

definition of the prior, the posterior distribution has formula

Π(B ∈ U |Y ) =

∑
T α(T )R(T,U)∑
T α(T )R(T )

, (64)

where R(T,U) is defined by(
λ√
π

)|T | ∫
(BT ,0Tc )∈U

e−
1
2
‖(BT ,0Tc )−B∗‖2+〈W,(BT ,0Tc )−B∗〉−λ‖BT ‖dBT ,

R(T ) = R(T,Rp×m) and

α(T ) = exp

(
−D

(
|r(T )| log

ep

|r(T )|
+ |T | log

em|r(T )|
|T |

))
.

Moreover, for a set of subsets A, the posterior distribution can be written as

Π(T ∈ A|Y ) =

∑
T∈A α(T )R(T )∑
T α(T )R(T )

. (65)

We need to give a lower bound for R(T ∗) with T ∗ = S∗ × [m] and give upper bounds for

R(T ) and R(T,U). For each subset T , define the following events

ET =

{
|〈W, (BT , 0T c)−B∗〉| ≤

√
C1

(
m|r(T )|+ |r(T )| log

ep

|r(T )|

)
‖(BT , 0T c)−B∗‖ for all BT ∈ R|T |

}
,

FT =

{
|〈W, (BT , 0T c)−B∗〉| ≤

√
C1

(
ms∗ + s∗ log

ep

s∗

)
‖(BT , 0T c)−B∗‖ for all BT ∈ R|T |

}
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for some constant C1 > 0 to be determined later. A special case of Lemma 7.1 gives

P(EcT ) ≤ 2e
−(ρC1/16−6)

(
m|r(T )|+|r(T )| log ep

|r(T )|

)
and P(F cT ) ≤ 2e5m|r(T )|− ρC1

16 (ms∗+s∗ log ep
s∗ ).

(66)

The same arguments used for deriving (29), (36) and (42) imply

R(T ∗) ≥ e−λ‖B
∗‖−(1+λ+λ−1)ms∗ , (67)

R(T )IET ≤ (2λ)|T |e
2λ2−λ‖B∗‖+2C1

(
m|r(T )|+|r(T )| log ep

|r(T )|

)
, (68)

R(T,U)IFT ≤ (2
√

2λ)|T |e2λ2−λ‖B∗‖−( 1
8
M−2C1)(ms∗+s∗ log ep

s∗ ), (69)

with U =
{
‖B −B∗‖ > M

(
ms∗ + s∗ log ep

s∗

)}
. Let A = {|r(T )| > (1 + δ)s∗}. By the formula

(65) and the inequalities (67) and (68), we have

EΠ(T ∈ A|Y )

≤
∑
T∈A

α(T )

α(T ∗)
E
R(T )

R(T ∗)
IET +

∑
T∈A

P(EcT )

≤ e(C2+D)(ms∗+s∗ log ep
s∗ )

∑
s>(1+δ)s∗

∑
S:|S|=s

e−(D−C2)(ms+s log ep
s

)
∑

T :r(T )=S

e
−D|T | log ems

|T |

+2
∑

s>(1+δ)s∗

∑
S:|S|=s

e−(ρC1/16−7)(ms+s log ep
s )

≤ e−C
′(ms∗+s∗ log ep

s∗ )

for some sufficiently large D with C2 only depending on C1 and λ and C ′ only depending on

D, ρ, λ. By the formula (64) and the inequalities (67) and (42), we have

EΠ(B ∈ U |Y )

≤
∑
T∈Ac

α(T )

α(T ∗)
E
R(T,U)

R(T ∗)
IFT +

∑
T∈Ac

P(F cT ) + e−C
′(ms∗+s∗ log ep

s∗ )

≤ e−( 1
8
M−C3−D)(ms∗+s∗ log ep

s∗ )
∑

s≤(1+δ)s∗

∑
S:|S|=s

e−D(ms+s log ep
s

)
∑

T :r(T )=S

e
−D|T | log ems

|T |

+2e−
ρC1
16 (ms∗+s∗ log ep

s∗ )
∑

s≤(1+δ)s∗

∑
S:|S|=s

e6ms + e−C
′(ms∗+s∗ log ep

s∗ )

≤ e−C
′′(ms∗+s∗ log ep

s∗ )

for some sufficiently large M with C3 only depending on C1 and λ and C ′′ only depending

on D, ρ, λ. Hence, (19) and (20) are proved.

Now let us proceed to prove (21). We are going to use the similar argument as that of

Theorem 6.1. Note that the posterior distribution can be represented as∑
T

Π(T |Y )ΠT (·|Y ) =
∑
T

ω(T )L(YT , λ)⊗ δT c ,
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where Π(T |Y ) = ω(T ) and ΠT (·|Y ) = L(YT , λ)⊗ δT c with

ω(T ) ∝
(
λ√
π

)|T |
α(T )NYT ,λe

1
2
‖YT ‖2 .

The distribution BT ∼ L(YT , λ) is defined through the density function

N−1
YT ,λ

e−
1
2
‖BT−YT ‖2−λ‖BT ‖,

where NYT ,λ is the normalizing constant defined in (53). Define the event

E =

{
max

(i,j)∈[p]×[m]
|Wij | ≤ C1

√
log(pm)

}
for some constant C1 > 0. We have

EΠ
(
‖B −B∗‖∞ > M

√
log(pm)

∣∣∣Y )
≤ E

∑
|r(T )|≤(1+δ)s∗

ω(T )ΠT

(
‖BT − YT ‖∞ >

1

2
M
√

log(pm)
∣∣∣Y ) IE + E

∑
|r(T )|≤(1+δ)s∗

‖B∗Tc‖∞>C2

√
log(pm)

ω(T )IE

+P(Ec) + EΠ (|r(T )| > (1 + δ)s∗|Y ) . (70)

It is sufficient to bound the four terms in (70). The last term is bounded by (19). Using (5)

and a union bound argument, we bound the third term in (70) as P(Ec) ≤ (pm)
−
(
ρC2

1
2
−1

)
.

Using the same arguments in deriving (57) and (59), we have

ΠT

(
‖BT − YT ‖∞ >

1

2
M
√

log(pm)
∣∣∣Y )

≤
∑

(i,j)∈T

exp

(
−1

2
tM
√

log(pm)

)
EΠT

(
e
√
nt|Bij−Yij |

∣∣∣Y )
≤ 2eλ

2/2pme−
1
2
tM
√

log(pm)+t2 ≤ 2eλ
2/2(pm)−(M2 −2)

by choosing t =
√

log(pm). This bounds the first term of (70). Now let us provide a bound

for the first term of (70). Given some (i, j) ∈ [p]× [m], for any subset T such that (i, j) /∈ T ,

use the notation T ′ = T ∪ {(i, j)}. To facilitate the proof, we need an upper bound for

ω(T )/ω(T ′) on the event E. Direct calculation gives

ω(T )

ω(T ′)
=

√
π

λ

α(T )

α(T ′)

NYT ,λ
NYT ′ ,λ

e−
1
2
Y 2
ij .

Since α(T )
α(T ′) ≤ (epm)3D, and

NYT ,λ
NYT ′ ,λ

≤ Cλeλ|Yij | (71)
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for some constant Cλ only depending on λ, we have ω(T )/ω(T ′) ≤ Cλ
√
π
λ (epm)3Deλ|Yij |−

1
2
Y 2
ij .

The inequality (71) will be established in the end of the proof. Since

λ|Yij | −
1

2
Y 2
ij ≤ λ2 − 1

4
Y 2
ij

≤ λ2 − 1

8
(B∗ij)

2 +
1

4
W 2
ij ≤ λ2 − 1

4
C2

1 log(pm)

when |B∗ij | > 2C1

√
log(pm) on the event E. Hence,

ω(T )

ω(T ′)
IE ≤ Cλ

√
π

λ
e3D+λ2(pm)−( 1

4
C2

1−3D). (72)

Let C2 = 2C1 and define {(i1, j1), ..., (iq, jq)} to be the set such that |B∗iljl | > 2C1

√
log(pm)

for all l ∈ [q]. Then, we have

{‖B∗T c‖∞ > C2

√
log(pm)} ⊂ ∪l∈[q]{(il, jl) /∈ T},

which implies∑
|r(T )|≤(1+δ)s∗

‖B∗Tc‖∞>C2

√
log(pm)

ω(T ) ≤
∑
l∈[q]

∑
T∈{T :(il,jl)/∈T}

ω(T )

ω(T ∪ {(il, jl)})
ω(T ∪ {(il, jl)})

≤ Cλ

√
π

λ
e3D+λ2(pm)−( 1

4
C2

1−3D)
∑
l∈[q]

∑
T∈{T :(il,jl)/∈T}

ω(T ∪ {(il, jl)})

≤ (pm)−C̄

by (72) for some constant C̄ with sufficiently large C1. Combining the bounds for the four

terms in (55), we reach the conclusion (21).

Finally, let us establish (71) to close the proof. By change of variable, we have

NYT ,λ =

∫
R|T |−1

∫
R
e−

1
2
b21−

1
2
‖b2‖2−λ

√
(b1+‖YT ‖)2+‖b2‖2db1db2,

and

NYT ′ ,λ =

∫
R

∫
R|T |−1

∫
R
e−

1
2

(b21+b23)− 1
2
‖b2‖2−λ

√
(b1+‖YT ′‖)2+‖b2‖2+b23db1db2db3.

Therefore, triangle inequality implies

NYT ′ ,λ ≥ NYT ,λ
∫
R
e−

1
2
b2−λ|b|dbe−λ|‖YT ‖−‖YT ′‖| ≥ C−1

λ e−λ|Yij |,

where Cλ =
(∫

R e
− 1

2
b2−λ|b|db

)−1
. Thus, the proof is complete.
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