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Abstract

A tuning-free procedure is proposed to estimate the covariate-adjusted Gaussian graphical

model. For each finite subgraph, this estimator is asymptotically normal and efficient. As a

consequence, a confidence interval can be obtained for each edge. The procedure enjoys easy

implementation and efficient computation through parallel estimation on subgraphs or edges. We

further apply the asymptotic normality result to perform support recovery through edge-wise adap-

tive thresholding. This support recovery procedure is called ANTAC, standing for Asymptoti-

cally Normal estimation with Thresholding after Adjusting Covariates. ANTAC outperforms other

methodologies in the literature in a range of simulation studies. We apply ANTAC to identify gene-

gene interactions using an eQTL dataset. Our result achieves better interpretability and accuracy

in comparison with CAMPE.

KEYWORDS: Sparsity, Precision matrix estimation, Support recovery, High-dimensional statistics,

Gene regulatory network, eQTL
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1. INTRODUCTION

Graphical models have been successfully applied to a broad range of studies that investigate the

relationships among variables in a complex system. With the advancement of high-throughput

technologies, an unprecedented amount of features can be collected for a given system. There-

fore, the inference with graphical models has become more challenging. To better understand the

complex system, novel methods under high dimensional setting are extremely needed. Among

graphical models, Gaussian graphical models have recently received considerable attention for

their applications in the analysis of gene expression data. It provides an approach to discover and

analyze gene relationships, which offers insights into gene regulatory mechanism. However gene

expression data alone are not enough to fully capture the complexity of gene regulation. Genome-

wide expression quantitative trait loci (eQTL) studies, which simultaneously measure genetic vari-

ation and gene expression levels, reveal that genetic variants account for a large proportion of the

variability of gene expression across different individuals (Rockman & Kruglyak 2006). Some

genetic variants may confound the genetic network analysis, thus ignoring the influence of them

may lead to false discoveries. Adjusting the effect of genetic variants is of importance for the

accurate inference of genetic network at the expression level. A few papers in the literature have

considered to accommodate covariates in graphical models. See, for example, Li, Chun & Zhao

(2012), Yin & Li (2013) and Cai, Li, Liu & Xie (2013) introduced Gaussian graphical model with

adjusted covariates, and Cheng, Levina, Wang & Zhu (2012) introduced additional covariates to

Ising models.

This problem has been naturally formulated as joint estimation of the multiple regression co-

efficients and the precision matrix in Gaussian settings. Since it is widely believed that genes

operate in biological pathways, the graph for gene expression data is expected to be sparse. Many

regularization-based approaches have been proposed in the literature. Some use a joint regular-

ization penalty for both the multiple regression coefficients and the precision matrix and solve

iteratively (Obozinski, Wainwright & Jordan 2011; Yin & Li 2011; Peng, Zhu, Bergamaschi, Han,

Noh, Pollack & Wang 2010). Others apply a two-stage strategy: estimating the regression coef-
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ficients in the first stage and then estimating the precision matrix based on the residuals from the

first stage. For all these methods, the thresholding level for support recovery depends on the un-

known matrix l1 norm of the precision matrix or an irrepresentable condition on the Hessian tensor

operator, thus those theoretically justified procedures can not be implemented practically. In prac-

tice, the thresholding level is often selected through cross-validation. When the dimension p of

the precision matrix is relatively high, cross-validation is computationally intensive, with a jeop-

ardy that the selected thresholding level is very different from the optimal one. As we show in the

simulation studies presented in Section 5, the thresholding levels selected by the cross-validation

tend to be too small, leading to an undesired denser graph estimation in practice. In addition, for

current methods in the literature, the thresholding level for support recovery is set to be the same

for all entries of the precision matrix, which makes the procedure non-adaptive.

In this paper, we propose a tuning free methodology for the joint estimation of the regression

coefficients and the precision matrix. The estimator for each entry of the precision matrix or each

partial correlation is asymptotically normal and efficient. Thus a P-value can be obtained for each

edge to reflect the statistical significance of each entry. In the gene expression analysis, the P-

value can be interpreted as the significance of the regulatory relationships among genes. This

method is easy to implement and is attractive in two aspects. First, it has the scalability to handle

large datasets. Estimation on each entry is independent and thus can be parallelly computed. As

long as the capacity of instrumentation is adequate, those steps can be distributed to accommodate

the analysis of high dimensional data. Second, it has the modulability to estimate any subgraph

with special interests. For example, biologists may be interested in the interaction of genes play

essential roles in certain biological processes. This method allows them to specifically target the

estimation on those genes. An R package implementing our method has been developed and is

available on the CRAN website.

We apply the asymptotic normality and efficiency result to do support recovery by edge-wise

adaptive thresholding. This rate-optimal support recovery procedure is called ANTAC, standing

for Asymptotically Normal estimation with Thresholding after Adjusting Covariates. This work is

closely connected to a growing literature on optimal estimation of large covariance and precision
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matrices. Many regularization methods have been proposed and studied. For example, Bickel and

Levina (Bickel & Levina 2008a; Bickel & Levina 2008b) proposed banding and thresholding es-

timators for estimating bandable and sparse covariance matrices respectively and obtained rate of

convergence for the two estimators. See also El Karoui (2008) and Lam & Fan (2009). Cai, Zhang

& Zhou (2010) established the optimal rates of convergence for estimating bandable covariance

matrices. Cai & Zhou (2012) and Cai, Liu & Zhou (2012) obtained the minimax rate of conver-

gence for estimating sparse covariance and precision matrices under a range of losses including

the spectral norm loss. Most closely related to this paper is the work in Ren, Sun, Zhang & Zhou

(2013) where fundamental limits were given for asymptotically normal and efficient estimation of

sparse precision matrices. Due to the complication of the covariates, the analysis in this paper is

more involved.

We organize the rest of the paper as follows. Section 2 describes the covariate-adjusted Gaus-

sian graphical model and introduces our novel two-step procedure. Corresponding theoretical

studies on asymptotic normal distribution and adaptive support recovery are presented in Sections

3-4. Simulation studies are carried out in Section 5. Section 6 presents the analysis of eQTL data.

Proofs for theoretical results are collected in Section 7. We collect a key lemma and auxiliary

results for proving the main results in Section 8 and Appendix 9.

2. COVARIATE-ADJUSTED GAUSSIAN GRAPHICAL MODEL AND METHODOLOGY

In this section we first formally introduce the covariate-adjusted Gaussian graphical model, and

then propose a two-step procedure for estimation of the model.

2.1 Covariate-adjusted Gaussian Graphical Model

Let
(
X(i), Y (i)

)
, i = 1, ..., n, be i.i.d. with

Y (i) = Γp×qX
(i) + Z(i), (1)

where Γ is a p× q unknown coefficient matrix, and Z(i) is a p−dimensional random vector follow-

ing a multivariate Gaussian distribution N (0,Ω−1) and is independent of X(i). For the genome-

wide expression quantitative trait studies, Y (i) is the observed expression levels for p genes of the

5



i−th subject and X(i) is the corresponding values of q genetic markers. We will assume that Ω

and Γp×q are sparse. The precision matrix Ω is assumed to be sparse partly due to the belief that

genes operate in biological pathways, and the sparseness structure of Γ reflects the sensitivity of

confounding of genetic variants in the genetic network analysis.

We are particularly interested in the graph structure of random vector Z(i), which represents the

genetic networks after removing the effect of genetic markers. Let G = (V,E) be an undirected

graph representing the conditional independence relations between the components of a random

vector Z(1) = (Z11, . . . , Z1p)
T . The vertex set V = {V1, . . . , Vp} represents the components of Z.

The edge set E consists of pairs (i, j) indicating the conditional dependence between Z1i and Z1j

given all other components. In the genetic network analysis, the following question is fundamental:

Is there an edge between Vi and Vj? It is well known that recovering the structure of an undirected

Gaussian graph G = (V,E) is equivalent to recovering the support of the population precision

matrix Ω = (ωij) of the data in the Gaussian graphical model. There is an edge between Vi and

Vj , i.e., (i, j) ∈ E, if and only if ωij 6= 0. See, for example, Lauritzen (1996). Consequently, the

support recovery of the precision matrix Ω yields the recovery of the structure of the graph G.

Motivated by biological applications, we consider the high-dimensional case in this paper,

allowing the dimension to exceed or even be far greater than the sample size, min {p, q} ≥ n.

The main goal of this work is not only to provide a fully data driven and easily implementable

procedure to estimate the network for the covariate-adjusted Gaussian graphical model, but also to

provide a confidence interval for estimation of each entry of the precision matrix Ω.

2.2 A Two-step Procedure

In this section, we propose a two-step procedure to estimate Ω. In the first step of the two-step

procedure, we apply a scaled lasso method to obtain an estimator Γ̂ =
(
γ̂1, . . . , γ̂p

)T of Γ. This

procedure is tuning free. This is different from other procedures in the literature for the sparse

linear regression, such as standard lasso and Dantzig selector which select tuning parameters by

cross-validation and can be computationally very intensive for high dimensional data. In the second

step, we approximate each Z(i) by Ẑ(i) = Y (i)− Γ̂p×qX
(i), then apply the tuning-free methodology
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proposed in Ren et al. (2013) for the standard Gaussian graphical model to estimate each entry ωij

of Ω, pretending that each Ẑ(i) was Z(i). As a by-product, we have an estimator Γ̂ of Γ, which is

shown to be rate optimal under different matrix norms, however our main goal is not to estimate

Γ, but to make inference on Ω.

Step 1 Denote the n by q dimensional explanatory matrix by X =
(
X(1), . . . , X(n)

)T , where the

ith row of matrix is from the i−th sample X(i). Similarly denote the n by p dimensional response

matrix by Y =
(
Y (1), . . . , Y (n)

)T and the noise matrix by Z =
(
Z(1), . . . , Z(n)

)T . Let Yj and

Zj be the j−th column of Y and Z respectively. For each j = 1, ..., p, we apply a scaled lasso

penalization to the univariate linear regression of Yj against X as follows,

Step 1 :
{
γ̂j, σ̂

1/2
jj

}
= arg min

b∈Rq ,θ∈R+

{
‖Yj −Xb‖2

2nθ
+
θ

2
+ λ1

q∑
k=1

‖Xk‖√
n
|bk|

}
, (2)

where the weighted penalties are chosen to be adaptive to each variance V ar (X1k) such that an

explicit value can be given for the parameter λ1, for example, one of the theoretically justified

choices is λ1 =
√

2(1 + log p
log q

)/n. The scaled lasso (2) is jointly convex in b and θ. The global

optimum can be obtained through alternatively updating between b and θ. The computational cost

is nearly the same as that of the standard lasso. For more details about its algorithm, please refer

to Sun & Zhang (2012).

Define the estimate of “noise” Zj as the residue of the scaled lasso regression by

Ẑj = Yj −Xγ̂j , (3)

which will be used in the second step to make inference for Ω.

Step 2 In the second step, we propose a tuning-free regression approach to estimate Ω based on Ẑ

defined in Equation (3), which is different from other methods proposed in the literature, including

Cai et al. (2013) or Yin & Li (2013). An advantage of our approach is the ability to provide an

asymptotically normal and efficient estimation of each entry of the precision matrix Ω.

We first introduce some convenient notations for a subvector or a submatrix. For any index

subset A of {1, 2, . . . , p} and a vector W of length p, we use WA to denote a vector of length
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|A| with elements indexed by A. Similarly for a matrix U and two index subsets A and B of

{1, 2, . . . , p}, we can define a submatrix UA,B of size |A| × |B| with rows and columns of U

indexed by A and B, respectively. Let W = (W1, . . . ,Wp)
T , representing each Z(i), follow a

Gaussian distribution N (0,Ω−1). It is well known that

WA|WAc = N
(
−Ω−1

A,AΩA,AcWAc ,Ω
−1
A,A

)
. (4)

For A = {i, j}, equivalently we may write

(Wi,Wj) = W T
{i,j}cβ +

(
ηi, ηj

)
, (5)

where the coefficients and error distributions are

β = −ΩAc,AΩ−1
A,A,

(
ηi, ηj

)T ∼ N
(
0,Ω−1

A,A

)
. (6)

Based on the regression interpretation (5), we have the following data version of the multivariate

regression model

ZA = ZAcβ + εA, (7)

where β is a (p− 2) by 2 dimensional coefficient matrix. If we know ZA and β, an asymptotically

normal and efficient estimator of ΩA,A is
(
εTAεA/n

)−1.

But of course β is unknown and we only have access to the estimated observations Ẑ from

Equation (3). We replace ZA and ZAc by ẐA and ẐAc respectively in the regression (7) to estimate

β as follows. For each m ∈ A = {i, j}, we apply a scaled lasso penalization to the univariate

linear regression of Ẑm against ẐAc ,

Step 2 :
{
β̂m, ψ̂

1/2

mm

}
= arg min

b∈Rp−2,σ∈R+


∥∥∥Ẑm − ẐAcb

∥∥∥2

2nσ
+
σ

2
+ λ2

∑
k∈Ac

∥∥∥Ẑk

∥∥∥
√
n
|bk|

 , (8)

where the vector b is indexed by Ac, and one of the theoretically justified choices of λ2 is λ2 =√
2 log p
n

. Denote the residuals of the scaled lasso regression by

ε̂A = ẐA − ẐAcβ̂, (9)
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and then define

Ω̂A,A =
(
ε̂TAε̂A/n

)−1
. (10)

This extends the methodology proposed in Ren et al. (2013) for Gaussian graphical model to

corrupted observations. The approximation error Ẑ− Z affects inference for Ω. Later we show

if Γ is sufficient sparse, Γp×qX can be well estimated so that the approximation error is negligi-

ble. When both Ω and Γ are sufficiently sparse, Ω̂A,A can be shown to be asymptotically normal

and efficient. An immediate application of the asymptotic normality result is to perform adaptive

graphical model selection by explicit entry-wise thresholding, which yields a rate-optimal adaptive

estimation of the precision matrix Ω under various matrix lw norms. See Theorems 2, 3 and 4 in

Section 3 and 4 for more details.

3. ASYMPTOTIC NORMALITY DISTRIBUTION OF THE ESTIMATOR

In this section we first give theoretical properties of the estimator Ẑ as well as Γ̂, then present the

asymptotic normality and efficiency result for estimation of Ω.

We assume the coefficient matrix Γ is sparse, and entries of X with mean zero are bounded

since the gene marker is usually bounded.

1. The coefficient matrix Γ satisfies the following sparsity condition,

max
i

Σj 6=i min

{
1,

∣∣γij∣∣
λ1

}
= s1, (11)

where in this paper λ1 is at an order of
√

log q
n

. Note that s1 ≤ maxi Σj 6=iI
{
γij 6= 0

}
, the

maximum of the exact row sparseness among all rows of Γ.

2. There exist positive constants M1 and M2 such that 1/M1 ≤ λmin

(
Cov(X(1))

)
and 1/M2 ≤

λmin (Ω) ≤ λmax (Ω) ≤M2.

3. There is a constant B > 0 such that

|Xij| ≤ B for all i and j. (12)
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It is worthwhile to note that the boundedness assumption (12) does not imply theX(1) is jointly

sub-gaussian, i.e., X(1) is allowed to be not jointly sub-gaussian as long as above conditions are

satisfied. In the high dimensional regression literature, it is common to assume the joint sub-

gaussian condition on the design matrix as follows,

3’. We shall assume that the distribution ofX(1) is jointly sub-gaussian with parameter (M1)1/2 >

0 in the sense that

P{|vTX(1)| > t} ≤ e−t
2/2M1 for all t > 0 and ‖v‖2 = 1. (13)

We analyze the Step 1 of the procedure in Equation (2) under Conditions 1-3 as well as Con-

ditions 1-2 and 3’. The optimal rates of convergence are obtained under the matrix l∞ norm and

Frobenius norm for estimation of Γ, which yield a rate of convergence for estimation of each Zj

under the l2 norm.

Theorem 1 Let λ1 = (1 + ε1)
√

2δ1 log q
n

for any δ1 ≥ 1 and ε1 > 0 in Equation (2). Assume that

s1 = o

(
min

{
n

log3 n log q
,

√
n

log q

})
.

Under Conditions 1-3 we have

P
{

1

n

∥∥∥Ẑj − Zj

∥∥∥2

> C1s1
log q

n

}
≤ o

(
q−δ1+1

)
for each j, (14)

P

{∥∥∥Γ̂− Γ
∥∥∥
l∞
> C2s1

√
log q

n

}
≤ o

(
p · q−δ1+1

)
, (15)

P
{

1

p

∥∥∥Γ̂− Γ
∥∥∥2

F
> C3s1

log q

n

}
≤ o

(
p · q−δ1+1

)
. (16)

Moreover, if we replace Condition 3 by the weaker version Condition 3’, all results above still hold

under a weaker assumption on s1,

s1 = o

(
n

log q

)
. (17)

The proof of Theorem 1 is provided in the Section 7.1.
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Remark 1 Under the assumption that the lr norm of each row of Γ is bounded by k1/r
n,q , an imme-

diate application of Theorem 1 yields corresponding results for lr ball sparseness. For example,

P

{
1

p

∥∥∥Γ̂− Γ
∥∥∥2

F
> C4kn,q

(
log q

n

)1−r/2
}
≤ o

(
p · q−δ1+1

)
,

provided that kn,q = o
(

n
log q

)1−r/2
and Conditions 1-2, 3’ hold.

Remark 2 Cai et al. (2013) assumes that the matrix l1 norm of
(
Cov

(
X(1)

))−1
, the inverse of

the covariance matrix of X(1), is bounded, and their tuning parameter depends on the unknown

l1 norm. In Theorem 1 we don’t need the assumption on the l1 norm of
(
Cov

(
X(1)

))−1
and the

tuning parameter λ1 is given explicitly.

To analyze the Step 2 of the procedure in Equation (8), we need the following assumptions for

Ω.

4. The precision matrix Ω = (ωij)p×p has the following sparsity condition

max
i

Σj 6=i min

{
1,
|ωij|
λ2

}
= s2, (18)

where λ2 is at an order of
√

log p
n

.

5. There exists a positive constant M2 such that ‖Ω‖l∞ ≤M2.

It is convenient to introduce a notation for the covariance matrix of
(
ηi, ηj

)T in Equation (5).

Let

ΨA,A = Ω−1
A,A =

 ψii ψij

ψji ψjj

 .

We will estimate ΨA,A first and show that an efficient estimator of ΨA,A yields an efficient estima-

tion of entries of ΩA,A by inverting the estimator of ΨA,A. Denote a sample version of ΨA,A by

Ψora
A,A = (ψorakl )k∈A,l∈A = εTAεA/n, (19)
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which is an oracle MLE of ΨA,A, assuming that we know β, and

Ωora
A,A = (ωorakl )k∈A,l∈A =

(
Ψora
A,A

)−1 . (20)

Let

Ψ̂A,A = ε̂TAε̂A/n, (21)

where ε̂A is defined in Equation (9). Note that Ω̂A,A defined in Equation (10) is simply the inverse

of the estimator Ψ̂A,A. The following result shows that Ω̂A,A is asymptotically normal and efficient

when both Γ and Ω are sufficient sparse.

Theorem 2 Let λ1 be defined as in Theorem 1 with δ1 ≥ 1 + log p
log q

and λ2 = (1 + ε2)
√

2δ2 log p
n

for

any δ2 ≥ 1 and ε2 > 0 in Equation (8). Assume that

s1 = o

(√
n

log q

)
and s2 = o

(√
n

log p

)
. (22)

Under Conditions 1-2 and 4-5, and Condition 3 or 3’, we have

P
{∥∥∥Ψ̂A,A − Ψ̂ora

A,A

∥∥∥
∞
> C5

(
s2

log p

n
+ s1

log q

n

)}
≤ o

(
p−δ2+1 + pq−δ1+1

)
, (23)

P
{∥∥∥Ω̂A,A − Ωora

A,A

∥∥∥
∞
> C6

(
s2

log p

n
+ s1

log q

n

)}
≤ o

(
p−δ2+1 + pq−δ1+1

)
, (24)

for some positive constants C5 and C6. Furthermore, ω̂ij is asymptotically efficient

√
nFij (ω̂ij − ωij)

D→ N (0, 1) , (25)

when s2 = o
( √

n
log p

)
and s1 = o

( √
n

log q

)
, where

F−1
ij = ωiiωjj + ω2

ij .

Remark 3 The asymptotic normality result can be obtained for estimation of the partial cor-

relation. Let rij = −ωij/(ωiiωjj)1/2 be the partial correlation between Zi and Zj . Define

r̂ij = −ω̂ij/(ω̂iiω̂jj)1/2. Under the same assumptions in Theorem 2, the estimator r̂ij is asymp-

totically efficient, i.e.,
√
n(1− r2

ij)
−2(r̂ij − rij)

D→ N (0, 1), when s2 = o (
√
n/ log p) and s1 =

o (
√
n/ log q).
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Remark 4 In Equations (4) and (7), we can replace A = {i, j} by a bounded size subset B ⊂

[1 : p] with cardinality more than 2. Similar to the analysis of Theorem 2, we can show the esti-

mator for any smooth functional of Ω−1
B,B is asymptotic normality as shown in Ren et al. (2013) for

Gaussian graphical model.

Remark 5 A stronger result can be obtained for the choice of λ1 and λ2. Theorems 1 and 2 sill

hold, when λ1 = (1 + ε1)
√

2δ1 log(q/smax,1)

n
and λ2 = (1 + ε2)

√
2δ2 log(p/smax,2)

n
, where smax,1 =

o
( √

n
log q

)
and smax,2 = o

( √
n

log p

)
. Another alternative choice of λ1 and λ2 will be introduced in

Section 5.

4. ADAPTIVE SUPPORT RECOVERY AND ESTIMATION OF Ω UNDER MATRIX

NORMS

In this section, the asymptotic normality result obtained in Theorem 2 is applied to perform adap-

tive support recovery and to obtain rate-optimal estimation of the precision matrix under various

matrix lw norms. The two-step procedure for support recovery is first removing the effect of the co-

variate X , then applying ANT (Asymptotically Normal estimation with Thresholding) procedure.

We thus call it ANTAC, which stands for ANT after Adjusting Covariates.

4.1 ANTAC for Support Recovery of Ω

The support recovery on covariate-adjusted Gaussian graphical model has been studied by several

papers, for example, Yin & Li (2013) and Cai et al. (2013). Denote the support of Ω by Supp(Ω).

In these literature, the theoretical properties on the support recovery were obtained but they all

assumed that min(i,j)∈Supp(Ω) |ωij| ≥ CM2
n,p

√
log p
n

, where Mn,p is either the matrix l∞ norm or

related to the irrepresentable condition on Ω, which is unknown. The ANTAC procedure, based on

the asymptotic normality estimation in Equation (25), performs entry-wise thresholding adaptively

to recover the graph with explicit thresholding levels.

Recall that in Theorem 2 we have

√
nFij (ω̂ij − ωij)

D→ N (0, 1) ,
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where Fij =
(
ωiiωjj + ω2

ij

)−1 is the Fisher information of estimating ωij . Suppose we know this

Fisher information, we can apply a thresholding level
√

2ξ(ωiiωjj+ω2
ij) log p

n
with any ξ ≥ 2 for ω̂ij

to correctly distinguish zero and nonzero entries, noting the total number of edges is p (p− 1) /2.

However, when the variance ωiiωjj + ω2
ij is unknown, all we need is to plug in a consistent esti-

mator. The ANTAC procedure is defined as follows

Ω̂thr = (ω̂thrij )p×p, where ω̂thrii = ω̂ii, and ω̂thrij = ω̂ij1{|ω̂ij| ≥ τ ij} (26)

with τ ij =

√
2ξ0

(
ω̂iiω̂jj + ω̂2

ij

)
log p

n
for i 6= j, (27)

where ω̂kl is the consistent estimator of ωkl defined in (10) and ξ0 is a tuning parameter which can

be taken as fixed at any ξ0 > 2.

The following sufficient condition for support recovery is assumed in Theorem 3 below. Define

the sign of Ω by S(Ω) = {sgn(ωij), 1 ≤ i, j ≤ p}. Assume that

|ωij| ≥ 2

√
2ξ0

(
ωiiωjj + ω2

ij

)
log p

n
, ∀ωij ∈ Supp(Ω). (28)

The following result shows that not only the support of Ω but also the signs of the nonzero entries

can be recovered exactly by Ω̂thr.

Theorem 3 Assume that Conditions 1-2 and 4-5, and Condition 3 or 3’ hold. Let λ1 be defined

as in Theorem 1 with δ1 ≥ 1 + log p
log q

and λ2 = (1 + ε2)
√

2δ2 log p
n

with any δ2 ≥ 3 and ε2 > 0 in

Equation (8). Also let ξ0 > 2 in the thresholding level (27). Under the assumptions (22) and (28),

we have that the ANTAC defined in (26) recovers the support S(Ω) consistently, i.e.,

lim
n→∞

P
(
S(Ω̂thr) = S(Ω)

)
= 1. (29)

Remark 6 If the assumption (28) does not hold, the procedure recovers part of the true graph with

high partial correlation.

The proof of Theorem 3 depends on the oracle inequality (24) in Theorem 2, a moderate devi-

ation result of the oracle ω̂ij and a union bound. The detail of the proof is in spirit the same as that

of Theorem 6 in Ren et al. (2013), and thus will be omitted due to the limit of space.
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4.2 ANTAC for Estimation under the Matrix lw Norm

In this section, we consider the rate of convergence of a thresholding estimator of Ω under the

matrix lw norm, including the spectral norm. The convergence under the spectral norm leads to

the consistency of eigenvalues and eigenvectors estimation. Define Ω̆thr, a modification of Ω̂thr

defined in (26), as follows

Ω̆thr = (ω̂thrij 1 {|ω̂ij| ≤ log p})p×p. (30)

From the idea of the proof of Theorem 3 (see also the proof of Theorem 6 in Ren et al. (2013)), we

see that with high probability
∥∥∥Ω̂− Ω

∥∥∥
∞

is dominated by ‖Ωora − Ω‖∞ = Op

(√
log p
n

)
under

the sparsity assumptions (22). The key of the proof in Theorem 4 is to derive the upper bound

under matrix l1 norm based on the entry-wise supnorm
∥∥∥Ω̆thr − Ω

∥∥∥
∞

. Then the theorem follows

immediately from the inequality ||M ||lw ≤ ||M ||l1 for any symmetric matrix M and 1 ≤ w ≤

∞, which can be proved by applying the Riesz-Thorin interpolation theorem. The proof follows

similarly from that of Theorem 3 in Cai & Zhou (2012). We omit the proof due to the limit of

space.

Theorem 4 Assume that Conditions 1-2 and 4-5, and Condition 3 or 3’ hold. Under the assump-

tions (22) and n = max
{
O
(
pξ1
)
, O
(
qξ2
)}

with some ξ1, ξ2 > 0, the Ω̆thr defined in (30) with

sufficiently large δ1 and δ2 satisfies, for all 1 ≤ w ≤ ∞,

E||Ω̆thr − Ω||2lw ≤ Cs2
2

log p

n
. (31)

Remark 7 The rate of convergence result in Theorem 4 also can be easily extended to the param-

eter space in which each row of Ω is in a lr ball of radius k1/r
n,q . See, e.g., Theorem 3 in Cai &

Zhou (2012). Under the same assumptions of Theorem 4 except replacing s2 = o
(√

n/ log p
)

by

k2
n,p = o

(
(n/ log p)1−r), we have

E||Ω̆thr − Ω||2lw ≤ Ck2
n,p

(
log p

n

)1−r

. (32)

Remark 8 For the Gaussian graphical model without covariate variables, Cai et al. (2012) showed

the rates obtained in Equations (31) and (32) are optimal when p ≥ cnγ for some γ > 1 and
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kn,p = o
(
n1/2 (log p)−3/2

)
for the corresponding parameter spaces of Ω. This implies that our

estimator is rate optimal.

5. SIMULATION STUDIES

5.1 Asymptotic Normal Estimation

In this section, we compare the sample distribution of the proposed estimator for each edge ωij

with the normal distribution in Equation (25). Three models are considered with corresponding

{p, q, n} listed in Table 1. Based on 200 replicates, the distributions of the estimators match the

asymptotic distributions very well.

Three sparse models are generated in a similar way to those in Cai et al. (2013). The p × q

coefficient matrix Γ is generated as following for all three models,

Γij
i.i.d.∼ N (0, 1) · Bernoulli(0.025),

where the Bernoulli random variable is independent with the standard normal variable, taking one

with probability 0.025 and zero otherwise. We then generate the p × p precision matrix Ω with

identical diagonal entries ωii = 4 for the model of p = 200 or 400 and ωii = 5 for the model

of p = 1000, respectively. The off-diagonal entries of Ω are generated i.i.d. as follows for each

model,

ωij =



0.3 with probability π
3

0.6 with probability π
3

1 with probability π
3

0 otherwise

, for i 6= j

where the probability of being nonzero π = P (ωij 6= 0) for three models is shown in Table 1.

Once both Γ and Ω are chosen for each model, the n × p outcome matrix Y is simulated from

Y = XΓT + Z where rows of Z are i.i.d. N(0,Ω−1) and rows of X are i.i.d. N(0, Iq×q). We

generate 200 replicates of X and Y for each model.

We randomly select four entries of Ω with values vω of 0, 0.3, 0.6 and 1 in each model and

draw histograms of our estimators for those four entries based on the 200 replicates. The penalty
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Table 1: Model parameters and simulation results: mean and standard deviation (in parentheses)

of the proposed estimator for the randomly selected entry with value vω based on 200 replicates.

(p, q, n) π = P (ωij 6= 0) vω = 0 vω = 0.3 vω = 0.6 vω = 1

(200, 100, 400) 0.025 -0.015 (0.168) 0.289 (0.184) 0.574 (0.165) 0.986 (0.182)

(400, 100, 400) 0.010 -0.003 (0.24) 0.268 (0.23) 0.606 (0.23) 0.954 (0.244)

(1000, 100, 400) 0.005 0.011 (0.21) 0.292 (0.26) 0.507 (0.232) 0.862 (0.236)

parameter λ1, which controls the weight of penalty in the regression of the first step (2), is set to

be B1/
√
n− 1 +B2

1 , where B1 = qt(1 − 1
2

(smax,1/q)
1+ log p

log q , n − 1), and qt(·, n) is the quantile

function of t distribution with degrees of freedom n. This parameter λ1 is a finite sample version

of the asymptotic level
√

2(1 + log p
log q

) log (q/smax,1) /n we proposed in Theorem 2 and Remark 5.

Here we pick smax,1 =
√
n/ log q. The penalty parameter λ2, which controls the weight of penalty

in the second step (8), is set to beB2/
√
n− 1 +B2

2 whereB2 = qt(1−smax,2/ (2p) , n−1), which

is asymptotically equivalent to
√

2 log (p/smax,2) /n. The smax,2 is set to be
√
n/ log p.

In Figure 1, we show the histograms of the estimators with the theoretical normal density

super-imposed for those randomly selected four entries with values vω of 0, 0.3, 0.6 and 1 in each

of the three models. The distributions of our estimators match well with the theoretical normal

distributions.

5.2 Support recovery

In this section, we evaluate the performance of the proposed ANTAC method and competing meth-

ods in support recovery with different simulation settings. ANTAC always performs among the

best under all model settings. Under the Heterogeneous Model setting, the ANTAC achieves su-

perior precision and recall rates and performs significantly better than others. Besides, ANTAC is

computationally more efficient compared to a state-of-art method CAPME due to its tuning free

property.
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Figure 1: The histograms of the estimators for randomly selected entries with values vω =

0, 0.3, 0.6 and 1 in three models listed in Table 1. The theoretical normal density curves are shown

as solid curves. The variance for each curve is (ωiiωjj +ω2
ij)/n, the inverse of the Fisher informa-

tion.
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Homogeneous Model We consider three models with corresponding {p, q, n} listed in Table 2,

which are similar to the models listed in Table 2 and used in (Cai et al. 2013). Since every model

has identical values along the diagonal, we call them “Homogeneous Model”. In terms of the

support recovery, ANTAC performs among the best in all three models, although the performance

from all procedures is not satisfactory due to the intrinsic difficulty of support recovery problem

for models considered.

We generate the p× q coefficient matrix Γ in the same way as Section 5.1,

Γij
i.i.d.∼ N (0, 1) · Bernoulli(0.025).

The off-diagonal entries of the p× p precision matrix Ω are generated as follows,

ωij
i.i.d.∼ N (0, 1) · Bernoulli(π),

where the probability of being nonzero π = P (ωij 6= 0) is shown in Table 2 for three models

respectively. We generate 50 replicates of X and Y for each of the three models.

Table 2: Model parameters used in the simulation of support recovery.

(p, q, n) P (Γij 6= 0) π = P (ωij 6= 0), i 6= j

Model 1 (200, 200, 200) 0.025 0.025

Model 2 (200, 100, 300) 0.025 0.025

Model 3 (800, 200, 200) 0.025 0.010

We compare our method with graphical Lasso (GLASSO) (Friedman, Hastie & Tibshirani

2008), a state-of-art method — CAPME (Cai et al. 2013) and a conditional GLASSO procedure

(short as cGLASSO), where we apply the same scaled lasso procedure as the first stage of the

proposed method and then estimate the precision matrix by GLASSO. This cGLASSO procedure

is similar to that considered in Yin & Li (2013) except that in the first stage Yin & Li (2013)

applies ordinary lasso rather than the scaled lasso, which requires another cross-validation for this

step. For GLASSO, the precision matrix is estimated directly from the sample covariance matrix
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without taking into account the effects from X . The tuning parameter for the l1 penalty is selected

using five-fold cross validation by maximizing the log-likelihood function. For CAPME, the tuning

parameters λ1 and λ2, which control the penalty in the two stages of regression, are chosen using

five-fold cross validation by maximizing the log-likelihood function. The optimum is achieved via

a grid search on {(λ1, λ2)}. For Models 1 and 2, 10×10 grid is used and for Model 3, 5×5 grid is

used because of the computational burden. Specifically, we use the CAPME package implemented

by the authors of (Cai et al. 2013). For Model 3, each run with 5 × 5 grid search and five-fold

cross validation takes 160 CPU hours using one core from PowerEdge M600 nodes 2.33 GHz and

16−48 GB RAM, whereas ANTAC takes 46 CPU hours. For ANTAC, the parameter λ1 is set to be

B1/
√
n− 1 +B2

1 , where B1 = qt(1− 1
2

(smax,1/q)
1+ log p

log q , n− 1), qt(·, n) is the quantile function

of t distribution with degrees of freedom n and smax,1 =
√
n/ log q. The parameter λ2, is set to be

B2/
√
n− 1 +B2

2 where B2 = qt(1 − (smax,2/p)
3 /2, n − 1). For cGLASSO, the first step is the

same as ANTAC. In the second step, the precision matrix is estimated by applying GLASSO to the

estimated Z, where the tuning parameter is selected using five-fold cross validation by maximizing

the log-likelihood function.

We evaluate the performance of the estimators for support recovery problem in terms of the

misspecification rate, specificity, sensitivity, precision and Matthews correlation coefficient, which

are defined as,

MISR(Ω̂,Ω) =
FN + FP
p(p− 1)

, SPE =
TN

TN + FP
, SEN =

TP
TP + FN

,

PRE =
TP

TP + FP
, MCC =

TP× TN− FP× FN

[(TP + FP) (TP + FN) (TN + FP) (TN + FN)]1/2
.

Here, TP, TN, FP, FN are the numbers of true positives, true negatives, false positives and false

negatives respectively. True positives are defined as the correctly identified nonzero entries of

the off-diagonal entries of Ω. For GLASSO and CAPME, nonzero entries of Ω̂ are selected as

edges with no extra thresholding applied. For ANTAC, edges are selected by the theoretical bound

with ξ0 = 2 . The results are summarized in Table 3. It can be seen that ANTAC achieves

superior specificity and precision. Besides, ANTAC has the best overall performance in terms of

the Matthews correlation coefficient.
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Figure 2: The ROC curves for different methods. For GLASSO or cGLASSO, the ROC curve is

obtained by varying its tuning parameter. For CAPME, λ1 is fixed as the value selected by the

cross validation and the ROC curve is obtained by varying λ2. For ANTAC, the ROC curve is

obtained by varying the cut-off on P-values.

We further construct ROC curves to check how this result would vary by changing the tuning

parameters. For GLASSO or cGLASSO, the ROC curve is obtained by varying the tuning param-

eter. For CAPME, λ1 is fixed as the value selected by the cross validation and the ROC curve

is obtained by varying λ2. For proposed ANTAC method, the ROC curve is obtained by varying

the thresholding level ξ0. When p is small, CAPME, cGLASSO and ANTAC have comparable

performance. As p grows, both ANTAC and cGLASSO outperform CAPME.

The purpose of simulating “Homogeneous Model” is to compare the performance of ANTAC

and other procedures under models with similar settings used in Cai et al. (2013). Overall the

performance from all procedures is not satisfactory due to the difficulty of support recovery prob-

lem. All nonzero entries are sampled from a standard normal. Hence, most signals are very weak

and hard to be recovered by any method, although ANTAC performs among the best in all three

models.

Heterogeneous Model We consider some models where the diagonal entries of the precision

matrix have different values. These models are different from “Homogeneous Model” and we call
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Table 3: Simulation results of the support recovery for homogeneous models based on 50 repli-

cations. Specifically, the performance is measured by misspecification rate, specificity, sensitivity

(recall rate), precision and the Matthews correlation coefficient with all the values multiplied by

100. Numbers in parentheses are the simulation standard deviations.

(p, q, n) Method MISR SPE SEN PRE MCC

Model 1 (200, 200, 200) GLASSO 35(1) 65(1) 37(2) 2(0) 1(1)

cGLASSO 25(6) 76(6) 64(7) 6(1) 8(1)

CAPME 2(0) 100(0) 4(1) 96(1) 21(1)

ANTAC 2(0) 100(0) 4(0) 88(8) 18(2)

Model 2 (200, 100, 300) GLASSO 43(0) 57(0) 51(2) 3(0) 3(1)

cGLASSO 5(0) 97(0) 47(1) 25(1) 32(1)

CAPME 4(0) 97(0) 56(1) 29(1) 39(1)

ANTAC 2(0) 100(0) 22(1) 97(2) 46(1)

Model 3 (800, 200, 200) GLASSO 19(1) 81(1) 19(1) 1(0) 0(0)

cGLASSO 1(0) 100(0) 0(0) 100(0) 2(0)

CAPME 1(0) 100(0) 0(0) 0(0) 0(0)

ANTAC 1(0) 100(0) 7(0) 71(2) 22(1)

them “Heterogeneous Model”. The performance of ANTAC and other procedures are explored

under “Magnified Block” model and “Heterogeneous Product” model, respectively. The ANTAC

performs significantly better than GLASSO, cGLASSO and CAMPE in both settings.

In “Magnified Block” model, we apply the following randomized procedure to choose Ω and

Γ. We first simulate a 50×50 matrix ΩB with diagonal entries being 1 and each non-diagonal entry

i.i.d. being nonzero with P (ωij 6= 0) = 0.02. If ωij 6= 0, we sample ωij from {0.4, 0.5}. Then we

generate two matrices by multiplying ΩB by 5 and 10, respectively. Then we align three matrices

along the diagonal, resulting in a block diagonal matrix Ω with sequentially magnified signals. A

visualization of the simulated precision matrix is shown in Figure 3. The 150 × 100 matrix Γ is

simulated with each entry being nonzero i.i.d. follows N(0, 1) with P (Γij 6= 0) = 0.05. Once the

matrices Ω and Γ are chosen, 50 replicates of X and Y are generated.

In “Heterogeneous Product” model, the matrices Ω and Γ are chosen in the following ran-
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domized way. We first simulate a 200 × 200 matrix Ω with diagonal entries being 1 and each

non-diagonal entry i.i.d. being nonzero with P (ωij 6= 0) = 0.005. If ωij 6= 0, we sample ωij

from {0.4, 0.5}. Then we replace the 100 × 100 submatrix at bottom-right corner by multiplying

the 100 × 100 submatrix at up-left corner by 2, which results in a precision matrix with possibly

many different product values ωiiσjj over all i, j pairs, where σjj is the jth diagonal entry of the

covariance matrix Σ = (σkl)p×p = Ω−1. Thus we call it “Heterogeneous Product” model. A

visualization of the simulated precision matrix is shown in Figure 4. The 200 × 100 matrix Γ is

simulated with each entry being nonzero i.i.d. follows N(0, 1) with P (Γij 6= 0) = 0.05. Once Ω

and Γ are chosen, 50 replicates of X and Y are generated.

We compare our method with GLASSO, CAPME and cGLASSO procedures in “Heteroge-

neous Model”. We first compare the performance of support recovery when a single procedure

from each method is applied. The tuning parameters for each procedure are set in the same way

as in “Homogeneous Model” except that for CAPME, the optimal tuning parameter is achieved

via a 10 × 10 grid search on {(λ1, λ2)} by five-fold cross validation. We summarize the support

recovery results in Table 4. A visualization of the support recovery result for a replicate of “Magni-

fied Block” model and a replicate of “Heterogeneous Product” model are shown in Figure 3 and 4

respectively. In both models, ANTAC significantly outperforms others and achieves high precision

and recall rate. Specifically, ANTAC has precision of 0.99 for two models respectively while no

other procedure achieves precision rate higher than 0.21 in either model. Besides, ANTAC returns

true sparse graph structure while others report much denser results.

Moreover, we construct the precision-recall curve to compare a sequence of procedures from

different methods. In terms of precision-recall curve, CAPME has closer performance as the pro-

posed method in “Magnified Block” model whereas cGLASSO has closer performance as the

proposed method in “Heterogeneous Product” model, which indicates the proposed method per-

forms comparable to the better of CAPME and cGLASSO. Another implication indicates from

the precision-recall curve is that while the tuning free ANTAC method is always close to the best

point along the curve created by using different values of threshold ξ0, CAPME and cGLASSO

via cross validation cannot select the optimal parameters on their corresponding precision-recall
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Figure 3: Heatmap of support recovery using different methods for a “Magnified Block” model.
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Figure 4: Heatmap of support recovery using different methods for a “Heterogeneous Product”

model.
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Table 4: Simulation results of the support recovery for heterogeneous models based on 50 repli-

cations. The performance is measured by overall error rate, specificity, sensitivity (recall rate),

precision and the Matthews correlation coefficient with all the values multiplied by 100. Numbers

in parentheses are the simulation standard deviations.

(p, q, n) Method MISR SPE SEN PRE MCC

Magnified Block (150, 100, 300) GLASSO 54(0) 46(0) 80(4) 1(0) 4(1)

cGLASSO 14(0) 86(0) 99(1) 4(0) 19(0)

CAPME 1(0) 99(0) 99(0) 24(2) 58(1)

ANTAC 0(0) 100(0) 98(1) 99(1) 99(1)

Heterogeneous Product (200, 100, 300) GLASSO 42(0) 58(0) 85(3) 1(0) 6(0)

cGLASSO 12(0) 88(0) 100(0) 4(0) 18(0)

CAPME 4(0) 96(0) 97(0) 15(0) 33(0)

ANTAC 0(0) 100(0) 80(3) 99(1) 89(2)

curves, even though one of them has potentially good performance when using appropriate tun-

ing parameters. Here is an explanation why the ANTAC procedure is better than CAPME and

cGLASSO in “Magnified Block” model and “Heterogeneous Product” model settings. Recall that

in the second stage, CAPME applies the same penalty level λ for each entry of the difference

ΩΣ̂− I , where Σ̂ denotes the sample covariance matrix, but the i, j entry has variance ωiiσjj after

scaling. Thus CAPME may not recover the support well in the “Heterogeneous Product” model

settings, where the variances of different entries may be very different. As for the cGLASSO,

we notice that essentially the same level of penalty is put on each entry ωij while the variance of

each entry in the ith row Ωi· depends on ωii. Hence we cannot expect cGLASSO performs very

well in the “Magnified Block” model settings, where the diagonals ωii vary a lot. In contrast, the

ANTAC method adaptively puts the right penalty level (asymptotic variance) for each estimate of

ωij , therefore it works well in either setting.

Overall, the simulation results on heterogeneous models reveal the appealing practical prop-

erties of the ANTAC procedure. Our procedure enjoys tuning free property and has superior per-

formance. In contrast, it achieves better precision and recall rate than the results from CAPME
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Figure 5: The precision-recall curves for “Magnified Block” model and “Heterogeneous Product”

model using different methods. For GLASSO or cGLASSO, the curve is obtained by varying its

tuning parameter. For CAPME, λ1 is fixed as the value selected by the cross validation and the

curve is obtained by varying λ2. For ANTAC, the precision-recall curve is obtained by varying

threshold level ξ0. The points on the curves correspond to the results obtained by cross-validation

for GLASS, cGLASS and CAPME and by using theoretical threshold level ξ0 = 2 for tuning free

ANTAC.
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and cGLASSO using cross validation. Although in terms of precision-recall curve, the better of

CAPME and cGLASSO is comparable with our procedure, generally the optimal sensitivity and

specificity could not be obtained through cross-validation.

6. APPLICATION TO AN EQTL STUDY

We apply the ANTAC procedure to a yeast dataset from Smith & Kruglyak (2008) (GEO accession

number GSE9376), which consists of 5,493 gene expression probes and 2,956 genotyped markers

measured in 109 segregants derived from a cross between BY and RM treated with glucose. We

find the proposed method achieves both better interpretability and accuracy in this example.

There are many mechanisms leading to the dependency of genes at the expression level. Among

those, the dependency between transcription factors (TFs) and their regulated genes has been in-

tensively investigated. Thus the gene-TF binding information could be utilized as an external

biological evidence to validate and interpret the estimation results. Specifically, we used the high-

confidence TF binding site (TFBS) profiles from m:Explorer, a database recently compiled using

perturbation microarray data, TF-DNA binding profiles and nucleosome positioning measurements

(Reimand, Aun, Vilo, Vaquerizas, Sedman & Luscombe 2012).

We first focus our analysis on a medium size dataset that consists of 121 genes on the yeast cell

cycle signaling pathway (from the Kyoto Encyclopedia of Genes and Genomes database (Kanehisa

& Goto 2000)). There are 119 markers marginally associated with at least 3 of those 121 genes

with a Bonferroni corrected P-value less than 0.01. The parameters λ1 and λ2 for the ANTAC

method are set as described in Theorem 3. 55 edges are identified using a cutoff of 0.01 on the

FDR controlled P-values and 200 edges with a cutoff of 0.05. The number of edges goes to 375

using a cutoff of 0.1. For the purpose of visualization and interpretation, we further focus on 55

edges resulted from the cutoff of 0.01.

We then check how many of these edges involve at least one TF and how many TF-gene pairs

are documented in the m:Explorer database. In 55 detected edges, 12 edges involve at least one

TF and 2 edges are documented. In addition, we obtain the estimation of precision matrix from

CAPME, where the tuning parameters λ1 = 0.356 and λ2 = 0.5 are chosen by five-fold cross val-
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idation. To compare with the results from ANTAC, we select top 55 edges from CAPME solution

based on the magnitude of partial correlation. Within these 55 edges, 13 edges involve at least

one TF and 2 edges are documented. As shown in Figure 6, 22 edges are detected by both meth-

ods. Our method identifies a promising cell cycle related subnetwork featured by CDC14, PDS1,

ESP1 and DUN1, connecting through GIN4, CLB3 and MPS1. In the budding yeast, CDC14 is a

phosphatase functions essentially in late mitosis. It enables cells to exit mitosis through dephos-

phorylation and activation of the enemies of CDKs (Wurzenberger & Gerlich 2011). Throughout

G1, S/G2 and early mitosis, CDC14 is inactive. The inactivation is partially achieved by PDS1

via its inhibition on an activator ESP1 (Stegmeier, Visintin, Amon et al. 2002). Moreover, DUN1

is required for the nucleolar localization of CDC14 in DNA damage-arrested yeast cells (Liang &

Wang 2007).

We then extend the analysis to a larger dataset constructed from GSE9376. For 285 TFs docu-

mented in m:Explorer database, expression levels of 20 TFs are measured in GSE9376 with vari-

ances greater than 0.25. For these 20 TFs, 875 TF-gene interactions with 377 genes with variances

greater than 0.25 are documented in m:Explorer. Applying the screening strategy as the previous

example, we select 644 genetic markers marginally associated with at least 5 of the 377 genes

with a Bonferroni corrected P-value less than 0.01. We apply the proposed ANTAC method and

CAPME to this new dataset. For ANTAC, the parameters λ1 and λ2 are set as described in The-

orem 3. For CAPME, the tuning parameters λ1 = 0.089 and λ2 = 0.281 are chosen by five-fold

cross validation. We use TF-gene interactions documented in m:Explorer as an external biological

evidence to validate the results. The results are summarized in Table 5. For ANTAC, 540 edges

are identified using a cutoff of 0.05 on the FDR controlled P-values. Within these edges, 67 edges

are TF-gene interactions and 44 out of 67 are documented in m:Explorer. In comparison, 8499

nonzero edges are detected by CAPME, where 915 edges are TF-gene interactions and 503 out

of 915 are documented. This result is hard to interpret biologically. We further ask if identifying

the same number of TF-gene interactions, which method achieves higher accuracy according to

the concordance with m:Explorer. Based on the magnitude of partial correlation, we select top

771 edges from the CAPME solution, which capture 67 TF-gene interactions. Within these inter-
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Figure 6: Visualization of the network constructed from yeast cell cycle expression data by

CAPME and the proposed ANTAC method. For ANTAC, 55 edges are identified using a cut-

off of 0.01 on the FDR controlled p-values. For CAPME, top 55 edges are selected based on the

magnitude of partial correlation. 22 common edges detected by both methods are shown in dashed

lines. Edges only detected by the proposed method are shown in solid lines. CAPME-specific

edges are shown in dotted lines.
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actions, 38 are documented in m:Explorer. Thus in this example, the proposed ANTAC method

achieves both better interpretability and accuracy.

Table 5: Results for a dataset consists of 644 markers and 377 genes, which was constructed from

GSE9376.

Method Solution Total # of gene-gene # of TF-gene # of TF-gene Documented

Criteria interactions interactions interactions documented Proportion

ANTAC FDR controlled P-values ≤0.05 540 67 44 65%

CAPME Magnitude of partial correlation 771 67 38 57%

CAPME Nonzero entries 8499 915 503 55%

7. PROOF OF MAIN THEOREMS

In this section, we will prove the main results Theorems 1 and 2.

7.1 Proof of Theorem 1

This proof is based on the key lemma, Lemma 5, which is deterministic in nature. We apply

Lemma 5 with R = Dbtrue + E replaced by Yj= Xγj + Zj, λ replaced by λ1 and sparsity s

replaced by s1. The following lemma is the key to the proof.

Lemma 1 There exist some constants C ′k, 1 ≤ k ≤ 3 such that for each 1 ≤ j ≤ p,

∥∥γj − γ̂j
∥∥

1
≤ C ′1λ1s1, (33)∥∥γj − γ̂j

∥∥ ≤ C ′2λ1

√
s1, (34)∥∥X (γj − γ̂j

)∥∥2
/n ≤ C ′3λ

2
1s1, (35)

with probability 1− o
(
q−δ1+1

)
.

With the help of the lemma above, it’s trivial to finish our proof. In fact,
∥∥∥Ẑj − Zj

∥∥∥2

=∥∥X (γj − γ̂j
)∥∥2 and hence Equation (14) immediately follows from result (35). Equations (15)
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and (16) are obtained by the union bound and Equations (33) and (34) because of the following

relationship, ∥∥∥Γ̂− Γ
∥∥∥
l∞

= max
j

∥∥γj − γ̂j
∥∥

1
,

1

p

∥∥∥Γ̂− Γ
∥∥∥2

F
=

1

p

p∑
j=1

∥∥γj − γ̂j
∥∥2 .

It is then enough to prove Lemma 1 to complete the proof of Theorem 1.

Proof of Lemma 1 The Lemma is an immediate consequence of Lemma 5 applied to Yj= Xγj +

Zj with tuning parameter λ1 and sparsity s1. To show the union of Equations (33)-(35) holds with

high probability 1 − o
(
q−δ1+1

)
, we only need to check the following conditions of the Lemma 5

hold with probability at least 1− o
(
q−δ1+1

)
,

I1 =

{
ν ≤ θoraλ1

ξ − 1

ξ + 1
(1− τ) for some ξ > 1

}
,

I2 =

{
‖Xk‖√
n
∈ [1/A1, A1] for all k

}
,

I3 =

{
θora ∈ [1/A2, A2] , where θora =

‖Zj‖√
n

.
}

,

I4 =


WTW
n

satisfies lower-RE with (α1, ζ (n, q)) s.t.

s1ζ (n, q) 8 (1 + ξ)2A2
1 ≤ min{α1

2
, 1}

 ,

where we set ξ = 3/ε1 + 1 for the current setting, A1 = CA1 max
{
B,
√
M1

}
under Condition

3 and A1 = CA1

√
M1 under Condition 3′ for some universal constant CA1 > 0, A2 =

√
2M2,

α1 = 1
2M1

and ζ (n, q) = o(1/s1). Let us still define W = X · diag
( √

n
‖Xk‖

)
as the standardized X

in Lemma 5 of Section 8.

We will show that

P {Ic1} ≤ O
(
q−δ1+1/

√
log q

)
,

P {Ici } ≤ o(q−δ1) for i = 2, 3 and 4,

which implies

P {Ej} ≥ 1− o
(
q−δ1+1

)
,
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where Ej is the union of I1 to I4. We will first consider P {Ic2} and P {Ic3}, then P {Ic4}, and leave

P {Ic1} to the last, which relies on the bounds for P {Ici }, 2 ≤ i ≤ 4.

(1). To study P {Ic2} and P {Ic3}, we need the following Bernstein-type inequality (See e.g.

(Vershynin 2010), Section 5.2.4 for the inequality and definitions of norms ‖·‖ϕ2
and ‖·‖ϕ1

) to

control the tail bound for sum of i.i.d. sub-exponential variables,

P

{∣∣∣∣∣
n∑
i=1

Ui

∣∣∣∣∣ ≥ tn

}
≤ 2 exp

(
−cnmin

{
t2

K2
,
t

K

})
, (36)

for t > 0, where Ui are i.i.d. centered sub-exponential variables with parameter ‖Ui‖ϕ1
≤ K and

c is some universal constant. Notice that θora = ‖Zj‖ /
√
n with Z

(1)
j ∼ N (0, σjj), and X

(1)
k is

sub-gaussian with parameter
∥∥∥X(1)

k

∥∥∥
ϕ2

∈
[
cϕ2M

−1/2
1 , Cϕ2B

]
by Conditions 2 and 3 with some

universal constants cϕ2 and Cϕ2 (all formulas involving ϕ1 or ϕ2 parameter of X
(1)
k replace “B”

by “
√
M1” under Condition 3′ hereafter). The fact that sub-exponential is sub-gaussian squared

implies that there exists some universal constant C1 > 0 such that

n
(
(θora)2 − σjj

)
is sum of i.i.d. sub-exponential with ϕ1 parameter C1σjj ,

‖Xk‖2 − nEx2
k is sum of i.i.d. sub-exponential with ϕ1 parameter

∥∥∥∥(X
(1)
k

)2
∥∥∥∥
ϕ1

.

Note that σjj ∈ [1/M2,M2] by Condition 2 and
∥∥∥∥(X

(1)
k

)2
∥∥∥∥
ϕ1

∈
[
c′ϕ1M

−1
1 , C ′ϕ1B

2
]

with some

universal constants c′ϕ1 and C ′ϕ1. Let A1 = CA1 max
{
B,
√
M1

}
and A2 =

√
2M2 for some large

constant CA1 . Equation (36) with a sufficiently small constant c0 implies

P {Ic3} = P
{

(θora)2 /∈
[
1/A2

2, A
2
2

]}
≤ P

{
n
∣∣(θora)2 − σjj

∣∣ ≥ σjj
2
n
}

≤ 2 exp
(
−C ′n

)
≤ o(q−δ1), (37)

and

P {Ic2} = P

{
‖Xk‖2

n
/∈
[
1/A2

1, A
2
1

]
for some k

}

≤ qP

{∣∣‖Xk‖2 − nEx2
k

∣∣ > c0

∥∥∥∥(X
(1)
k

)2
∥∥∥∥
ϕ1

n

}
≤ q2 exp (−C ′n) ≤ o(q−δ1). (38)
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(2). To study the lower-RE condition of WTW
n

, we essentially need to study XTX
n

. On the

event I2, it’s easy to see that if XTX
n

satisfies lower-RE with (αx, ζx (n, q)), then WTW
n

satisfies

lower-RE with (α1, ζ) =
(
αxA

−2
1 , ζxA

2
1

)
, since W = Xdiag

( √
n

‖Xk‖

)
and ‖Xk‖√

n
∈ [1/A1, A1] on

event I2. Moreover, to study the lower-RE condition, the following lemma implies that we only

need to consider the behavior of XTX
n

on sparse vectors.

Lemma 2 For any symmetric matrix ∆q×q, suppose
∣∣vT∆v

∣∣ ≤ δ for any unit 2s sparse vector

v ∈ Rq, i.e. ‖v‖ = 1 and v ∈ B0 (2s) = {a :
∑q

i=1 1 {ai 6= 0} ≤ 2s}, then we have

∣∣vT∆v
∣∣ ≤ 27δ

(
‖v‖2 +

1

s
‖v‖2

1

)
for any v ∈ Rq.

See Supplementary Lemma 12 in (Loh & Wainwright 2012) for the proof. With a slight abuse

of notation, we define Σx = Cov
(
X(1)

)
. By applying Lemma 2 on XTX

n
− Σx and Condition 2,

vTΣxv ≥ 1
M1
‖v‖2, we know that XTX

n
satisfies lower-RE (αx, ζx (n, q)) with

αx ≥
1

M1

(
1− 27

L

)
and ζx (n, q) ≤ 27

s1M1L
, (39)

provided ∣∣∣∣vT (XTX

n
− Σx

)
v

∣∣∣∣ ≤ 1

LM1

for all v ∈ B0 (2s1) with ‖v‖ = 1, (40)

which implies that the population covariance matrix Σx and its sample version XTX
n

behave simi-

larly on all 2s1 sparse vectors.

Now we show Equation (40) holds under Conditions 3 and 3′ respectively for a sufficiently

large constant L such that the inequality in the event I4 holds. Under Condition 3′, X(1) is jointly

sub-gaussian with parameter (M1)1/2. A routine one-step chaining (or δ-net) argument implies that

there exists some constant csg > 0 such that

P

{
sup

v∈B0(2s1)

∣∣∣∣vT (XTX

n
− Σx

)
v

∣∣∣∣ > t ‖v‖2

}
≤ 2 exp

(
−csgnmin

{
t2

M2
1

,
t

M1

}
+ 2s1 log q

)
.

(41)

See e.g. Supplementary Lemma 15 in (Loh & Wainwright 2012) for the proof. Hence by picking

small t = 1
LM1

with any fixed but arbitrary large L, the sparsity condition (17) s1 = o
(

n
log q

)
and

Equation (41) imply that Equation (40) holds with probability 1− o
(
p−δ1

)
.
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Under Condition 3, if s1 = o

(√
n

log q

)
, Hoeffding’s inequality and a union bound imply that

P

{∥∥∥∥XTX

n
− Σx

∥∥∥∥
∞
> 2B

√
(1 + δ1) log q

n

}
≤ 2q−2δ1 ,

where the norm ‖·‖∞ denotes the entry-wise supnorm and
∥∥X(1)

∥∥
∞ ≤ B (see, e.g. (Massart 2007)

Proposition 2.7). Thus with probability 1− o
(
q−δ1

)
, we have for any v ∈ B0 (2s1) with ‖v‖ = 1,∣∣∣∣vT (XTX

n
− Σx

)
v

∣∣∣∣ ≤ ∥∥∥∥XTX

n
− Σx

∥∥∥∥
∞
‖v‖2

1 ≤ 2B

√
(1 + δ1) log q

n

1

2s1

= o(1),

where the last inequality follows from ‖v‖1 ≤
√

2s1 ‖v‖ for any v ∈ B0 (2s1). Therefore we have

Equation (40) holds with probability 1− o
(
q−δ1

)
for any arbitrary large L. If s1 = o

(
n

log3 n log q

)
,

an involved argument using Dudley’s entropy integral and Talagrand’s concentration theorem for

empirical processes implies (see, (Rudelson & Zhou 2013) Theorem 23 and its proof) Equation

(40) holds with probability 1− o
(
q−δ1

)
for any fixed but arbitrary large L.

Therefore we showed that under Condition 3 or 3′, Equation (40) holds with probability 1−

o
(
q−δ1

)
for any arbitrary large L. Consequently, Equation (39) with (α1, ζ) =

(
αxA

−2
1 , ζxA

2
1

)
on

event I2 implies that we can pick α1 = 1
2M1

and sufficiently small ζ such that event I4 holds with

probability 1− o
(
q−δ1

)
.

(3). Finally we study the probability of event I1. The following tail probability of t distribution

is helpful in the analysis.

Proposition 1 Let Tn follows a t distribution with n degrees of freedom. Then there exists εn → 0

as n→∞ such that ∀t > 0

P
{
T 2
n > n

(
e2t2/(n−1) − 1

)}
≤ (1 + εn) e−t

2

/
(
π1/2t

)
.

Please refer to (Sun & Zhang 2012) Lemma 1 for the proof. Recall that I1 =
{

ν
θora
≤ λ1

ξ−1
ξ+1

(1− τ)
}

,

where τ defined in Equation (67) satisfies that τ = O
(
s1λ

2
1

)
= o (1) on ∩4

i=2Ii. From the definition

of ν in Equation (66) we have

ν

θora
= max

k
|hk| , with hk =

WT
k Zj

nθora
,
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where each column of W has norm ‖Wk‖ =
√
n. Given X, equivalently W, it’s not hard to check

that we have
√
n−1hk√
1−h2k

∼ t(n−1) by the normality of Zj , where t(n−1) is the t distribution with (n− 1)

degrees of freedom. From Proposition 1 we have

P

{
|hk| >

√
2t2

n

}

= P
{

(n− 1)h2
k

1− h2
k

>
2 (n− 1) t2/n

1− 2t2/n

}
≤ P

{
(n− 1)h2

k

1− h2
k

>
2 (n− 1) t2/ (n− 2)

1− t2/ (n− 2)

}
≤ P

{
(n− 1)h2

k

1− h2
k

> (n− 1)
(
e2t2/(n−2) − 1

)}
≤ (1 + εn−1) e−t

2

/
(
π1/2t

)
,

where the first inequality holds when t2 ≥ 2, and the second inequality follows from the fact

ex − 1 ≤ x/(1 − x
2
) for 0 < x < 2. Now let t2 = δ1 log q > 2, and λ1 = (1 + ε1)

√
2δ1 log q

n
with

ξ = 3/ε1 + 1, then we have λ1
ξ−1
ξ+1

(1− τ) >
√

2δ1 log q
n

and

P
{
∩4
i=1Ii

}
≥ P

{
ν

θora
≤
√

2δ1 log q

n

}
− P

{(
∩4
i=2Ii

)c}
≥ 1− q · P

{
|hk| >

√
2δ1 log q

n

}
− P

{(
∩4
i=2Ii

)c}
≥ 1−

(
1√
πδ1

+ o (1)

)
q−δ1+1

√
log q

,

which immediately implies P {Ic1} ≤ O
(
q−δ1+1/

√
log q

)
.

7.2 Proof of Theorem 2

The whole proof is based on the results in Theorem 1. In particular with probability 1−o
(
p · q−δ1+1

)
,

the following events hold,

1

n

∥∥∥Ẑj − Zj

∥∥∥2

≤ C1s1
log q

n
for all j, (42)∥∥γ̂j − γj

∥∥
1
≤ C2s1

√
log q

n
for all j. (43)

From now on the analysis is conditioned on the two events above. This proof is also based on the

key lemma, Lemma 5. We apply Lemma 5 with R = Dbtrue + E replaced by Ẑm= ẐAcβm + Em

for each m ∈ A = {i, j}, λ replaced by λ2 and sparsity s replaced by Cβs2, where Em is defined
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by the regression model Equation (7) as

Em ≡ εm + ∆Zm (44)

= εm +
(
Ẑm − Zm

)
+
(
ZAc − ẐAc

)
βm,

and Cβ = 2M2 because the definition of βm in Equation (6) implies it is a weighted sum of two

columns of Ω with weight bounded by M2.

To obtain our desired result
∣∣∣ψ̂kl − ψorakl ∣∣∣ =

∣∣εTk εl/n− ε̂Tk ε̂l/n
∣∣ for each pair k, l ∈ A = {i, j},

it’s sufficient for us to bound
∣∣ε̂Tk ε̂l/n− ET

kEl/n
∣∣ and

∣∣εTk εl/n− ET
kEl/n

∣∣ separately and then to

apply the triangle inequality. The following two lemmas are useful to establish those two bounds.

Lemma 3 There exists some constant Cin > 0 such that
∣∣εTk εl/n− ET

kEl/n
∣∣ ≤ Cinλ

2
1s1 with

probability 1− o
(
q−δ1

)
.

Lemma 4 There exist some constants C ′k, 1 ≤ k ≤ 3 such that for each m ∈ A = {i, j},∥∥∥βm − β̂m∥∥∥
1
≤ C ′1λ2s2,∥∥∥ẐAc

(
βm − β̂m

)∥∥∥2

/n ≤ C ′2λ
2
2s2,∥∥∥ẐT

AcEm/n
∥∥∥
∞
≤ C ′3λ2,

with probability 1− o
(
p−δ2+1

)
.

Before moving on, we point out a fact we will use several times in the proof,

‖βm‖1 ≤ 2M2
2 , (45)

which follows from Equation (6) and Condition 5. Hence we have

‖∆Zm‖ /
√
n ≤

∥∥∥Ẑm − Zm

∥∥∥
√
n

+
maxk

∥∥∥Ẑk − Zk

∥∥∥
√
n

‖βm‖1 ≤
√
C3s1λ

2
1, (46)

for some constant C3 > 0.
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To bound the term
∣∣ε̂Tk ε̂l/n− ET

kEl/n
∣∣, we note that for any k, l ∈ A = {i, j},

∣∣ε̂Tk ε̂l/n− ET
kEl/n

∣∣ =

∣∣∣∣(Ek + ẐAc

(
βk − β̂k

))T (
El + ẐAc

(
βl − β̂l

))
/n− ET

kEl/n

∣∣∣∣
≤

∥∥∥ẐT
AcEk/n

∥∥∥
∞

∥∥∥βk − β̂k∥∥∥
1

+
∥∥∥ẐT

AcEl/n
∥∥∥
∞

∥∥∥βl − β̂l∥∥∥
1

+
∥∥∥ẐAc

(
βk − β̂k

)∥∥∥ · ∥∥∥ẐAc

(
βl − β̂l

)∥∥∥ /n
≤ (2C ′1C

′
3 + C ′2)λ2

2s2, (47)

where we applied Lemma 4 in the last inequality.

Lemma 3, together with Equation (47), immediately implies the desired result (23),∣∣∣ψ̂kl − ψorakl ∣∣∣ ≤ C ′4

(
s2

log p

n
+ s1

log q

n

)
,

for some constant C ′4 with probability 1 − o
(
p · q−δ1+1 + p−δ2+1

)
. Since the spectrum of ΨA,A is

bounded below by M−1
2 and above by M2 and the functional (ΩA,A)kl =

(
Ψ−1
A,A

)
kl

is Lipschitz in

a neighborhood of ΨA,A for k, l ∈ A, we obtain that Equation (24) is an immediate consequence

of Equation (23). Note that ωoraij is the MLE of ωij in the model
(
ηi, ηj

)T ∼ N
(
0,Ω−1

A,A

)
with

three parameters given n samples. Whenever s2 = o
( √

n
log p

)
and s1 = o

( √
n

log q

)
, we have s2

log p
n

+

s1
log q
n

= o( 1√
n
). Therefore we have ωoraij − ω̂ij = op

(
ωoraij − ωij

)
, which immediately implies

Equation (25) in Theorem 2,

√
nFij (ω̂ij − ωij)

D∼
√
nFij

(
ωoraij − ωij

) D→ N (0, 1) ,

where Fij is the Fisher information of ωij .

It is then enough to prove Lemma 3 and Lemma 4 to complete the proof of Theorem 2.

Proof of Lemma 3 We show that
∣∣εTk εl/n− ET

kEl/n
∣∣ ≤ Cinλ

2
1s1 with probability 1 − o

(
q−δ1

)
in this section. By Equation (46), we have

∣∣εTk εl/n− ET
kEl/n

∣∣ ≤ ∣∣∣∣εTk∆Zl + εTl ∆Zk + ∆T
Zl

∆Zk

n

∣∣∣∣ ≤ C3s1λ
2
1 +

∣∣εTk∆Zl

∣∣+
∣∣εTl ∆Zk

∣∣
n

. (48)
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To bound the term
∣∣εTk∆Zl

∣∣, we note that by the definition of ∆Zl in Equation (44) there exists

some constant C4 such that,∣∣εTk∆Zl

∣∣
n

=
∣∣∣εTk [(Ẑl − Zl

)
+
(
ZAc − ẐAc

)
βm

]∣∣∣ /n
=

∣∣εTkX [(γl − γ̂l) + (γ̂Ac − γAc) βm]
∣∣ /n

≤
∥∥εTkX/n

∥∥
∞ ‖(γl − γ̂l) + (γ̂Ac − γAc) βm‖1

≤
∥∥εTkX/n

∥∥
∞max

i
‖γi − γ̂i‖1 (1 + ‖βm‖1) ≤

∥∥εTkX/n
∥∥
∞C4s1λ1, (49)

where the last inequality follows from Equations (43) and (45). Since εk
i.i.d.∼ N (0, ψkk) and X

are independent, it can be seen that each coordinate of εTkX is a sum of n i.i.d. sub-exponential

variables with bounded parameter under either Condition 3 or 3′. A union bound with q coordinates

and another application of Bernstein inequality in Equation (36) with t = C5

√
log q
n

imply that∥∥εTkX/n
∥∥
∞ ≤ C5

√
log q
n

with probability 1 − o
(
q−δ1

)
for some large constant C5 > 0. This fact,

together with Equation (49), implies that
∣∣εTk∆Zl

∣∣ /n = O
(
s1λ

2
1

)
with probability 1 − o

(
q−δ1

)
.

Similar result holds for
∣∣εTl ∆Zk/n

∣∣. Together with Equation (48), this result completes our claim

on
∣∣εTk εl/n− ET

kEl/n
∣∣ and finishes the proof of Lemma 3.

Proof of Lemma 4 The Lemma 4 is an immediate consequence of Lemma 5 applied to Ẑm= ẐAcβm+

Em for each m ∈ A = {i, j} with parameter λ2 and sparsity Cβs2. We check the following condi-

tions I1 − I4 in the Lemma 5 hold with probability 1− o
(
p−δ2+1

)
to finish our proof. This part of

the proof is similar to the proof of Lemma 1. We thus directly apply those facts already shown in

the proof of Lemma 1 whenever possible. Let
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I1 =

{
ν ≤ θoraλ2

ξ − 1

ξ + 1
(1− τ 2) for some ξ > 1

}
,

I2 =


∥∥∥Ẑk

∥∥∥
√
n
∈ [1/A′1, A

′
1] for all k ∈ Ac

 ,

I3 =

{
θora ∈ [1/A′2, A

′
2] , where θora =

‖Em‖√
n

.
}

,

I4 =


WTW
n

satisfies lower-RE with (α1, ζ (n, p)) s.t.

s2ζ (n, p) 8 (1 + ξ)2A′21 ≤ min{α1

2
, 1}

 ,

where we can set ξ = 3/ε2 +1 for the current setting, A′1 = A′2 =
√

3M2, α1 = 1
2M2

and ζ (n, p) =

o(1/s2). Let us still define W = ẐAc · diag
(
√
n

‖Ẑk‖

)
as the standardized ẐAc in the Lemma 5 of

Section 8. The strategy is to show that P {Ic1} ≤ O
(
p−δ2+1/

√
log p

)
and P {Ici } ≤ o(p−δ2) for

i = 2, 3 and 4, which completes our proof.

(1). To study P {Ic2} and P {Ic3}, we note that ‖Ẑk‖√
n
≤ ‖Zk‖√

n
+
‖Ẑk−Zk‖√

n
, where Zk ∼ N (0, σkkI)

and ‖Ẑk−Zk‖√
n

= O
(√

s1λ
2
1

)
= o(1) according to Equation (42). Similarly ‖Em‖√

n
≤ ‖εm‖√

n
+
‖∆Zm‖√

n

where εm ∼ N (0, ψmmI) and ‖∆Zm‖√
n

= o(1) from Equation (46). Noting that ψmm, σkk ∈[
M−1

2 ,M2

]
, we use the same argument as that for P {Ic3} in the proof of Lemma 1 to obtain

P {Ic2} ≤ P
{
‖Zk‖√
n

/∈
[
1/
√

2M2,
√

2M2

]
for some k

}
≤ o(p−δ2),

P {Ic3} ≤ P
{
‖εm‖√
n

/∈
[
1/
√

2M2,
√

2M2

]}
≤ o(p−δ2).

(2). To study the lower-RE condition of WTW
n

, as what we did in the proof of Lemma 1 and

Lemma 2, we essentially need to study ẐTAc ẐAc

n
and to show the following fact∣∣∣∣∣vT

(
ẐT
AcẐAc

n
− ΣAc,Ac

)
v

∣∣∣∣∣ ≤ 1

LM2

for all v ∈ B0 (2Cβs2) with ‖v‖ = 1,

where λmin (ΣAc,Ac) ≥ 1/M2. Following the same line of the proof in Lemma 1 for the lower-RE

condition of XTX
n

with normality assumption on Z and sparsity assumption s2 = o

(√
n

log p

)
, we

can obtain that with probability 1− o
(
p−δ2

)
,

sup
v∈B0(2Cβs2)

∣∣∣∣vT (ZT
AcZAc

n
− ΣAc,Ac

)
v

∣∣∣∣ ≤ ‖v‖2

2LM2

. (50)
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Therefore all we need to show in the current setting is that with probability 1− o
(
p−δ2

)
,∣∣∣∣∣vT

(
ẐT
AcẐAc

n
− ZT

AcZAc

n

)
v

∣∣∣∣∣ ≤ 1

2LM2

for all v ∈ B0 (2Cβs2) with ‖v‖ = 1. (51)

To show Equation (51), we notice

∣∣∣∣∣vT
(

ẐT
AcẐAc

n
− ZT

AcZAc

n

)
v

∣∣∣∣∣ ≤ 2

∣∣∣∣∣∣vT
ZT

Ac

(
ẐAc − ZAc

)
n

 v

∣∣∣∣∣∣+
∥∥∥(ẐAc − ZAc

)
v
∥∥∥2

n
≡ D1+D2.

To control D2, we find

√
D2 ≤ max

k

∥∥∥Ẑk − Zk

∥∥∥
√
n

‖v‖1 ≤
√
s1λ1

√
2Cβs2 = o(1), (52)

by Equation (42), ‖v‖1 ≤
√

2Cβs2 ‖v‖ and sparsity assumptions (22).

To control D1, we find D1 ≤
√
D2 · ‖ZAcv‖√

n
, which is o(1) with probability 1− o

(
p−δ2

)
by

Equation (52) and the following result ‖ZAcv‖√
n

= O(1). Equation (50) implies that with probability

1− o
(
p−δ2

)
,

‖ZAcv‖√
n
≤ ‖v‖√

2LM2

+
∥∥∥Σ

1/2
Ac,Acv

∥∥∥ = O(1) for all ‖v‖ = 1.

(3). Finally we study the probability of event I1. In the current setting,

ν =
∥∥WTEm/n

∥∥
∞ =

∥∥WTεm/n
∥∥
∞ +O

(∥∥WT∆Zm/n
∥∥
∞

)
,

θora =
‖Em‖√

n
=
‖εm‖√
n

+O

(
‖∆Zm‖√

n

)
.

Following the same line of the proof for event I1 in Lemma 1, we obtain that with probability

1− o
(
p−δ2+1

)
, ∥∥WTεm/n

∥∥
∞ <

‖εm‖√
n
λ2
ξ − 1

ξ + 1
(1− τ 2) .

Thus to prove event I1=
{
ν ≤ θoraλ2

ξ−1
ξ+1

(1− τ 2)
}

holds with desired probability, we only need to

show with probability 1− o
(
p−δ2+1

)
,

∥∥WT∆Zm/n
∥∥
∞ = o(λ2) and

‖∆Zm‖√
n

= o(1). (53)
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Equation (46) immediately implies ‖∆Zm‖√
n

= O
(√

s1λ
2
1

)
= o(1) by the sparsity assumptions

(22). To study
∥∥WT∆Zm/n

∥∥
∞, we obtain that there exists some constant C6 > 0 such that,

∥∥WT∆Zm/n
∥∥
∞ =

∥∥∥∥∥∥diag
 √n∥∥∥Ẑk

∥∥∥
 ẐT

Ac∆Zm/n

∥∥∥∥∥∥
∞

≤ A′1

∥∥∥ZT
Ac +

(
ẐT
Ac − ZT

Ac

)
∆Zm/n

∥∥∥
∞

≤ A′1

(∥∥ZT
Ac∆Zm/n

∥∥
∞ + max

i

∥∥∥(Ẑi − Zi

)
/
√
n
∥∥∥∥∥∆Zm/

√
n
∥∥)

≤ A′1
∥∥ZT

Ac∆Zm/n
∥∥
∞ + C6s1λ

2
1, (54)

where we used ‖Ẑk‖√
n
∈ [1/A′1, A

′
1] for all k on I2 in the first inequality and Equations (42) and (46)

in the last inequality. By the sparsity assumptions (22), we have s1λ
2
1 = o(λ2). Thus it’s sufficient

to show
∥∥ZT

Ac∆Zm/n
∥∥
∞ = o(λ2) with probability 1− o

(
p−δ2+1

)
. In fact,

∥∥ZT
Ac∆Zm/n

∥∥
∞ ≤

∥∥ZT
AcX [(γm − γ̂m) + (γ̂Ac − γAc) βm] /n

∥∥
∞

≤
∥∥ZT

AcX/n
∥∥
∞ ‖[(γm − γ̂m) + (γ̂Ac − γAc) βm]‖1

≤
∥∥ZT

AcX/n
∥∥
∞max

i
‖γ̂i − γi‖1 (1 + ‖βm‖1)

≤
∥∥ZT

AcX/n
∥∥
∞Cs1λ1 = o

(∥∥ZT
AcX/n

∥∥
∞

)
, (55)

where the last inequality follows from Equations (43) and (45).

Since each ZT
k
i.i.d.∼ N (0, σkk) and is independent of X, it can be seen that each entry of ZT

AcX

is a sum of n i.i.d. sub-exponential variables with finite parameter under either Condition 3 or 3′.

A union bound with pq entries and an application of Bernstein inequality in Equation (36) with t =

C7

√
log(pq)
n

imply that
∥∥ZT

AcX/n
∥∥
∞ ≤ C7

√
log(pq)
n

with probability 1−o
(

(pq)−δ1
)

for some large

constant C7 > 0. This result, together with Equation (55), implies that
∥∥ZT

Ac∆Zm/n
∥∥
∞ = o(λ2)

with probability 1− o
(
p−δ2+1

)
. Now we finish the proof of

∥∥WT∆Zm/n
∥∥
∞ = o(λ2) by Equation

(54) and hence the proof of the Equation (53) with probability 1− o
(
p−δ2+1

)
. This completes our

proof of Lemma 4.
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8. A KEY LEMMA

The lemma of scaled lasso introduced in this section is deterministic in nature. It could be ap-

plied in different settings in which the assumptions of design matrix, response variables and noise

distribution may vary, as long as the conditions of the lemma are satisfied. Therefore it’s a very

useful building block in the analysis of many different problems. In particular, the main theorems

of both steps are based on this key lemma. The proof of this lemma is similar as that in (Sun &

Zhang 2012) and (Ren et al. 2013), but we use the restrict eigenvalue condition for the gram matrix

instead of CIF condition to easily adapt to different settings of design matrix for our probabilistic

analysis.

Consider the following general scaled l1 penalized regression problem. Denote the n by p0

dimensional design matrix by D = (D1, . . . ,Dp0), the n dimensional response variable R =

(R1, . . . , Rn)T and the noise variable E = (E1, . . . , En)T . The scaled lasso estimator with tuning

parameter λ of the regression

R = Dbtrue + E, (56)

is defined as {
b̂, θ̂
}

= arg min
b∈Rp0 ,θ∈R+

{
‖R−Db‖2

2nθ
+
θ

2
+ λ

p0∑
k=1

‖Dk‖√
n
|bk|

}
, (57)

where the sparsity s of the true coefficient btrue is defined as follows,

s = Σp0
j=1 min

{
1,
∣∣btruej

∣∣ /λ} , (58)

which is a generalization of exact sparseness (the number of nonzero entries).

We first normalize each column of the design matrix D to make the analysis cleaner by setting

dk =
‖Dk‖√
n
bk, and W = D · diag

( √
n

‖Dk‖

)
, (59)

and then rewrite the model (56) and the penalized procedure (57) as follows,

R = Wdtrue + Ej , (60)
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and

Lλ (d, θ) =
‖R−Wd‖2

2nθ
+
θ

2
+ λ ‖d‖1 , (61){

d̂, θ̂
}

= arg min
d∈Rp0 ,θ∈R+

Lλ (d, θ) , (62)

where the true coefficients and the estimator of the standardized scaled lasso regression (61) are

dtruek = ‖Dk‖√
n
btruek and d̂k = b̂k

‖Dk‖√
n

respectively.

For this standardized scaled lasso regression, we introduce some important notation, including

the lower-RE condition on the gram matrix WTW
n

. The oracle estimator θora of the noise level can

be defined as

θora =
‖R−Wdtrue‖√

n
=
‖E‖√
n

. (63)

Let |K| be the cardinality of an index set K. Define T as the index set of those large coefficients

of dtrue,

T =
{
k :
∣∣dtruek

∣∣ ≥ λ
}

. (64)

We say the gram matrix WTW
n

satisfies a lower-RE condition with curvature α1 > 0 and tolerance

ζ (n, p0) > 0 if

µT
WTW

n
µ ≥ α1 ‖µ‖2 − ζ (n, p0) ‖µ‖2

1 for all µ ∈ R. (65)

Moreover, we define

ν =
∥∥WT

(
R−Wdtrue

)
/n
∥∥
∞ =

∥∥WTE/n
∥∥
∞ , (66)

τ = sλ2 · A2
2ξ

(1 + ξ)
C1

(
3θora

2
, 4ξA1, α1

)
, (67)

with constants ξ > 1, A1 and A2 introduced in Lemma 5. C1

(
3θora

2
, 4ξA1, α1

)
is a constant

depending on 3θora

2
, ξA1 and α1 with its definition in Equation (76). It is bounded above if 3θora

2

and 4ξA1 are bounded above and α1 is bounded below by some universal constants, respectively.

With the notation we can state the key lemma as follows.

Lemma 5 Consider the scaled l1 penalized regression procedure (57). Whenever there exist con-

stants ξ > 1, A1 and A2 such that the following conditions are satisfied

44



1. ν ≤ θoraλ ξ−1
ξ+1

(1− τ) for some ξ > 1 and τ ≤ 1/2 defined in (67);

2. ‖Dk‖√
n
∈ [1/A1, A1] for all k;

3. θora ∈ [1/A2, A2];

4. WTW
n

satisfies the lower-RE condition with α1 and ζ (n, p0) such that

sζ (n, p0) 8 (1 + ξ)2A2
1 ≤ min{α1

2
, 1}, (68)

we have the following deterministic bounds∣∣∣θ̂ − θora∣∣∣ ≤ C1λ
2s, (69)∥∥∥b̂− btrue∥∥∥2

≤ C2λ
2s, (70)∥∥∥b̂− btrue∥∥∥

1
≤ C3λs, (71)∥∥∥D(b̂− btrue)∥∥∥2

/n ≤ C4λ
2s, (72)∥∥DTE/n

∥∥
∞ ≤ C5λ, (73)

where constants Ci (i = 1, . . . , 5) only depend on A1, A2, α1 and ξ.

9. APPENDIX

9.1 Proof of Lemma 5

The function Lλ (d, θ) in Equation (61) is jointly convex in (d, θ). For fixed θ > 0, denote the

minimizer of Lλ (d, θ) over all d ∈ Rp0 by d̂ (θλ), a function of θλ, i.e.,

d̂ (θλ) = arg min
d∈Rp0

Lλ (d, θ) = arg min
d∈Rp0

{
‖R−Wd‖2

2n
+ λθ ‖d‖1

}
, (74)

then if we knew θ̂ in the solution of Equation (62), the solution for the equation is
{
d̂
(
θ̂λ
)
, θ̂
}

.

We recognize that d̂
(
θ̂λ
)

is just the standard lasso with the penalty θ̂λ, however we don’t know

the estimator θ̂. The strategy of our analysis is that we first show that θ̂ is very close to its oracle

estimator θora, then the standard lasso analysis would imply the desired result Equations (70)-(73)

under the assumption that θ̂/θora = 1 + O(λ2s). For the standard lasso analysis, some kind of
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regularity condition is assumed on the design matrix WTW/n in the regression literature. In this

paper we use the lower-RE condition, which is one of the most general conditions.

Let µ = λθ. From the Karush-Kuhn-Tucker condition, d̂ (µ) is the solution to the Equation

(74) if and only if

WT
k

(
R−Wd̂ (µ)

)
/n = µ · sgn

(
d̂k (µ)

)
, if d̂k (µ) 6= 0, (75)

WT
k

(
R−Wd̂ (µ)

)
/n ∈ [−µ, µ] , if d̂k (µ) = 0.

Let C2 (a1, a2) and C1 (a11, a12, a2) be constants depending on a1, a2 and a11, a12, a2, respec-

tively. The constant C2 is bounded above if a1 is bounded above and a2 is bounded below by

constants, respectively. The constant C1 is bounded above whenever a11 and a12 are bounded

above and a2 is bounded below by constants. The explicit formulas of C1 and C2 are given as

follows,

C2 (a1, a2) =
a1

a2

+

[(
a1

a2

)2

+
2 (a1 + 1)

a2

]1/2

,

C1 (a11, a12, a2) = a12 (1 + C2 (a11 × a12, a2)) . (76)

The following propositions are helpful to establish our result. The proof is given in Sections 9.2

and 9.3.

Proposition 2 The sparsity s is defined in Equation (58). For any ξ > 1, assuming ν ≤ µ ξ−1
ξ+1

and

conditions 2, 4 in Lemma 5 hold, we have∥∥∥d̂ (µ)− dtrue
∥∥∥

1
≤ C1

(µ
λ
, 4ξA1, α1

)
λs, (77)∥∥∥d̂ (µ)− dtrue

∥∥∥ ≤ C2

(
4ξA1

µ

λ
, α1

)
λ
√
s, (78)

1

n

∥∥∥W (
dtrue − d̂ (µ)

)∥∥∥2

≤ (ν + µ)
∥∥∥d̂ (µ)− dtrue

∥∥∥
1

. (79)

Proposition 3 Let
{
d̂, θ̂
}

be the solution of the scaled lasso (62). For any ξ > 1, assuming

conditions 1− 4 in Lemma 5 hold, then we have∣∣∣∣∣ θ̂θora − 1

∣∣∣∣∣ ≤ τ . (80)
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Now we finish our proof with these two propositions. According to Conditions 1−4 in Lemma

5 , Proposition 3 implies ν ≤ µ ξ−1
ξ+1

with µ = λθ̂ and Proposition 2 further implies that there exist

some constants c1, c2 and c3 such that∥∥∥d̂(λθ̂)− dtrue∥∥∥
1
≤ c1λs,∥∥∥d̂(λθ̂)− dtrue∥∥∥ ≤ c2λ

√
s,∥∥∥W (

dtrue − d̂
(
λθ̂
))∥∥∥2

n
≤ c3λ

2s.

Note that µ
λ

= θ̂ ∈ [θora(1− τ), θora(1 + τ)] ⊂
[

1
2A2

, 3A2

2

]
. Thus the constants c1, c2 and c3

only depends on A1, A2, α1 and ξ. Now we transfer the results above on standardized scaled

lasso (62) back to the general scaled lasso (57) through the bounded scaling constants
{ √

n
‖Dk‖

}
and immediately have the desired results (70)-(72). Result (69) is an immediate consequence of

Proposition 3 and Result (73) is an immediate consequence of assumptions 1− 3.

9.2 Proof of Proposition 2

Notice that

1

n

∥∥∥W (
dtrue − d̂ (µ)

)∥∥∥2

=

(
dtrue − d̂ (µ)

)T (
WT

(
R−Wd̂ (µ)

)
−WT (R−Wdtrue)

)
n

≤ µ
(∥∥dtrue∥∥

1
−
∥∥∥d̂ (µ)

∥∥∥
1

)
+ ν

∥∥∥dtrue − d̂ (µ)
∥∥∥

1
(81)

≤ (µ+ ν)
∥∥∥(dtrue − d̂ (µ)

)
T

∥∥∥
1

+ 2µ
∥∥(dtrue)

T c

∥∥
1
− (µ− ν)

∥∥∥(dtrue − d̂ (µ)
)
T c

∥∥∥
1

, (82)

where the first inequality follows from the KKT conditions (75).

Now define ∆ = d̂ (µ)− dtrue. Equation (81) also implies the desired inequality (79)

∆T WTW

n
∆ ≤ (µ+ ν) ‖∆‖1 (83)

We will first show that

‖∆T c‖1 ≤ max
{

2 (1 + ξ)
∥∥(dtrue)

T c

∥∥
1
, 2ξ ‖∆T‖1

}
, (84)
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then we are able to apply the lower-RE condition (65) to derive the desired results.

To show Equation (84), we note that our assumption ν ≤ µ ξ−1
ξ+1

with Equation (82) implies

1

n
‖W∆‖2 ≤ 2µ

(
ξ ‖∆T‖1

ξ + 1
+
∥∥(dtrue)

T c

∥∥
1
− ‖∆T c‖1

ξ + 1

)
. (85)

Suppose that

‖∆T c‖1 ≥ 2 (1 + ξ)
∥∥(dtrue)

T c

∥∥
1

, (86)

then the inequality (85) becomes

0 ≤ 1

n
‖W∆‖2 ≤ µ

ξ + 1
(2ξ ‖∆T‖1 − ‖∆T c‖1) ,

which implies

‖∆T c‖1 ≤ 2ξ ‖∆T‖1 . (87)

Therefore the complement of inequality (86) and Equation (87) together finish our proof of Equa-

tion (84).

Before proceeding, we point out two facts which will be used below several times. Note the

sparseness s is defined in terms of the true coefficients btrue in Equation (58) before standardization

but the index set T is defined in term of dtrue in Equation (64) after standardization. Condition 2

implies that this standardization step doesn’t change the sparseness up to a factor A1. Hence it’s

not hard to see that |T | ≤ A1s and ‖(dtrue)T c‖1 ≤ A1λs.

Now we are able to apply the lower-RE condition of WTW
n

to Equation (83) and obtain that

∆T WTW

n
∆ ≥ α1 ‖∆‖2 − ζ (n, p0) ‖∆‖2

1

≥ α1 ‖∆‖2 − ζ (n, p0) 8 (1 + ξ)2
(∥∥(dtrue)

T c

∥∥2

1
+ ‖∆T‖2

1

)
≥

(
α1 − |T | ζ (n, p0) 8 (1 + ξ)2) ‖∆‖2 − ζ (n, p0) 8 (1 + ξ)2A2

1λ
2s2

≥ α1

2
‖∆‖2 − λ2s,

where in the second, third and last inequalities we applied the facts (84), ‖∆T‖2
1 ≤ |T | ‖∆T‖2,

|T | ≤ A1s, ‖(dtrue)T c‖1 ≤ A1λs and sζ (n, p0) 8 (1 + ξ)2A2
1 ≤ min{α1

2
, 1}. Moreover, by apply-
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ing those facts used in last equation again, we have

(µ+ ν) ‖∆‖1 ≤ 4ξµ
(∥∥(dtrue)

T c

∥∥
1

+ ‖∆T‖1

)
≤ 4ξµ

(
A1λs+

√
|T | ‖∆‖

)
≤ 4ξA1

µ

λ

(
λ2s+

√
sλ ‖∆‖

)
.

The above two inequalities together with Equation (83) imply that

4ξA1
µ

λ

(
λ2s+

√
sλ ‖∆‖

)
≥ α1

2
‖∆‖2 − λ2s.

Define Su = 4ξA1
µ
λ

. Some algebra about this quadratic inequality implies the bound of ∆ under

l2 norm

‖∆‖ ≤

Su
α1

+

[(
Su
α1

)2

+
2 (Su + 1)

α1

]1/2
λ
√
s

≡ C2

(
4ξA1

µ

λ
, α1

)
λ
√
s.

Combining this fact with Equation (84), we finally obtain the bound under l1 norm (77)

‖∆‖1 ≤ ‖∆T‖1 + ‖∆T c‖1 ≤ 2 (1 + ξ)
(∥∥(dtrue)

T c

∥∥
1

+ ‖∆T‖1

)
≤ 2 (1 + ξ)

(
A1sλ+

√
|T | ‖∆‖

)
≤ 4ξA1

(
1 + C2

(
4ξA1

µ

λ
, α1

))
sλ

≡ C1

(µ
λ
, 4ξA1, α1

)
sλ.

9.3 Proof of Proposition 3

For τ defined in Equation (67), we need to show that θ̂ ≥ θora (1− τ) and θ̂ ≤ θora (1 + τ) on the

event
{
ν ≤ θoraλ ξ−1

ξ+1
(1− τ)

}
. Let d̂ (θλ) be the solution of (74) as a function of θ, then

∂

∂θ
Lλ

(
d̂ (θλ) , θ

)
=

1

2
−

∥∥∥R−Wd̂ (θλ)
∥∥∥2

2nθ2 , (88)

since
{

∂
∂d
Lλ (d, θ) |d=d̂(θλ)

}
k

= 0 for all d̂k (θλ) 6= 0, and
{

∂
∂θ
d̂ (θλ)

}
k

= 0 for all d̂k (θλ) = 0

which follows from the fact that
{
k : d̂k (θλ) = 0

}
is unchanged in a neighborhood of θ for almost

all θ. Equation (88) plays a key in the proof.
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(1). To show that θ̂ ≥ θora (1− τ) it’s enough to show

∂

∂θ
Lλ

(
d̂ (θλ) , θ

)
|θ=t1 < 0,

where t1 = θora (1− τ), due to the strict convexity of the objective function Lλ (d, θ) in θ. Equa-

tion (88) implies that

2t21
∂

∂θ
Lλ

(
d̂ (θλ) , θ

)
|θ=t1 = t21 −

∥∥∥R−Wd̂ (t1λ)
∥∥∥2

n

≤ t21 −

∥∥∥R−Wdtrue + W
(
d̂ (t1λ)− dtrue

)∥∥∥2

n

≤ t21 − (θora)2 + 2
(
dtrue − d̂ (t1λ)

)T WT (R−Wdtrue)

n

≤ 2t1 (t1 − θora) + 2ν
∥∥∥dtrue − d̂ (t1λ)

∥∥∥
1

. (89)

On the event
{
ν ≤ t1λ

ξ−1
ξ+1

}
=
{
ν/θora < λ ξ−1

ξ+1
(1− τ)

}
we have

2t21
∂

∂θ
Lλ

(
d̂ (θλ) , θ

)
|θ=t1

≤ 2t1 (t1 − θora) + 2t1λ
ξ − 1

ξ + 1

∥∥∥dtrue − d̂ (t1λ)
∥∥∥

1

≤ 2t1

[
−τθora + λ

ξ − 1

ξ + 1

∥∥∥dtrue − d̂ (t1λ)
∥∥∥

1

]
< 0.

The last inequality follows from the definition of τ and the l1 error bound in Equation (77)

of Proposition 2. Note that for λ2s sufficiently small, we have small τ < 1/2. In fact, al-

though
∥∥∥dtrue − d̂ (t1λ)

∥∥∥
1

also depends on τ , our choice of τ is well-defined and is larger than

λ
θora

3(ξ−1)
2(ξ+1)

∥∥∥dtrue − d̂ (t1λ)
∥∥∥

1
.

(2). Let t2 = θora (1 + τ). To show the other side θ̂ ≤ θora (1 + τ) it is enough to show

∂

∂θ
Lλ

(
d̂ (θλ) , θ

)
|θ=t2 > 0.
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Equation (88) implies that on the event
{
ν ≤ t2λ

ξ−1
ξ+1

}
=
{
ν/θora < λ ξ−1

ξ+1
(1 + τ)

}
we have

2t22
∂

∂θ
Lλ

(
d̂ (θλ) , θ

)
|θ=t2 = t22 −

∥∥∥R−Wd̂ (t2λ)
∥∥∥2

n

= t22 − (θora)2 + (θora)2 −

∥∥∥R−Wd̂ (t2λ)
∥∥∥2

n

= t22 − (θora)2 +
‖R−Wdtrue‖2 −

∥∥∥R−Wd̂ (t2λ)
∥∥∥2

n

= t22 − (θora)2 +

(
d̂ (t2λ)− dtrue

)T
WT

(
R−Wdtrue + R−Wd̂ (t2λ)

)
n

≥ t22 − (θora)2 −
∥∥∥d̂ (t2λ)− dtrue

∥∥∥
1

(ν + t2λ)

≥ (t2 + θora) θoraτ − 2ξ

ξ + 1
t2λ
∥∥∥d̂ (t2λ)− dtrue

∥∥∥
1

≥ 2θora
(
τθora − 3ξ

2 (ξ + 1)
λ
∥∥∥d̂ (t2λ)− dtrue

∥∥∥
1

)
> 0,

where the second last inequality is due to the fact τ ≤ 1/2 and the last inequality follows from the

definition of τ and the l1 error bound in Equation (77) of Proposition 2. Still, our choice of τ is

well-defined and is larger than λ
θora

4ξ
2(ξ+1)

∥∥∥dtrue − d̂ (t2λ)
∥∥∥

1
.
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