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Abstract

Driven by a wide range of applications in high-dimensional data analysis, there has

been significant recent interest in the estimation of large covariance matrices. In this

paper, we consider optimal estimation of a covariance matrix as well as its inverse over

several commonly used parameter spaces under the matrix ℓ1 norm. Both minimax

lower and upper bounds are derived.

The lower bounds are established by using hypothesis testing arguments, where at

the core are a novel construction of collections of least favorable multivariate normal

distributions and the bounding of the affinities between mixture distributions. The

lower bound analysis also provides insight into where the difficulties of the covariance

matrix estimation problem arise. A specific thresholding estimator and tapering esti-

mator are constructed and shown to be minimax rate optimal. The optimal rates of

convergence established in the paper can serve as a benchmark for the performance

of covariance matrix estimation methods.
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1 Introduction

Estimating covariance matrices is essential for a wide range of statistical applications.

With high-dimensional data becoming readily available, one is frequently faced with the

problem of estimating large covariance matrices. It is now well understood that in such a

setting the standard sample covariance matrix does not provide satisfactory performance

and regularization is needed. Many regularization methods, including banding, tapering,

thresholding and penalization, have been proposed. See, for example, Wu and Pourahmadi

(2003), Zou, Hastie, and Tibshirani (2006), Bickel and Levina (2008a, b), El Karoui (2008),

Lam and Fan (2009), Johnstone and Lu (2009), Cai, Zhang, and Zhou (2010), and Cai

and Liu (2011). However, the fundamental properties of the covariance matrix estimation

problems are still largely unknown.

The minimax risk, which quantifies the difficulty of an estimation problem, is one

of the most commonly used benchmark. It is often used as the basis for the evaluation

of performance of an estimation method. Cai, Zhang, and Zhou (2010) were the first to

derive the minimax rates of convergence for estimating a class of large covariance matrices

under the spectral norm and the Frobenius norm. Rate-sharp minimax lower bounds

were derived and specific tapering estimators were constructed and shown to achieve the

optimal rates of convergence. It was noted that the minimax behavior of the estimation

problem critically depends on the norm under which the estimation error is measured.

It is of significant interest to understand how well covariance matrices can be estimated

under different settings. Suppose we observe independent and identically distributed

p-variate random variables X1, . . . ,Xn and wish to estimate their unknown covariance

matrix Σp×p based on the sample {Xl}. For a given collection B of distributions of X1

with a certain class of covariance matrices, the minimax risk of estimating Σ over B under

a given matrix norm ‖ · ‖ is defined as

R(B) = inf
Σ̂

sup
B

E‖Σ̂− Σ‖2.

In the present paper, we establish the optimal rates of convergence for estimating the

covariance matrix Σ = (σij)1≤i,j≤p as well as its inverse over several commonly used

parameter spaces under the matrix ℓ1 norm. For a matrix A = (aij), its ℓ1 norm is the

maximum absolute column sum, ‖A‖1 = max j
∑

i |ai,j|.
In the high-dimensional setting, structural assumptions are needed in order to estimate

the covariance matrix consistently. One widely used assumption is that the covariance

matrix is sparse, i.e., most of the entries in each row/column are zero or negligible. An-
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other common assumption used in the literature is that the variables exhibit a certain

ordering structure, which is often the case for time series data. Under this assumption,

the magnitude of the elements in the covariance matrix decays as they move away from

the diagonal. We consider both cases in the present paper and study three different types

of parameter spaces.

The first class of parameter spaces models sparse covariance matrices in which each

column (or row) (σij)1≤i≤p is assumed to be in a sparse weak ℓq ball, as used in many

applications including gene expression array analysis. More specifically, denote by
∣

∣σ[k]j
∣

∣

the k-th largest element in magnitude of the jth column (σij)1≤i≤p. For 0 ≤ q < 1, define

Gq(ρ, cn,p) =

{

Σ = (σij)1≤i,j≤p : max
1≤j≤p

{∣

∣σ[k]j
∣

∣

q} ≤ cn,p/k , ∀k, and max
i

(σii) ≤ ρ

}

. (1)

In the special case q = 0, a matrix in G0(ρ, cn,p) has at most cn,p nonzero elements in

each column. The weak ℓq ball has been used in Abramovich, Benjamini, Donoho, and

Johnstone (2006) for the sparse normal means problem. The parameter space Gq contains

the uniformity class of covariance matrices in Bickel and Levina (2008b, page 5) as a

special case. The second class of parameter spaces under study is

Fα (ρ,M) =

{

Σ : max
j

∑

i

|σij| {i : |i− j| > k} ≤Mk−α, ∀k, and max
i

(σii) ≤ ρ

}

(2)

where α > 0, M > 0, and ρ > 0. The parameter α in (2), which essentially specifies the

rate of decay for the covariances σij as they move away from the diagonal, can be viewed

as an analog of the smoothness parameter in nonparametric spectral density estimation.

This class of covariance matrices is motivated by time series analysis for applications such

as on-line modeling and forecasting. Note that the smallest eigenvalue of a covariance

matrix in the parameter space Fα is allowed to be 0, which is more general than the

assumption at (5) of Bickel and Levina (2008a). The third parameter space is a subclass

of Fα:

Hα(ρ,M) =

{

Σ : |σij | ≤M |i− j|−(α+1) for i 6= j and max
i

(σii) ≤ ρ

}

. (3)

This parameter space has been considered in Bickel and Levina (2008a) and Cai, Zhang,

and Zhou (2010).

We assume that the distribution of the Xi’s is subgaussian in the sense that, for all

t > 0 and all v ∈ Rp with ‖v‖2 = 1,

P{|v′(X1 − EX1)| > t} ≤ e−
t2

2ρ . (4)
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Let P (Gq(ρ, cn,p)) denote the set of distributions ofX1 satisfying (1) and (4). The distribu-

tion classes P (Fα(ρ,M)) and P (Hα(ρ,M)) are defined similarly. Our analysis establishes

the minimax rates of convergence for estimating the covariance matrices over the three

distribution classes P (Gq(ρ, cn,p)), P (Fα(ρ,M)), and P (Hα(ρ,M)). By combining the

minimax lower and upper bounds developed in later sections, the main results on the

optimal rates of convergence for estimating the covariance matrix under the ℓ1 norm can

be summarized as follows.

Theorem 1 The minimax risk of estimating the covariance matrix Σ over the distribution

class P (Gq(ρ, cn,p)) satisfies

inf
Σ̂

sup
P(Gq(ρ,cn,p))

E

∥

∥

∥
Σ̂− Σ

∥

∥

∥

2

1
≍ c2n,p

(

log p

n

)1−q

(5)

under assumptions (7) and (8), and the minimax risks of estimating the covariance matrix

Σ over the distribution classes P (Fα(ρ,M)) and P (Hα(ρ,M)) satisfy

inf
Σ̂

sup
A

E

∥

∥

∥Σ̂− Σ
∥

∥

∥

2

1
≍ min

{

n−
α

α+1 +

(

log p

n

)
2α

2α+1

,
p2

n

}

, (6)

where A = P (Fα(ρ,M)) or P (Hα(ρ,M)).

A key step in obtaining the optimal rates of convergence is the derivation of sharp

minimax lower bounds. As noted in Cai, Zhang, and Zhou (2010), the lower bound anal-

ysis for covariance matrix estimation has quite distinct features from those used in the

more conventional function/sequence estimation problems. We establish the lower bounds

by using several different hypothesis testing arguments including Le Cam’s method, As-

souad’s Lemma, and a version of Fano’s Lemma, where at the core are a novel construction

of collections of least favorable multivariate normal distributions and the bounding of the

affinities between mixture distributions. An important technical step is to bound the

affinity between pairs of probability measures in the collection; this is quite involved in

matrix estimation problems. We shall see that, although the general principles remain the

same, the specific technical analysis used to obtain the lower bounds under the ℓ1 norm

loss is rather different from those used in the cases of the spectral norm and Frobenius

norm losses.

We then show that the minimax lower bounds are rate optimal by constructing explicit

estimators that attain the same rates of convergence as those of the minimax lower bounds.

In the sparse case, it is shown that a thresholding estimator attains the optimal rate of
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convergence over the distribution class P (Gq(ρ, cn,p)) under the ℓ1 norm. The thresholding

estimator was originally introduced in Bickel and Levina (2008b) for estimating sparse

covariance matrices under the spectral norm; here we show that the estimator is rate-

optimal over the distribution class P (Gq(ρ, cn,p)) under the matrix ℓ1 norm. For the

other two distribution classes P (Fα(ρ,M)) and P (Hα(ρ,M)), we construct a tapering

estimator that is closely related to the recent work in Cai, Zhang, and Zhou (2010),

though the choice of the optimal tapering parameter is quite different. This phenomenon is

important in practical tuning parameter selection. For covariance matrix estimation under

the spectral norm, Bickel and Levina (2008a) suggested selecting the tuning parameter

by cross-validation and minimizing ℓ1 norm loss for convenience. However, even if the

cross-validation method selects the ideal tuning parameter for optimal estimation under

the ℓ1 norm, the resulting banding estimator can be far from optimal for estimation under

the spectral norm.

The rest of the paper is organized as follows. Section 2 focuses on minimax lower

bounds for covariance matrix estimation under the ℓ1 norm. We then establish the mini-

max rates of convergence by showing that the lower bounds are in fact rate sharp. This

is accomplished in Section 3 by constructing thresholding and tapering estimators and

proving that they attain the same convergence rates as those given in the lower bounds.

Section 4 considers optimal estimation of the inverse covariance matrices under the ℓ1

norm. Section 5 discusses connections and differences of the results with other related

work. The proofs of the technical lemmas that are used to prove the main results are

given in Section 6.

2 Minimax lower bounds under the ℓ1 norm

A key step in establishing the optimal rate of convergence is the derivation of the mini-

max lower bounds. In this section, we consider the minimax lower bounds for the three

distribution classes given earlier. The upper bounds derived in Section 3 show that these

lower bounds are minimax rate optimal.

We work with various matrix operator norms. For 1 ≤ r ≤ ∞, the matrix ℓr norm of

a matrix A is defined as

‖A‖r = max
x 6=0

‖Ax‖r
‖x‖r

= max
‖x‖r=1

‖Ax‖r.

The spectral norm is the matrix ℓ2 norm; the ℓ1 norm is the “maximum absolute column

sum”, i.e., for a matrix A = (aij), ‖A‖1 = max j
∑

i |ai,j|; the matrix ℓ∞ norm is the
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“maximum absolute row sum”, ‖A‖∞ = max i
∑

j |ai,j|. Note that for covariance matrices

the ℓ1 norm coincides with the ℓ∞ norm and the spectral norm is the maximum eigenvalue.

Since every Gaussian random variable is subgaussian, it is sufficient to derive minimax

lower bounds under the Gaussian assumption. In this section, we consider independent

and identically distributed p-variate Gaussian random variables X1, . . . ,Xn and wish to

estimate their unknown covariance matrix Σp×p under the ℓ1 norm based on the sample

{Xl}.
Throughout the paper we denote by C, c, C1, c1, C2, c2, ... etc. generic constants, not

depending on n or p, which may vary from place to place.

2.1 Minimax lower bound over P (Gq(ρ, cn,p))

We begin by considering the parameter space Gq = Gq(ρ, cn,p) at (1). The goal is to derive a

good lower bound for the minimax risk over Gq(ρ, cn,p). We focus on the high-dimensional

case where

p ≥ nν with ν > 1 (7)

and assume that

cn,p ≤M

(

n

log p

) 1
2
− q

2

(8)

for 0 ≤ q < 1 and some M > 0. Theorem 2 below implies that the assumption

c2n,p

(

log p
n

)1−q
→ 0 is necessary to obtain a consistent estimator. See Remark 1 for more

details.

Our strategy for deriving the minimax lower bound is to carefully construct a finite

collection of multivariate normal distributions and to calculate the total variation affinity

between pairs of probability measures in the collection. The construction is as follows.

Let ⌊x⌋ denote the largest integer less than or equal x. Set k =
⌊

cn,p (n/ log p)
q/2
⌋

. We

construct matrices whose off-diagonal elements are equal to 0 except the first row/column.

Denote by H the collection of all p × p symmetric matrices with exactly k off-diagonal

elements equal to 1 on the first row and the rest all zeros. (The first column of a matrix

in H is obtained by reflecting the first row.) Define

G0 = {Σ : Σ = Ip or Σ = Ip + aH, for some H ∈ H} , (9)

where a =
√

τ1 log p
n for some constant τ1. Without loss of generality we assume that ρ > 1

in (1). It is easy to see that G0 ⊂ Gq(ρ, cn,p) when τ1 is small. We pick the constant τ1

such that 0 < τ1 < min
{

1, 1
4ν (ν − 1) , 1

2M2

}

. It is straightforward to check that with such

a choice of τ1, G0 ⊂ Gq(ρ, cn,p).
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We use Le Cam’s method to establish the lower bound by showing that there exists

some constant C1 > 0 such that for any estimator Σ̂,

sup
G0

E

∥

∥

∥
Σ̂− Σ

∥

∥

∥

2

1
≥ C1c

2
n,p

(

log p

n

)1−q

, (10)

which leads immediately to the following result.

Theorem 2 Suppose we observe independent and identically distributed p-variate Gaus-

sian random variables X1, . . . ,Xn with covariance matrix Σp×p ∈ Gq(ρ, cn,p). Under as-

sumptions (7) and (8), the minimax risk of estimating the covariance matrix Σp×p satisfies

inf
Σ̂

sup
Gq(ρ,cn,p)

E

∥

∥

∥
Σ̂− Σ

∥

∥

∥

2

1
≥ C1c

2
n,p

(

log p

n

)1−q

(11)

where C1 is a positive constant.

Remark 1 In Theorem 2, cn,p is assumed to satisfy cn,p ≤ M
(

n
log p

)
1
2
− q

2
for some

constant M > 0. This assumption is necessary to obtain a consistent estimator. If

cn,p > M
(

n
log p

) 1
2
− q

2
, we have

inf
Σ̂

sup
Gq(ρ,cn,p)

E

∥

∥

∥Σ̂− Σ
∥

∥

∥

2

1
≥ inf

Σ̂
sup

Gq(ρ,M
(

n
log p

) 1
2
−

q
2 )

E

∥

∥

∥Σ̂−Σ
∥

∥

∥

2

1
≥ C1M

2

where the last inequality follows from (11). Furthermore by a similar argument as above,

we need the condition c2n,p

(

log p
n

)1−q
→ 0 to estimate Σ consistently under the ℓ1 norm.

Results in Section 3 show that the lower bound given in (11) is minimax rate optimal.

A threshold estimator is shown to attain the convergence rate given in (11).

Before we prove the theorem, we need to introduce some notation. Denote by m∗ the

number of non-identity covariance matrices in G0. Then m∗ = Card (G0) − 1 =
(p−1

k

)

.

Let Σm, 1 ≤ m ≤ m∗, denote a non-identity covariance matrix in G0, and let Σ0 be the

identity matrix Ip. We denote the joint distribution and density of X1,X2, . . . ,Xn with

Xl ∼ N (0,Σm) by PΣm and fm, respectively, and take P̄ = 1
m∗

∑m∗

m=1 PΣm .

For two probability measures P andQ with density p and q with respect to any common

dominating measure µ, write the total variation affinity ‖P ∧ Q‖ =
∫

p ∧ qdµ. A major

tool for the proof of Theorem 2 is the following lemma which is a direct consequence of

Le Cam’s lemma (cf. Le Cam (1973), Yu (1997)).
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Lemma 1 Let Σ̂ be any estimator of Σm based on an observation from a distribution in

the collection {PΣm,m = 0, 1, . . . ,m∗}, then

sup
0≤m≤m∗

E

∥

∥

∥Σ̂− Σm

∥

∥

∥

1
≥ 1

2

∥

∥PΣ0
∧ P̄
∥

∥ · inf
1≤m≤m∗

‖Σm − Σ0‖1 .

Proof of Theorem 2: It is easy to see that

inf
1≤m≤m∗

‖Σm − Σ0‖21 = k2a2 ≥ C2c
2
n,p

(

log p

n

)1−q

for some C2 > 0. To prove the theorem, it thus suffices to show that there is a constant

C3 > 0 such that
∥

∥PΣ0
∧ P̄
∥

∥ ≥ C3. (12)

That immediately implies

sup
0≤m≤m∗

E

∥

∥

∥Σ̂− Σm

∥

∥

∥

2

1
≥ sup

0≤m≤m∗

(

E

∥

∥

∥Σ̂− Σm

∥

∥

∥

1

)2
≥ 1

4
· C2c

2
n,p

(

log p

n

)1−q

· C2
3

which matches the lower bound in (11) up to a constant factor.

Now we establish the lower bound (12) for the total variation affinity. Since the affinity
∫

q0∧q1dµ = 1− 1
2

∫

|q0 − q1| dµ for any two densities q0 and q1, Jensen’s Inequality implies

[
∫

|q0 − q1| dµ
]2

=

(
∫
∣

∣

∣

∣

q0 − q1
q0

∣

∣

∣

∣

q0dµ

)2

≤
∫

(q0 − q1)
2

q0
dµ =

∫
(

q21
q0

− 1

)

dµ.

Hence
∫

q0 ∧ q1dµ ≥ 1 − 1
2

[

∫

(

q21
q0

− 1
)

dµ
]1/2

. To establish (12), it thus suffices to show

that

∆ =

∫

( 1
m∗

∑m∗

m=1 fm)2

f0
− 1 =

1

m2∗

∑

m,l

∫ (

fmfl
f0

− 1

)

→ 0.

The following lemma is used to calculate the term
∫

(fmfl/f0 − 1) in ∆.

Lemma 2 Let gs be the density function of N (0,Σs), s = 0,m, l. Then
∫

gmgl
g0

= [det (I − (Σm − Ip) (Σl − Ip))]
−1/2 .

Lemma 2 implies
∫

fmfl
f0

=

(∫

gmgl
g0

)n

= [det (I − (Σm − Ip) (Σl − Ip))]
−n/2 .

Let J(m, l) be the number of overlapping nonzero off-diagonal elements between Σm and

Σl in the first row. Elementary calculations yield that ‖Σm − Σl‖1 = 2(k − J)a and

[det (I − (Σm − Ip) (Σl − Ip))]
1/2 = 1− Ja2,

8



which is 1 when J = 0. It is easy to see that the total number of pairs (Σm,Σl) such that

J(m, l) = j is
(p−1

k

)(k
j

)(p−1−k
k−j

)

. Hence,

∆ =
1

m2∗

∑

0≤j≤k

∑

J(m,l)=j

∫ (

fmfl
f0

− 1

)

=
1

m2∗

∑

0≤j≤k

∑

J(m,l)=j

[

(

1− ja2
)−n − 1

]

≤ 1

m2∗

∑

1≤j≤k

(

p− 1

k

)(

k

j

)(

p− 1− k

k − j

)

(1− ja2)−n. (13)

Note that
(

1− ja2
)−n ≤

(

1 + 2ja2
)n ≤ exp

(

n2ja2
)

= p2τ1j

where the first inequality follows from the fact that ja2 ≤ ka2 ≤ τ1M
2 < 1/2. Hence,

∆ ≤
∑

1≤j≤k

(

k
j

)(

p−1−k
k−j

)

(

p−1
k

) p2τ1j ≤ 2
∑

1≤j≤k

(

k2p2τ1

p− k

)j

.

Recall that k =

⌊

cn,p

(

n
log p

)q/2
⌋

and cn,p ≤M (n/ log p)
1
2
− q

2 . So we have

k2
p2τ1

p− k
≤ c2n,p

(

n

log p

)q

· p
2τ1

p− k

≤ M2

(

n

log p

)1−q ( n

log p

)q

· p
2τ1

p− k

≤ 2M2

(

n

log p

)

· p
2τ1

p
≤ 2M2n(1−ν)/2,

where the last step follows from the fact that τ1 ≤ (ν − 1) / (4ν). Thus ∆ ≤ Cn(1−ν)/2 →
0, which immediately implies (12).

2.2 Minimax lower bounds over P (Fα(ρ,M)) and P (Hα(ρ,M))

We now consider minimax lower bounds for the parameter spaces Fα(ρ,M) andHα(ρ,M).

We show that the minimax rates of convergence over these two parameter spaces are the

same under the ℓ1 norm. Since Hα(ρ,M) ⊂ Fα(ρ, 2M/α), it thus suffices to establish the

minimax lower bound for Hα(ρ,M).

As in Section 2.1, the basic strategy remains to carefully construct a finite collection of

multivariate normal distributions such that the covariance matrices are “far apart” in ℓ1

norm and yet it is still “sufficiently difficult” to test between them based on the observed

sample. However, the specific construction and the technical tools used in the analysis are

quite different from those in Section 2.1. Here we mainly rely on Assouad’s Lemma and

a version of Fano’s Lemma given in Tsybakov (2009) to obtain the desired lower bound.
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We define the parameter spaces that are appropriate for the minimax lower bound

argument. In this section we assume p ≥ n
1

2α+2 . The case p < n
1

2α+2 is similar and

slightly easier. Both lower bound and upper bound for this case will be discussed in

Section 3.2.1.

We construct parameter spaces separately for the cases p ≤ exp
(

n
1

2α+2

)

and p >

exp
(

n
1

2α+2

)

. For p ≤ exp
(

n
1

2α+2

)

, set k =
⌊

n
1

2α+2

⌋

. Without loss of generality let ρ > 1.

Let τ2 be a small constant to be specified later. Take the parameter space F11 of 2k−1

covariance matrices to consist of all p × p symmetric matrices with diagonal elements 1

and the first (k−1) off-diagonal elements in the first row (and first column by symmetry)

equal to either 0 or τ2n
−1/2, with all other elements 0. Formally,

F11 =

{

Σ (θ) : Σ (θ) = Ip + τ2n
−1/2

k
∑

s=2

θs

[

(I {i = 1, j = s})p×p

+(I {i = s, j = 1})p×p

]

, θ = (θs) ∈ {0, 1}k−1

}

,

(14)

where Ip is the p× p identity matrix.

We pick τ2 such that 0 < τ2 < min
{

M,M2, 1/16
}

. It is then easy to see that for any

Σ = (σi,j) ∈ F11,

|σ1,j | ≤ τ2n
− 1

2 ≤ τ2k
−(α+1) ≤Mj−(α+1)

for all 2 ≤ j ≤ k, and consequently |σi,j| ≤ M |i − j|−(α+1) for all 1 ≤ i 6= j ≤ p. In

addition, we have maxi (σii) = 1 < ρ. Hence, the collection F11 ⊂ Hα(ρ,M).

For p ≥ exp
(

n
1

2α+2

)

, we set k =

⌊

(

n
log p

)
1

2α+1

⌋

. Define the p×p matrix Bm = (bij)p×p

by

bij = I {i = m and m+ 1 ≤ j ≤ m+ k − 1, or j = m and m+ 1 ≤ i ≤ m+ k − 1} .

In addition to F11 we take

F12 =
{

Σm : Σm = Ip + b
√

τ2 log pBm, 1 ≤ m ≤ m∗
}

, (15)

where b = (nk)−1/2 and m∗ = ⌊p/k⌋ − 1. It is easy to see that

(bk)2 log p =
k

n
log p ≤ k−2α

which implies

b
√

τ2 log p ≤Mk−α−1

as long as τ2 < M2, and supi (σii) = 1 < ρ. Then the collection F12 ⊂ Hα(ρ,M).
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Let F0 = F11∪F12. It is clear that F0 ⊂ Hα(ρ,M). It will be shown below separately

that for some constant C4 > 0,

inf
Σ̂

sup
F11

E

∥

∥

∥Σ̂− Σ
∥

∥

∥

2

1
≥ C4n

− α
α+1 , (16)

inf
Σ̂

sup
F12

E

∥

∥

∥Σ̂− Σ
∥

∥

∥

2

1
≥ C4

(

log p

n

) 2α
2α+1

. (17)

Equations (16) and (17) together imply

inf
Σ̂

sup
F0

E

∥

∥

∥
Σ̂− Σ

∥

∥

∥

2

1
≥ C4

2

[

n−
α

α+1 +

(

log p

n

)
2α

2α+1

]

, (18)

which yields the follow result.

Theorem 3 Suppose we observe independent and identically distributed p-variate Gaus-

sian random variables X1, . . . ,Xn with covariance matrix Σp×p ∈ Fα(ρ,M) or Hα(ρ,M).

The minimax risks of estimating the covariance matrix Σ satisfy, for some C > 0,

inf
Σ̂

sup
Σ∈A

E

∥

∥

∥
Σ̂−Σ

∥

∥

∥

2

1
≥ C

[

n−
α

α+1 +

(

log p

n

) 2α
2α+1

]

(19)

where A = Fα(ρ,M) or Hα(ρ,M).

It is shown in Section 3 that the rate of convergence given in the lower bound (19) is

optimal. A specific tapering estimator is constructed and shown to attain the minimax

rate of convergence n−
α

α+1 +
(

log p
n

) 2α
2α+1

.

We establish the lower bound (16) by using Assouad’s Lemma and the lower bound

(17) by using a version of Fano’s Lemma given in Tsybakov (2009).

2.2.1 Proof of the lower bound (16)

The key technical tool to establish (16) is the lemma in Assouad (1983). It gives a

lower bound for the maximum risk over the parameter set Θ = {0, 1}m for the problem

of estimating an arbitrary quantity ψ (θ) belonging to a metric space space with metric

d. Let H(θ, θ′) =
∑m

i=1 |θi − θ′i| be the Hamming distance on {0, 1}m, which counts the

number of positions at which θ and θ′ differ. Assouad’s Lemma provides a minimax lower

bound.

Lemma 3 (Assouad) Let Θ = {0, 1}m and let T be an estimator based on an observa-

tion from a distribution in the collection {Pθ, θ ∈ Θ}. Then for all s > 0

max
θ∈Θ

2sEθd
s (T, ψ (θ)) ≥ min

H(θ,θ′)≥1

ds (ψ (θ) , ψ (θ′))
H (θ, θ′)

m

2
min

H(θ,θ′)=1
‖Pθ ∧ Pθ′‖ .

11



Assouad’s Lemma is connected to multiple comparisons. In total there are m compar-

isons. The lower bound has three terms. The first term is basically the loss one would

incur for each incorrect comparison, the last term is the lower bound for the total prob-

ability of type one and type two errors for each comparison, and m/2 is the expected

number of mistakes one would make when Pθ and Pθ′ are not distinguishable from each

other when H (θ, θ′) = 1.

We now prove (16). Let X1, . . . ,Xn
iid∼ N (0,Σ (θ)) with Σ (θ) ∈ F11. Denote the

joint distribution by Pθ. Applying Assouad’s Lemma to the parameter space F11 with

m = k − 1, we have

inf
Σ̂

max
θ∈{0,1}k

22Eθ

∥

∥

∥
Σ̂− Σ (θ)

∥

∥

∥

1
≥ min

H(θ,θ′)≥1

‖Σ (θ)− Σ (θ′)‖1
H (θ, θ′)

k − 1

2
min

H(θ,θ′)=1
‖Pθ ∧ Pθ′‖ .

(20)

We state the bounds for the two factors on the right hand of (20) in two lemmas.

Lemma 4 Let Σ (θ) be defined as in (14). Then

min
H(θ,θ′)≥1

‖Σ (θ)−Σ (θ′)‖1
H (θ, θ′)

≥ cn−1/2 (21)

for some c > 0.

The proof of Lemma 4 is straightforward and is thus omitted here.

Lemma 5 Let X1, . . . ,Xn
iid∼ N (0,Σ (θ)) with Σ (θ) ∈ F11. Denote the joint distribution

by Pθ. Then for some constant c1 > 0

min
H(θ,θ′)=1

‖Pθ ∧ Pθ′‖ ≥ c1.

The proof of Lemma 5 is deferred to Section 6. It follows from Lemma 5, using

k = n
1

2α+2 , that

inf
Σ̂

sup
Σ(θ)∈F11

22Eθ

∥

∥

∥Σ̂− Σ (θ)
∥

∥

∥

2

1
≥ c2k

2
(

n−1/2
)2

= c2k
2n−1 = c2n

− α
α+1 .

2.2.2 Proof of the lower bound (17)

Consider the parameter space F12 defined in (15). Denote by Σ0 the p × p identity

matrix. Let fm, 1 ≤ m ≤ m∗ = ⌊p/k⌋ − 1, be the joint density of X1,X2, . . . ,Xn with

Xl ∼ N (0,Σm) where Σm ∈ F12. For two probability measures P and Q with density

p and q with respect to a common dominating measure µ, write the Kullback-Leibler

divergence as K(P,Q) =
∫

p log p
qdµ.

12



The following lemma, which can be viewed as a version of Fano’s Lemma, gives a lower

bound for the minimax risk over the parameter set Θ = {θ0, θ1, . . . , θm∗
}.

Lemma 6 Let Θ = {θm : m = 0, ...,m∗} be a parameter set satisfying d (θi, θj) ≥ 2s for

all 0 ≤ i 6= j ≤ m∗, where d is a distance over Θ. Let {Pθ : θ ∈ Θ} be a collection of

probability measures defined on a common probability space satisfying

1

m∗

∑

1≤m≤m∗

K (Pθm ,Pθ0) ≤ c logm∗

with 0 < c < 1/8. Let θ̂ be any estimator based on an observation from a distribution in

the collection {Pθ, θ ∈ Θ}. Then

sup
θ∈Θ

Ed2
(

θ̂, θ
)

≥ s2
√
m∗

1 +
√
m∗

(

1− 2c−
√

2c

logm∗

)

.

We refer to Tsybakov (2009, Section 2.6) for more detailed discussions. Now let

Θ = F12, θm = Σm for 0 ≤ m ≤ m∗, and let the distance d be the ℓ1 norm. It is easy to

see that

d (θi, θj) = ‖Σi−Σj‖1 = b
√

τ2 log p (k − 1) ≥
√

1

2
τ2
k log p

n
for all 0 ≤ i 6= j ≤ m∗. (22)

The next lemma, proved in Section 6, gives a bound for the Kullback-Leibler diver-

gence.

Lemma 7 For all 1 ≤ m ≤ m∗, distributions in the collection {Pθ, θ ∈ Θ} satisfy

K (Pθm ,Pθ0) ≤ 2τ2 log p.

By taking the constant τ2 sufficiently small, Lemma 7 yields that

1

m∗

∑

1≤m≤m∗

K (Pθm ,Pθ0) ≤ c logm∗

for some positive constant 0 < c < 1/8. Then the lower bound (17) follows immediately

from Lemma 6 and (22),

inf
Σ̂

sup
Σm∈F12

E

∥

∥

∥
Σ̂− Σm

∥

∥

∥

2

1
≥ C

(

log p

n

)
2α

2α+1

for some constant C > 0.

13



3 Optimal estimation under the ℓ1 norm

In this section we consider the upper bounds for the minimax risk and construct specific

rate optimal estimators for estimation over the three distribution classes. These upper

bounds show that the rates of convergence given in the lower bounds established in Section

2 are sharp. More specifically, we show that a thresholding estimator attains the optimal

rate of convergence over the distribution class P (Gq(ρ, cn,p)) and a tapering estimator is

minimax rate optimal over the distribution classes P (Fα(ρ,M)) and P (Hα(ρ,M)). The

two estimators are introduced and analyzed separately in Sections 3.1 and 3.2.

Given a random sample {X1, . . . ,Xn} from a population with covariance matrix Σ =

Σp×p, the sample covariance matrix is

1

n− 1

n
∑

l=1

(

Xl − X̄
) (

Xl − X̄
)T
,

which is an unbiased estimate of Σ, and the maximum likelihood estimator of Σ is

Σ∗ = (σ∗ij)1≤i,j≤p =
1

n

n
∑

l=1

(

Xl − X̄
) (

Xl − X̄
)T

(23)

when the Xl’s are normally distributed. The two estimators are close to each other for

large n. We construct thresholding and tapering estimators of the covariance matrix Σ

based on the maximum likelihood estimator Σ∗.

3.1 Optimal estimation over P (Gq(ρ, cn,p))

Theorem 2 shows that the minimax risk of estimating the covariance matrix Σp×p over

the distribution class P (Gq(ρ, cn,p)) has a lower bound of order c2n,p

(

log p
n

)1−q
. We now

prove that this rate is optimal by constructing a thresholding estimator and by showing

that this estimator attains the rate given in the lower bound.

Under the subgaussian assumption (4), the sample covariance σ∗i,j is an average of n

random variables with a finite exponential moment, so σ∗i,j satisfies the large deviation

result that there exist constants C1 > 0 and γ > 0 such that

P
(∣

∣σ∗ij − σij
∣

∣ > v
)

≤ C1 exp

(

− 8

γ2
nv2
)

(24)

for |v| ≤ δ, where C1, γ and δ are constants that depend only on ρ. See, for example, Saulis

and Statulevičius (1991) and Bickel and Levina (2008a). The inequality (24) implies that

σ∗ij behaves like a subgaussian random variable. In particular for v = γ
√

log p
n we have

P
(∣

∣σ∗ij − σij
∣

∣ > v
)

≤ C1p
−8. (25)

14



We define a thresholding estimator as

σ̂ij = σ∗ij · I
(

|σ∗ij | ≥ γ

√

log p

n

)

(26)

and set Σ̂ = (σ̂ij)p×p.

The following theorem shows that the thresholding estimator at (26) is rate optimal

over the distribution class P (Gq(ρ, cn,p)).

Theorem 4 The thresholding estimator Σ̂ satisfies

sup
P(Gq(ρ,cn,p))

E

∥

∥

∥
Σ̂− Σ

∥

∥

∥

2

1
≤ Cc2n,p

(

log p

n

)1−q

, (27)

for some constant C > 0. Consequently, the minimax risk of estimating the covariance

matrix Σ the distribution classes P (Gq(ρ, cn,p)) satisfies

inf
Σ̂

sup
P(Gq(ρ,cn,p))

E

∥

∥

∥
Σ̂− Σ

∥

∥

∥

2

1
≍ c2n,p

(

log p

n

)1−q

. (28)

A main technical tool for the proof of Theorem 4 is the next lemma, which is proved

in Section 6.

Lemma 8 Define the event Aij by Aij =

{

|σ̂ij − σij| ≤ 4min

{

|σij | , γ
√

log p
n

}}

. Then

P (Aij) ≥ 1− 2C1p
−9/2.

Lemma 8 will be applied to show that the thresholding estimator defined in (26) is

rate optimal over the distribution class P (Gq(ρ, cn,p)).

Proof of Theorem 4: Let D = (dij)1≤i,j≤p with dij = (σ̂ij − σij) I(A
c
ij). Then

E

∥

∥

∥
Σ̂− Σ

∥

∥

∥

2

1
≤ 2E

∥

∥

∥
Σ̂− Σ−D

∥

∥

∥

2

1
+ 2E ‖D‖21

≤ 2E

[

sup
j

∑

i

|σ̂ij − σij | I(Aij)

]2

+ 2E ‖D‖21

≤ 32

[

sup
j

∑

i

min

{

|σij | , γ
√

log p

n

}]2

+ 2E ‖D‖21 . (29)

We will see that the first term in (29) is dominating and bounded by Cc2n,p

(

log p
n

)1−q
,

while the second term, E ‖D‖21 , is negligible.
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Pick a k∗ such that (cn,p/k
∗)1/q ≥

√

log p
n ≥ [cn,p/ (k

∗ + 1)]1/q, which implies k∗
(

log p
n

)q/2
=

(1 + o (1)) cn,p. Then we have

∑

i

min

{

|σij| , γ
√

log p

n

}

≤





∑

i≤k∗

+
∑

i>k∗



min

{

∣

∣σ[i]j
∣

∣ , γ

√

log p

n

}

≤ C5k
∗
√

log p

n
+ C5

∑

i>k∗

(cn,p
i

)1/q

≤ C6

[

k∗
√

log p

n
+ c1/qn,p · (k∗)−1/q · k∗

]

≤ C7cn,p

(

log p

n

)(1−q)/2

,

which gives (27) if E ‖D‖21 = O
(

1
n

)

; this can be shown as follows. Note that

E ‖D‖21 ≤ p
∑

ij

Ed2ij = p
∑

ij

E
{[

d2ijI(A
c
ij ∩

{

σ̂ij = σ∗ij
}

) + d2ijI(A
c
ij ∩ {σ̂ij = 0}

]}

= p
∑

ij

E

{

(

σ∗ij − σij
)2
I(Ac

ij)
}

+ p
∑

ij

Eσ2ijI(A
c
ij ∩ {σ̂ij = 0} = R1 +R2,

where

R1 = p
∑

ij

E

{

(

σ∗ij − σij
)2
I(Ac

ij)
}

≤ p
∑

ij

[

E
(

σ∗ij − σij
)6
]1/3

P2/3
(

Ac
ij

)

≤ C8p · p2 ·
1

n
· p−3 = C8/n,

since P

(

Ac
ij

)

≤ 2C1p
−9/2 from Lemma 8, and

R2 = p
∑

ij

Eσ2ijI
(

Ac
ij ∩ {σ̂ij = 0}

)

= p
∑

ij

Eσ2ijI(|σij| ≥ 4γ

√

log p

n
)I(|σ∗ij | ≤ γ

√

log p

n
)

≤ p
∑

ij

σ2ijEI(|σij| ≥ 4γ

√

log p

n
)I(|σij | −

∣

∣σ∗ij − σij
∣

∣ ≤ γ

√

log p

n
)

≤ p
∑

ij

σ2ijEI(|σij| ≥ 4γ

√

log p

n
)I(
∣

∣σ∗ij − σij
∣

∣ >
3

4
|σij|)

≤ p

n

∑

ij

nσ2ijC1 exp

(

− 9

2γ2
nσ2ij

)

I(|σij| ≥ 4γ

√

log p

n
)

=
p

n

∑

ij

[

nσ2ij · C1 exp

(

− 1

2γ2
nσ2ij

)]

· exp
(

− 4

γ2
nσ2ij

)

I(|σij | ≥ 4γ

√

log p

n
)

≤ C9
p

n
· p2 · p−64 ≤ C9/n.
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3.2 Optimal estimation over P (Fα(ρ,M)) and P (Hα(ρ,M))

We now turn to optimal estimation over the distribution classes P (Fα(ρ,M)) and P (Hα(ρ,M)).

We construct estimators of the covariance matrix Σ by tapering the maximum likelihood

estimator Σ∗. For a given even integer k with 1 ≤ k ≤ p, we define a tapering estimator

as

Σ̂ = Σ̂k =
(

wijσ
∗
ij

)

p×p
(30)

where σ∗ij are the entries in the maximum likelihood estimator Σ∗ and the weights are

wij = k−1
h {(k − |i− j|)+ − (kh − |i− j|)+} (31)

with kh = k/2. Without loss of generality we assume that k is even. Note that the weights

wij can be rewritten as

wij =















1 when |i− j| ≤ kh

2− |i−j|
kh

when kh < |i− j| < k

0 otherwise.

.

See Figure 1 for a plot of the weights wij as a function of |i− j|.

0 k_h k

0   

1   

Figure 1: The weights as a function of |i− j|.

This class of tapering estimators was introduced in Cai, Zhang, and Zhou (2010) for

covariance matrix estimation over the distribution class P (Fα(ρ,M)), and was shown to

be minimax rate optimal under the spectral norm and Frobenius norm with appropriately
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chosen tapering parameter k. The optimal choice of k critically depends on the norm

under which the estimation error is measured. We shall see that the optimal choice of the

tuning parameter under the ℓ1 norm loss is different from that under either the spectral

norm or the Frobenius norm. The tapering estimator defined in (30 )has an important

property: it can be rewritten as a sum of many small block matrices along the diagonal.

This special property is useful for our technical arguments. Define the block matrices

U
∗(m)
l =

(

σ∗ijI {l ≤ i < l +m, l ≤ j < l +m}
)

p×p

and set

S∗(m) =

p
∑

l=1−m

U
∗(m)
l

for all integers 1−m ≤ l ≤ p and m ≥ 1.

Lemma 9 The tapering estimator Σ̂k given in (30) can be written as

Σ̂k = k−1
h

(

S∗(k) − S∗(kh)
)

. (32)

We now consider the performance of the tapering estimator under the ℓ1 norm and es-

tablish the minimax upper bounds for the parameter spaces P (Fα(ρ,M)) and P (Hα(ρ,M)).

We will show that the minimax rates of convergence over these two parameter spaces are

the same under the ℓ1 norm. Since P (Hα(ρ,M)) ⊂ P (Fα(ρ, 2M/α)), it thus suffices to

establish the minimax upper bound for P (Fα(ρ,M)).

We focus on the case p ≥ n
1

2α+2 . The case p < n
1

2α+2 , to be discussed in Section 3.2.1,

is similar and slightly easier.

Theorem 5 Suppose p ≥ n
1

2α+2 . The tapering estimator Σ̂k at (32) satisfies

sup
A

E

∥

∥

∥
Σ̂k − Σ

∥

∥

∥

2

1
≤ C

k2 + k log p

n
+ Ck−2α (33)

for k = o (n) , log p = o (n), and some constant C > 0, where A = P (Fα(ρ,M)) or

P (Hα(ρ,M)). In particular, the estimator Σ̂ = Σ̂k with

k = min

{

n
1

2α+2 ,

(

n

log p

) 1
2α+1

}

(34)

satisfies

sup
A

E

∥

∥

∥Σ̂− Σ
∥

∥

∥

2

1
≤ C

[

n−
α

α+1 +

(

log p

n

)
2α

2α+1

]

, (35)

where A = P (Fα(ρ,M)) and P (Hα(ρ,M)).
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Together with Theorem 3, Theorem 5 shows that the tapering estimator with the

optimal choice of the tapering parameter k given in (34) attains the optimal rate of

convergence over both P (Fα(ρ,M)) and P (Hα(ρ,M)).

Proof of Theorem 5: It is easy to see that the minimum of k2+k log p
n + k−2α is attained

at k ≍ n
1

2α+2 with the minimum value of order n−
α

α+1 when p ≤ exp
(

n
1

2α+2

)

. For

p ≥ exp
(

n
1

2α+2

)

, the minimum is attained at k ≍
(

n
log p

)
1

2α+1
and the minimum value is

of order
(

log p
n

)
2α

2α+1
.

Note that Σ∗ is translation invariant and so is Σ̂. We assume EXl = 0 hereafter. Write

Σ∗ =
1

n

n
∑

l=1

(

Xl − X̄
) (

Xl − X̄
)T

=
1

n

n
∑

l=1

XlX
T
l − X̄X̄

T
,

where X̄X̄
T
is a higher order term. Denote X̄X̄

T
by G = (gij). Since Egij ≤ C/n, it is

easy to see that

E
∥

∥

∥(wijgij)p×p

∥

∥

∥

2

1
≤ C

k2 log p

n2
≤ C

k log p

n
, for k ≤ n.

In what follows we ignore this negligible term and focus on the dominating term 1
n

∑n
l=1 XlX

T
l .

Set Σ̃ = 1
n

∑n
l=1XlX

T
l and write Σ̃ = (σ̃ij)1≤i,j≤p. Let

Σ̆ = (wijσ̃ij)1≤i,j≤p (36)

with wij given in (31). To prove Theorem 5, it suffices to show

sup
Fα(ρ,M)

E

∥

∥

∥Σ̆−Σ
∥

∥

∥

2

1
≤ Cn−

α
α+1 +C

(

log p

n

)
2α

2α+1

. (37)

Let Xl =
(

X l
1,X

l
2, . . . ,X

l
p

)T
. We then write σ̃ij =

1
n

∑n
l=1X

l
iX

l
j . It is easy to see

Eσ̃ij = σij, (38)

Var(σ̃ij) ≤ C1

n
, (39)

for some C1 > 0.

It is easy to bound the bias part,

∥

∥

∥EΣ̆− Σ
∥

∥

∥

2

1
≤



 max
i=1,...,p

∑

j:|i−j|>k

|σij |





2

≤M2k−2α. (40)
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We show that the variance

E

∥

∥

∥
Σ̆− EΣ̆

∥

∥

∥

2

1
≤ C2

k2 + k log p

n
. (41)

It then follows immediately that

E

∥

∥

∥Σ̆− Σ
∥

∥

∥

2

1
≤ 2E

∥

∥

∥Σ̆− EΣ̆
∥

∥

∥

2

1
+ 2

∥

∥

∥EΣ̆− Σ
∥

∥

∥

2

1
≤ 2C2

(

k2 + k log p

n
+ k−2α

)

.

This proves (37) and (33) then follows. Since p ≥ n
1

2α+2 , we can set

k =











⌊

n
1

2α+2

⌋

, for p ≤ exp
(

n
1

2α+2

)

⌊

(

n
log p

) 1
2α+1

⌋

, otherwise
(42)

and the estimator Σ̂ with k given in (42) satisfies

E

∥

∥

∥
Σ̂− Σ

∥

∥

∥

2

1
≤ 4C2

[

n−
α

α+1 +

(

log p

n

) 2α
2α+1

]

.

Theorem 5 is then proved.

It remains to show (41). The key idea in the proof is to write the whole matrix as an

average of a large number of small block matrices, and for each small block matrix the

classical random matrix theory can be applied. The following lemma shows that the ℓ1

norm of the random matrix Σ̆− EΣ̆ is controlled by the maximum of p number of the ℓ1

norms of k × k random matrices.

The next lemmas are proved in Section 6. Define

U
(m)
l = (σ̃ijI {l ≤ i < l +m, l ≤ j < l +m})p×p (43)

for all integers 1−m ≤ l ≤ p and m ≥ 1.

Lemma 10 Let Σ̆ be defined as in (32). Then

∥

∥

∥
Σ̆− EΣ̆

∥

∥

∥

1
≤ 3 max

1≤l≤p−k+1

∥

∥

∥
U

(k)
l − EU

(k)
l

∥

∥

∥

1
.

Lemma 11 There exists a constant c0 > 0 such that

P

{

∥

∥

∥
U

(m)
l − EU

(m)
l

∥

∥

∥

2

1
> c0

(

m2

n
+ x2

m

n

)}

≤ exp
(

−2x2
)

(44)

for all x > 0 and 1 ≤ l ≤ p.
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It follows from Lemmas 10 and 11 that

E

∥

∥

∥Σ̆− EΣ̆
∥

∥

∥

2

1
≤ C3

(

k2 + k log p

n

)

+ C3k
−2α

by plugging x2 = C4max {m, log p} into (44), for some C4 > 0.

The lower bound given in Theorem 3 and the upper bound given in Theorem 5 together

show that the minimax risks over the distribution classes P (Fα(ρ,M)) and P (Hα(ρ,M))

when p ≥ n
1

2α+2 , satisfy

inf
Σ̂

sup
P(Fα(ρ,M))

E

∥

∥

∥Σ̂− Σ
∥

∥

∥

2

1
≍ inf

Σ̂
sup

P(Hα(ρ,M))
E

∥

∥

∥Σ̂− Σ
∥

∥

∥

2

1
≍ n−

α
α+1 +

(

log p

n

)
2α

2α+1

. (45)

3.2.1 Optimal estimation over P (Fα(ρ,M)) and P (Hα(ρ,M)): the case of p <

n
1

2α+2

For estimation over the distribution classes P (Fα(ρ,M)) and P (Hα(ρ,M)), for both the

minimax lower and upper bounds, we have so far focused on the high dimensional case

with p ≥ n
1

2α+2 . In this section we consider the case p < n
1

2α+2 and show that the minimax

risk of estimating the covariance matrix Σ over the distribution classes P (Fα(ρ,M)) and

P (Hα(ρ,M)) satisfies

inf
Σ̂

sup
A

E

∥

∥

∥
Σ̂− Σ

∥

∥

∥

2

1
≍ p2

n

where A = P (Fα(ρ,M)) and P (Hα(ρ,M)), when p < n
1

2α+2 .

This case is relatively easy. The upper bound can be attained by the sample covariance

matrix Σ̂. By (41) with k = p we have,

inf
Σ̂

sup
P(Fα(ρ,M))

E

∥

∥

∥
Σ̂− Σ

∥

∥

∥

2

1
≤ C

p2 + p log p

n
≤ 2C

p2

n
. (46)

The lower bound can also be obtained by the application of Assouad’s Lemma and by

using the same parameter space F11 with k = p, i.e.,

F11 =

{

Σ (θ) : Σ (θ) = Ip + τ2n
−1/2

p
∑

s=2

θs

[

(I {i = 1, j = s})p×p

+(I {i = s, j = 1})p×p

]

, θ = (θs) ∈ {0, 1}p−1

}

as in Section 2.2, where τ2 satisfies 0 < τ2 < min {M, 1/16} such that the collection

F11 ⊂ Hα(ρ,M). We obtain, as at (20) in Section 2.2.1,

inf
Σ̂

sup
F11

E

∥

∥

∥Σ̂− Σ
∥

∥

∥

2

1
≥ min

H(θ,θ′)≥1

‖Σ (θ)− Σ (θ′)‖1
H (θ, θ′)

p− 1

2
min

H(θ,θ′)=1
‖Pθ ∧ Pθ′‖

≥ c
(

pn−1/2
)2

≥ c1
p2

n
. (47)
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Inequalities (46) and (47) together yield the minimax rate of convergence for the case

p ≤ n
1

2α+2 ,

inf
Σ̂

sup
P(Fα(ρ,M))

E

∥

∥

∥
Σ̂− Σ

∥

∥

∥

2

1
≍ inf

Σ̂
sup

P(Hα(ρ,M))
E

∥

∥

∥
Σ̂− Σ

∥

∥

∥

2

1
≍ p2

n
. (48)

Combining (45) with (48), the optimal rate of convergence over two distribution classes

P (Fα(ρ,M)) and P (Hα(ρ,M)) can be summarized as

inf
Σ̂

sup
P(Fα(ρ,M))

E

∥

∥

∥
Σ̂− Σ

∥

∥

∥

2

1
≍ inf

Σ̂
sup

P(Hα(ρ,M))
E

∥

∥

∥
Σ̂− Σ

∥

∥

∥

2

1
≍ min

{

n−
α

α+1 +

(

log p

n

) 2α
2α+1

,
p2

n

}

.

4 Estimation of the inverse covariance matrix

In addition to the covariance matrix, the inverse covariance matrix Σ−1 is also of significant

interest in many applications. The technical analysis given in the previous sections can

be applied to obtain the minimax rate for estimating Σ−1 under the ℓ1 norm.

For estimating the inverse covariance matrix Σ−1 it is necessary to require the ℓ1 norm

of Σ−1 to be bounded. For a positive constant M1 > 0, set

Gq(ρ, cn,p,M1) = Gq(ρ, cn,p) ∩
{

Σ :
∥

∥Σ−1
∥

∥

1
≤M1

}

, (49)

Fα(ρ,M,M1) = Fα(ρ,M) ∩
{

Σ :
∥

∥Σ−1
∥

∥

1
≤M1

}

, (50)

Hα(ρ,M,M1) = Hα(ρ,M) ∩
{

Σ :
∥

∥Σ−1
∥

∥

1
≤M1

}

, (51)

and define P (Gq(ρ, cn,p,M1)) to be the set of distributions of X1 that satisfy both (4) and

(49). The parameter spaces P (Fα(ρ,M,M1)) and P (Hα(ρ,M,M1)) are defined similarly.

Assume that

c2n,p

(

log p

n

)1−q

→ 0, (52)

which is necessary to obtain a consistent estimator of Σ under ℓ1 norm.

The following theorem gives the minimax rates of convergence for estimating Σ−1 over

the three parameter spaces.

Theorem 6 The minimax risk of estimating the inverse covariance matrix Σ−1 over the

distribution class P (Gq(ρ, cn,p,M1)) satisfies

inf
Ω̂

sup
P(Gq(ρ,cn,p,M1))

E

∥

∥

∥
Ω̂− Σ−1

∥

∥

∥

2

1
≍ c2n,p

(

log p

n

)1−q

(53)
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under assumptions (7) and (52), and the minimax risks of estimating the covariance

matrix Σ over the distribution classes P (Fα(ρ,M,M1)) and P (Hα(ρ,M,M1)) satisfy

inf
Ω̂

sup
A

E

∥

∥

∥
Ω̂− Σ−1

∥

∥

∥

2

1
≍ min

{

n−
α

α+1 +

(

log p

n

)
2α

2α+1

,
p2

n

}

, (54)

where A is P (Fα(ρ,M,M1)) or P (Hα(ρ,M,M1)).

Remark 2 For estimating the inverse covariance matrix Σ−1, we have assumed the ℓ1

norm of Σ−1 to be uniformly bounded. This condition is satisfied if the variances σii on

the diagonal of Σ are bounded from below by some constant c0 > 0 and the correlation

matrix is diagonally dominant in the sense that

max
1≤i≤p

∑

j,j 6=i

|σij|√
σiiσjj

≤ 1− ε (55)

for some ε > 0. This can be seen as follows. Define Wp×p = diag (σ11, . . . , σpp), and write

Σ−1 = (W − (W − Σ))−1 =W−1/2 (I − V )−1W−1/2,

where V =W−1/2 (W − Σ)W−1/2. The assumption (55) implies that ‖V ‖1 ≤ 1− ε, so

(I − V )−1 =
∑

i=0

V i,

which implies

∥

∥Σ−1
∥

∥

1
≤
∥

∥

∥
W−1/2

∥

∥

∥

2

1

∥

∥

∥
(I − V )−1

∥

∥

∥

1
≤ c−1

0

∑

i=0

‖V ‖i1 ≤ (c0ε)
−1.

Proof of Theorem 6: The proof is similar to those for estimating the covariance matrix

Σ. We only sketch the main steps below.

(I). Upper bounds. Let

Ω̂ =







Σ̂−1 if Σ̂−1 exists, and
∥

∥

∥
Σ̂−1

∥

∥

∥

1
≤ n

I otherwise
.

Define the event A2 =
{

Σ̂−1 exists, and
∥

∥

∥
Σ̂−1

∥

∥

∥

1
≤ n

}

. On the event A2 we write

Σ̂−1 − Σ−1 = Σ̂−1
(

Σ− Σ̂
)

Σ−1

so that

∥

∥

∥Σ̂−1 − Σ−1
∥

∥

∥

1
=
∥

∥

∥Σ̂−1
(

Σ− Σ̂
)

Σ−1
∥

∥

∥

1
≤
∥

∥

∥Σ̂−1
∥

∥

∥

1

∥

∥

∥Σ− Σ̂
∥

∥

∥

1

∥

∥Σ−1
∥

∥

1
.
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Note that

∥

∥

∥Σ̂−1
∥

∥

∥

1
≤
∥

∥

∥

∥

(

I +
(

Σ̂− Σ
)

Σ−1
)−1

∥

∥

∥

∥

1

∥

∥Σ−1
∥

∥

1
≤
∥

∥Σ−1
∥

∥

1
[1 +

∞
∑

k=1

(‖H‖1)
k], (56)

where H =
(

Σ̂−Σ
)

Σ−1. Define

A3 =
{∥

∥

∥Σ̂− Σ
∥

∥

∥

1
≤ ε
}

for some 0 < ε < 1
2M1

. It is easy to show that

P (Ac
3) ≤ CDn

−D (57)

for every D > 0, using (24), (44), and (52). On A3 we see that

‖H‖1 =
∥

∥

∥

(

Σ̂− Σ
)

Σ−1
∥

∥

∥

1
≤ ε

∥

∥Σ−1
∥

∥

1
< 1/2.

Since
∥

∥Σ−1
∥

∥

1
≤M1, which implies

∥

∥

∥
Σ̂−1

∥

∥

∥

1
≤ 2M1 on A3 by (56), we have

∥

∥

∥
Ω̂− Σ−1

∥

∥

∥

2

1
=
∥

∥

∥
Σ̂−1 − Σ−1

∥

∥

∥

2

1
≤ C

∥

∥

∥
Σ̂− Σ

∥

∥

∥

2

1

on A2 ∩A3. It is actually easy to see A3 ⊂ A2 and

∥

∥

∥Ω̂−Σ−1
∥

∥

∥

2

1
≤ Cn2.

Let B be one of the three parameter spaces P (Gq(ρ, cn,p,M1)), P (Fα(ρ,M,M1)) , and

P (Hα(ρ,M,M1)). We have

sup
B

E

∥

∥

∥Ω̂− Σ−1
∥

∥

∥

2

1
= sup

B
E

{

∥

∥

∥Σ̂−1 − Σ−1
∥

∥

∥

2

1
I(A3)

}

+ sup
B

E

{

∥

∥

∥Ω̂− Σ−1
∥

∥

∥

2

1
I(Ac

3)

}

≤ C sup
B

E

∥

∥

∥
Σ̂−Σ

∥

∥

∥

2

1
+ Cn2 sup

B
P (Ac

3) ≤ C sup
B

E

∥

∥

∥
Σ̂− Σ

∥

∥

∥

2

1
,

where the last step follows from (57).

(II). Lower bounds. We use an elementary and unified argument to derive the lower

bounds for estimating the inverse covariance matrices for all three parameter spaces. The

basic strategy is to directly carry over the minimax lower bounds for estimating Σ to the

ones for estimating Σ−1. The following is a simple but very useful observation. Note that

‖Σ1 − Σ2‖1 =
∥

∥Σ1

(

Σ−1
1 − Σ−1

2

)

Σ2

∥

∥

1
≤ ‖Σ1‖1

∥

∥Σ−1
1 − Σ−1

2

∥

∥

1
‖Σ2‖1 ,

which implies
∥

∥Σ−1
1 −Σ−1

2

∥

∥

1
≥ ‖Σ1‖−1

1 ‖Σ2‖−1
1 ‖Σ1 − Σ2‖1 .
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If ‖Σ1‖1 ≤ C and ‖Σ2‖1 ≤ C for some C > 0, we have

∥

∥Σ−1
1 −Σ−1

2

∥

∥

1
≥ C−2 ‖Σ1 − Σ2‖1 . (58)

Equation (58) shows that a lower bound for estimating Σ yields one for estimating Σ−1

over the same parameter space.

We first consider the lower bounds for P (Hα(ρ,M,M1)). Set F0= F11 ∪ F12, where

F11 and F12 are defined in (14) and (15), respectively. Over the parameter space F11 the

proof is almost identical to the proof of the lower bound (16) in Section 2.2 except that

here we need to show

min
H(θ,θ́)≥1

∥

∥Σ−1 (θ)− Σ−1 (θ′)
∥

∥

1

H (θ, θ́)
≥ ca

instead of (21), for some c > 0. Actually the inequality follows from (21) together with

(58), since ‖Σ (θ)‖1 and ‖Σ (θ′)‖1 are bounded above by a finite constant. For F12 the

lower bound argument is almost identical to the proof of the lower bound (17) by using a

version of Fano’s Lemma, except that we need

‖Σ−1
i − Σ−1

j ‖1 ≥
√

c
k log p

n

for some c > 0 and all 0 ≤ i 6= j ≤ m∗ instead of (22). The inequality follows from (22)

and (58).

The proof for the lower bound for the parameter space P (Gq(ρ, cn,p,M1)) is almost

identical to that of Theorem 2. The only different argument in the proof is that

inf
m

∥

∥Σ−1
m − Σ−1

0

∥

∥

2

1
≥ Cc2n,p

(

log p

n

)1−q

for some C > 0; this is true since ‖Σm‖1 is uniformly bounded from above by a fixed

constant.

5 Discussions

In this paper we have established the optimal rates of convergence for estimating the

covariance matrices over the three commonly used parameter spaces under the matrix ℓ1

norm. Deriving the minimax lower bounds requires a careful construction of collections

of least favorable multivariate normal distributions and the application of different lower

bound techniques in various settings. The lower bound arguments also provide insight

into where the difficulties of the covariance matrix estimation problem arise.
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It is shown that the thresholding estimator originally introduced in Bickel and Levina

(2008b) for estimating sparse covariance matrices under the spectral norm attains the

optimal rate of convergence over the parameter space P (Gq(ρ, cn,p)) under the matrix ℓ1

norm. For minimax estimation over the other two parameter spaces P (Fα(ρ,M)) and

P (Hα(ρ,M)), a tapering estimator is constructed and shown to be rate optimal. For

estimation over these two parameter spaces, compared to the optimal tapering estimators

under the spectral and Frobenius norms given in Cai, Zhang, and Zhou (2010), the best

choice of the tapering parameter is different under the ℓ1 norm. Consider the case p ≥ n.

The optimal choice of k under the ℓ1 norm is

k1 = min

{

n
1

2α+2 ,

(

n

log p

)
1

2α+1

}

.

In contrast, the best choice of k under the spectral norm is k2 = n
1

2α+1 , which is always

larger than k1. For estimation under the Frobenius norm, the optimal choice of k over

P (Hα(ρ,M)) is kF = n
1

2α+2 . This coincides with k1 when log p ≤ n
1

2α+2 , and kF > k1

when log p≫ n
1

2α+2 .

For estimation over the parameter spaces P (Fα(ρ,M)) and P (Hα(ρ,M)), it is also in-

teresting to compare with the banding estimator introduced in Bickel and Levina (2008a).

They considered the estimator

Σ̂B =
(

σ∗ijI {|i− j| ≤ k}
)

and proposed the banding parameter

k =

(

n

log p

) 1
2α+2

.

Although this estimator was originally introduced for estimation under the spectral norm,

it is still interesting to consider its performance under the matrix ℓ1 norm. The estimator

achieves the rate of convergence
(

log p
n

) α
α+1

under the matrix ℓ1 norm, which is inferior to

the optimal rate min

{

n−
α

α+1 +
(

log p
n

)
2α

2α+1
, p2

n

}

given at (6). Take for example α = 1/2

and p = e
√
n. In this case

(

log p
n

)
α

α+1
= n−

1
6 , while the optimal rate is n−

1
4 . On the other

hand, it can be shown by using (44) that the banding estimator with the same optimal

k for the tapering estimator described at (34) of Section 3.2 is also rate optimal. In this

sense there is no fundamental differences between the tapering and banding estimators

for estimation over these two parameter spaces. We leave the detailed technical argument

to the readers.
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Our technical analysis also shows that covariance matrix estimation has quite different

characteristics from those in the classical Gaussian sequence estimation problems. John-

stone (2011) gives a comprehensive treatment of minimax and adaptive estimation under

the Gaussian sequence models. See also Abramovich, Benjamini, Donoho and Johnstone

(2006) for Gaussian sequence estimation in the context of wavelet thresholding. In the

matrix estimation problems, with the exception of the squared Frobenius norm loss, the

loss functions are typically not separable as in the sequence estimation problems. For

example, in this paper the loss function is not the usual squared vector ℓ2 norm or vector

ℓ1 norm, which are sums of elementwise losses, but is the matrix ℓ1 norm,

L
(

Σ̂,Σ
)

= max
i

∑

j

|σ̂ij − σij| .

This loss can be viewed as the maximum of p number of ℓ1 losses for vectors and it cannot

be decomposed as a sum of elementwise losses. Similarly the spectral norm loss is also not

separable. This makes the theoretical analysis of the matrix estimation problems more

involved. In addition, each element σ∗ij of the sample covariance matrix is asymptotically

normal with the mean σij and the standard deviation of order 1/
√
n, but the σ∗ij ’s are

neither exactly normal nor homoskedastic as in the classical Gaussian sequence estima-

tion problems. In addition, the σ∗ij’s are dependent. These create additional technical

complications and more care is thus needed.

In Cai and Zhou (2011) and Cai, Liu, and Zhou (2011), we considered the problems of

optimal estimation of sparse covariance and sparse precision matrices under the spectral

norm. The spectral norm is bounded from above by the matrix ℓ1 norm, but is often

much smaller than the matrix ℓ1 norm. The lower bounds in this paper are not sufficient

for optimal estimation in those settings. New and much more involved lower bounds

arguments are developed in Cai and Zhou (2011) and Cai, Liu, and Zhou (2011) to

overcome the technical difficulties there.

6 Proofs of technical lemmas

We prove the technical lemmas that are used in the proofs of the main results in the

previous sections.

Proof of Lemma 5: When H (θ, θ′) = 1, Pinsker’s Inequality (see, e.g., Csiszár (1967))

implies

‖Pθ′ − Pθ‖21 ≤ 2K (Pθ′ |Pθ) = n
[

tr
(

Σ
(

θ′
)

Σ (θ)−1
)

− log det
(

Σ
(

θ′
)

Σ (θ)−1
)

− p
]

.
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For a matrix A = (aij), let ‖A‖F =
√

∑

ij a
2
i,j. It is easy to see that

tr
(

Σ
(

θ′
)

Σ (θ)−1
)

− log det
(

Σ
(

θ′
)

Σ (θ)−1
)

− p ≤
∥

∥Σ
(

θ′
)

− Σ (θ)
∥

∥

2

F
(59)

when ‖Σ (θ)− I‖2 ≤ 1/4 and ‖Σ (θ′)− I‖2 ≤ 1/4, and

‖Σ (θ)− I‖2 ≤ ‖Σ (θ)− I‖1 ≤ τ2kn
−1/2 ≤ τ2 < 1/4 (60)

for τ2 < 1/16. Inequalities (59) and (60) imply

‖Pθ′ − Pθ‖21 ≤ n
∥

∥Σ
(

θ′
)

− Σ (θ)
∥

∥

2

F
= n · 2τ22

(

n−1/2
)2

= 2τ22 < 1,

and the lemma follows immediately.

Proof of Lemma 7: When τ2 < 1/16,

‖Σ (θj)− I‖2 ≤ ‖Σ (θj)− I‖1 ≤
√

τ2 log pkb =

√

τ2k log p

n
=

√
τ2

(

log p

n

)− α
2α+1

< 1/4.

Inequality (59) gives

K
(

Pθj ,Pθ0

)

≤ n ‖Σ (θj)− Σ (θ0)‖2F ≤ n · 2τ2kb2 log p ≤ 2τ2 log p.

Proof of Lemma 8: Let A1 =

{

∣

∣

∣σ∗ij

∣

∣

∣ ≥ γ
√

log p
n

}

. From the definition of σ̂ij we have

|σ̂ij − σij| = |σij| · I(A1) + |σ∗ij − σij| · I(Ac
1).

It is easy to see

A1 =

{

∣

∣σ∗ij − σij + σij
∣

∣ ≥ γ

√

log p

n

}

⊂
{

∣

∣σ∗ij − σij
∣

∣ ≥ γ

√

log p

n
− |σij |

}

,

and Ac
1 =

{

∣

∣σ∗ij − σij + σij
∣

∣ < γ

√

log p

n

}

⊂
{

∣

∣σ∗ij − σij
∣

∣ > |σij| − γ

√

log p

n

}

by the triangle inequality. Note that (25) implies

P (A1) ≤ P

(

∣

∣σ∗ij − σij
∣

∣ >
3γ

4

√

log p

n

)

≤ C1p
−9/2, when |σij| < γ

4

√

log p
n ,

P (Ac
1) ≤ P

(

∣

∣σ∗ij − σij
∣

∣ > γ

√

log p

n

)

≤ C1p
−8, when |σij| > 2γ

√

log p
n .

Thus

|σ̂ij − σij | =



















|σij| |σij| < γ
4

√

log p
n

∣

∣

∣
σ∗ij − σij

∣

∣

∣
or |σij | γ

4

√

log p
n ≤ |σij| ≤ 2γ

√

log p
n

∣

∣

∣σ∗ij − σij

∣

∣

∣ |σij| > 2γ
√

log p
n
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with a probability of at least 1− C1p
−9/2 for all settings. Since

P

(

∣

∣σ∗ij − σij
∣

∣ ≤ γ

√

log p

n

)

≥ 1− C1p
−8,

it then is easy to see that for each of the three settings above we have

|σ̂ij − σij| ≤ 4min

{

|σij| , γ
√

log p

n

}

with a probability of at least 1− 2C1p
−9/2.

Proof of Lemma 9: It is easy to see

kwij = # {l : (i, j) ⊂ {l, . . . , l + 2k − 1}} −# {l : (i, j) ⊂ {l, . . . , l + k − 1}}

= (2k − |i− j|)+ − (k − |i− j|)+,

which takes value in [0, k]. Clearly from the above, kwij = k for |i− j| ≤ k.

Proof of Lemma 10: Set S(m) =
∑p

l=1−m U
(m)
l . Without loss of generality we assume

that p can be divided by m. Set δ
(m)
l = U

(m)
l − EU

(m)
l . By (32)

∥

∥

∥
S(m) − ES(m)

∥

∥

∥

1
≤

m
∑

l=1

∥

∥

∥

∥

∥

∥

∑

−1≤j < p/m

δ
(m)
jm+l

∥

∥

∥

∥

∥

∥

1

. (61)

Since the δ
(m)
jm+l are diagonal blocks of their sum over −1 ≤ j < p/m, we have

∥

∥

∥
S(m) − ES(m)

∥

∥

∥

1
≤ m max

1≤l≤m

∥

∥

∥

∥

∥

∥

∑

0≤j < p/m

δ
(m)
jm+l

∥

∥

∥

∥

∥

∥

1

≤ m max
2−m≤l≤p

∥

∥

∥
δ
(m)
l

∥

∥

∥

1
.

This and (32) imply the conclusion, since δ
(k)
l and δ

(2k)
l are all sub-blocks of a certain

matrix δ
(2k)
l with 1 ≤ l ≤ p− 2k + 1.

Proof of Lemma 11: A key technical tool for the extension is the following lemma which

was established in Section 7 of Cai, Zhang, and Zhou (2010).

Lemma 12 There is a constant ρ1 > 0 such that

P

{∥

∥

∥U
(m)
l − EU

(m)
l

∥

∥

∥ > x
}

≤ 5m exp
(

−nx2ρ1
)

for all 0 < x < ρ1 and 1−m ≤ l ≤ p.
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Set c0 = 2/ρ1. From the fact ‖Am×m‖21 ≤ m ‖Am×m‖2 for any symmetric matrix

Am×m and Lemma 12, we have

P

{

∥

∥

∥
U

(m)
l − EU

(m)
l

∥

∥

∥

2

1
> c0

(

m2

n
+ x2

m

n

)}

≤ P

{

∥

∥

∥
U

(m)
l − EU

(m)
l

∥

∥

∥

2
> c0

(

m

n
+
x2

n

)}

≤ 5m exp
(

−c0
(

m+ x2
)

ρ1
)

=

(

5

e2

)m

exp
(

−2x2
)

≤ exp
(

−2x2
)

.
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