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Abstract

In the context of large-scale multiple hypothesis testing, the hypotheses often

possess certain group structures based on additional information such as Gene On-

tology in gene expression data and phenotypes in genome-wide association studies.

It is hence desirable to incorporate such information when dealing with multiplicity

problems to increase statistical power. In this article, we demonstrate the benefit

of considering group structure by presenting a p-value weighting procedure which

utilizes the relative importance of each group while controlling the false discovery

rate under weak conditions. The procedure is easy to implement and shown to be

more powerful than the classical Benjamini-Hochberg procedure in both theoretical

and simulation studies. By estimating the proportion of true null hypotheses, the

data-driven procedure controls the false discovery rate asymptotically. Our analy-

sis on one breast cancer data set confirms that the procedure performs favorably
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compared with the classical method.

Key Words: False discovery rate; group structure; Benjamini-Hochberg proce-

dure; positive regression dependence; adaptive procedure.

1 INTRODUCTION

Ever since the seminal work of Benjamini and Hochberg (1995), the concept of false dis-

covery rate (FDR) and the FDR controlling Benjamini-Hochberg (BH) procedure have

been widely adopted to replace traditional methods, like family-wise error rate (FWER),

in fields such as bioinformatics where a large number of hypotheses are tested. For exam-

ple, in gene expression microarray experiments or brain image studies, each gene or brain

location is associated with one hypothesis. Usually there are tens of thousands of them.

The more conservative family-wise error rate controlling procedures often have extremely

low power as the number of hypotheses gets large. Under the FDR framework, the power

can be increased.

In many cases, there is prior information that a natural group structure exists among

the hypotheses, or the hypotheses can be divided into subgroups based on the character-

istics of the problem. For example, for gene expression data, Gene Ontology (The Gene

Ontology Consortium 2000) provides a natural stratification among genes based on three

ontologies. In genome-wide association study, each marker might be tested for associa-

tion with several phenotypes of interest; or tests might be conducted assuming different

genetic models (Sun, Craiu, Paterson and Bull, 2006). In clinical trials, hypotheses are

commonly divided into primary and secondary based on the relative importance of the

features of the disease (Dmitrienko, Offen and Westfall, 2003). Ignorance of such group
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structures in data analysis can be dangerous. Efron (2008) pointed out that applying

multiple comparison treatments such as FDR to the entire set of hypotheses may lead

to overly conservative or overly liberal conclusions within any particular subgroup of the

cases.

In multiple hypothesis testing, utilizing group structure can be achieved by assigning

weights for the hypotheses (or p-values) in each group. Such an idea of using group in-

formation and weights has been adopted by several authors. Efron (2008) considered the

Separate-Class model where the hypotheses are divided into distinct groups, and showed

the legitimacy of such separate analysis for FDR methods. Benjamini and Hochberg

(1997) analyzed both the p-value weighting and the error weighting methods and evalu-

ated different procedures. Genovese, Roeder and Wasserman (2006) investigated the merit

of multiple testing procedures using weighted p-values and claimed that their weighted

Benjamini-Hochberg procedure controls the FWER and FDR while improving power.

Wasserman and Roeder (2006) further explored their p-value weighting procedure by in-

troducing an optimal weighting scheme for FWER control. Roeder, Bacanu, Wasserman

and Devlin (2006) considered linkage study to weight the p-values and showed their pro-

cedure improved power considerably when the linkage study is informative. Although in

clinical trials, Finner and Roter (2001) pointed out that FDR control is hardly used, it is

still potentially interesting to explore possible applications of FDR with group structures

in clinical trials settings. Other notable publications include Storey, Taylor and Siegmund

(2004) and Rubin, van der Laan and Dudoit (2005).

Very few results, however, have been published so far on proper p-value weighting

schemes for procedures that control the FDR. In this paper, we will present the Group

Benjamini-Hochberg (GBH) procedure, which offers a weighting scheme based on a simple
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Bayesian argument and utilizes the prior information within each group through the

proportion of true nulls among the hypotheses. Our procedure controls the FDR not only

for independent hypotheses but also for p-values with certain dependence structures.

When the proportion of true null hypotheses is unknown, we show that by estimating

it in each group, the data-driven GBH procedure offers asymptotic FDR control for p-

values under weak dependence. This extends the results of both Genovese et al. (2006)

and Storey et al. (2004).

When the information on group structure is less apparent, an alternative is to apply

techniques such as clustering to assign groups. It can be a good strategy when we have

spatially clustered hypotheses, i.e., if one hypothesis is false, the nearby hypotheses are

more likely to be false. For example, Quackenbush (2001) pointed out that in microarray

studies, genes that are contained in a particular pathway or respond to a common envi-

ronmental challenge, should show similar patterns of expression. Clustering methods are

useful for identifying such gene expression patterns in time or space.

Our simulation results indicate that when the proportions of true nulls in each group

are different, the GBH procedure is more powerful than the BH procedure while keeping

the FDR controlled at the desired level. The GBH procedure also works well for situations

where the number of signals is small among the hypotheses. Therefore, the procedure

could be applied to microarray or genome-wide association studies where a large number

of genes are monitored but only a few among them are actually differentially expressed

or associated with disease. We apply our procedure to the analysis of a well known breast

cancer microarray data set using two different grouping methods. The results indicate

that the GBH procedure is able to identify more genes than the BH procedure by putting

more focus on the potentially important groups. Figure 1 shows the advantage of the
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GBH procedure over the BH procedure under k-means clustering for two methods of

estimating the true null hypotheses in each group.

The rest of the paper is organized as follows. After a brief review of the FDR frame-

work and the classical BH procedure, we present our GBH procedure in section 2.2 and

investigate our weighting scheme from both practical and Bayesian perspectives. Com-

parison of the classical BH and the GBH procedures in terms of expected number of

rejections is discussed in section 2.4. After discussing the data-driven GBH procedure

in section 2.3, we prove its asymptotic FDR control property in section 3. Simulation

studies of the BH and GBH procedures for normal random variables are reported in sec-

tion 4, including both independent and positive regression dependent cases. In section 5,

we show an application of the GBH procedure on a breast cancer data set, using both

the Gene Ontology grouping and k-means clustering strategies. The proofs for the main

theorems are included in the appendix.

2 THE GBH PROCEDURE

In this section, we introduce the Group Benjamini-Hochberg (GBH) procedure. It takes

advantage of the proportion of true null hypotheses, which represents the relative impor-

tance of each group. We first examine the case where the proportions are known and then

discuss data-driven procedures where the proportions are estimated based on the data.

2.1 Preliminaries

We first review the FDR framework and the classical BH procedure. Consider the problem

of testing N hypotheses Hi v.s. HAi, i ∈ IN = {1, . . . , N} among which n0 are null

hypotheses and n1 = N − n0 are alternatives (signals). Let V be the number of null
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hypotheses that are falsely rejected (false discoveries) and R be the total number of

rejected hypotheses (discoveries). Benjamini and Hochberg (1995) introduced the FDR,

which is defined as the expected ratio of V and R when R is positive, i.e.,

FDR = E
[ V

R ∨ 1

]
, (2.1)

where R ∨ 1 ≡ max(R, 1). They also proposed the BH procedure which focuses on the

ordered p-values P(1) ≤ . . . ≤ P(N) from N hypothesis tests. Given a level α ∈ (0, 1), the

BH procedure rejects all hypotheses of which P(i) ≤ P(k), where

k = max
{
i ∈ {1, . . . , N} : P(i) ≤

iα

N

}
. (2.2)

Benjamini and Hochberg (1995) proved that for independent hypotheses, the BH

procedure controls the FDR at level π0α where π0 = n0/N is the proportion of true null

hypotheses. Hence, the BH procedure actually controls the FDR at a more stringent level.

One can therefore increase the power by first estimating the unknown parameter π0 using,

say, π̂0, and then applying the BH procedure on the weighted p-values π̂0Pi, i = 1, . . . , N

at level α. Such a data-driven method is referred to as an adaptive procedure.

2.2 The GBH procedure for the oracle case

When group information is taken into consideration, we assume that the N hypotheses

can be divided into K disjoint groups with group sizes ng, g = 1, . . . , K. Let Ig be the

index set of the g-th group. The index set IN of all hypotheses satisfies

IN =
K⋃
g=1

Ig =
K⋃
g=1

(
Ig,0 ∪ Ig,1

)
, (2.3)

where Ig,0 = {i ∈ Ig : Hi is true } consists of indices for null hypotheses and Ig,1 = {i ∈

Ig : Hi is false } is for the alternatives. Let ng,0 = |Ig,0| and ng,1 = ng − ng,0 be the
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number of null and alternative hypotheses in group g, respectively. Then πg,0 = ng,0/ng

and πg,1 = ng,1/ng are the corresponding proportions of null and alternative hypotheses

in group g. Let

π0 =
1

N

K∑
g=1

ngπg,0 (2.4)

be the overall proportion of null hypotheses. In this section, we consider the so-called

“oracle case”, where πg,0 ∈ [0, 1] is assumed to be given for each group. The case for

unknown πg,0 is discussed in section 2.3.

Definition 1. The GBH procedure for the oracle case:

1: For each p-value in group g, calculate the weighted p-values Pw
g,i =

πg,0
πg,1

Pg,i. Let

Pw
g,i = ∞ if πg,0 = 1. If πg,0 = 1 for all g, accept all the hypotheses and stop.

Otherwise go to the next step;

2: Pool all the weighted p-values together and let Pw
(1) ≤ . . . ≤ Pw

(N) be the correspond-

ing order statistics.

3: Compute

k = max
{
i : Pw

(i) ≤
iαw

N

}
, where αw =

α

1− π0

.

If such a k exists, reject the k hypotheses associated with Pw
(1), . . . , P

w
(k); otherwise

do not reject any of the hypotheses.

The GBH procedure weights the p-values for each group depending on the correspond-

ing proportion of true null hypotheses in the group, i.e., πg,0. This idea is intuitively

appealing because for any group with a small πg,0, more rejections are expected and

vice versa. The weight πg,0/πg,1 differentiates groups by (relatively) enlarging p-values in

groups with larger πg,0, therefore larger power is expected after applying the BH procedure

on the pooled weighted p-values.
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Benjamini and Yekutieli (2001) introduced the concept of positive regression depen-

dence on subsets (PRDS) and proved that the BH procedure controls the FDR for p-values

with such property. Finner, Dickhaus and Rosters (2009, pp. 603) argued that the PRDS

property implies

Pr{R ≥ j | Pi ≤ t} is non-increasing in t, (2.5)

for any j ∈ IN , i ∈
⋃
g Ig,0 and t ∈ (0, jα/N ]. Examples of distribution satisfying the

PRDS property include multivariate normal with nonnegative correlations and (absolute)

multivariate t-distribution. It is worth pointing out that independence is a special case

of PRDS, see Benjamini and Yekutieli (2001) and Finner, Dickhaus and Rosters (2007,

2009) for details.

For the oracle case, the following theorem guarantees that the GBH procedure controls

the FDR rigorously for p-values with the PRDS property (hence provides FDR control

for independent p-values as well).

Theorem 1. Assume the hypotheses satisfy (2.3) and the proportion of trull null hy-

potheses, πg,0 ∈ [0, 1], is known for each group, then the GBH procedure controls the FDR

at level α for p-values with the PRDS property.

Genovese et al. (2006) analyzed the method of p-value weighting for independent p-

values and proved FDR control of their procedure with a general set of weights. Some of

the arguments in the proof of the above theorem can be implied by Theorem 1 in Genovese

et al. (2006, pp. 513). Nevertheless, we not only extend the result to p-values with the

PRDS property, but also make up a small gap in their proof of FDR control (Genovese

et al. 2006, pp. 514, first equation). Furthermore, the GBH procedure makes use of the

information (i.e., πg,0) embedded within each group, and provides a quasi-optimal way of

assigning weights. Its advantage can be understood in two perspectives.
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The GBH procedure works well for data with sparse signals.

In many cases of multiple hypothesis testing, there tends to be a strong assumption that

there are few signals, i.e., most of the N hypotheses are true nulls. In microarray studies,

for instance, majority of the genes are not related to certain disease, therefore we have

the situation in which the πg,0 of each group will be close to 1. Our weighting strategy

performs well in such settings. For example, suppose we have two groups of p-values with

π1,0 = 0.9 and π2,0 = 0.99. According to the GBH procedure, we are going to multiply

0.9/0.1=9 to the first group and 0.99/0.01=99 to the second group. Performing multiple

comparison procedure on the combined weighted p-values means we put more attention

on the p-values from the first group rather than the second one. As a result, more signals

are expected. In the extreme case where one of the proportions is 1, say, π1,0 = 1 and

π2,0 ∈ (0, 1), according to the GBH procedure, all the p-values in the first group are

rescaled to ∞, therefore no rejection (signal) would be reported in that group and our

full attention would be focused on the second group. This is consistent with the fact that

the first group contains no signal.

The GBH procedure has a Bayesian interpretation.

From the Bayesian point of view, the weighting scheme, πg,0/πg,1, can be interpreted as

follows. Let Hg,i be a hypothesis in group g such that Hg,i = 0 with probability πg,0 and

Hg,i = 1 with probability πg,1 = 1− πg,0. Let Pg,i be the corresponding p-value and has a

conditional distribution

Pg,i | Hg,i = 0 ∼ Ug; Pg,i | Hg,i = 1 ∼ Fg.

The “Bayesian FDR” (Efron and Tibshirani 2002) of Hg,i for Pg,i ≤ p is

Pr(Hg,i = 0|Pi ≤ p) =
πg,0Ug(p)

πg,0Ug(p) + πg,1Fg(p)
, (2.6)
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If Ug follows a uniform distribution, the above equation becomesk

Pr(Hg,i = 0|Pgi ≤ p) =
πg,0p

πg,0p+ πg,1Fg(p)

=
(πg,0/πg,1)p

(πg,0/πg,1)p+ Fg(p)
=

[Fg(p)]
−1(πg,0/πg,1)p

[Fg(p)]−1(πg,0/πg,1)p+ 1
.

Note that the above equation is an increasing function of [Fg(p)]
−1(πg,0/πg,1)p, therefore

ranking the Bayesian FDR is equivalent to focusing on the quantity

P ∗g =
1

Fg(p)

πg,0
πg,1

p. (2.7)

Then the ideal weight for the p-values in group g should be [Fg(p)]
−1(πg,0/πg,1), which can

be viewed as two sources of influence on the p-values. If Fg = F for all g, the first influence

is through [F (p)]−1, which can be regarded as the p-value effect. The other influence is

the relative importance of the groups, i.e., πg,0/πg,1. In practice, Fg is usually unknown

and hard to estimate, especially when the number of alternatives is small. Hence, we

just focus on the group effect in the ideal weight. Note that the weight we choose, i.e.,

πg,0/πg,1 is not an aggressive one, since the cut-off point for the original p-values is big

for important groups with small πg,0/πg,1, which implies that the ideal weight for groups

with small πg,0/πg,1 is relatively smaller.

2.3 The adaptive GBH procedure

As mentioned in the previous sections, knowledge of the proportion of true null hypothe-

ses, i.e., π0, can be useful in improving the power of FDR-controlling procedures. Such

information, however, is not available in practice. Estimating the unknown quantity using

observed data is then a natural idea, which brings us to the adaptive procedure.

Definition 2. The adaptive GBH procedure:

1: For each group, estimate πg,0 by π̂g,0.
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2: Apply the GBH procedure in Definition 1, with πg,0 replaced by π̂g,0.

Various estimators of π0 were proposed by Schweder and Spjøtvoll (1982) and Storey

(2002) and Storey et al. (2004) based on the tail proportion of p-values, and by Efron,

Tibshirani, Storey and Tusher (2001) based on the mixture densities of null and alterna-

tive distribution of hypotheses. Jin and Cai (2007) estimated π0 based on the empirical

characteristic function and Fourier analysis. Meinshausen and Rice (2006) and Genovese

and Wasserman (2004) provided consistent estimators of π0 under certain conditions.

The adaptive GBH procedure does not require a specific estimator of πg,0, therefore

people may choose their favorite estimator in practice. We take the following two examples

to illustrate the practical use of the adaptive GBH procedure.

Example 2.1. Least-Slope (LSL) method

The least-slope (LSL) estimator proposed by Benjamini and Hochberg (2000) performs

well in situations where signals are sparse. Hsueh, Chen and Kodell (2003) compared

several methods including Schweder and Spjøtvoll (1982), Storey (2002) and the LSL

estimator, and found that the LSL estimator gives the most satisfactory empirical results.

Definition 3. Adaptive LSL GBH procedure:

1: For p-values in each group g, starting from i = 1, compute lg,i = (ng + 1− i)/(1−

Pg,(i)), where Pg,(i) is the i-th order statistics in group g. As i increases, stop when

lg,j > lg,j−1 for the first time.

2: For each group, compute the LSL estimator of πg,0

γLSLg = min
(blg,jc+ 1

ng
, 1
)
. (2.8)

3: Apply the GBH procedure at level α with πg,0 replaced by γLSLg .
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The LSL estimator is asymptotically related to the estimator proposed by Schweder

and Spjøtvoll (1982). It is also conservative in the sense that it overestimates πg,0 in each

group.

Example 2.2. The Two-Stage (TST) method

Benjamini, Krieger and Yekutieli (2006) proposed the TST adaptive BH procedure

and showed that it offers finite-sample FDR control for independent p-values.

Definition 4. Adaptive TST GBH procedure:

1: For p-values in each group g, apply the BH procedure at level α′ = α/(1 + α). Let

rg,1 be the number of rejections.

2: For each group, compute the TST estimator of πg,0

γTSTg =
ng − rg,1

ng
. (2.9)

3: Apply the GBH procedure at level α′ with πg,0 replaced by γTSTg .

The TST method applies the BH procedure in the first step and uses the number of

rejected hypotheses as an estimator of the number of alternatives.

Both the LSL and TST methods are straightforward to implement in practice and in

the next section we show both of them have good asymptotic properties. Our simulation

and real data analysis show that they outperform the adaptive BH procedure, in which

the group structure of the data is not considered.

Remark 2.1. We should point out that in applications, the adaptive GBH procedure does

not rely on which estimator people choose. The performance, however, does depend on the

distribution of signal among groups. If there is no significant difference in the proportions

of signals among hypotheses for different groups, the adaptive GBH procedure degenerates
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to uni-group case. As long as the groups are dissimilar in terms of true null proportion

and the estimator of πg,0 can detect (not necessarily fully detect) the proportion of true

null hypotheses for each group, the adaptive GBH procedure is expected to outperform

the adaptive BH procedure.

2.4 Comparison of the GBH and BH procedures

In previous sections, we show that the GBH procedure controls the FDR for the finite

sample case when the πg,0’s are known. It is of interest to compare the performance of

GBH with that of the BH procedure. In this section, we are going to compare the expected

number of rejections for the two procedures.

Benjamini and Hochberg (1995) showed that the BH procedure controls the FDR at

level π0α. In order to compare the BH and GBH procedures at the same α level, we

consider the following rescaled p-values:

BH: π0P v.s. GBH:
πg,0
πg,1

(1− π0)Pg, (2.10)

where πg,0 ∈ (0, 1). Note that π0 = πg,0(1− π0)/πg,1 when πg,0 = π0 for all g.

For group g, let Dg be the distribution of p-values such that

Dg(t) = πg,0Ug(t) + πg,1Fg(t), (2.11)

where Ug and Fg are the distribution functions for p-values under the null and alternative

hypotheses. Let D̃g(t) be the empirical cumulative distribution function of p-values in

group g, i.e.,

D̃g(t) =
1

ng

( ∑
i∈Ig,0

{Pi ≤ t}+
∑
i∈Ig,1

{Pi ≤ t}
)
. (2.12)

It is proved in Lemma 2 that under weak conditions D̃g(t) converges uniformly to Dg(t).
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For the uni-group case, in the framework of (2.10), it has been proved by several

authors (Benjamini and Hochberg 1995; Storey 2002; Genovese and Wasserman 2002;

Genovese et al. 2006) that the threshold of the BH procedure can be written as

TBH = sup
t∈[0,π0]

{
t :

t

CN(t/π0)
≤ α

}
,

where CN(t) = 1
N

∑
i∈IN{Pi ≤ t} is the empirical cumulative distribution function of the

p-values, and the procedure rejects any hypothesis with a p-value less than or equal to

TBH . We can extend this result to the framework of GBH. For notation purpose define

a = {ag}Kg=1 where ag = πg,0(1−π0)/(1−πg,0). Let GN(a, t) be the empirical distribution

of the weighted p-values, i.e.,

GN(a, t) =
1

N

K∑
g=1

ngD̃g

( t
ag

)
=

1

N

K∑
g=1

( ∑
i∈Ig,0

{Pi ≤
t

ag
}+

∑
i∈Ig,1

{Pi ≤
t

ag
}
)
. (2.13)

Note that N · GN(a, t) is the number of rejections for the (oracle) GBH procedure with

respect to the threshold t on the weighted p-values. When π0 < 1, where π0 defined in

(2.4) is the overall proportion of null hypotheses, it can be shown that the threshold of

the GBH procedure is equivalent to

TGBH = sup
t∈c(a)

{
t :

t

GN(a, t)
≤ α

}
,

where c(a) = {t : 0 ≤ t ≤ maxg ag}.

For any fixed threshold t ∈ c(a), let E[RBH(t)] and E[RGBH(t)] be the expected

number of rejections of the BH and GBH procedure, respectively. The following theorem

provides a sufficient condition for E[RBH(t)] ≤ E[RGBH(t)].

Lemma 1. Let Ug and Fg be the distributions of p-values under the null and alternative

hypotheses in group g. Assume Ug = U and Fg = F for all g. If U ∼ Unif [0, 1] and x 7→

F (t/x) is convex for x ≥ t̃, where t̃ = (1− π0) ming
πg,0

1−πg0
, then E[RBH(t)] ≤ E[RGBH(t)].
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Take the classical normal mean model for an example. Suppose we observe Xi = θ+Zi,

where Zi
iid∼N(0, 1). Consider the multiple testing problem

Hi : θ = 0 v.s. HAi : θ = θA > 0, i = 1, . . . , N.

The distribution of p-values under alternative is F (u) = 1−Φ[Φ−1(1− u)− θA], where Φ

is the standard Normal distribution function. It can be shown that x 7→ F (t/x) is convex

if

θA ≤
2φ
(

Φ−1(1− t/t̃)
)

t/t̃
, (2.14)

where φ is the standard Normal density function. Note that t/t̃ is the threshold of the

unscaled p-values for rejecting the corresponding hypotheses in one group, therefore t/t̃

is small. Since the right hand side of (2.14) is a decreasing function of t/t̃, (2.14) becomes

θA ≤ 4.12 when t/t̃ ≤ 0.05 and θA ≤ 5.33 when t/t̃ ≤ 0.01. This suggests the convexity

is true for most of the cases.

For adaptive procedures, πg,0 is replaced by its estimator π̂g,0. Let â = {âg}Kg=1 where

âg = π̂g,0(1 − π̂0)/(1 − π̂g,0) and π̂0 =
∑

g ngπ̂0/N . To conduct the BH procedure adap-

tively, we first estimate π0 by π̂0 and then perform the BH procedure at level α/π̂0. The

corresponding threshold of the adaptive BH procedure is

T̂BH = sup
t∈[0,π̂0]

{
t :

tπ0/π̂0

CN(t/π̂0)
≤ α

}
, (2.15)

and the threshold of the adaptive GBH procedure is

T̂GBH = sup
t∈c(â)

{
t :

∑K
g=1 πgπg,0t/âg

GN(â, t)
≤ α

}
, (2.16)

where

GN(â, t) =
1

N

K∑
g=1

( ∑
i∈Ig,0

{Pi ≤ t/âg}+
∑
i∈Ig,1

{Pi ≤ t/âg}
)
. (2.17)
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Remark 2.2. Both (2.15) and (2.16) depend on the data, hence they are no longer fixed.

In the next section we are going to prove that T̂BH and T̂GBH converges in probability

to some fixed t∗BH and t∗GBH , respectively. Theorem 4 in section 3.1 demonstrates that

t∗BH ≤ t∗GBH and therefore the adaptive GBH procedure rejects more than the adaptive

BH procedure asymptotically.

3 GBH ASYMPTOTICS

In many applications of multiple hypothesis testing, not only are the proportions of true

null hypotheses unknown, but the number of hypotheses is also very large. It is hence

applicable to analyze the behavior of the GBH procedure for large N . In this section, we

focus on the asymptotic property of the adaptive GBH procedure.

Genovese et al. (2006) and Storey et al. (2004) proved some useful results for asymp-

totic FDR control using empirical process argument for the BH procedure. We extend

them further in the setting of the GBH procedure. We first discuss the case where we

have consistent estimator of the proportion of true null hypotheses, then move on to a

more general case.

3.1 Adaptive GBH with consistent estimator of πg,0

When N →∞ and the number of groups K is finite, we assume the following condition

is satisfied in every group

ng
N
→ πg,

ng,0
ng
→ πg,0,

ng,1
ng
→ πg,1, where πg, πg,0, πg,1 ∈ (0, 1). (3.1)

By the construction,
∑

g πg = 1 and πg,0 + πg,1 = 1. The following Lemma shows that

(2.12) converges uniformly to (2.11) under the above condition.
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Lemma 2. Under (3.1), Let Ug(t) and Fg(t) be continuous functions. For any t ≥ 0, if

the p-values satisfy

1

ng,0

∑
i∈Ig,0

{Pi ≤ t} a.s→ Ug(t), (3.2)

1

ng,1

∑
i∈Ig,1

{Pi ≤ t} a.s.→ Fg(t). (3.3)

Then sup
t
|D̃g(t)−Dg(t)|

a.s.→ 0.

Storey et al. (2004) described weak dependence as any type of dependence in which

conditions (3.2) and (3.3) are satisfied. Weak dependence contains the case of independent

p-values, but for p-values with the PRDS property, these conditions are not necessarily

true. An example is given in Section 4.

In this section, we focus on the case when we have consistent estimator of πg,0 in every

group, i.e.,

π̂g,0
P→ πg,0 ∈ (0, 1), for all g. (3.4)

Recall that â = {âg}Kg=1, where âg = π̂g,0(1− π̂0)/(1− π̂g,0). Under the above condition,

we have â
P→ a. Let G(a, t) =

∑K
g=1 πg

(
πg,0Ug(t/ag) + πg,1Fg(t/ag)

)
be the limiting

distribution of the weighted p-values for all groups and let B(a, t) = t/G(a, t). Then

define

t∗GBH = sup
t∈c(a)

{t : B(a, t) ≤ α}.

The following theorem establishes the asymptotic equivalence of (2.16) and t∗GBH , and

thus implies asymptotic FDR control of the adaptive GBH procedure.

Theorem 2. Suppose conditions (3.1) through (3.4) are satisfied for all groups. Suppose

further that Ug(t) = t for 0 ≤ t ≤ 1 in every group. If t 7→ B(a, t) has a non-zero

derivative at t∗GBH and limt↓0B(a, t) 6= α, then T̂GBH
P→ t∗GBH and FDR(T̂GBH) ≤ α +

o(1).
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Note that the statement of the theorem has a similar flavor as Theorem 2 in Genovese

et al. (2006 pp. 515). But our assumption is weaker and more importantly, the π̂g,0’s are

estimated based on the data.

Similarly, for the adaptive BH procedure, we define the distribution of all p-values as

C(t) = π0U(t) + (1− π0)F (t), where U(t) and F (t) are continuous functions. Let t∗BH be

such that

t∗BH = sup
t∈[0,π0]

{t :
t

C(t/π0)
≤ α}.

The following theorem illustrates that asymptotically the adaptive GBH procedure has

more expected number of rejections than the adaptive BH procedure. Note that RBH(·)

andRGBH(·) denote the number of rejections of the BH and GBH procedures, respectively.

Theorem 3. Under conditions (3.1) through (3.4). Assume in each group Ug(t) =

U(t) = t, 0 ≤ t ≤ 1 and Fg(t) = F (t), where x 7→ F (t/x) is convex for x ≥ ming ag.

Assume further that both B(a, t) and t/C(t/π0) are increasing in t. If π0 ≥ α and

limt↓0 t/C(t/π) ≤ α, then t∗BH ≤ t∗GBH , and therefore

E[RBH(T̂BH)]/E[RGBH(T̂GBH)] ≤ 1 + o(1).

Remark 3.1. Sometimes the assumption that all the alternative hypotheses across dif-

ferent groups follow the same distribution may not be appropriate. The condition Fg(t) =

F (t) in the above theorem is necessary to establish Theorem 3. However, that assumption

is not a necessity in establishing Theorem 2 and Theorem 4, where we show FDR control

for the adaptive GBH procedure.
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3.2 Discussion for inconsistent estimator of πg,0

For general estimator of πg,0, let π̂g,0 ∈ (0, 1] be an estimator of πg,0 such that

π̂g,0
P→ ζg ∈ (0, 1] and ζ̄ =

∑
g

πgζg < 1, (3.5)

where the latter condition means at least one ζg is less than 1 among all groups. Let

ρ = {ρg}Kg=1 where ρg = ζg/(1 − ζg) and ρg = ∞ when ζg = 1. Then, we have â
P→ ρ.

Let G(ρ, t) =
∑K

g=1 πg

(
πg,0Ug(t/ρg) + πg,1Fg(t/ρg)

)
be the limiting distribution of the

weighted p-values for all groups. Denote B(ρ, t) =
PK

g=1 πgπg,0t/ρg

G(ρ,t)
and define

t∗GBH = sup
t∈c(ρ)

{t : B(ρ, t) ≤ α}. (3.6)

Theorem 4. Suppose conditions (3.1) through (3.3) and (3.5) are satisfied for all groups.

Suppose further that Ug(t) = t for 0 ≤ t ≤ 1 and ζg ≥ bgπg,0 for some bg > 0 in every

group. If t 7→ B(ρ, t) has a non-zero derivative at t∗GBH and limt↓0B(ρ, t) 6= α, then

T̂GBH
P→ t∗GBH and FDR(T̂GBH) ≤ α/ming{bg} + o(1). In particular, FDR(T̂GBH) ≤

α + o(1) when bg ≥ 1 for all groups.

The theorem generalizes the result in Theorem 2 and indicates that the adaptive GBH

procedure controls the FDR at level α not only for consistent estimators of πg,0’s, but

also for asymptotically conservative estimators.

Remark 3.2. For the TST estimator γTSTg in (2.9), note that

γTSTg = 1− 1

ng

∑
i∈Ig

{Pi ≤ T̂0},

where T̂0 is the threshold for the BH procedure in the first step. Following from Theorem

4, T̂0
P→ t0, where t0 satisfies t0/(πg,0t0 + πg,1Fg(t0)) = α′. Since Fg(t0) ≤ 1, it can be
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shown that t0 ≤ (1− πg,0)α′/(1− α′πg,0). Then,

γTSTg
P→ πg,0(1− t0) + πg,1(1− Fg(t0))

= 1− t0
α
≥ (1− α′)πg,0.

Therefore, by Theorem 4 the adaptive TST GBH procedure controls FDR at level α′/(1−

α′) = α asymptotically.

Remark 3.3. As ng → ∞, the LSL estimator γLSLg defined in (2.8) can be viewed as

a special case of the estimator π̂g,0(λ) proposed by Schweder and Spjøtvoll (1982). For

fixed λ, π̂g,0(λ) satisfies

π̂g,0(λ) =
ng −

∑
i∈Ig{Pi ≤ λ}

ng(1− λ)

a.s.→ πg,0 + πg,1
1− Fg(λ)

1− λ
≥ πg,0,

under conditions (3.2) and (3.3). Therefore, π̂g,0(λ) is asymptotically conservative and by

Theorem 4 the FDR is controlled asymptotically at α for π̂g,0(λ).

4 SIMULATION STUDIES

For simplicity, assume the hypotheses are divided into two groups. Without loss of gen-

erality, assume there are n observations in each group. Consider the following model,

let

Sgi = θi +
√

1− ξg · Zgi −
√
ξgZ0, i = 1, . . . , n; g = 1, 2 (4.1)

be the i-th test statistic in group g, where Zgi and Z0 are independent standard Normal

random variables. Note that Cov(Tgu, Tgv) = ξg, for u, v ∈ {1, . . . , n}, u 6= v and the model

satisfies the PRDS property discussed in section 2.2 when 0 ≤ ξg ≤ 1. Similar dependence
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structures were considered in Finner et al. (2007) and Benjamini et al. (2006). Note that

when ξg > 0, conditions (3.2) and (3.3) are not satisfied for large N due to the extra Z0

term.

Consider the hypothesis testing problem with two groups H0 : θj = 0 vs Ha : θj > 0,

for j = 1, . . . , 2n. In this section, we compare the performances of the BH and GBH pro-

cedures for both oracle and adaptive cases. For the adaptive BH procedure, we compute

the (either LSL or TST) estimator π̂0 for all p-values and then apply the BH procedure

at level α/π̂0.

Four combinations of πg,0’s are considered: 1) π1,0 = 0.9 vs π2,0 = 0.2; 2) π1,0 = 0.8

vs π2,0 = 0.4; 3) π1,0 = 0.99 vs π2,0 = 0.9; 4) π1,0 = 0.999 vs π2,0 = 0.9. In each case, we

generate ng = 10, 000 test statistics for each of the two groups based on (4.1). In every

group, ngπg,0 of the hypotheses are null and the rest are alternatives with corresponding

θ = 3 in one group and θ = 5 in the other group. Other combinations of n and θ’s are

also considered and the results are similar. Since we have the information about which

hypothesis is from the alternative, the power for the two procedures can be obtained,

which is the proportion of true rejections among the false null hypotheses. The power of

the BH and GBH procedures is evaluated in pairs based on 200 iterations for each of the

20 FDR levels between 0.01 and 0.2. The results for the oracle and adaptive cases are as

follows.

For the oracle case with independent p-values, Figure 3 indicates that the GBH pro-

cedure outperforms the BH procedure in all four cases, especially when πg,0’s are close

to 1 (the last two panels). The more the groups differ in πg,0, the larger the difference is

obtained in the power of the two procedures. This is also true for p-values with the PRDS

property. Figure 4 shows the power difference between the GBH and BH procedures for
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p-values under model (4.1) with ξ1 = ξ2 = 0.5. All points being above zero indicates the

GBH procedure outperforms the BH procedure for all four cases.

For the adaptive case with independent p-values, we estimate the unknown πg,0’s

using either the TST or LSL method introduced in section 2.3. Figure 5 indicates that

the average of the false discovery proportion (FDP) is controlled at pre-specified FDR

level for both the BH and GBH procedures with either the TST or LSL method. The

power improvement of the adaptive GBH over the adaptive BH procedure is shown in

Figure 6. Both the TST GBH and the LSL GBH procedures are more powerful than the

corresponding adaptive BH procedures.

We also analyze the performance of the adaptive GBH procedure for weighting scheme

other than πg,0/πg,1. According to (2.6), when Ug is uniform, the Bayesian FDR is

[πg,0/Dg(p)]p, where Dg(p) is the distribution function of p-values in group g. It’s there-

fore natural to consider the weight π̂g,0/D̃g(p), where D̃g is the empirical distribution, as

pointed out by a referee. Although this weight takes into consideration of the distribu-

tion of p-values in each group, the power of the adaptive procedure using this weight is

often low in the situation where we have sparse signals and estimating the alternative

distribution is difficult.

5 APPLICATIONS

Van’t Veer et al. (2002) used microarrays to study the primary breast tumors of 78 young

patients, of which 44 developed cancer in less than 5 years and the other 34 were cancer

free during that period. In total 24, 184 genes were monitored and p-values were obtained

for each gene by comparing the mean ratio of log10 intensities. A fraction of the data is

listed in Table 1.
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In order to apply the GBH procedure which makes use of the group structure, we

need to stratify the genes first. Here we consider two grouping strategies.

5.1 Grouping using Gene Ontology (GO)

The GO project (The Gene Ontology Consortium 2000) provides detailed annotations

for a gene product’s biology. It consists of three ontologies, namely Biological Process,

Molecular Function and Cellular Component, each representing a key concept in Molecu-

lar Biology. The GO terms are classified into one of the three ontologies. Based on the GO

terms, one can construct a top-down tree diagram, in which the higher nodes represent

more general biological concepts.

The tree structure provides the idea of GO grouping which can be summarized as

follows. After choosing one of the three ontologies, say Biological Process, some higher

nodes are selected as ancestors according to the generic GO slim file, which contains

the broad overview of each ontology without the detail of each GO terms (accessible at

http://www.geneontology.org/GO.slims.shtml). Next, for those genes with GO IDs,

we trace them upward to the nodes we have chosen. Genes that share common ancestors

are then grouped together. The biggest concern for GO grouping in our case is that the

mapping rate is low. Even though the GO consortium updates their data base on a daily

basis, not every gene in our data has a GO ID. For our case, 9, 492 of the 24, 184 genes

have the annotation information for Biological Process, therefore the mapping rate for

our data is 9492/24184 ≈ 39%.

However, we may still use the remaining 9, 492 genes to see the difference of using

group information in multiple hypothesis testings. We first divide the genes into four

groups with respect to Biological Process, i.e., 1) Cell communication; 2) Cell growth
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and-or maintenance; 3) Development; and 4) Multi-function. The results for the adaptive

BH and GBH procedures are listed in Table 2. For simplicity, we just report the results

for the LSL method.

At FDR level 0.15, Table 2 indicates that the adaptive GBH procedure focuses more

on groups with smaller estimated πg,0’s, i.e., groups 2) and 4), and is able to discover

genes that are not detectable using the adaptive BH procedure. In fact, as shown in

Figure 2, using either the LSL or TST method, the adaptive BH procedure cannot detect

any signals when the FDR level is less than 0.15.

Even though the mapping rate for this data set is low, the idea of GO grouping could

be a good choice if the data were collected in terms of GO identities; or the mapping

between the GO ID and other gene IDs (e.g., GenBank Accession Number) was more

complete. Then each group may correspond to different biological processes or genetic

functions within the tumor and the GBH method can help us to find more signals among

desired groups.

5.2 Grouping using k-means clustering

Another grouping idea is to apply clustering. Here we choose k-means clustering with

initial points satisfying maximum separation rule based on all the 78 samples. Note that

we are not just clustering the p-values. Unlike GO grouping, k-means clustering makes

use of the whole data set and we do not have to worry about the mapping rate. Although

we do have the difficulties regarding cluster analysis, e.g., the choice of initial points,

number of clusters, and the interpretation of each cluster, we use it as an illustrative

example to compare the performances of the adaptive BH and GBH procedures.

In order to have a reliable estimator for each group, six clusters are selected such that
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within each cluster there are at least 200 genes. Table 3 shows the results for the two

procedures using the LSL method at FDR level 0.1. Most of the additional discoveries

found by the adaptive GBH procedure come from the first cluster, which is expected

to contain more signals because the estimated πg,0 is relatively smaller than the others.

Gene-annotation enrichment analysis confirms that those 109 genes selected by the GBH

procedure in the first cluster are closely associated with cell cycle, mitosis, chromosome

segregation and phosphoprotein, which are common factors related to breast cancer.

Similar analyses on the four and five-cluster cases indicate that the number of genes

detected by the adaptive GBH procedure is 145 and 226, respectively. Out of those

genes, 94 of them are overlapping with the six-cluster case. Comparing with an average

of eight genes discovered by random grouping, which assigns groups randomly with the

same group sizes as the above three cases, clustering and using the GBH procedure is

advantageous in our case.

For comparison of the two procedures over a range of FDR levels, Figure 1 shows the

increment in the number of signals detected by the adaptive GBH over BH procedure for

both the LSL and TST methods. This indeed shows that by applying the GBH procedure,

more signals can be detected.

6 SUMMARY

We have presented a new approach of p-value weighting procedure GBH for controlling

the FDR when the hypotheses are believed to have some group structure. We prove that it

controls the FDR for hypotheses with the positive regression dependence property when

the proportions of true null hypotheses πg,0’s are known in each group. The weighting

scheme (πg,0/πg,1) for the p-values in each group makes it possible to focus on groups that
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are expected to have more signals.

By estimating πg,0 for each group, we propose the adaptive GBH procedure and show

that it controls the FDR asymptotically under weak dependence. We demonstrate the

benefit of the adaptive GBH over BH by two methods of estimating πg,0, namely the

LSL (Benjamini and Hochberg 2000) and the TST (Benjamini et al. 2006) estimators.

As we have pointed out, the choice of the estimator for πg,0 in general does not affect

the performance of the adaptive GBH procedure. In practice, people may choose the

estimator based on their own preference.

7 APPENDIX: PROOFS

Proof of Theorem 1. The proof is based on the proof of Theorem 4.1 in Finner, Dick-

haus and Roters (2009). Let ϕ = (ϕ1, . . . , ϕN) be the multiple testing procedure. ϕi = 0

means retaining Hi and ϕi = 1 means rejecting Hi. The FDR for oracle GBH is

FDR(ϕGBH) = E

[
V

R ∨ 1

]
= E

[
V

R ∨ 1

∑
j∈IN

{R = j}

]

=
K∑
g=1

∑
i∈Ig,0

∑
j∈IN

1

j
Pr
(
R = j, ϕg,i = 1

)

=
K∑
g=1

∑
i∈Ig,0

∑
j∈IN

1

j
Pr
(
R = j,

πg,0
πg,1

Pg,i ≤
j

N
αw
)
.

Note that if πg,0 = 0 or πg,0 = 1 for some g, that group doesn’t contribute to the FDR

because Ig,0 = ∅ if πg,0 = 0 and Pr(R = j, πg,0

πg,1
Pg,i ≤ j

N
αw) = 0 if πg,0 = 1 (we treat

πg,0/πg,1 as ∞). Let η = {g : πg,0 ∈ (0, 1)}. Then

FDR(ϕGBH) =
∑
g∈η

∑
i∈Ig,0

∑
j∈IN

1

j
Pr
(
R = j,

πg,0
πg,1

Pg,i ≤
j

N
αw
)
.
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Using the proof of Theorem 4.1 in Finner, Dickhaus and Rosters (2009), we have

FDR(ϕGBH) ≤
∑
g∈η

πg,1α
w

πg,0N

∑
i∈Ig,0

Pr(R ≥ 1|Pw
g,i ≤

1

N
αw)

=
∑
g∈η

πg,1α
w

πg,0N

∑
i∈Ig,0

1 =
∑
g∈η

πg,1α
w

πg,0N
· ngπg,0

=

∑
g∈η ngπg,1∑K
g=1 ngπg,1

α ≤ α.

Proof of Lemma 1. For the unweighted case, the expected number of rejections of BH

procedure for a given threshold t, where t ≤ t̃ = (1− π0) max
g
πg,0/πg,1 is

E
[
RBH(t)

]
= E

K∑
g=1

∑
j∈Ig

{π0Pj ≤ t}

= E
K∑
g=1

( ∑
j∈Ig,0

{Pj ≤
t

π0

}+
∑
j∈Ig,1

{Pj ≤
t

π0

}
)

≤ Nt+
K∑
g=1

ngπg,1F
( t

π0

)
.

Similarly, the expected number of rejections of GBH procedure for t ≤ t̃ is

E
[
RGBH(t)

]
= E

K∑
g=1

∑
j∈Ig

{πg,0
πg,1

(1− π0)Pj ≤ t}

= Nt+
K∑
g=1

ngπg,1F
( πg,1t

πg,0(1− π0)

)
Let εg = ngπg,1/

∑
g ngπg,1 and xg = πg,0(1 − π0)/πg,1. Now that x 7→ F (t/x) is convex

for all x ≥ t̃. We have F (t/
∑

g εgxg) ≤
∑

g εgF (t/xg), i.e.,

F
( t

π0

)
≤ 1∑

g ngπg,1

K∑
g=1

ngπg,1F
( πg,1t

πg,0(1− π0)

)
.

Therefore, E
[
RBH(t)

]
≤ E

[
RGBH(t)

]
for t ≤ t̃.

Proof of Lemma 2. Consider the estimator of Dg(t) defined in (2.12). Under (3.1), for
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any t ≥ 0,

sup
t
|D̃g(t)−Dg(t)| ≤ sup

t

∣∣∣ng,0
ng

1

ng,0

∑
i∈Ig,0

{Pi ≤ t} − πg,0Ug(t)
∣∣∣

+ sup
t

∣∣∣ng,1
ng

1

ng,1

∑
i∈Ig,1

{Pi ≤ t} − πg,1Fg(t)
∣∣∣

≤
∣∣∣ng,0
ng
− πg,0

∣∣∣+ πg,0 sup
t

∣∣∣ 1

ng,0

∑
i∈Ig,0

{Pi ≤ t} − Ug(t)
∣∣∣

+
∣∣∣ng,1
ng
− πg,1

∣∣∣+ πg,1 sup
t

∣∣∣ 1

ng,1

∑
i∈Ig,1

{Pi ≤ t} − Fg(t)
∣∣∣

where supt |n−1
g,0

∑
i∈Ig,0
{Pi ≤ t}−Ug(t)|

a.s.→ 0 and supt |{n−1
g,1

∑
i∈Ig,1
{Pi ≤ t}−Fg(t)|

a.s.→ 0

by Glivenko-Cantelli Theorem. Therefore, supt |D̃g(t)−Dg(t)|
a.s.→ 0.

Proof of Theorem 2. Theorem 4 generalizes this theorem. See the proof of Theorem

4.

Proof of Theorem 3. Under the conditions that Ug(t) = U(t) = t and Fg(t) = F (t) for

all g, in the proof of Lemma 2, we show that G(a, t) ≥ C(t/π0) for all 0 ≤ t ≤ ming ag.

Since G(a, π0) ≤ π0 = t/C(t/π0)|t=π0 and both G(a, t) and t/C(t/π0) are increasing,

we have G(a, t) ≥ C(t/π0) for all 0 ≤ t ≤ maxg ag. Deduce B(a, t) ≤ t/C(t/π0) for

t ∈ c(a). Therefore t∗BH ≤ t∗GBH . Conditions limt↓0 t/C(t/π) ≤ α and π0 ≥ α guarantee

that t∗BH > 0.

Note that both G(a, t) and t/C(t/π0) are continuous, we have

t∗BH
C(t∗BH/π0)

=
t∗GBH

G(a, t∗GBH)
.

Since t∗BH ≤ t∗GBH , deduce C(t∗BH/π0) ≤ G(a, t∗GBH). For the adaptive BH procedure, the

number of rejections RBH(T̂BH) =
∑

i∈IN{Pi ≤ T̂BH/π̂0} = N · CN(T̂BH/π̂0), and

|CN(T̂BH/π̂0)− C(t∗BH/π0)| ≤ sup
t≥0
|CN(t/π̂0)− C(t/π̂0)|

+|C(T̂BH/π̂0)− C(t∗BH/π0)|,
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where supt≥0 |CN(t/π̂0)−C(t/π̂0)|
a.s.→ 0 by Glivenko-Cantelli theorem and |C(T̂BH/π̂0)−

C(t∗BH/π0)|
P→ 0 by continuous mapping theorem. Therefore CN(T̂BH/π̂0)

P→ C(t∗BH/π0).

Analogously one can show that GN(â, T̂GBH)
P→ G(a, t∗GBH). A more generalized ar-

gument is shown in the proof of Theorem 4. By dominant convergence theorem we

have N−1E[RBH(T̂BH)] → C(t∗BH/π0) and N−1E[RGBH(T̂GBH)] → G(a, t∗GBH). There-

fore E[RBH(T̂BH)]/E[RGBH(T̂GBH)] ≤ 1 + o(1).

Proof of Theorem 4. The proof applies Glivenko-Cantelli theorem as in Storey et al.

(2004) and Genovese et al. (2006). Let S = c(â) ∪ c(ρ). For any t ∈ S, we have

sup
t∈S
|GN(â, t)−G(ρ, t)| ≤ sup

t≥0
|GN(â, t)−G(â, t)|+ sup

t≥0
|G(â, t)−G(ρ, t)|.

Note that for t ≥ 0,

sup
t
|GN(â, t)−G(â, t)| =

1

N

K∑
g=1

ng sup
t
|D̃g(t/âg)−Dg(t/âg)|

≤ 1

N

K∑
g=1

ng sup
t
|D̃g(t)−Dg(t)|

a.s.→ 0, (7.1)

where the last step is implied by Lemma 2. On the other hand,

sup
t≥0
|G(â, t)−G(ρ, t)| = 1

N

K∑
g=1

ng sup
t≥0
|Dg(t/âg)−Dg(t/ρg)|.

Since Dg is continuous on [0,+∞) and limt→∞Dg(t) = 1 is finite, Dg is uniform contin-

uous. By continuous mapping theorem, |t/âg − t/ρg|
P→ 0. Therefore supt∈S |Dg(t/âg) −

Dg(t/ρg)|
P→ 0. So we have supt∈S |GN(â, t)−G(ρ, t)| P→ 0.

LetBN(â, t) =
P

g ng,0t/âg

N ·GN (â,t)
. According to (2.16) and (3.6), T̂GBH = supt∈c(â){t : BN(â, t) ≤

α} and t∗GBH = supt∈c(ρ){t : B(ρ, t) ≤ α}, where B(ρ, t) =
P

g πgπg,0t/ρg

G(ρ,t)
. Note that the

assumption limt↓0B(ρ, t) 6= α implies t∗GBH > 0.

We first show T̂GBH
P→ t∗GBH . For any ξ > 0, note that B(ρ, t) is increasing for

t ≥ maxg ρg, therefore B(ρ, t∗GBH + ξ) > α, otherwise it contradicts with t∗GBH being the
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supremum. Fix δ > 0, for any δ′ ≥ δ, let t′ = t∗GBH + δ′. Then

inf
δ′≥δ

BN(â, t′) = inf
δ′≥δ

1
N

∑
g ng,0t

′/âg

GN(â, t′)

≥ inf
δ′≥δ

∑
g πgπg,0t

′/ρg −
∑

g |ng,0/Nâg − πgπg,0/ρg|t′

G(ρ, t′) + supt∈S |GN(â, t)−G(ρ, t)|

≥ 1− ε1
[1/ infδ′≥δ B(ρ, t′)] + ε2

,

where ε1 =
∑

g |ng,0/Nâg−πgπg,0/ρg|/(
∑

g πgπg,0/ρg), and ε2 = supt∈S |GN(â, t)−G(ρ, t)|/(
∑

g πgπg,0t
′/ρg).

Since ε1, ε2
P→ 0 and infδ′≥δ B(ρ, t′) > α, it can be derived that Pr(

⋂
δ′≥δ{BN(â, t′) >

α})→ 1 which implies Pr(T̂GBH < t∗GBH + δ)→ 1.

On the other hand, since B(ρ, t) has a non-zero derivative at t∗GBH , it must be positive,

otherwise t∗GBH cannot be the supremum of all t such that B(ρ, t) ≤ α. Thus, t 7→ B(ρ, t)

is an increasing function and for any ξ > 0, B(ρ, t∗GBH − ξ) < α. For any δ > 0, let

t◦ = t∗GBH − δ,

BN(â, t◦) =
1
N

∑
g ng,0t

◦/âg

GN(â, t◦)

≤
∑

g πgπg,0t
◦/ρg +

∑
g |ng,0/Nâg − πgπg,0/ρg|t◦

G(ρ, t◦)− supt∈S |GN(â, t)−G(ρ, t)|

≤ 1 + ε1
[1/B(ρ, t◦)]− ε2

,

where ε1, ε2
P→ 0 and B(ρ, t◦) < α. Then Pr(BN(â, t◦) < α) → 1. Deduce Pr(T̂GBH >

t∗GBH − δ)→ 1. Combine this and previous result we get T̂GBH
P→ t∗GBH .

Next, we prove FDR(T̂GBH) ≤ α/ming{bg}+ o(1). Let

HN(â, t) =
1

N

K∑
g=1

∑
i∈Ig,0

{Pi ≤ t/âg}

be the empirical distribution of p-values under null hypothesis for adaptive GBH pro-

cedure. Note that T̂GBH
P→ t∗GBH implies Pr(T̂GBH > t∗GBH − δ) → 1 for any δ > 0.

Since t∗GBH > 0, deduce Pr(T̂GBH > 0) → 1. On the other hand, the assumption ζ̄ < 1

rules out the situation where T̂GBH/âg → 0 for all groups. Therefore Pr(
∑

g

∑
i∈Ig{Pi ≤
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T̂GBH/âg} ≥ 1)→ 1. Then the false discovery proportion (FDP) is

FDP (T̂GBH) =
N−1

∑K
g=1

∑
i∈Ig0
{Pi ≤ T̂GBH/âg}

N−1
∑K

g=1

∑
i∈Ig{Pi ≤ T̂GBH/âg}

=
HN(â, T̂GBH)

GN(â, T̂GBH)
,

where HN(â, T̂GBH) satisfies

∣∣∣HN(â, T̂GBH)− 1

N

K∑
g=1

ng,0Ug(T̂GBH/âg)
∣∣∣

≤ 1

N

K∑
g=1

ng,0 sup
t∈c(â)

∣∣∣ 1

ng,0

∑
i∈Ig,0

{Pi ≤ t/âg} − Ug(t/âg)
∣∣∣

≤ 1

N

K∑
g=1

ng,0 sup
t≥0

∣∣∣ 1

ng,0

∑
i∈Ig,0

{Pi ≤ t} − Ug(t)
∣∣∣.

By condition (3.2), Glivenko-Cantelli Theorem implies supt≥0 | 1
ng,0

∑
i∈Ig,0
{Pi ≤ t} −

Ug(t)|
a.s.→ 0. Therefore,

∣∣∣HN(â, T̂GBH)− 1

N

K∑
g=1

ng,0Ug(T̂GBH/âg)
∣∣∣ a.s.→ 0. (7.2)

Now that T̂GBH
P→ t∗GBH and by (3.1),

1

N

K∑
g=1

ng,0Ug(T̂GBH/âg)
P−→

K∑
g=1

πgπg,0Ug(t
∗
GBH/ρg). (7.3)

Combine (7.2) and (7.3) we have

HN(â, T̂GBH)
P→

K∑
g=1

πgπg,0Ug(t
∗
GBH/ρg). (7.4)

On the other hand,

|GN(â, T̂GBH)−G(ρ, t∗GBH)| ≤ |GN(â, T̂GBH)−G(â, T̂GBH)|

+|G(â, T̂GBH)−G(ρ, t∗GBH)|

≤ sup
t≥0
|GN(â, t)−G(â, t)|+ |G(â, T̂GBH)−G(ρ, t∗GBH)|

where supt≥0 |GN(â, t) − G(â, t)| a.s.→ 0 by (7.1) and |G(â, T̂GBH) − G(ρ, t∗GBH)| P→ 0 by

continuous mapping theorem. Therefore,

GN(â, T̂GBH)
P→ G(ρ, t∗GBH). (7.5)
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Since t∗GBH > 0 and ζ̄ < 1, we have G(ρ, t∗GBH) > 0. By (7.4) and (7.5),

FDP (T̂GBH)
P→
∑K

g=1 πgπg,0Ug(t
∗
GBH/ρg)

G(ρ, t∗GBH)
.

By dominated convergence theorem,

FDR(T̂GBH) = E
[
FDP (T̂GBH)

]
→
∑K

g=1 πgπg,0Ug(t
∗
GBH/ρg)

G(ρ, t∗GBH)
. (7.6)

Note that ζg ≥ bgπg,0 for some bg > 0. Deduce ρg ≥ bgπg,0/(1 − ζg). Since Ug(t) ≤ t for

all t ≥ 0, we have∑K
g=1 πgπg,0U(t∗GBH/ρg)

G(ρ, t∗GBH)
≤ 1

ming{bg}
(1− ζ̄)t∗GBH
G(ρ, t∗GBH)

≤ α

ming{bg}
.

Hence, FDR(T̂GBH) ≤ α/ming{bg}+ o(1).
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Table 1: Part of the breast cancer data set in van’t Veer (2002).

Developed Cancer in 5 years Cancer-free in 5 years

Gene ID patient1 patient2 · · · patient44 patient45 patient46 · · · patient78 p-value

AA000990 0.080 0.130 · · · 0.136 -0.513 -0.098 · · · -0.015 0.7937

AA001113 -0.159 -0.087 · · · -0.116 0.190 -0.204 · · · 0.082 0.4897

AA001360 -0.018 -0.024 · · · -0.255 0.114 -0.042 · · · 0.200 0.1224

...
...

...
...

...
...

...
...

...
...

Note: The entries are adjusted log10(red/green) ratios from cDNA microarrays. The p-values were

calculated based on a two-sample t-test for each gene.

Table 2: Comparison of the adaptive LSL GBH and the adaptive LSL BH procedures for GO

grouping. FDR level = 0.15.

Group # of Genes π̂LSLg,0 LSL BH LSL GBH

1) Cell communication 593 0.995 0 3

2) Cell growth/maintenance 4142 0.987 0 13

3) Development 434 0.989 0 0

4) Multi-function 4323 0.983 0 25

Total 9492 0 41

36



Table 3: Comparison of the adaptive LSL GBH and the adaptive LSL BH procedures for

k-means grouping. FDR level = 0.1.

Cluster # of Genes π̂LSLg,0 LSL BH LSL GBH

1 1904 0.871 4 109

2 214 0.991 0 0

3 1368 0.999 0 0

4 2458 0.969 1 19

5 7058 0.999 4 2

6 11164 0.996 3 6

Total 24184 12 136

Figure 1: Breast cancer study, 24,184 genes. Plot shows the number of signals detected by GBH

and BH procedures versus pre-specified FDR level. Left panel: adaptive LSL GBH procedure.

Right panel: adaptive TST GBH procedure. Details for LSL and TST approaches are in section

2.3. Genes are assigned into six groups using k-means clustering. Data from van’t Veer et al

(2002).
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Figure 2: Breast cancer study, 9, 492 genes. The plots show the number of genes detected

by the adaptive BH and GBH procedures using Gene Ontology grouping. Left panel: the LSL

method. Right panel: the TST method. Data from van’t Veer et al (2002).

Figure 3: Power curves of the oracle BH and GBH procedures for independent p-values. The

p-values are generated based on model (4.1) with ξ1 = ξ2 = 0 and n = 10, 000 for each group.

Each panel corresponds to one combination of πg,0’s for two groups.
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Figure 4: Power differences of the oracle BH and GBH procedures for p-values with the PRDS

property. The p-values are generated based on model (4.1) with ξ1 = ξ2 = 0.5 and n = 10, 000

for each group. Each panel corresponds to one combination of πg,0’s for two groups.

Figure 5: Comparison of the average FDP and the pre-specified FDR for the adaptive BH

and GBH procedures. The dash line is the 45-degree line. The p-values are generated based on

model (4.1) with ξ1 = ξ2 = 0 and n = 10, 000 for each group. Each point of the FDP is the

average of 200 iterations.
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Figure 6: Power curves of the adaptive BH and GBH procedures for independent p-values. The

p-values are generated based on model (4.1) with ξ1 = ξ2 = 0 and n = 10, 000 for each group.

Each panel corresponds to one combination of πg,0’s for two groups.
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