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Nonparametric Regression in Natural
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University of Pennsylvania and Yale University

Abstract: Theory and methodology for nonparametric regression have been particularly
well developed in the case of additive homoscedastic Gaussian noise. Inspired by asymp-
totic equivalence theory, there have been ongoing efforts in recent years to construct ex-
plicit procedures that turn other function estimation problems into a standard nonparamet-
ric regression with Gaussian noise. Then in principle any good Gaussian nonparametric
regression method can be used to solve those more complicated nonparametric models.
In particular, Brown, Cai and Zhou (2010) considered nonparametric regression in natural
exponential families with a quadratic variance function.

In this paper we extend the scope of Brown, Cai and Zhou (2010) to general natural
exponential families by introducing a new explicit procedure that is based on the variance
stabilizing transformation. The new approach significantly reduces the bias of the inverse
transformation and as a consequence it enables the method to be applicable to a wider class
of exponential families. Combining this procedure with a wavelet block thresholding esti-
mator for Gaussian nonparametric regression, we show that the resulting estimator enjoys a
high degree of adaptivity and spatial adaptivity with near-optimal asymptotic performance
over a broad range of Besov spaces.

1. Introduction

The theory of asymptotic equivalence occupies an important position in statistical decision
theory. The main goal is to approximate complex statistical models by simpler ones. If two
models are asymptotically equivalent, then all asymptotically optimal procedures for the
simpler model can be carried over to the complex one under all bounded losses. Asymptotic
equivalence theory was pioneered by Lucien Le Cam and the early focus was on paramet-
ric models. See Le Cam (1986). The first global asymptotic equivalence result for nonpara-
metric function estimation models was developed in the seminal paper by Brown and Low
(1996a) in the context of nonparametric regression and white noise with drift models. Since
then there has been active research on asymptotic equivalence/nonequivalence among non-
parametric function estimation models. Many important results have been developed in
different contexts.

The main ideas behind asymptotic equivalence theory are very appealing, but the theory
does have drawbacks. One is that full equivalence in Le Cam’s sense is a very stringent
goal and often the failures are caused by pathological cases which do not occur in many
applications of interest. Another is that the equivalence mappings typically require ran-
domizations and are thus not practical.

Inspired by the ideas from the asymptotic equivalence theory, there have been recent ef-
forts to construct explicit and practical procedures to turn more complicated nonparametric
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function estimation problems into a standard nonparametric regression with homoscedas-
tic Gaussian noise, which is relatively simple and has been particularly well studied in the
literature. For example, explicit procedures based on binning and taking the median have
been developed in Brown, Cai and Zhou (2008) and Cai and Zhou (2009) for nonparamet-
ric regression with general additive noise. Brown et al. (2010) introduced a root-unroot
transformation for density estimation. Brown, Cai and Zhou (2010) considered nonpara-
metric regression in natural exponential families with a quadratic variance function, which
includes, for example, nonparametric Poisson regression, binomial regression, and Gamma
regression as special cases.

A key tool in Brown, Cai and Zhou (2010) is a mean-matching variance stabilizing
transformation (VST) for natural exponential families. However, such a VST exists only for
families with a quadratic variance function. The advantage of the mean-matching VST over
the classical VST is that it reduces the bias due to the transformation up to a certain level
while still stabilizing the variance. The bias reduction is a crucial property. Other methods
for nonparametric regression in exponential families have been proposed and studied in
the literature. The reader are referred to Brown, Cai and Zhou (2010) for references and
discussions.

In this paper we further extend the idea of Gaussianization given in Brown, Cai and Zhou
(2010) to cover nonparametric regression in general natural exponential families where the
mean-matching VST may not exist. A new procedure is introduced to eliminate the trans-
formation bias completely for every natural exponential family. The procedure has four
steps: Binning, VST, Gaussian regression, and inverse VST. The main differences between
the procedure proposed in the present paper and that in Brown, Cai and Zhou (2010) are
in the choices of the VST and the inverse VST as well as the selection of the bin size.
Complete elimination of the transformation bias enables one to use much smaller bin size
than that required in Brown, Cai and Zhou (2010). As a consequence the procedure can
still perform well when the regression function is less smooth.

Our procedure begins by grouping the data into bins with size of order (log n)1+ν for
some ν > 0, where n is the sample size, and then a VST is applied to the binned data. In
principle any good Gaussian regression procedure can then be applied to the transformed
data. The final estimator of the regression function in the original problem is constructed
by the inverse VST of the estimator obtained in the Gaussian regression problem. To illus-
trate our general methodology, we use a wavelet block thresholding procedure for Gaus-
sian nonparametric regression in this paper. Wavelet thresholding methods have achieved
considerable success in terms of spatial adaptivity and asymptotic optimality in such a set-
ting. In particular, block thresholding rules have been shown to possess impressive prop-
erties. In the context of Gaussian nonparametric regression local block thresholding has
been studied, for example, in Hall, Kerkyacharian and Picard (1998), Cai (1999, 2002)
Cai and Silverman (2001). For concreteness, we shall use the BlockJS procedure proposed
in Cai (1999) in the present paper.

Theoretical properties of our estimators are investigated. It is shown that the estimators
enjoy excellent asymptotic adaptivity and spatial adaptivity. The procedure using BlockJS
simultaneously attains the optimal rate of convergence under mean integrated squared error
over a broader range of Besov classes than those in Brown, Cai and Zhou (2010). This is
mainly due to the fact that a much smaller bin size is used in our procedure. The estimator
also automatically adapts to the local smoothness of the underlying function; it attains the
local adaptive minimax rate for estimating functions at a point.

The paper is organized as follows. In Section 2, after the classical variance stabilizing
transformation for natural exponential families is introduced, we present the procedure of
using the VST to convert nonparametric regression in exponential families into a Gaussian
nonparametric regression problem. Section 3 discusses in detail a particular estimation
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procedure based on the VST and wavelet block thresholding. Theoretical properties of the
procedures are treated in Section 4. Technical proofs are given in Section 6.

2. Nonparametric regression in exponential families

For nonparametric regression in natural exponential families, the noise is not additive and
non-Gaussian. Applying standard nonparametric regression methods directly to the data in
general do not yield desirable results. Our strategy is to use a variance stabilizing transfor-
mation (VST) to turn this problem to a standard Gaussian regression problem. We begin
by discussing the VST and then introduce our procedure for nonparametric regression in
natural exponential families.

The VST for natural exponential families has been widely used in many contexts. See,
for example, Hoyle (1973) for an extensive review. Note that the probability density/mass
function of a distribution in a natural one-parameter exponential families can be written as

q(x|η) = eηx−ψ(η)h(x),

where η is the natural parameter. The mean and variance are respectively

µ(η) = ψ′(η), and σ2(η) = ψ′′(η).

We shall denote the distribution by NEF (µ). Let X1, ..., Xm
iid∼ NEF (µ) be a random

sample and set X =
∑m

i=1 Xi. The Central Limit Theorem yields that

√
m(X/m− µ(η)) L−→ N(0, V (µ(η))), as m →∞.

A variance stabilizing transformation (VST) is a function G : R→ R such that

(1) G′(µ) = V − 1
2 (µ).

The standard delta method then yields

√
m{G(X/m)−G(µ(η))} L−→ N(0, 1).

Since the natural exponential can be mean parameterized, we define

(2) Hm (µ) = EG(X/m).

where Hm depends on m. For notational simplicity, we shall drop the subscript m here-
after.

Now consider nonparametric regression in natural exponential families. Suppose we
observe

(3) Yi
ind.∼ NEF (f(ti)), i = 1, ..., n, ti =

i

n

and wish to estimate the mean function f(t). As mentioned earlier, applying standard non-
parametric regression methods directly to the data {Yi} in general do not yield desirable
results. We shall turn this problem to a standard Gaussian regression problem based on a
sample {Ỹj : j = 1, ..., T} where

Ỹj ∼ N
(
H (f (tj)) ,m−1

)
, tj = j/T, j = 1, 2, . . . , T.
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Here H is defined as in (2), T is the number of bins, and m is the number of observations
in each bin. Later we will discuss the specific choice of T and m in Section 4.

We begin by dividing the interval into T equi-length subintervals with m = n/T ob-
servations in each subintervals. Let Qj be the sum of observations on the j-th subinterval
Ij = ( j−1

T , j
T ], j = 1, 2, . . . T ,

(4) Qj =
jm∑

i=(j−1)m+1

Yi.

The sums {Qj} can be treated as observations for a Gaussian regression directly, but this
in general leads to a heteroscedastic problem. Instead, we apply the VST and then treat
G(Qj/m) as new observations in a homoscedastic Gaussian regression problem. To be
more specific, let

(5) Y ∗
j = G(

Qj

m
), j = 1, · · · , T.

The transformed data Y ∗ = (Y ∗
1 , . . . , Y ∗

T ) is then treated as the new equi-spaced sample
for a Gaussian nonparametric regression problem.

We will first estimate H(f(ti)), then take an inverse transformation H−1 of the estima-
tor to estimate the mean function f . After the original regression problem is turned into a
Gaussian regression problem through binning and the VST, in principle any good Gaussian
nonparametric regression method can be applied to the transformed data {Y ∗

j } to construct
an estimate of H(f(·)). The general ideas for our approach can be summarized as follows.

1. Binning: Divide {Yi} into T equal length intervals between 0 and 1. Let Q1, Q2, ..., QT

be the sum of the observations in each of the intervals. Later results suggest a choice
of T satisfying T ³ n/ log1+ν n. See Section 4 for details.

2. VST: Let Y ∗
j = G(Qj

m ), j = 1, · · · , T , and treat Y ∗ = (Y ∗
1 , Y ∗

2 , . . . , Y ∗
T ) as the

new equi-spaced sample for a Gaussian nonparametric regression problem.
3. Gaussian Regression: Apply your favorite nonparametric regression procedure to

the binned and transformed data Y ∗ to obtain an estimate Ĥ (f) of H (f).
4. Inverse VST: Estimate the mean function f by f̂ = H−1

(
Ĥ (f)

)
. If Ĥ (f) is not

in the domain of H−1 which is an interval between a and b (a and b can be ∞),
we set H−1

(
Ĥ(f)

)
= H−1(a) if Ĥ(f) < a and set H−1

(
Ĥ(f)

)
= H−1 (b) if

Ĥ (f) > b. For example, H−1 (a) = 0 when a < 0 in the case of Negative Binomial
and NEF-GHS distributions. Note that this step is different from the “Inverse VST”
in Brown, Cai and Zhou (2010).

2.1. Effects of binning and VST

As mentioned earlier, after binning and the VST, the transformed data {Y ∗
j } can be treated

as if they were data from a homoscedastic Gaussian nonparametric regression problem. A
key step in understanding why this procedure works is to understand the effects of binning
and the VST. Quantile coupling provides an important technical tool to shed insights on
the procedure.

The following result, which is a direct consequence of the quantile coupling inequality
developed by Komlós, Major and Tusnády (1975), shows that the binned and transformed
data can be well approximated by independent normal variables. See also Zhou (2006).
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Lemma 1. Let Xi
iid∼ NEF (µ) with variance V for i = 1, ..., m and let X =

∑m
i=1 Xi.

There exists a standard normal random variable Z ∼ N(0, 1) and positive constants ci,
i = 1, 2, 3, 4, 5, not depending on m such that whenever the event A = {|X−mµ| ≤ c1m}
occurs,

(6) |X −mµ−
√

mV Z| < c2Z
2 + c3

and
P

(
|X −mµ−

√
mV Z| > a

)
≤ c4 exp (−c5a)

uniformly over µ in a compact set in the interior of the natural parameter space.

Hence, for large m, X can be treated as a normal random variable with mean mµ and
variance mV . Let Y = G(X/m), and Z be a standard normal variable satisfying (6). Then
Y can be written as

(7) Y = H (µ) + m− 1
2 Z + ξ

where

(8) ξ = G(
X

m
)−H (µ)−m− 1

2 Z

is a zero mean and “stochastically small” random variable. The following result is proved
in Section 6.1.

Lemma 2. Let Xi
iid∼ NEF (µ) with variance V for i = 1, ..., m, and X =

∑m
i=1 Xi. Let

Z be the standard normal variable given as in Lemma 1 and let ξ be given as in (8). Then
for any integer k ≥ 1 there exist positive constants ck > 0 such that for all a > 0,

(9) P(m|ξ| > a) ≤ c1 exp (−c2a) + c3 exp (−c4m) .

The discussion so far has focused on the effects of the VST for i.i.d. observations. In
the nonparametric function estimation problem mentioned earlier, observations in each bin
are independent but not identically distributed since the mean function f is not a constant
in general. However, through coupling, observations in each bin can in fact be treated as
if they were i.i.d. random variables when the function f is smooth. Let Xi ∼ NEF (µi),
i = 1, ..., m, be independent. Here the means µi are “close” but not equal. Let µ be a value
close to the µi’s. The analysis given in Section 6.1 shows that Xi in each bin can in fact be
coupled with i.i.d. random variables Xi,c with Xi,c

iid∼ NEF (µ∗c), for some µ∗c > 0. See
Lemma 4 in Section 6.1 for a precise statement.

Lemmas 1, 2 and 4 together yield the following result which shows how far away are
the transformed data {Y ∗

j } from the ideal Gaussian model.

Theorem 1. Let Y ∗
j = G(Qj

m ) be given as in (5). Assume that f is continuous, and for all
x ∈ [0, 1], f (x) ∈ [ε, v], a compact set in the interior of the mean parameter space of the
natural exponential family. Then Y ∗

j can be written as

(10) Y ∗
j = H(f(

j∗
T

)) + m− 1
2 Zj + ξj , j = 1, 2, . . . , T,

where jm + 1 ≤ j∗ ≤ (j + 1) m, Zj
i.i.d.∼ N(0, 1), and ξj are independent and “stochas-

tically small” random variables satisfying that for any integer k > 0 and any constant
a > 0

(11) P(m|ξj | > a) ≤ c1 exp (−c2a) + c3 exp (−c4m) .

where ck > 0.
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Theorem 1 provides explicit bounds for both the deterministic and stochastic errors.
This is an important technical result which serves as a major tool for the proof of the main
results given in Section 4.

3. A Wavelet Procedure for Generalized Regression

One can apply any good Gaussian nonparametric regression procedure to the transformed
data {Y ∗

j } to construct an estimator of the function f . To illustrate our general method-
ology, in the present paper we shall use wavelet block thresholding to construct the final
estimators of the regression function. Before we can give a detailed description of our
procedure, we need a brief review of basic notation and definitions.

Let {φ, ψ} be a pair of father and mother wavelets. The functions φ and ψ are assumed
to be compactly supported and

∫
φ = 1, and dilation and translation of φ and ψ generates

an orthonormal wavelet basis. For simplicity in exposition, in the present paper we work
with periodized wavelet bases on [0, 1]. Let

φp
j,k(t) =

∞∑

l=−∞
φj,k(t− l), ψp

j,k(t) =
∞∑

l=−∞
ψj,k(t− l), for t ∈ [0, 1]

where φj,k(t) = 2j/2φ(2jt−k) and ψj,k(t) = 2j/2ψ(2jt−k). The collection {φp
j0,k, k =

1, . . . , 2j0 ; ψp
j,k, j ≥ j0 ≥ 0, k = 1, ..., 2j} is then an orthonormal basis of L2[0, 1],

provided the primary resolution level j0 is large enough to ensure that the support of the
scaling functions and wavelets at level j0 is not the whole of [0, 1]. The superscript “p”
will be suppressed from the notation for convenience. An orthonormal wavelet basis has
an associated orthogonal Discrete Wavelet Transform (DWT) which transforms sampled
data into the wavelet coefficients. See Daubechies (1992) and Strang (1989). A square-
integrable function f on [0, 1] can be expanded into a wavelet series:

(12) f(t) =
2j0∑

k=1

θ̃j0,kφj0,k(t) +
∞∑

j=j0

2j∑

k=1

θj,kψj,k(t)

where θ̃j,k = 〈f, φj,k〉, θj,k = 〈f, ψj,k〉 are the wavelet coefficients of f .
We now give a detailed description of the wavelet thresholding procedure BlockJS in

this section and study the properties of the resulting estimator in Section 4. We shall show
that our estimator enjoys a high degree of adaptivity and spatial adaptivity and are easily
implementable.

Apply the discrete wavelet transform to the binned and transformed data Y ∗ given in
(5), and let U = T−

1
2 WY ∗ be the empirical wavelet coefficients, where W is the discrete

wavelet transformation matrix. Write

(13) U = (ỹj0,1, · · · , ỹj0,2j0 , yj0,1, · · · , yj0,2j0 , · · · , yJ−1,1, · · · , yJ−1,2J−1)′.

Here ỹj0,k are the gross structure terms at the lowest resolution level, and yj,k (j =
j0, · · · , J − 1, k = 1, · · · , 2j) are empirical wavelet coefficients at level j which represent
fine structure at scale 2j . The empirical wavelet coefficients can then be written as

(14) yj,k = θj,k +
1√
n

zj,k + ξj,k,

where θj,k are the true wavelet coefficients of H(f), and zj,k are i.i.d. N(0, 1), and ξj,k are
some “small” stochastic errors. The theoretical calculations given in Section 6 will show



Nonparametric Regression 7

that ξj,k is negligible. If the error ξj,k is ignored then we have

(15) yj,k ≈ θj,k +
1√
n

zj,k,

which is the idealized Gaussian sequence model with noise level σ = 1/
√

n. The BlockJS
(Cai, 1999) was originally developed for this ideal model. Here we shall apply block thresh-
olding to the empirical coefficients yj,k as if they were observed as in (15).

At each resolution level j, the empirical wavelet coefficients yj,k are grouped into
nonoverlapping blocks of length L. As in the sequence estimation setting let Bi

j = {(j, k) :

(i − 1)L + 1 ≤ k ≤ iL} and let S2
j,i ≡

∑
(j,k)∈Bi

j
y2

j,k. Set J∗ =
⌊
log2

T
log1+γ n

⌋
with

some γ > 0. At each resolution level j ≤ J∗, a modified James-Stein shrinkage rule is
then applied to each block Bi

j , i.e.,

(16) θ̂j,k =

(
1− λ∗L

nS2
j,i

)

+

yj,k for (j, k) ∈ Bi
j ,

where λ∗ = 4.50524 is the solution to the equation λ∗ − log λ∗ = 3 (see Cai, 1999, for
details), and 1

n is approximately the variance of each yj,k. For the gross structure terms at

the lowest resolution level j0, we set ˆ̃
θj0,k = ỹj0,k. The estimate of H(f(·)) at the equally

spaced sample points { i
T : i = 1, · · · , T} is then obtained by applying the inverse discrete

wavelet transform (IDWT) to the denoised wavelet coefficients. That is, {H(f( i
T )) : i =

1, · · · , T} is estimated by Ĥ(f) = { ̂H(f( i
T )) : i = 1, · · · , T} with Ĥ(f) = T

1
2 W−1 · θ̂.

The estimate of the whole function H(f) is given by

Ĥ(f(t)) =
2j0∑

k=1

ˆ̃
θj0,kφj0,k(t) +

J∗−1∑

j=j0

2j∑

k=1

θ̂j,kψj,k(t).

Once the estimator Ĥ(f) is obtained, the mean function f is estimated by applying the
inverse transformation H−1,

(17) f̂BJS(t) = H−1(Ĥ(f(t))).

Remark: The value J∗ =
⌊
log2

T
log1+γ n

⌋
is chosen for a technical reason. In Section 6.2 ,

it is shown that a good tail probability bound for ξj,k (given in Equation (31)) holds for all
j ≤ J∗.

4. Asymptotic Optimalities

In this section we investigate the theoretical properties of the procedures proposed in Sec-
tion 2. The asymptotic performance of our procedures is considered over the Besov spaces.
This is by now the standard analysis for wavelet regression methods. Besov spaces are a
very rich class of function spaces and contain as special cases many traditional smooth-
ness spaces such as Hölder and Sobolev Spaces. Roughly speaking, the Besov space Bα

p,q

contains functions having α bounded derivatives in Lp norm, the third parameter q gives
a finer gradation of smoothness. Full details of Besov spaces are given, for example, in
Triebel (1992) and DeVore and Popov (1988). A wavelet ψ is called r-regular if ψ has r
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vanishing moments and r continuous derivatives. For a given r-regular mother wavelet ψ
with r > α and a fixed primary resolution level j0, the Besov sequence norm ‖ · ‖bα

p,q
of

the wavelet coefficients of a function f is then defined by

(18) ‖f‖bα
p,q

= ‖θ̃j0‖p +




∞∑

j=j0

(2js‖θj‖p)q




1
q

where θ̃j0 is the vector of the father wavelet coefficients at the primary resolution level j0,
θj is the vector of the wavelet coefficients at level j, and s = α + 1

2 − 1
p > 0. Note that the

Besov function norm of index (α, p, q) of a function f is equivalent to the sequence norm
(18) of the wavelet coefficients of the function. See Meyer (1992). Define the Besov ball

(19) Bα
p,q (M) =

{
f ; ‖f‖bα

p,q
≤ M

}

and set

(20) Fα
p,q(M, ε, v) = {f : f ∈ Bα

p,q(M), f(t) ∈ [ε, v] for all t ∈ [0, 1]}
where [ε, v] with ε < v is a compact set in the interior of the mean parameter space of the
natural exponential family.

We first show that the center of the approximate Gaussian regression problem remains
in the Besov with the same index (α, p, q).

Lemma 3. For Hm defined in (2) there exists a constant M ′ > 0 such that

Hm (f) ∈ Bα
p,q (M ′)

for all f in Fα
p,q(M, ε, v) defined in (20).

The following theorem shows that our estimators achieve near optimal global adaptation
under mean integrated squared error for a wide range of Besov balls.

Theorem 2. Suppose the wavelet ψ is r-regular. Let Xi ∼ NEF (f(ti)), i = 1, ..., n, ti =
i
n . Let T = n

log1+ν n
with ν > 0. Then the estimator f̂BJS defined in (17) satisfies

sup
f∈F α

p,q(M,ε,v)

E‖f̂BJS−f‖22 ≤
{

Cn−
2α

1+2α p ≥ 2, α ≤ r, and 2α2

1+2α > 1
p

Cn−
2α

1+2α (log n)
2−p

p(1+2α) 1 ≤ p < 2, α ≤ r, and 2α2

1+2α > 1
p

.

For functions of spatial inhomogeneity, the local smoothness of the functions varies
significantly from point to point and global risk given in Theorem 2 cannot wholly reflect
the performance of estimators at a point. For local performance and spatial adaptivity, it is
more appropriate to use the pointwise mean squared error

(21) R(f̂(t0), f(t0)) = E(f̂(t0)− f(t0))2.

The local smoothness of a function can be measured by its local Hölder smoothness in-
dex. For a fixed point t0 ∈ (0, 1) and 0 < α ≤ 1, define the local Hölder class Λα(M, t0, δ)
as follows:

Λα(M, t0, δ) = {f : |f(t)− f(t0)| ≤ M |t− t0|α, for t ∈ (t0 − δ, t0 + δ)}.
If α > 1, then

Λα(M, t0, δ) = {f : |f (bαc)(t)− f (bαc)(t0)| ≤ M |t− t0|α
′

for t ∈ (t0 − δ, t0 + δ)}



Nonparametric Regression 9

where bαc is the largest integer less than α and α′ = α− bαc. Define

Fα(M, t0, δ, ε, v) = {f : f ∈ Λα(M, t0, δ), f(x) ∈ [ε, v] for all x ∈ [0, 1]}.

In Gaussian nonparametric regression setting, it is a well known fact that for estimation
at a point, one must pay a price for adaptation. The optimal rate of convergence for esti-
mating f(t0) over function class Λα(M, t0, δ) with α completely known is n−2α/(1+2α).
Lepskii (1990) and Brown and Low (1996b) showed that one has to pay a price for adap-
tation of at least a logarithmic factor. It is shown that the local adaptive minimax rate over
the Hölder class Λα(M, t0, δ) is (log n/n)2α/(1+2α).

The following theorem shows that our estimators achieve the optimal local adaptation
with the minimal cost.

Theorem 3. Suppose the wavelet ψ is r-regular with 0 < α ≤ r. Let t0 ∈ (0, 1) be fixed.
Let Xi ∼ NEF (f(ti)), i = 1, ..., n, ti = i

n . Let T = n
log1+ν n

with ν > 0. Then for

f̂ = f̂BJS

(22) sup
F α(M,t0,δ,ε,v)

E(f̂(t0)− f(t0))2 ≤ C · ( log n

n
)

2α
1+2α .

Theorem 3 shows that the BlockJS estimator is spatially adaptive, without prior knowl-
edge of the smoothness of the underlying functions.

5. Discussions

The general principle of turning complicated statistical models into simpler ones is prac-
tically important and appealing. We developed in this paper an explicit and practical pro-
cedure which turns nonparametric regression in natural exponential families into a stan-
dard Gaussian nonparametric regression. The method and the results extend the scope
of those introduced in Brown, Cai and Zhou (2010). A key component of the procedure
in Brown, Cai and Zhou (2010) is the use of a mean-matching VST and its inverse. The
mean-matching VST only exists in natural exponential families with a quadratic variance
function. This thus limits the applicability of the method. In addition, although the use of
the mean-matching VST and its inverse reduces the bias due to the transformation, it does
not completely eliminate the transformation bias. As a result the bin size needs to be a
power of n and as a consequence the regression function f is required to be smoother than
that needed in the present paper.

In our setting the bin size m is logarithmic in n, smaller than the choice m ³ n1/4 in
Brown, Cai and Zhou (2010). As a result, the discretization error is smaller in our analysis.
Consequently, the procedure proposed in this paper attains the optimal rates of convergence
over a wider range of Besov classes as shown in Section 4. In Theorem 2 we require
2α2

1+2α > 1
p , i.e., α− 1

p > 2α
1+2α which is weaker than the condition 3

2 (α− 1
p ) > 2α

1+2α in
Theorem 1 of Brown, Cai and Zhou (2010). Similarly the local adaptation optimality in
Theorem 3 is attained for α > 0, while α > 1/6 was assumed in Brown, Cai and Zhou
(2010).

Technical analyses are more challenging in this paper. Since m ³ log1+ν n, it is easy to
see m−D for each finite D > 0 is no longer o

(
n−2α/(2α+1)

)
. Actually we have m−D À

n−2α/(2α+1), thus the polynomial tail bounds obtained in Brown, Cai and Zhou (2010) are
not negligible anymore. In this paper, we provide a finer analysis with exponential tail
bounds. Note that exp

(−c log1+ν1 n
)

= o
(
n−2α/(2α+1)

)
for any c > 0 and ν1 > 0.



10 T.T. Cai and H.H. Zhou

6. Proofs

In this section we give proofs for Theorems 1 and 2. Theorem 3 can be proved in a similar
way as Theorem 4 in Brown, Cai and Zhou (2008) by applying Proposition 1 in Section
6.2. We begin by proving Lemmas 2, 3 and 4. Lemmas 2 and 4 are needed to establish
Theorem 1 in which an approximation bound between our model and a Gaussian regres-
sion model is given explicitly. Finally we apply Theorem 1 and risk bounds for block
thresholding estimators in Proposition 1 to prove Theorem 2.

6.1. Proof of preparatory technical results

Proof of Lemma 2: Write

G

(
X

m

)
−Gm (µ)− 1√

m
Z

=

[
G

(
X

m

)
−G

(
µ +

√
V

m
Z

)]
+

[
G

(
µ +

√
V

m
Z

)
−G (µ)− 1√

m
Z

]
+ [G (µ)−Gm (µ)] .

Taylor expansion yields

G

(
X

m

)
−Gm (µ)− 1√

m
Z = G′ (µ∗1)

(
X

m
− µ−

√
V

m
Z

)
+G′′ (µ∗2)

V

m
Z2+G (µ)−Gm (µ) .

From Lemma 1 we have

P(m|X
m
− µ−

√
V

m
Z| > a) ≤ c1 exp (−c2a) ,

Since Z is standard normal, Z2 has an exponential tail

P(m|V
m

Z2| > a) ≤ c3 exp (−c4a) .

It is easy to see that

|G (µ)−Gm (µ)| = O

(
1
m

)
.

(cf. Brown, Cai and Zhou, 2010, Lemma 1). Note that for any ε > 0,

P(|µ∗1| > µ + ε) ≤ c5 exp
(−c6ε

2m
)
, and P(|µ∗2| > µ + ε) ≤ c7 exp

(−c8ε
2m

)
,

Thus we have

P(m|ξj | > a) ≤ c9 exp (−c10a) + c11 exp (−c12m) .

Proof of Lemma 3: For f(t) ∈ [ε, v] uniformly over all t and f ∈ Bα
p,q(M), if cl =

supy∈[ε,v]

∣∣H(l) (y)
∣∣, l = 0, . . . , bαc + 1, are finite constants independent of m, then we

have H (f) ∈ Bα
p,q (M ′) where

M ′ = c0 + cM



bαc+1∑

l=1

clv
l−1 + cbαc+1
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for some c > 0, according to Theorem 3 on page 344 and Remark 3 on page 345 of
Runst (1986). Now we show cl are finite constants independent of m. Recall that H (µ) =
EG [(X1 + . . . + Xm) /m]. For K = bαc+ 1 > 0, Taylor expansion yields

H (µ)−G (µ) = E
[
G

(
X̄

)−G (µ)
]

= E

{
K∑

k=1

G(k) (µ)
k!

(
X̄ − µ

)k +
∫ X̄

µ

G(K) (t)
K!

(
X̄ − t

)K
dt

}
= R1 (µ) + R2 (µ) .

It is easy to see supµ∈[ε,v]

∣∣∣R(l)
1 (µ)

∣∣∣ is bounded, since
[
E (Xi − µ)k

](l)

and G(k+l) (µ)

are bounded over µ ∈ [ε, v], and k ≤ K finite. The distribution of X̄ is from a natural
exponential family

q(x|θ) = emθx−mψ(θ)hm(x)

(cf. Brown, 1986). Note that supµ∈[ε,v]

∣∣∣R(l)
2 (µ)

∣∣∣ is bounded by supµ∈[ε,v]

∣∣∣ dl

dθl R2 (µ (θ))
∣∣∣

up to a constant factor. That fact together with some straightforward calculations gives, for
1 ≤ l ≤ K,

sup
µ∈[ε,v]

∣∣∣R(l)
2 (µ)

∣∣∣ ≤ CK sup
µ∈[ε,v]

E

[
l∑

k=1

∣∣X̄ − µ
∣∣K−k+1 ·

(∣∣mX̄ −mµ
∣∣l−k + m(l−k)/2

)]

= CK sup
µ∈[ε,v]

E

[
l∑

k=1

ml/2−K/2−1/2
(∣∣√m

(
X̄ − µ

)∣∣K+l−2k+1 + 1
)]

which is at an order of m−1/2, and thus bounded.
The variance stabilizing transformation considered in Equation (1) is for i.i.d. observa-

tions. In the function estimation procedure, observations in each bin are independent but
not identically distributed. However, observations in each bin can be treated as i.i.d. ran-
dom variables through coupling. Let Xi ∼ NEF (µi), i = 1, ..., m, be independent. Here
the means µi are “close” but not equal. Let Xi,c be a set of i.i.d. random variables with
Xi,c ∼ NEF (µc). We define

D = G

(∑m
i=1 Xi

m

)
−G

(∑m
i=1 Xi,c

m

)
.

If µc = maxi µi, it is easy to see ED ≤ 0 since Xi,c is stochastically larger than Xi for all
i (see e.g. Lehmann and Romano, 2005). Similarly ED ≥ 0 when µc = mini µi. We will
select a

(23) µ∗c ∈
[
min

i
µi,max

i
µi

]

such that ED = 0, which is possible by the intermediate value theorem. In the following
lemma we construct i.i.d. random variables Xi,c ∼ NEF (µ∗c) on the sample space of
Xi such that D is very small and has negligible contribution to the final risk bounds in
Theorems 2 and 3.

Lemma 4. Let Xi ∼ NEF (µi), i = 1, ..., m, be independent with µi ∈ [ε, v], a compact
subset in the interior of the mean parameter space of the natural exponential family. As-
sume that |mini µi −maxi µi| ≤ Cδ. Then there are i.i.d. random variables Xi,c where
Xi,c ∼ NEF (µ∗c) with µ∗c ∈ [mini µi,maxi µi] such that ED = 0 and

(i)

(24) P ({Xi 6= Xi,c}) ≤ Cδ,
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(ii) and for any fixed integer k ≥ 1 there exists a constant Ck > 0 such that for all
a > 0,

(25) P(|D| > a) ≤ c1 exp
(−c2a

2m
)

+ c3 exp (−c4m) .

Proof of Lemma 4: (i). There is a classical coupling identity for the Total variation distance.
Let P and Q be distributions of two random variables X and Y on the same sample space
respectively, then there is a random variable Yc with distribution Q such that P (X 6= Yc) =
|P −Q|TV . See, for example, page 256 in Pollard (2002). The proof for the inequal-
ity (24) follows from that identity and the inequality that |NEF (µi)−NEF (µ∗c)|TV ≤
C |µi − µ∗c | for some C > 0 which only depends on the family of the distribution of Xi

and [ε, v].

(ii). Using Taylor expansion we can rewrite D as D = G′ (ζ)
∑m

i=1
(Xi−Xi,c)

m for some

ζ in between
∑m

i=1
Xi

m and
∑m

i=1
Xi,c

m . Write
∑m

i=1 (Xi −Xi,c)
m

=
∑m

i=1 (Xi − EXi)
m

−
∑m

i=1 (Xi,c − EXi,c)
m

+
∑m

i=1 (EXi − EXi,c)
m

.

Since the distributions Xi and Xi,c are in exponential family, we have

P
(∣∣∣∣

∑m
i=1 (Xi − EXi)

m

∣∣∣∣ ≥ a

)
≤ c1 exp

(−c2a
2m

)

P
(∣∣∣∣

∑m
i=1 (Xi,c − EXi,c)

m

∣∣∣∣ ≥ a

)
≤ c3 exp

(−c4a
2m

)
.

(cf. Komlós, Major and Tusnády, 1975). Note that
∣∣∣∣
∑m

i=1 (EXi − EXi,c)
m

∣∣∣∣ ≤ c5δ.

Thus we have

P(|
∑m

i=1 (Xi −Xi,c)
m

| > a) ≤ c6 exp
(−c7a

2m
)

when a > 2c5δ. The equation is apparently true when a ≤ 2Cδ. Since Xi−Xi,c are inde-
pendent, it can be shown that Note that Thus the first inequality in (25) follows immediately
by observing that G′ (ζ) is bounded with a probability approaching to 1 exponentially fast,
since for any ε > 0,

P(|ζ| > µ + ε) ≤ c8 exp
(−c9ε

2m
)

.

6.2. Proof of Theorem 1

From Lemma 4, there exist Y ∗
j,c where Xi,c ∼ NEF (f∗j ) with

f∗j,c ∈
[

min
jm+1≤i≤(j+1)m

f

(
i

n

)
, max
jm+1≤i≤(j+1)m

f

(
i

n

)]

as in equation (23) such that

E
[
Y ∗

j − Y ∗
j,c

]
= 0(26)

P(|Y ∗
j − Y ∗

j,c| > a) ≤ c1 exp
(−c2a

2m
)

+ c3 exp (−c4m) .(27)
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Let f∗j,c = f (j∗/T ), where jm + 1 ≤ j∗ ≤ (j + 1) m, by the intermediate value theorem.
Lemmas 1 and 2 together yield

(28) Y ∗
j = H(f(

j∗
T

)) + m− 1
2 Zj + ξj , j = 1, 2, . . . , T,

and

(29) P(|ξj | > a) ≤ c1 exp
(−c2a

2m
)

+ c3 exp (−c4m) .

Theorem 1 then follows immediately by combining equations (26) – (28).

6.3. Proof of Theorem 2

We first collect a few technical lemmas.
From (10) in Theorem 1 we can write 1√

T
Y ∗

i =
H(f( j∗

T ))√
T

+ Zi√
n

+ ξi√
T

. Let (uj,k) =

T−
1
2 W · Y ∗ be the discrete wavelet transform of the binned and transformed data. Then

one may write

(30) uj,k = θ′j,k +
1√
n

zj,k + ξj,k

where θ′jk are the discrete wavelet transform of (H(f( j∗
T )))/

√
T ) which are approximately

equal to the true wavelet coefficients of H (f), zj,k are the transform of the Zi’s and so
are i.i.d. N(0, 1) and ξj,k are respectively the transforms of ( ξi√

T
). We may obtain the

following result on the risk bound for a single block. Its proof is close to that of Proposition
2 in Brown et al. (2010).

Proposition 1. Let the empirical wavelet coefficients uj,k = θ′j,k + 1√
n
zj,k + ξj,k be given

as in (30) and let the block thresholding estimator θ̂j,k be defined as in (16). Then for all
j ≤ J∗ we have

(i). for εn = o (1/
√

m) and some constant C > 0,

(31) P
(√

n |ξj,k| ≥ εn

) ≤ C

[
exp

(
− 1

C
ε2

nm

)
+ exp

(
− 1

C
log1+γ n

)]
,

(ii) for any 0 < τ < 1, there exists a constant Cτ > 0 depending on τ only such that for
all (j, k) ∈ Bi

j

(32) E
∑

(j,k)∈Bi
j

(θ̂j,k − θ′j,k)2 ≤ min{4
∑

(j,k)∈Bi
j

(θ′j,k)2, 8λ∗Ln−1}+ Ln−2+τ ;

(iii). for any 0 < τ < 1, there exists a constant Cτ > 0 depending on τ only such that for
all (j, k) ∈ Bi

j

(33) E(θ̂j,k − θ′j,k)2 ≤ Cτ ·min

{
max

(j,k)∈Bi
j

{(θ′j,k
)2}, Ln−1

}
+ n−2+τ .

The first part plays an important role to prove the last two parts. It follows from clas-
sical concentration inequalities for sum of independent random variables with exponential
moments. We use the second part to prove Theorem 2. The third part is needed to prove
Theorem 3.
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For 0 < d ≤ 1, define the Lipschitz class Λd(M) by

Λd(M) = {f : |f(t1)− f(t2)| ≤ M |t1 − t2|d 0 ≤ t1, t2 ≤ 1}.

and
F d(M, ε, v) = {f : f ∈ Λd(M), f(t) ∈ [ε, v] , for all t ∈ [0, 1]},

where [ε, v] with ε < v is a compact set in the interior of the mean parameter space of the
natural exponential family.

The following is a standard bound for wavelet approximation error. It follows directly
from Lemma 1 in Cai (2002).

Lemma 5. Let T∗ = 2J∗ and d = min(α− 1
p , 1). Set ḡJ∗(x) =

∑T∗
k=1

1√
T∗

H (f (k/n))φJ∗,k(x).
Then for some constant C > 0

(34) sup
g∈F α

p,q(M,ε)

‖ḡJ∗ −H (f) ‖22 ≤ CT−2d
∗ .

Let H̃ (f) = max
{

Ĥ (f), 0
}

. We have

E‖f̂ − f‖22 = E‖H−1[H̃ (f)]−H−1[H (f)]‖22 = E‖(H−1)′ (g) [H̃ (f)−H (f)]‖22
≤ CE

∫
V

(
H−1 (g)

)
[Ĥ (f)−H (f)]2dt

where g is a function in between H̃ (f) and H (f). We will first give a lemma which implies
V

(
H−1 (g)

)
is bounded with high probability, then prove Theorem 2 by establishing a risk

bound for estimating H (f). See Brown, Cai and Zhou (2010) for a proof.

Lemma 6. Let Ĥ (f) be the BlockJS estimator of H (f) defined in Section 2. Then there
exists a constant C > 0 such that

sup
f∈F α

p,q(M,ε,v)

P
{∥∥∥Ĥ (f)

∥∥∥
∞

> C
}
≤ Cln

−l

for any l > 1, where Cl is a constant depending on l.

Now we are ready to prove Theorem 2. Note that H−1 is an increasing and nonnegative
function. Lemma 6 implies that there exists a constant C such that

sup
f∈F α

p,q(M,ε,v)

P
{∥∥V

(
H−1 (g)

)∥∥
∞ > C

} ≤ Cln
−l

for any l > 1. Thus it is enough to show supf∈F α
p,q(M,ε,v) E‖Ĥ (f)−H (f) ‖22 ≤ Cn−

2α
1+2α

for p ≥ 2 and Cn−
2α

1+2α (log n)
2−p

p(1+2α) for 1 ≤ p < 2 under assumptions in Theorem 2.
We are now ready to prove our main results.

Proof of Theorem 2: Let Y and θ̂ be given as in (3) and (16) respectively. Then,

E‖Ĥ (f)−H (f) ‖22 =
∑

k

E(ˆ̃θj0,k − θ̃j,k)2 +
J∗−1∑

j=j0

∑

k

E(θ̂j,k − θj,k)2 +
∞∑

j=J∗

∑

k

θ2
j,k

≡ S1 + S2 + S3(35)
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It is easy to see that the first term S1 and the third term S3 are small.

(36) S1 = 2j0n−1ε2 = o(n−2α/(1+2α))

Note that for x ∈ IRm and 0 < p1 ≤ p2 ≤ ∞,

(37) ‖x‖p2 ≤ ‖x‖p1 ≤ m
1

p1
− 1

p2 ‖x‖p2

Since f ∈ Bα
p,q(M), so 2js(

∑2j

k=1 |θjk|p)1/p ≤ M . Now (37) yields that

(38) S3 =
∞∑

j=J∗

∑

k

θ2
j,k ≤ C2−2J∗(α∧(α+ 1

2− 1
p )).

Note that

(39)
∣∣∣∣H(f(

j∗
T∗

))−H(f(
j

T∗
))

∣∣∣∣ ≤ CT−d
∗ .

Proposition 1, Lemma 5 and Equation (39) yield that

S2 ≤ 2
J∗−1∑

j=j0

∑

k

E(θ̂j,k − θ′j,k)2 + 2
J∗−1∑

j=j0

∑

k

(θ′j,k − θj,k)2

≤
J∗−1∑

j=j0

2j/L∑

i=1

min



8

∑

(j,k)∈Bi
j

θ2
j,k, 8λ∗Ln−1



 + 10

J∗−1∑

j=j0

∑

k

(θ′j,k − θj,k)2

≤
J∗−1∑

j=j0

2j/L∑

i=1

min



8

∑

(j,k)∈Bi
j

θ2
j,k, 8λ∗Ln−1



 + C (T∗)

−2d(40)

we now divide into two cases. First consider the case p ≥ 2. Let J1 = [ 1
1+2α log2 n]. So,

2J1 ≈ n1/(1+2α). Then (40) and (37) yield

(41) S2 ≤ 8λ∗
J1−1∑

j=j0

2j/L∑

i=1

Ln−1 +8
J∗−1∑

j=J1

∑

k

θ2
j,k +C

(
T

log1+γ n

)−2d

≤ Cn−2α/(1+2α)

By combining (41) with (36) and (38), we have E‖θ̂ − θ‖22 ≤ Cn−2α/(1+2α), for p ≥ 2.
Now let us consider the case p < 2. First we state the following lemma without proof.

Lemma 7. Let 0 < p < 1 and S = {x ∈ Rk :
∑k

i=1 xp
i ≤ B, xi ≥ 0, i = 1, · · · , k}.

Then supx∈S

∑k
i=1(xi ∧A) ≤ B ·A1−p for all A > 0.

Let J2 be an integer satisfying 2J2 ³ n1/(1+2α)(log n)(2−p)/p(1+2α). Note that

2j/L∑

i=1


 ∑

(j,k)∈Bi
j

θ2
j,k




p
2

≤
2j∑

k=1

(θ2
j,k)

p
2 ≤ M2−jsp.

It then follows from Lemma 7 that

(42)
J∗−1∑

j=J2

2j/L∑

i=1

min



8

∑

(j,k)∈Bi
j

θ2
j,k, 8λ∗Ln−1



 ≤ Cn−

2α
1+2α (log n)

2−p
p(1+2α) .
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On the other hand,
(43)
J2−1∑

j=j0

2j/L∑

i=1

min



8

∑

(j,k)∈Bi
j

θ2
j,k, 8λ∗Ln−1



 ≤

J2−1∑

j=j0

∑

b

8λ∗Ln−1 ≤ Cn−
2α

1+2α (log n)
2−p

p(1+2α) .

Putting (36), (38), (42) and (43) together yields E‖θ̂− θ‖22 ≤ Cn−
2α

1+2α (log n)
2−p

p(1+2α) .
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