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The Gaussian graphical model, a popular paradigm for study-
ing relationship among variables in a wide range of applications, has
attracted great attention in recent years. This paper considers a fun-
damental question: When is it possible to estimate low-dimensional
parameters at parametric square-root rate in a large Gaussian graph-
ical model? A novel regression approach is proposed to obtain asymp-
totically efficient estimation of each entry of a precision matrix under
a sparseness condition relative to the sample size. When the precision
matrix is not sufficiently sparse, or equivalently the sample size is not
sufficiently large, a lower bound is established to show that it is no
longer possible to achieve the parametric rate in the estimation of
each entry. This lower bound result, which provides an answer to the
delicate sample size question, is established with a novel construction
of a subset of sparse precision matrices in an application of Le Cam’s
Lemma. Moreover, the proposed estimator is proven to have optimal
convergence rate when the parametric rate cannot be achieved, under
a minimal sample requirement.

The proposed estimator is applied to test the presence of an edge
in the Gaussian graphical model or to recover the support of the
entire model, to obtain adaptive rate-optimal estimation of the entire
precision matrix as measured by the matrix [, operator norm, and to
make inference in latent variables in the graphical model. All these are
achieved under a sparsity condition on the precision matrix and a side
condition on the range of its spectrum. This significantly relaxes the
commonly imposed uniform signal strength condition on the precision
matrix, irrepresentable condition on the Hessian tensor operator of

the covariance matrix or the ¢; constraint on the precision matrix.
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Numerical results confirm our theoretical findings. The ROC curve
of the proposed algorithm, Asymptotic Normal Thresholding (ANT),

for support recovery significantly outperforms that of the popular
GLasso algorithm.

1. Introduction. Gaussian graphical model, a powerful tool for investigating the re-
lationship among a large number of random variables in a complex system, is used in a
wide range of scientific applications. A central question for Gaussian graphical model is
to recover the structure of an undirected Gaussian graph. Let G = (V, E) be an undi-
rected graph representing the conditional dependence relationship between components of
a random vector Z = (Z1,...,Z,)" as follows. The vertex set V = {V1,...,V,} represents
the components of Z. The edge set E consists of pairs (i,7) indicating the conditional
dependence between Z; and Z; given all other components. In applications, the follow-
ing question is fundamental: Is there an edge between V; and V;? It is well known that
recovering the structure of an undirected Gaussian graph G = (V, E) is equivalent to
recovering the support of the population precision matrix of the data in the Gaussian
graphical model. Let

Z=(Z1,Z9y..., Zp) ~ N (1, %),

where ¥ = (0y;) is the population covariance matrix. The precision matrix, denoted by
Q = (wjj), is defined as the inverse of covariance matrix, 2 = %71 There is an edge
between V; and Vj, ie., (i,j) € E, if and only if w;; # 0. See, for example, Lauritzen
(1996). Consequently, the support recovery of the precision matrix €2 yields the recovery
of the structure of the graph G.

Suppose n i.i.d. p-variate random vectors X, X@ . X(®) are observed from the
same distribution as Z, i.e. the Gaussian N (y, Q_l). Assume without loss of generality
that g = 0 hereafter. In this paper, we address the following two fundamental questions:
When is it possible to make statistical inference for each individual entry of a precision
matrix  at the parametric y/n rate? When and in what sense is it possible to recover the
support of €2 in the presence of some small nonzero |w;;|?

The problems of estimating a large sparse precision matrix and recovering its support
have drawn considerable recent attention. There are mainly two approaches in literature.
The first one is a penalized likelihood estimation approach with a lasso-type penalty on
entries of the precision matrix. Yuan and Lin (2007) proposed to use the lasso penalty
and studied its asymptotic properties when p is fixed. Ravikumar et al. (2011) derived

the rate of convergence when the dimension p is high by applying a primal-dual witness
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construction under an irrepresentability condition on the Hessian tensor operator and a
constraint on the matrix /; norm of the precision matrix. See also Rothman et al. (2008)
and Lam and Fan (2009) for other related results. The other one is the neighborhood-
based approach, by running a lasso-type regression or Dantzig selection type of each
variable on all the rest of variables to estimate precision matrix column by column. See
Meinshausen and Bithlmann (2006), Yuan (2010), Cai, Liu and Luo (2011), Cai, Liu and
Zhou (2012) and Sun and Zhang (2012a). The irrepresentability condition is no longer
needed in Cai, Liu and Luo (2011) and Cai, Liu and Zhou (2012) for support recovery,
but the thresholding level for support recovery depends on the matrix [y norm of the
precision matrix. The matrix /; norm is unknown and large, which makes the support
recovery procedures there nonadaptive and thus less practical. In Sun and Zhang (2012a),
optimal convergence rate in the spectral norm is achieved without requiring the matrix ¢;
norm constraint or the irrepresentability condition. However, support recovery properties
of the estimator was not analyzed.

In spite of an extensive literature on the topic, it is still largely unknown the funda-
mental limit of support recovery in the Gaussian graphical model, let alone an adaptive
procedure to achieve the limit.

Statistical inference of low-dimensional parameters at the \/n rate has been considered
in the closely related linear regression model. Sun and Zhang (2012b) proposed an efficient
scaled Lasso estimator of the noise level under the sample size condition n > (slogp)?,
where s is the £y or capped-£; measure of the size of the unknown regression vector. Zhang
and Zhang (2011) proposed an asymptotically normal low-dimensional projection estima-
tor for the regression coefficients and their estimator was proven to be asymptotically
efficient by van de Geer, Biithlmann and Ritov (2013) in a semiparametric sense under
the same sample size condition. The asymptotic efficiency of these estimators can be also
understood through the minimum Fisher information in a more general context (Zhang,
2011). Alternative methods for testing and estimation of regression coefficients were pro-
posed in Belloni, Chernozhukov and Hansen (2012), Bithlmann (2012), and Javanmard
and Montanari (2013). However, the optimal rate of convergence is unclear from these
papers when the sample size condition n > (slogp)? fails to hold.

This paper makes important advancements in the understanding of statistical inference
of low-dimensional parameters in the Gaussian graphical model in the following ways.
Let s be the maximum degree of the graph or a certain more relaxed capped-¢; measure
of the complexity of the precision matrix. We prove that the estimation of each w;; at

the parametric \/n convergence rate requires the sparsity condition s < O(1)n'/2/logp
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or equivalently a sample size of order (slogp)?. We propose an adaptive estimator of
individual w;; and prove its asymptotic normality and efficiency when n > (slog p)2.
Moreover, we prove that the proposed estimator achieves the optimal convergence rate
when the sparsity condition is relaxed to s < ¢ogn/logp for a certain positive constant cg.
The efficient estimator of the individual w;; is then used to construct fully data driven
procedures to recover the support of 2 and to make statistical inference about latent
variables in the graphical model.

The methodology we are proposing is a novel regression approach briefly described in
Sun and Zhang (2012¢). In this regression approach, the main task is not to estimate
the slope as seen in Meinshausen and Biihlmann (2006), Yuan (2010), Cai, Liu and Luo
(2011), Cai, Liu and Zhou (2012) and Sun and Zhang (2012b), but to estimate the noise
level. For any index subset A of {1,2,...,p} and a vector Z of length p, we use Z4 to
denote a vector of length |A| with elements indexed by A. Similarly for a matrix U and
two index subsets A and B of {1,2,...,p} we can define a submatrix Uy p of size |A| x | B|
with rows and columns of U indexed by A and B respectively. Consider A = {3, j}, for

. . T w11 W12 .
example, i = 1 and j = 2, then Z4 = (Z1,Z3)" and Q4 4 = . It is well
w1 w22

known that
ZA‘ZAc =N (_QZ}AQA,ACZA%QZ}A) .

This observation motivates us to consider regression with two response variables above.
The noise level QZ}A has only three parameters. When (2 is sufficiently sparse, a penalized
regression approach is proposed in Section 2 to obtain an asymptotically efficient estima-
tion of w;j, i.e., the estimator is asymptotically normal and the variance matches that of
the maximum likelihood estimator in the classical setting where the dimension p is a fixed
constant. Consider the class of parameter spaces modeling sparse precision matrices with

at most k,;, off-diagonal nonzero elements in each column,

Q= (wij)lgi,jﬁp maxi<;i<p Zi;éj 1 {wij 7é 0} < kn#ﬁ

1 M7 kn -
(1) Go(M, knp) and 1/M < Ain () < Amax () < M.

where 1 {-} is the indicator function and M is some constant greater than 1. The following
theorem shows that a necessary and sufficient condition to obtain a y/n—consistent esti-
mation of w;j is kyp = O (%), and when k,, , = o (1(\)/;;) the procedure to be proposed
in Section 2 is asymptotically efficient.

THEOREM 1. Let X(i)i'kd'/\/'p(u, Y),i=1,2,...,n. Assume that ky,, < con/logp with
a sufficiently small constant co > 0 and p > ky, ,, with some v > 2. We have the following



probablistic results,

(i). There exists a constant ey > 0 such that

inf inf sup IP’{ |ij — wij| > eo max {n" 1k, ,logp, n*1/2}} > €.
bl Wiy gO(M»kn,p)

(ii). The estimator w;; defined in (12) is rate optimal in the sense of
max  sup IP’{ | — wij| > M max {n" 'k, logp, n_1/2}} — 0,
t:J gO(Makn,p)
as (M,n) — (00, 00). Furthermore, the estimator w;; is asymptotically efficient when

_ VAT : 1 2
knp=o0 (@ , .e., with Fij = wiiwjj + w;j,

(2) 1/71Fij ((:)ij — wij) 2> N(O, 1) .

Moreover, the minimaz risk of estimating w;; over the class Go(k, My, p) satisfies, pro-
vided n = O <p§> with some & > 0,

1 1
(3) inf  sup E|@; —wij| < max kn,pﬂ, \/—¢-
wij gO(Mykn,p) n n

The lower bound is established through Le Cam’s Lemma and a novel construction
of a subset of sparse precision matrices. An important implication of the lower bound is
that the difficulty of support recovery for sparse precision matrix is different from that for
sparse covariance matrix when k£, , > (ﬂ>, and when k, , < ( \/ﬁ) the difficulty of

logp log p
support recovery for sparse precision matrix is just the same as that for sparse covariance

matrix.

It is worthwhile to point out that the asymptotic efficiency result is obtained without the
need to assume the irrepresentable condition or the /1 constraint of the precision matrix
which are commonly required in literature. An immediate consequence of the asymptotic
normality result (2) is to test individually whether there is an edge between V; and V;
in the set F, i.e., the hypotheses w;; = 0. The result is applied to do adaptive support
recovery optimally. In addition, we can strengthen other results in literature under weaker
assumptions, and the procedures are adaptive, including adaptive rate-optimal estimation
of the precision matrix under various matrix [, norms, and an extension of our framework
for inference and estimation to a class of latent variable graphical models. See Section 3
for details.

Our work on optimal estimation of precision matrix given in the present paper is closely
connected to a growing literature on estimation of large covariance matrices. Many reg-

ularization methods have been proposed and studied. For example, Bickel and Levina
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(2008a,b) proposed banding and thresholding estimators for estimating bandable and
sparse covariance matrices respectively and obtained rate of convergence for the two esti-
mators. See also El Karoui (2008) and Lam and Fan (2009). Cai, Zhang and Zhou (2010)
established the optimal rates of convergence for estimating bandable covariance matrices.
Cai and Zhou (2012) and Cai, Liu and Zhou (2012) obtained the minimax rate of con-
vergence for estimating sparse covariance and precision matrices under a range of losses
including the spectral norm loss. In particular, a new general lower bound technique for
matrix estimation was developed there. See also Sun and Zhang (2012a).

The proposed estimator was briefly described in Sun and Zhang (2012¢) along with a
statement of the efficiency of the estimator without proof under the sparsity assumption
knp < n~1/21ogp. While we are working on the delicate issue of the necessity of the
sparsity condition &, , < nl/2 /log p and the optimality of the method for support recovery
and estimation under the general sparsity condition k, , < n/logp, Liu (2013) developed
p-values for testing w;; = 0 and related FDR control methods under the stronger sparsity
condition kj,, < nl/2 /log p. However, his method cannot be converted into confidence
intervals, and the optimality of his method is unclear under either sparsity conditions.

The paper is organized as follows. In Section 2, we introduce our methodology and
main results for statistical inference. Applications to estimation under the spectral norm,
to support recovery and estimation of latent variable graphical model are presented in
Section 3. Section 4 discusses extensions of results in Sections 2 and 3. Numerical studies
are given in Section 5. Proofs for theorems in Sections 2-3 are given in Sections 6-7.
Proofs for main lemmas are given in Section 8. We collect auxiliary results for proving
main lemmas in the supplementary material.

Notations. We summarize here some notations to be used throughout the paper. For
1 <w < oo, we use |lul|,, and [|A]|,, to denote the usual vector l,, norm, given a vector
u € RP and a matrix A = (aj;),,,, respectively. In particular, [[A[|, denote the entry-wise
maximum max;; |a;;|. We shall write ||-|| without a subscript for the vector I norm. The
matrix £, operator norm of a matrix A is defined by ||[A]||, = max|, =1 [|AZ[w. The

commonly used spectral norm ||| - ||| coincides with the matrix ¢2 operator norm ||| - [||2.

2. Methodology and Statistical Inference. In this section we will introduce our
methodology for estimating each entry and more generally, a smooth functional of any
square submatrix of finite size. Asymptotic efficiency results are stated in Section 2.2
under a sparseness assumption. The lower bound in Section 2.3 shows that the sparseness

condition to obtain the asymptotic efficiency in Section 2.2 is sharp.
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2.1. Methodology. We will first introduce the methodology to estimate each entry w;,
and discuss its extension to the estimation of functionals of a submatrix of the precision
matrix.

The methodology is motivated by the following simple observation with A = {3, j},
(4) Zupy 2y = N (—92492,40 245y, 04
Equivalently we write
(5) (Zi, Z5) = Z{; jye B+ (nismj) s
where the coefficients and error distributions are
(6) B=—0u a3y ()" ~ N (0,93],)

Denote the covariance matrix of (7, nj)T by

_1 O 0ij
@A7A :QA7A — .
6, 0;;

We will estimate © 4 4 and expect that an efficient estimator of © 4 4 yields an efficient
estimation of entries of 24 4 by inverting the estimator of © 4 4.

Denote the n by p dimensional data matrix by X. The ith row of data matrix is the
ith sample X®. Let X4 be the columns indexed by A = {i,j}. Based on the regression

interpretation (5), we have the following data version of the multivariate regression model
(7) X4 =Xyeff+ €4.

Here each row of (7) is a sample of the linear model (5). Note that § is a p — 2 by 2

dimensional coefficient matrix. Denote a sample version of ©4 4 by

T
(8) OUA = (081" keaica = €a€a/n
which is an oracle MLE of ©4 4, assuming that we know 3, and
-1
(9) T = @l heasea = (044) -
But of course 8 is unknown, and we will need to estimate 8 and plug in its estimator to
estimate €4.

Now we formally introduce the methodology. For each m € A = {i,j}, we apply a

scaled lasso penalization to the univariate linear regression of X,,, against X 4c as follows,

A _ Xy — Xach|? o Xk
10 p1/2 1 Hm— o Ik g
( ) {Bﬂ% mm} arg beRPrgl,I;ER+ Mo + 2 + kgc \/ﬁ | /ﬂ’ )
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with a weighted ¢ penalty, where the vector b is indexed by A¢. The penalty level will be

specified explicitly later. Define the residuals of the scaled lasso regression by
en=Xa—Xach,

and

(11) Oan = Ehéa/n.

It can be shown that this definition of @,,,, is consistent with the 6,,,, obtained from the

scaled lasso (10) for each m € A. Finally we simply inverse the estimator 6 AA= (ékl) L leA

to estimate entries in 24 4, i.e.
A A—1
(12) QA“A == @A,A'

This methodology can be routinely extended into a more general form. For any subset

B c {1,2,...,p} with a bounded size, the conditional distribution of Zp given Zpge is
(13) Zp|Zpe = N (=550 5 Zp:, 0515,

so that the associated multivariate linear regression model is Xp = Xpgcfp, e + €p with
Bpep = —QBC,BQE,}B and eg ~ N (0, QE}B). Consider a slightly more general problem of

estimating a smooth functional of leB, denoted by
-1
¢=¢(05l).

When Bpe g is known, ep is sufficient for QI_B,IB due to the independence of eg and Xpge,

so that an oracle estimator of ¢ can be defined as

¢ =( (6£€B/TL) .

We apply scaled lasso to the univariate linear regression of X,,, against X pge for each

m € B as in Equation (10),

{Bm, é,ln/fn} = arg min

X — X peb||?
beRP—IBl gcR+

o [ Xk
+ -+ — | bg|
2no 2 kgc vn
where | B| is the size of subset B. The residual matrix of the model is ég = X —XBC/S’BC,B,

then the scaled lasso estimator of ¢ (Q;B) is defined by
é pu—

(14) ¢ (€£€B/n) :



2.2. Statistical Inference. For X > 0, define capped-¢; balls as
(15) G*(M,s,A) ={Q:5x(Q) <5,1/M < Apin (2) < Apax () < M},

where s) = s(€2) = max; Xjz; min {1, [w;[ /A} for @ = (wij), <, ;- In this paper, A is of
the order \/(logp)/n. We omit the subscript A from s when it is clear from the context.
When |w;;| is either 0 or larger than A, sy is the maximum node degree of the graph,
which is denoted by ky, , in the class of parameter spaces (1). In general, ky, , is an upper
bound of the sparseness measurement sy. The spectrum of X is bounded in the matrix
class G*(M, s, \) as in the £y ball (1). The following theorem gives an error bound for our
estimators by comparing them with the oracle MLE (8), and shows that

ora ..

2
\ wiiwjj + Wi

is asymptotically standard normal, which implies the oracle MLE (8) is asymptotically

K=/

normal with mean w;; and variance n-1 (wm'wjj + wfj)

THEOREM 2. Let éA,A and QA,A be estimators of © a4 a4 and Q4 4 defined in (11) and
(12) respectively, and X = (1 + ) 4/ 261% for any § > 1 and € > 0 in Equation (10).

(1). Suppose s < con/logp for a sufficiently small constant co > 0. We have

A log p _s
16 P<l[Oaa—0%%| >C < +1
(16) Qe+ (Vs ) AAS(i ) {H AATBAA| 7T } =0 <p ) ’
and
A log p —5
17 P QO _ (Oora C/ } < +1 ’
(17) QG+ (Vs ) AAm i) {H AATHAA| T ST T S0 <p )

ora

where OY'Y and QY% are the oracle estimators defined in (8) and (9) respectively
and Cy1 and C} are positive constants depending on {e,co, M} only.

(ii). There exist constants D1 and ¥ € (0,00), and three marginally standard normal
random variables Zy;, where kl = ii,ij,jj, such that whenever |Zy| < ¥/n for all

kl, we have

(18)

ora !
H’ij -7

Dl 2 2 2

where Z' ~ N (0,1), which can be defined as a linear combination of Zg, kl =
0,1, J]-

Theorem 2 immediately yields the following results of estimation and inference for w;;.
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THEOREM 3.  Let Q.4 be the estimator of Qa4 defined in (12), and X = (1 +€) 1/ %Lﬂ
for any 6 > 1 and € > 0 in Equation (10). Suppose s < con/logp for a sufficiently small
constant co > 0. For any small constant € > 0, there exists a constant Co = Cy (€,e, co, M)
such that

1

1
(19) max max P < |w;; — wij| > Comax (s ng, — <e.
QeG*(M,s,\) 1<i<j<p n n

Moreover, there is constant C3 = Cs (€,e,¢co, M) such that

(20) Qegql(%/}[is,A)P {HQ - QHOO > (3 max {sloi;p, 10519}} <o (p—6+3) '

Furthermore, w;; is asymptotically efficient

(21) 1/nFZ~j (UT}Z] - wij) —D) N(O, 1) ,
when Q € G*(M, s,\) and s = o (y/n/logp), where

-1 2
Fi;w = wiiwj; + wjj.

n *\yn n

REMARK 1. The upper bounds max{slogp l} and max{slogp \/losp} in Equa-

tions (19) and (20) respectively are shown to be rate-optimal in Section 2.3.

REMARK 2. The choice of A = (1+¢) \/251% is common in literature, but can be
too big and too conservative, which usually leads to some estimation bias in practice.
Let tq(a,n) denotes the o quantile of the t distribution with n degrees of freedom. In

Section 4 we show the value of A can be reduced to Njgv, = (1+¢)B/vn—1+ B?
)
where B = tq (1 — (““f) /2,n — 1) for every Smax = 0 (h‘){jp), which is asymptotically

20 log(p/smax)
n

equivalent to (1 + ¢€) . See Section 4 for more details. In simulation studies

new

of Section 5, we use the penalty Fimite With 6 = 1, which gives a good finite sample

performance.

REMARK 3. In Theorems 2 and 3, our goal is to estimate each entry w;; of the preci-
sion matriz 2. Sometimes it is more natural to consider estimating the partial correlation
rij = —wij/(wiiwjj)lﬂ between Z; and Zj. Let QA,A be estimator of Qa4 defined in
(12). Our estimator of partial correlation ri; is defined as 74; = —@ij/(©ucj;)"/%. Then
the results above can be easily extended to the case of estimating r;;. In particular, un-
der the same assumptions in Theorem 3, the estimator 7;; is asymptotically efficient:

n(l — r?j)*Q(ﬂj — ri5) converges to N (0,1) when s = o(y/n/logp). This is stated as
Corollary 1 in Sun and Zhang (2012c) without proof.
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The following theorem extends Theorems 2 and 3 to estimation of (Q;B), a smooth
functional of Q;B for a bounded size subset B. Assume that ¢ : RIEXIBl 5 R is a unit
Lipschitz function in a neighborhood {G G = Q5 < K,} , le.,

(22) <@ —¢(23))| < G-kl

. ‘ , 251

THEOREM 4. Let ¢ be the estimator of ¢ defined in (14), and X = (1 4 ¢) \/ =22 for
any 6 > 1 and € > 0 in Equation (10). Suppose s < con/logp for a sufficiently small
constant cy > 0. Then,

(23) max )P{’f — ¢

Qeg*(M,s,\

1
> Oy ng} <o <|B|p_5+1) :
n

with a constant C1 = C1(g,co, M, |B|). Furthermore, é is asymptotically efficient

(24) VnE (¢=¢) BN 0.1),

when Q € G*(M,s,\) and s = o(y/n/logp), where F¢ is the Fisher information of esti-
mating ¢ for the Gaussian model N (0, Qg}B).

REMARK 4. The results in this section can be easily extended to the weak l; ball with
0 < g <1 to model the sparsity of the precision matriz. A weak l; ball of radius c in RP

1s defined as follows,
— P . |4 —1 -
Bq(c)—{fe]R .‘f(j)’§6] ,forallj—l,...,p},

where ‘5(1)‘ > ’5(2)’ >...> ’f(p)’. Let

(25) g‘I(Mv kmp) = { €= (wij)lgingp FW € Bq (k:n7p) ) } ‘

and 1/M < Apin () < Apax () < M.
Since £ € Bg(k) implies 3~ ; min(1,[§]/A) < [k/X1] + {q/(1 — q) Yk k/A1 1 =1\,
(26) gq(M7k7L,p) gg*(MaS>)‘)7 OSQS 17

when ky p/ A1 < Cy(sV 1), where Cqg =1+ ¢27/(1 —q) for 0 < ¢ <1 and Cy = 1. Thus,
the conclusions of Theorems 2, 3 and 4 hold with G*(M, s, \) replaced by Go(M, ky, ) and
s by knp(n/logp)??, 0< ¢ < 1.
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2.3. Lower Bound. In this section, we derive a lower bound for estimating w;; over the

matrix class Go(M, ky, ) defined in (1). Assume that

(27) p >k, with v > 2,
and

n
( ) P logp

for some C > 0. Theorem 5 below implies that the assumption ky, 107%” — 0 is necessary

for consistent estimation of any single entry of 2.
We carefully construct a finite collection of distributions Go C Go(M, ky ) and apply

Le Cam’s method to show that for any estimator w;;,
lo
(29) supP {"DU — wij\ > Clkn,pqglp} —1,
Go

for some constant C; > 0. It is relatively easy to establish the parametric lower bound

\/% . These two lower bounds together immediately yield Theorem 5 below.

THEOREM 5. Suppose we observe independent and identically distributed p-variate
Gaussian random variables XW X @) X" with zero mean and precision matriz Q =
(Wkt)pxp € Go(M, knp). Under assumptions (27) and (28), we have the following minimaz
lower bounds

knop L 1
(30) ipf sup P |(Ijij — wij| > max ClLogp, 02\/7 >c1 > O,
Wig gO(Mykn,p) n n

and

R kppl 1
(31) inf sup P HQ — QH > max { C] —2 ng, Cs o8P > c9 >0,
Q Go(M kn,p) o n n

where C1, Ca, Cf and C} are positive constants depending on M, v and Cy only.

REMARK 5. The lower bound k””’nﬂ in Theorem 5 shows that estimation of sparse
precision matriz can be very different from estimation of sparse covariance matriz. The
sample covariance always gives a parametric rate of estimation of every entry o;;. But
for estimation of sparse precision matriz, when ky ;> %7 Theorem 5 implies that it is

impossible to obtain the parametric rate.
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REMARK 6. Since Go(M, kyp) € G*(M, knp, X) by the definitions in (1) and (15),
Theorem 5 also provides the lower bound for the larger class. Similarly, Theorem 5 can be
easily extended to the weak l; ball, 0 < q < 1, defined in (25) and the capped-£y ball defined
in (15). For these parameter spaces, in the proof of Theorem 5 we only need to define H
as the collection of all p X p symmetric matrices with exactly | kyp (@)Q/Q — 1) rather
than (knp — 1) elements equal to 1 between the third and the last elements on the first
row (column) and the rest all zeros. Then it is easy to check that the sub-parameter space

2 v
Go in (56) is indeed in Gy(M, ky p). Now under assumptions p > (kn,p (@)Q/ ) with

1—q/2
v>2and kyp < Cp (logp) Y ,we have the following minimax lower bounds

1 1—g/2 1
ipf sup P ’(i)ij — wij| > max Clkn,p (ng) ,02\/7 >c1 > O,
Wii Gg(M kn,p) n n
and

N 1 1—q/2 1
inf sup P HQ — QH > max § Clknp (ng> ,Cé\/ o8P > co > 0.
& Gg(Mkn,p) > n n

These lower bounds match the upper bounds for the proposed estimator in Theorem 3 in

view of the discussion in Remark 4.

3. Applications. The asymptotic normality result is applied to obtain rate-optimal
estimation of the precision matrix under various matrix [,, norms, to recover the sup-
port of 2 adaptively, and to estimate latent graphical models without the need of the
irrepresentable condition or the [; constraint of the precision matrix commonly required
in literature. Our procedure is first obtaining an Asymptotically Normal estimation and
then do Thresholding. We thus call it ANT.

3.1. ANT for Adaptive Support Recovery. The support recovery of precision matrix
has been studied by several papers. See, for example, Friedman, Hastie and Tibshirani
(2008), d’Aspremont, Banerjee and El Ghaoui (2008), Rothman et al. (2008), Ravikumar
et al. (2011), Cai, Liu and Luo (2011), and Cai, Liu and Zhou (2012). In these liter-
ature, the theoretical properties of the graphical lasso (Glasso), CLIME and ACLIME
on the support recovery were obtained. Ravikumar et al. (2011) studied the theoretical
properties of Glasso, and showed that Glasso can correctly recover the support under

10% for some ¢ > 0.

irrepresentable conditions and the condition min; j)es(q) [wij| > ¢

Cai, Liu and Luo (2011) does not require irrepresentable conditions, but need to assume

loﬁp, where M, , is the matrix {; norm of Q. In Cai, Liu

that min(i7]~)€3(g) \wij] > CM%p
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and Zhou (2012), they weakened the condition to ming j)es(q) [wij| = C My logp 1yt

n

the threshold level there is %Mmp 1051) , where C' is unknown and M, ;, can be very large,
which makes the support recovery procedure there impractical.

In this section we introduce an adaptive support recovery procedure based on the
variance of the oracle estimator of each entry w;; to recover the sign of nonzero entries of
Q with high probability. The lower bound condition for min; j)es(q) [wij| is significantly

weakened. In particular, we remove the unpleasant matrix [y norm M, ;. In Theorem 3,
NG

logp

when the precision matrix is sparse enough s = o ( ), we have the asymptotic normality

result for each entry w;j, ¢ # j, i.e.,
. D
nEj (wij — wij) — /\/(O, 1) s

-1
where Fj; = (wiiwjj + w%) is the Fisher information of estimating w;;. The total number
of edges is p (p — 1) /2. We may apply thresholding to w;; to correctly distinguish zero and
nonzero entries. However, the variance w;w;; + w?j needs to be estimated. We define the

adaptive support recovery procedure as follows

(32) chr = (@f’f")pxm

where wf@hr = (;Ju and (;JZW = wl]1{|dj1]| > ’721]} for 4 75 ] with
280 (Wiw;; + @2 ) logp

(33) Tij = J (¢ “n b) .

Here w;wj; + chQJ is the natural estimate of the asymptotic variance of @;; defined in
(12) and & is a tuning parameter which can be taken as fixed at any & > 2. This
thresholding estimator is adaptive. The sufficient conditions in the Theorem 6 below for
support recovery are much weaker compared with other results in literature.

Define a thresholded population precision matrix as

(34) Qipr = (ijhr)pxw

i
£ > &. Recall that £ = E(Q) = {(i,]) : wij # 0} is the edge set of the Gauss-Markov

graph associated with the precision matrix 2. Since 4, is composed of relatively large

where w!f™ = w; and wf]’.” = wjjl {]wi]-| > \/8§(wiiwjj +wi2j)(logp)/n}, with a certain

components of Q, (V, E(Qy,,-)) can be view as a graph of strong edges. Define

S(Q) = {sgn(wi;), 1<i,j<p}
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The following theorem shows that with high probability, ANT recovers all the strong edges

without false recovery. Moreover, under the uniform signal strength condition

2¢ (wiiw;j + w2 ) logp
(35) |wij|22J (s +5) LV wij £ 0.

n

i.e. Qpr = Q, the ANT also recovers the sign matrix S(2).

THEOREM 6. Let A = (1+¢) 251% for any 6 > 3 and € > 0. Let Qe be the
ANT estimator defined in (32) with & > 2 in the thresholding level (33). Suppose 2 €

G*(M, s, \) with s = o (W) Then,

(36) lim P (B(Qnr) € () € E(Q)) = 1.

n—o0

where Qupy is defined in (34) with € > &o. If in addition (35), then

(37) lim P (S(Qu) = S(Q)) = 1.

n—o0

3.2. ANT for Adaptive Estimation under the Matriz l,, Norm. In this section, we
consider the rate of convergence under the matrix l,, norm. To control the improbable

case for which our estimator © A,A is nearly singular, we define our estimator based on the
thresholding estimator Q¢ defined in (32),

(38) Qe = (71 {|i5] < log p})pxp-

Theorem 7 follows mainly from the convergence rate under element-wise norm and the
fact that the upper bound holds for matrix /; norm. Then it follows immediately by the
inequality |||M]|||w < |||M]|||1 for any symmetric matrix M and 1 < w < oo, which can
be proved by applying the Riesz-Thorin interpolation theorem. See, e.g., Thorin (1948).
Note that under the assumption k7 , = O (n/logp), it can be seen from the Equations
(17) and (18) in Theorem 2 that with high probability the HQ - QHOO is dominated by

|7 — Q| = Op |/ logp . From there the details of the proof is in nature similar to
the Theorem 3 in Cai and Zhou (2012) and thus will be omitted due to the limit of space.

THEOREM 7. Under the assumptions s> = O (n/logp) and n = O (pg) with some

€ >0, the Oy defined in (38) with A\ = (1+¢) 251% for sufficiently large § > 3+ 2&
and € > 0 satisfies, for all 1 < w < oo and kpyp < s

9 v 1
(39) sup Bl - QL < sup B[l — QI < 052 25F
gO(kan,P) g*(ka'ﬂJ??)‘) n
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REMARK 7. It follows from Equation (26) that result (39) also holds for the classes

2
of weak ¢, balls Gg(M, ky, p) defined in Equation (25), with s = Cgkp (@)q/ ,

v 1 1=a
(40) sup <~ I < OB, (FER)

Gq(Mkn,p)
REMARK 8. Cai, Liu and Zhou (2012) showed the rates obtained in Equations (39)
and (40) are optimal when p > cn? for some v > 1 and kyp, = 0 <n1/2 (1ng)—3/2>.

3.3. Estimation and Inference for Latent Variable Graphical Model. Chandrasekaran,
Parrilo and Willsky (2012) first proposed a very natural penalized estimation approach
and studied its theoretical properties. Their work was discussed and appreciated by sev-
eral researchers. But it was not clear if the conditions in their paper are necessary and the
results there are optimal. Ren and Zhou (2012) observed that the support recovery bound-
ary can be significantly improved from an order of \/% to \/@ under certain conditions
including a bounded /; norm constraint for the precision matrix. In this section we extend
the methodology and results in Section 2 to study latent variable graphical models. The
results in Ren and Zhou (2012) are significantly improved under weaker assumptions.

Let O and H be two subsets of {1,2,...,p+ h} with Card(O) = p, Card(H) = h and
OUH ={1,2,...,p+ h}. Assume that (Xg),Xg)), i=1,...,n,areiid. (p+ h)-variate
Gaussian random vectors with a positive covariance matrix X, 4)x(p4n)- Denote the

corresponding precision matrix by Q(p+h) X(pt+h) = »! We only have access to

(p+h)x(p+h)
{X(Ol), X(OQ), . ,X(On)}, while {Xg), Xg), . 7ng)} are hidden and the number of latent

components is unknown. Write X, n)x (p+r) and Q(p+h)x(p+h) as follows,

> - 2070 EO,H and O . QO,O QO,H

h h) — ; h h) — = — )
(p+h)x(p+h) Sno SHn (p+h)x(p+h) Qo Omn
where Yo o and Xy g are covariance matrices of Xg) and Xg) respectively and from the

Schur complement we have
(41) Yoo = Q0.0 = Qo.nQ y Qo
See, e.g., Horn and Johnson (1990). Define

S =900, and L = Qo uQy' y 00,

where I/ = rank (L) = rank (Qo ) < h
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We are interested in estimating 25,10 as well as S and L. To make the problem identi-
fiable we assume that S is sparse and the effect of latent variables is spread out over all

coordinates, i.e.,

(42) S = (sij)1<ij<p 1@%}2 1{si; # 0} < knp;
T A
and
My
(43) L= (lij)1<; j<po il < >

The sparseness of S = Qo can be seen to be inherited from the sparse full precision
matrix Q(pHL)X(erh), and it is particularly interesting for us to identify the support of
S = QO,O and make inference for each entry of S. A sufficient condition for the assumption
(43) is that the eigendecomposition of L = S Nusu? satisfies uilloo < /S for all 4
and ¢ Ziil Ai < M. See Candes and Recht (2009) for a similar assumption. In addition,

we assume that

(44) 1/M < )‘min(z(p+h)><(p+h)) < )‘maX(E(p+h)><(p+h)) <M

for some universal constant M, and

n

4 -
(45) oep

o(p).

Equation (44) implies that both the covariance ¥ o of observations Xg) and the sparse
component S = QQO have bounded spectrum, and Apax(L) < M.

With a slight abuse of notation, denote the precision matrix 25}0 of Xg) by  and
its inverse by ©. We propose to apply the methodology in Section 2 to the observations

X which are i.i.d. N (0,%0,0) with Q = (si; — ;) by considering the following

1<i,5<p
regression
(46) Xa=Xo\uB+e€a
for A = {i,j} C O with 8 = Qo\a a3y and eq & N (O,QZ}A) and the penalized
scaled lasso procedure to estimate 24 4. When S = I, and L = %uouoT with uOT =

(1/\/p,---,1/\/p), we see that

. |Sij—ll'j’} p—l ( n >
mjax i#j mln{ , 3 BT 0] Togp

However, to obtain the asymptotic normality result as in Theorem 2, we required

maXE#jmin{l,W} :0< vn ) ,
J

log p
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which is no longer satisfied for the latent variable graphical model. In Section 7.2 we

overcome the difficulty through a new analysis.

THEOREM 8. Let QA’A be the estimator of Qa4 defined in (12) with A = {i, j} for the
regression (46). Let A = (1 +¢) 251% for any 0 > 1 and € > 0. Under the assumptions

(42)-(45) and ky, p = 0 (Q@)) we have

n ~ D n . D
47 — (i —wii) R | (i — 8i7) S N(0,1).
(47) wiiwjj‘FwZZj( ] U) wiiwjj-i-wzzj( i Z]) (0,1)

REMARK 9. Without condition (45), our estimator may not be asymptotic efficient

but still has nice convergence property. We could obtain the following rate of convergence

for estimating w;j = s;; —l;j, provided ky p = 0 (@) , by simply applying Theorem 2 with

sparsity max; 3;; min {1, w} =0 (knp + /\*1),

1 1
P{’@ij — wjj| > C3max {knjp O§p7 in}} <o <p—5+1> ’

which further implies the rate of convergence for estimating s;;

. lo logp M, _
P{|wij—sijl > Cgmax{k:n,p ip,\/?,po}} So(p 5+1) .

Define the adaptive thresholding estimator s, = (@Z,W)pxp as in (32) and (33). Fol-

lowing the proof of Theorems 6 and 7, we are able to obtain the following results. We

shall omit the proof due to the limit of space.

THEOREM 9. Let A = (1+¢) \/251% for some § > 3 and € > 0 in Equation (10).
Assume the assumptions (42)-(45) hold. Then

(i). Under the assumptions ky, p = o ( 1ogp> and

260 (wiiwii +w? ) logp
|Sij‘ Z Q\I ( - ]Jn lj) s Vsij € S(S)

for some & > 2, we have

lim P (S(chr) = S(S)) =1.

n—oo
(ii). Under the assumption k:?%p =0 (n/logp) andn = 0O (ps) with some £ > 0, the Qu,
defined in (38) with sufficiently large 6 > 3+ 2£ satisfies, for all 1 < w < oo,

o logp
|l Sbenr — S| < Ok, =L
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4. Discussion. In the analysis of Theorem 2 and nearly all consequent results in
Theorems 3-4, and Theorems 6-9, we have picked the penalty term A = (1 +¢)/ 261%
for any § > 1 (or 6 > 3 for support recovery) and ¢ > 0. This choice of A can be too
conservative and cause some finite sample estimation bias. In this section we show that A
can be chosen smaller.

Let spax < coﬁ with a sufficiently small constant ¢y > 0 and syax = O (p') for some

t < 1. Denote the cumulative distribution function of ¢(,_1) distribution by Ft(n_l). Let

1
Gt = (L4 €) BV 17 B where B = £ 1 (1 ()" 2). Tt can be shown

tin—1) D

26 log(p/Smax)

o . We can extend

that A\7¢%.  is asymptotically equivalent to \"¢* = (1 4 ¢)

finite
Theorems 2-4 and 6-9 to the new penalties \"“* and )\?Z’l‘;te. All the results remain the same
except that we need to replace s (or ky ) in those theorems by s+ Smax (Or knp + Smax)-
Since all theorems (except the minimax lower bound Theorem) are derived from Lemma

2, all we need is just an extension of Lemma 2 as follows.

LEMMA 1. Let A = A" or \I$“,  for any 6 > 1 and ¢ > 0 in Equation (10). Assume

finite

Smax < coﬁ with o sufficiently small constant cog > 0 and Spmax = O (pt) for some t < 1

and define the event E,, as follows,

B — 00| < CIN (5 + )

B = Bunl|, < COAGs + sman)
HXAC (,Bm—Bm>H2/n < Cé)\Q(S-l-SmaX),

Hchem/nHoo < Oy,

for m =i or j and some constants C},, 1 < k < 4. Under the assumptions of Theorem 2,

we have
P(ES) <o (p*).

See its proof in the supplementary material for more details. Note that when s =

(2

logp), we have

[%ae (B = B} /< €52 (5 + smae) = 0 (1/ V)

logp log p
in the penalty, our procedure leads asymptotically efficient estimation of every entry of

with high probability, for every spax = 0 ( V1 ) Thus for every choice of syax = 0 ( V1 )

the precision matrix as long as s = o (12)@)). In Section 5 we set A = /\?Z%te with § =1

for statistical inference and § = 3 for support recovery.
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5. Numerical Studies. In this section, we present some numerical results for both
asymptotic distribution and support recovery. We consider the following 200 x 200 precision
matrix with three blocks. The block sizes are 100 x 100, 50 x 50 and 50 x 50, respectively.
Let (a1, a2, a3) = (1,2,4). The diagonal entries are oy, ag, 3 in three blocks, respectively.
When the entry is in the k-th block, wj_1; = wj j—1 = 0.5y, and wj_2 j = wj j—2 = 0.4y,
k =1,2,3. The asymptotic variance for estimating each entry can be very different, thus
a naive procedure of setting one universal threshold for all entries would likely fail.

We first estimate the entries in the precision matrix, and partial correlations which was
discussed in Remark 3, and consider the distributions of the estimators. We generate a ran-
dom sample of size n = 400 from a multivariate normal distribution NV'(0, X)) with ¥ = Q1.
As mentioned in Remark 2, the penalty constant is chosen to be Fimite = B /vVn—1+ B2,
where B = tq(1 —§/(2p),n — 1) with § = y/n/log p, which is asymptotically equivalent to
V/(2/n)log(p/3).

Table 1 reports the mean and standard error of our estimators for four entries in the
precision matrix and the corresponding correlations based on 100 replications. Figure 1
shows the histograms of our estimates with the theoretical normal density super-imposed.
We can see that the distributions of our estimates match pretty well to the asymptotic
normality in Theorem 3. We have tried other choices of dimensions, e.g. p = 1000, and
obtained similar results.

TABLE 1
Mean and standard error of the proposed estimators.

wi,2 = 0.5 w1,3 = 0.4 Wi,4 = 0 wi,10 = 0
W1, 0.469 £ 0.051  0.380 £ 0.054  -0.042 £ 0.043 -0.003=£ 0.045

r1,2 = —-0.5 r1,3 = —0.4 r1,4 = 0 r1,10 = 0
1, -0.480 £+ 0.037 -0.392 £ 0.043  0.043 £ 0.043  0.003 £ 0.046

Support recovery of a precision matrix is of great interests. We compare our selection
results with the GLasso. In addition to the training sample, we generate an indepen-
dent sample of size 400 from the same distribution for validating the tuning parameter
for the GLasso. The GLasso estimators are computed based on training data with a
range of penalty levels and we choose a proper penalty level by minimizing likelihood
loss {trace(EQ) — log det(€)} on the validation sample, where ¥ is the sample covariance
matrix. Our ANT estimators are computed based on the training sample only. As stated
in Theorem 6, we use a slightly larger penalty constant to allow the selection consistency.
Let A5 = B/v/n —1+ B2, where B = tq(1 — (3/p)3/2,n — 1), which is asymptoti-
cally equivalent to /(6/n)log(p/3). We then apply the thresholding step as in (33) with

& = 2. Table 2 shows the average selection performances of 10 replications. The true pos-
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itive (rate) and false positive (rate) are reported. In addition to the overall performance,
the summary statistics are also reported for each block. We can see that while both our
ANT method and the graphical Lasso choose all nonzero entries, ANT outperforms the

GLasso in the sense of the false positive rate and the false discovery rate.
TABLE 2
The performance of support recovery

Block Method TP TPR FP FPR
Overall GLasso 391 1 5298.2 0.2716

ANT 391 1 3.5 0.0004
Block 1 GLasso 197 1 1961 0.4126
ANT 197 1 1.2 0.0003
Block 2 GLasso 97 1 288.4  0.2557
ANT 97 1 1.1 0.0010
Block 3 GLasso 97 1 162.1  0.1437
ANT 97 1 1.1 0.0010

Moreover, we compare our method with the GLasso with various penalty levels. Figure
2 shows the ROC curves for the GLasso with various penalty levels and ANT with various
thresholding levels in the follow-up procedure. It is noticed that the GLasso at any penalty
level cannot achieve similar performance as ours. In addition, the circle in the plot repre-
sents the performance of ANT with the selected threshold level as in (33). The triangle in
the plot represents the performance of the graphical Lasso with the penalty level chosen
by cross-validation. This again indicates that our method simultaneously achieves a very

high true positive rate and a very low false positive rate.
6. Proof of Theorems 1-5.

6.1. Proof of Theorem 2-4. We will only prove Theorems 2 and 3. The proof of The-
orem 4 is similar to that of Theorems 2 and 3. The following lemma is the key to the

proof.

LEMMA 2. Let A= (1+¢) \/251% for any § > 1 and € > 0 in Equation (10). Define

the event E,, as follows,

(48) O — 0%12| < CINs,
(49) |8 = Bul|| < Ca2s,
(50) HXA (ﬁm—5m>H2/n < ChNZs,
(51) Hxﬁcem/nHC>o < 4,
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for m =i or j and some constants C},, 1 < k < 4. Under the assumptions of Theorem 2,

we have
P(E;) <o(p~*).

6.1.1. Proof of Theorems 2. We first prove (i). From Equation (48) of Lemma 2, the
large deviation probability in (16) holds for 677 and 077¢. We then need only to consider
the entry 6¢7. On the event F; N Ej,

v

2 ora

ele;/n — e?ej/n’
(fi + Xae (51‘ - @))T (€j + X e (5;’ - By)) /n—elej/n
< [heeirm]_ 18 = Al + [XReesim]_ 5 - 5

+[xae (8= 8| - |[xae (85 = )| /m
< (2040, + C) N2,

1

where the last step follows from inequalities (49)-(51) in Lemma 2. Thus we have

> Clslosp} <o (p_‘SH) )

P {H@A,A - O%%

[e.9]

for some C; > 0. Since ©4 4 has a bounded spectrum, the functional (i (©4,4) =
(@ZlA)kl is Lipschitz in a neighborhood of ©4 4 for k,l € A, then Equation (17) is
an immediate consequence of Equation (16).

O'T(l o?‘a

Now we prove part (ii). Define random vector n°"®* = ( AN AN

ora

) , where np/¢ =
\/HM. The following result is a multidimensional version of KMT quantile in-

v OkkOu+0%,

equality: there exist some constants Dy, ¥ € (0,00) and random normal vector Z =
(Zii, Zij, Zj;) ~ N (0, i) with 3 = Cov(n°®) such that whenever | Zy,| < 9y/n for all kI,

we have

Dy
52 ore _ g1l < 2
( ) ||77 ||oo = \/ﬁ (

See Proposition [KMT] in Mason and Zhou (2012) for one dimensional case and consult

1+Z§+ij+z§j).

Einmahl (1989) for multidimensional case. Note that \/nn°"® can be written as a sum of
n ii.d. random vectors with mean zero and covariance matrix ZV], each of which is sub-
exponentially distributed. Hence the assumptions of KMT quantile inequality in literature
are satisfied. With a slight abuse of notation, we define © = (60;;,0;;,6;;). To prove the

desired coupling inequality (18), let’s use the Taylor expansion of the function w;; (©) =



25

—0i5/ (9ii9jj — 9%-) to obtain

ora

Wij — Wij
(53) = (Vwi;(0),07" ~6) + 3= R3(07) (0 ~ 07)
|B]=2
The multi-index notation of 3 = (B1, B2, 43) is defined as |B] = >y B, ° = 1, xfgk and
5 = 4444éﬂ€L£4447 3 : .
DP f (x) axfl 8x§28x§3' The derivatives can be easily computed. To save the space, we

omit their explicit formulas. The coefficients in the integral form of the remainder with
|| = 2 have a uniform upper bound ‘Rﬁ ( ore )‘ < 2max maxecp D%w;j (©) < O,

where B is some sufficiently small compact ball with center ©® when ©°* is in this ball

la|=2

B, which is satisfied by picking a sufficiently small value ¥ in our assumption ||| <

Jy/n. Recall that kg * and n°"* are standardized versions of ( wii = wij) and (@ — Q).

Consequently there exist some deterministic constants hi, ha, hs and Dg with || = 2 such

ora ora

that we can rewrite (53) in terms of £{7* and n°™* as follows,

ora hlnora + h27]0 —|—h37’]ora Z D,BRB @07"11) (nora)ﬁ
ij

18|=2 vn

which, together with Equation (52), completes our proof of Equation (18),

)

he - (va) 12 =00 +7|| | <7(1+Z2+Z2+22),

k=1

where constants Cs, D1 € (0,00) and Z' := h1Zy + haZs + h3Z3 ~ N (0,1). The last
inequality follows from ||n°"*||? < C4 (ZZQZ +Z5 + ij) for some large constant Cy, which

can be shown using (52) easily.l

6.1.2. Proof of Theorems 3. 'The triangle inequality gives

ora
(]

ora B
WU — wl]

-,

IN

|wij — wij| +

[0 =0aa] < ¢

(Z)ij — W

ora

AA

A

From Equation (17) we have

IP’{HQA,A — Q%% e Clslofbp} <o (Piéﬂ) .

ora
ij
stant C' > 0, we apply Equation (18) to obtain

P {|x

and H AU —Qa AH respectively. For the con-

Now we give a tail bound for W — w;;

ora

>0} < P{max{|zkl|}>z9f}+q>(c>+P{\D;(1+Z2+Z2+z?)

o(1) + 2exp (—02/8) ,

IN
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according to the inequality ® (r) < 2exp (—22/2) for # > 0 and the union bound of three

normal tail probabilities. This immediately implies that for large C4 and large n,

P{ >C4\/T}§36,
n 4

which, together with Equations (17), yields that for Cy > C} + Cy,

1 1
P{@ij—wij\ >Cgmax{s ng, }} <e.
n n

Similarly, Equation (18) implies

> CViogp) < P{max{\zkl\}wm@(@)

ora

ora

IP’{F;Z-]-
+]P’{3% (1+Z§+Z@+ij) > C‘/;O@}
< O<p_02/8),

where the first and last components in the first inequality are negligible due to logp < cgn
with a sufficiently small ¢ > 0, which follows from the assumption s < cyn/logp. That

immediately implies that for C'5 large enough,

P{H A4 — QA,AHOO > Csy|f loi;p} =o(p™?),

which, together with Equations (17), yields that for C3 > C] + Cs.

IP{HQA,A — QA’AH > Cgmax{sbgp, “logp}} < o(p*‘;*l) .
[e’e] n n

Thus we have the following union bound over all (12’) pairs of (1, j),

IF’{HQ—QHOO > C’grmax{slo;gL]D7 10510}} SPQ/Q‘O(P_Hl) =0<p_5+3),

Write

vn (QA,A - QA,A) =vn (QA,A - ,047:?4) +vn ( A% — QA,A) ‘

Under the assumption s = o (%) , we have

Vi [ Qa4 - 094

o op(1),

which together with Equation (18) further implies

- D D
\/ﬁ (Wz‘j — Wz‘j) ~ \/ﬁ (wio]m — Wij) SN (0, wiiwj; + w%) 1
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6.2. Proof of Theorem 5. In this section we show that the upper bound given in Section
2.2 is indeed rate optimal. We will only establish Equation (30). Equation (31) is an

k’% for estimation of

immediate consequence of Equation (30) and the lower bound
diagonal covariance matrices in Cai, Zhang and Zhou (2010).
The lower bound is established by Le Cam’s method. To introduce Le Cam’s method we
first need to introduce some notation. Consider a finite parameter set Go = {Q0, Q1,...,Qn, } C
Go(M, kyp). Let Pq,,
X@ ., XM with each X ~ NV (0,9Q,1), 0 < m < m,, and f,, denote the corre-

sponding joint density, and we define

denote the joint distribution of independent observations X,

_ 1 2

(54) P=—> Pq,.

M m=1

For two distributions P and Q with densities p and ¢ with respect to any common dom-
inating measure u, we denote the total variation affinity by [|[P A Q| = [p A gdu. The

following lemma is a version of Le Cam’s method (cf. Le Cam (1973), Yu (1997)).

LEMMA 3. Let X@ be ii.d. N(0,Q71), i =1,2,...,n, with Q € Gy. Let Q = (&)

be an estimator of 2, = (w,(;ln)) , then
PXP

pXp

A a 1 P
sup IP’{ Wi —wg-n)’ > 2} > 9 HPQO /\PH’
0<m<m.
where o = infi1<pm<m, %(]’7"‘) - wi(JQ)"

Proof of Theorem 5: We shall divide the proof into three steps. Without loss of
generality, consider only the cases (i,j) = (1,1) and (i,7) = (1,2). For the general case
wi; or wi; with ¢ # j, we could always permute the coordinates and rearrange them to the
special case wiy or wis.

Step 1: Constructing the parameter set. We first define ),

1 —b
150 ...0 = 5
—b 1
b ]. 0 DY 0 W m
(55)  Xo=|001 ... 0,andQ=3;'= 0 0 1 ...0 |,
000 0 1 0 0 0 0 1

ie Yo = (a,i?)pxp is a matrix with all diagonal entries equal to 1, O’Eg) = aé(l)) = b and the

rest all zeros. Here the constant 0 < b < 1 is to be determined later. For €,,,1 < m < my,
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the construction is as follows. Without loss of generality we assume k,, > 2. Denote by
H the collection of all p x p symmetric matrices with exactly (kyp — 1) elements equal to
1 between the third and the last elements on the first row (column) and the rest all zeros.
Define

(56) ggz{Q:Q:Q()orQ:(Eo—i—aH)_l,forsomeHGH},

where a =

g()/ {Qo} is

% for some constant 7 which is determined later. The cardinality of

m* = Card (Go) — 1 = Card (H) = <kp 21>.
n,p

.

. . Cuanzop (1-62)° 0 (1-62)?
We pick the constant b = % (1-1/M)and 0 < 7 < min { a l/é? b ) 2(00(13{,2), 4(,,(1+22)}
such that Gy C Go(M, ky, p).

First we show that for all €;,

(57) 1/M S )‘min (Qz) < )\max (Qz) S M.

For any matrix §2,,, 1 < m < m,, some elementary calculations yield that

M) = 102+ Oy — 1) a2 0 (221) = 1= /b2 + (hy

M (0) = x(2) == (00 =1

Since b= % (1 —1/M) and 0 <74 < %, we can show that

(58) L= 02+ (knp— Da2 > 1V +7Co > 1/M,
L+ /02 + (knp— 1) a2 < 2-1/M < M,

which imply
1/M < A7t (Q;}) = Amin () < Amax (n) = A5 (9—1) < M.
As for matrix ©, similarly we have
M(01) = 14b0 (20) =10,
M (95) = x () == (9h) =1,

thus 1/M < Amin (20) < Amax (€20) < M for the choice of b= 3 (1 — 1/M).
Now we show that the number of nonzero off-diagonal elements in Q,,, 0 < m <

m. is no more than k,, per row/column. From the construction of Q. !, there exists
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some permutation matrix P, such that P,Q, Pl is a two-block diagonal matrix with
dimensions (ky, + 1) and (p — kyp — 1), of which the second block is an identity matrix,
then (PﬁQ;ang )_1 = P:Q,,PF has the same blocking structure with the first block of
dimension (k4 1) and the second block being an identity matrix, thus the number of
nonzero off-diagonal elements is no more than k, ;, per row/column for 2,,. Therefore, we
have Gy C Go(M, ky, ) from Equation (57).

Step 2: Bounding «. From the construction of Q! and the matrix inverse formula,
it can be shown that for any precision matrix €2, we have

(m) _ 1 (m) _ —b
T TR (= Da? M2 T T g T

for 1 < m < m,, and for precision matrix 2y we have

0 1 0 —b
w§1) = 71_b27°0§2) T 1_p

Since b2 + (kp, — 1) a® < (1 —1/M)? < 1 in Equation (58), we have

: m) _ O] _ (knp — 1) a? - 2

(59) ISTIr{ISfm* Wip T Wi ’ S A= 0 -0 (k-1 Csknpa”,
- (m) _ )] _ b (knp — 1) a® 2

1g,17?§fm* Wia " T Wi ‘ T Tt (knp D)) > Cyky pa”,

for some constants Cs, Cy > 0.

Step 3: Bounding the affinity. The following lemma will be proved in Section 8.
LEMMA 4. Let P be defined in (54). We have

(60) [Pay A Bl = C

for some constant Cs > 0.

Lemma 3, together with Equations (59), (60) and a = 4/ Tllnﬂ, imply

1 Csmikppl
sup P{’d}n—wﬁ”b-w} > (52,
0<m<my 2 n
1 Cymikpypl
sup }P{’@m—wg‘)‘>2-w} > ()2,
0<m<my n

which match the lower bound in (30) by setting C; = min {C371 /2, C471/2} and ¢; = C5/2.

REMARK 10.  Note that |||Qn|||1 is at order of knp\/* 22, which implies W =

n ’

kmp\/lo% : \/10% = |[|1Qm]l|11/ 2. This observation partially explains why in literature

n
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people need assume bounded matriz Iy norm of Q) to derive the lower bound rate \/@.
For the least favorable parameter space, the matrix l1 norm of Q cannot be avoided in the
upper bound. But the methodology proposed in this paper improves the upper bounds in
literature by replacing the matrixz l1 norm for every Q0 by only matriz l1 norm bound of €2

in the least favorable parameter space.

6.3. Proof of Theorem 1. The probabilistic results (i) and (ii) are the immediate con-
sequences of Theorems 2 and 5. We only need to show the minimax rate of convergence
result (3). According to the probabilistic lower bound result (30) in Theorem 5, we im-

mediately obtain that

k. 1O 1
inf  sup E|wij; —wij| > ¢ max Cng]),Cg\/— )
wis Go(M,kn,p) n n

Thus it is enough to show there exists some estimator of w;; such that it attains this upper
bound. More precisely, we define the following estimator based on @;; defined in (12) to

control the improbable case for which © A,A is nearly singular.

Wij = sgn(w;;) - min {|w;;|,log p} .

ora
Wy -

Define the event G = { %
(16) and (18) in Theorem 2 imply P{G¢} < C (p*‘”l + exp (—cn)) for some constants C

and c. Now according to the variance of inverse Wishart distribution, we pick § > 2 4+ 1

<0 k'n,p;ng

Sy ora
Wij — Wij

<2M } . Note that the Equations

)

to complete our proof

e ora ora __ ;..
wl] wzg wzg wl]

(:Jij — w‘»’m

Elwij —wi| < E( i

1{G}) +E (

1{G}) +E

gchﬁfywmwm@w+%ﬂ> +@@$—WU
ke pl s 1
< 8P 4 oy logp + Cy—=
n vn

C s [ Funlosp [T
i n M n )

where Oy, C3 and C” are some constants and the last equation follows from the assumption

n=0 (p ) .
7. Proof of Theorems 6-9.

7.1. Proof of Theorem 6. When ¢ > 3, from Theorem 2 it can be shown that the

following three results hold:
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(i). For any constant € > 0, we have

2

ij
oy 2 1

wlzwjj +(.U,L]

s >5}ﬁ0;

(61) P {sup
(i.9)

(ii). There is a constant C; > 0 such that

or

1
(62) P {Sup * — @il > Cis Oi;p} — 0;

(i.7)
(iii). For any constant 2 < &1, we have

Y
(63) P¢ sup d s S1logp — 0.
(i) yJwiiwjj + W n

In fact, under the assumption § > 3, Equation (17) in Theorem 2 and the union bound

over all pair (7,j) imply the second result (62), which further shows the first result (61)
because that w;; and w;; are consistent estimators and wj;w;; + w?j is bounded below and

above. For the third result, we apply Equation (18) from Theorem 2 and pick 2 < &3 < &
and a = /&1 — /& to show that

P{ > /2 logp} < P{max{|Zul} > 0vn} + & (/26 logp)

D
+IP’{\/% (1+22+2%+2}) > a@}

.1
< O(l?& @)7

where the last inequality follows from logp = o(n). The third result (63) is thus obtained

ora

by the union bound with 2 < &.
Essentially Equation (36) and Equation (37) are equivalent to each other. Thus we
only show that Equation (37) in Theorem 6 is just a simple consequence of results (i),

(ii) and (iii). Set ¢ > 0 sufficiently small and £ € (2,£p) sufficiently close to 2 such that
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2280 — /260 (1 +¢) > 28 and & (1 —€) > &, and 2 < & < £ We have
P (S(Qunr) = S(0))

= P (&7 #£0forall (i,j) € S()) +P (@ =0 for all (,5) ¢ S(Q))

)

250 (:)“C:J—f—(;}? logp
- P |wij|>J (@25 +55) for all (i) € S(Q)

n

2&) (IJ”G)-FL:)? logp
+P|@ﬂ§J (G +35) for all (i,7) ¢ S(2)

n

> P(sup —|w] il <4/ Elogp —]P’{sup
(1:7) \/Wiiwjj +wi2j n (1,9)

which is bounded below by

2,

Y
iy 2

d}iid}jj +w

ora __

>5},
WS

~ lo
o7t — wij| > Chs %p}—k

Wit —wy| 21 P {sup(i )
P sup “ Y < 51 o8P - { " oﬁii@jjerJ-z- =140 (1) )
(1:3) yJwiiwjj + wizj n P {SUP(i,j) ‘2] - 1‘ > 5}

wigwjj+wi
where s = o (\/n/ logp> implies slo% =0 (\/(logp) /n) 1

7.2. Proof of Theorem 8. The proof of this Theorem is very similar to that of Theorem
2. Due to the limit of space, we follow the line of the proof of Theorem 2 and Theorem 3,
but only give necessary details when the proof is different from that of Theorem 2. Note

that 3 for the latent variable graphical model is not sparse enough in the sense that

max Y;; min{l,W} #* 0< vn ) .
J

logp

Our strategy is to decompose it into two parts,
- - s
(64) B =So\a,44 — Lova,aQ4'y = B5—pBF,

where 85 = SO\AAQZ,IA and Bl = LO\A,AQ;\,IA correspond the sparse and low-rank
components respectively. We expect the penalized estimator B in (10) is closer to the

sparse part 3° than f itself, which motivates us to rewrite the regression model as follows,
(65) X4 =Xo\uB” + (€A - XO\AﬁL) 1= Xo\a8° + €,

with ei = (eA — XO\AﬁL), and define

(66) 0745 = (¢5)" (¢3) /n.
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We can show our estimator © A, is within a small ball of the "oracle” @ZZS with radius
at the rate of k,, yA%, where ki, , is the sparsity of model (65). More specifically, similar to
Lemma 2 for the proof of Theorem 2 we have the following result for the latent variable

graphical model. The proof is provided in the supplementary material.

LEMMA 5. Let A= (1+¢) 251% for any § > 1 and € > 0 in Equation (10). Define

the event E as follows,

(67) Brum — O5755| < Cllon X2,
185 = B, < Chkap,
HXO\A( —5m>H /n < Chknp),

|[Xbwaem/n|| < Cix

for m =i and j and some constants C,’C, 1 < k < 4. Under the assumptions in Theorem

8, we have
]P;{Ec} <o (p—5+1> '

Similar to the argument in Section 6.1.1, from Lemma 5 we have

()" (5) fn— s

on the event F, thus there is a constant C7 > 0 such that

{004 055 > ik} <0 (p707).

0. Gora,S o
i o =

)

< Chnp\?

Later we will show that there are some constant Cy and C5 such that
(68) P{H 3(,‘}4—9‘”““5” >02kn,,1n }<03 ,
which implies
P{J6sa -0 > Cutny 5} <0 (6707),
for some constant Cy > 0. Then following the proof of Theorem 3 exactly, we establish

Theorem 8.
Now we conclude the proof by establishing Equation (68). In fact, we will only show

that
¢

lo
0550 07| > CayyBE | < Cops,
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ggga _ eora,S

ora __ pora,S
ivi 075 — 0

for some C5 > 0. The tail bounds for i

’ and ‘ can be shown
similarly. Write

(69)

T
ezza_ezza,s _ € € — (f) (65) _ 637;61' —(Ei B XO\AﬁZL)T (ei B XO\AﬁlL) /n — Dy 4Dy,

where
2 2 (k)
_ T L _ § : L
Dl = EEZ' XO\ABZ = ﬁ Z 67:7.19 . (XO\A/Bl )

Lo\ L (k) AL\ . .2
Dy = —(8') XbaXoa! ~var (XG),8F) - Xy /n.
It is then enough to show that there are constants Cy and Cs such that

CQ logp} 05 _925
PIDs| > 2 kyp—r b < —
{| | > 5 Fnp— 5 P

for each D;, i = 1,2. We first study D1, which is an average of n i.i.d. random variables
k .
€ik - (X(()\)ABZL> with

i~ N (0,253L)  and X557 ~ A7 (0. () Sornonast)

T
where QZ,IA has bounded spectrum, and (ﬁZL) ZO\A,O\A@‘L < % for some Cg for the
assumption (43) that elements of 3 are at an order of %. From classical large deviations

bounds, there exist some uniform constants c1,co > 0 such that

’ { ‘ D e VPl

n

> t} < 2exp (—ntz/@) for 0 <t < e.

See, for example, Theorem 2.8 of Petrov (1995). By setting t = /22921982 — 4 (1), we have

[26¢51
(70) IP’{|D1| > 2 Cjwogp} <o

where 2, /%Cfl% =0 (kn,p logp ) from Equation (45). The derivation for the tail bound of

Dy is similar by a large deviation bound for X%n)’

2

X

]P){ (n) >1+t}§2exp<nt2/62) f0r0<t<017
n

which implies

26cy1
(71) P {|D2| > var (X(Ok\)Aﬁ,LL) (1 +14/ 0271%0) } <22
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by setting ¢ = \/% = o(1), where var (X(()k\)AﬂiL) (1 + \/W) =0(1/p) =

0 (k:n,p logp ) from Equation (45). Equations (70) and (71) imply the desired tail bound
(68).

8. Proof of Auxiliary Lemmas. In this section we prove two key lemmas, Lemmas

2 and 4, for establishing our main results.

8.1. Proof of Lemma 2. We first reparameterize Equations (7) and (10) by setting

e

n

to make the analysis cleaner, and then rewrite the regression (7) and the penalized pro-

(72) dy : b, and Y := X e - diag ( vn >
ke Ac

[1Xkl

cedure (10) as follows,

(73) X = Yd"™e + €.

and

(74) o) o =K XA o,
(75) {CZ, 6} - o=arg min Ty d, o),

where the true coefficients of the reparameterized regression (74) are

[ Xk
NG

(76) Jtrue — (dffme%e/xc , where di"¢ = B k-

Then the oracle estimator of o can be written as

X — Y™ | ]
N N

and we have the following relationship between {d, 6} and { Bm, émm},

(77) o = (9P =

(78) Bk = de-Y and Gy — 2.
[ Xkl

The proof has two parts. The first part is the algebraic analysis of the solution { A, 6’}
to the regression (74) by which we can define an event E such that Equations (48)-(51)
in Lemma 2 hold. The second part of the proof is the probabilistic analysis of the E.
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8.1.1. Algebraic Analysis. The function L) (d, o) is jointly convex in (d, o). For fixed

o, denote the minimizer of Ly (d, o) over all d € RP~2 by CZ(O’)\), a function of o, i.e.,

X — Yd|?
(79) d (o)) = arg I%lanLA (d,o) = argdé]]%HQ {271 + Ao ||d]]; ¢ -

then if we knew & in the solution of Equation (75), the solution for the equation is
{J(&)\) ,&}. Let 1 = Ao. From the Karush-Kuhn-Tucker condition, d (1) is the solution
of Equation (79) if and only if

(80) Y (X = Yd () fn = - sgn (di () 3 di (1) # 0,
YE (X = Yd () /0 € =l i di (1) = 0.
To define the event E we need to introduce some notation. Define the [ cone invertibility
factor (CIF) as follows,

1[5

(81) CIFl(a,K,Y)—inf{ Oo:ueC(a,K),uaéO},

”UK”l

where | K| is the cardinality of an index set K, and

C(a, K) = {u e R fugce, < afJuxcl]y }-

Let
(82) T = {kea,|dre >0}
(53) vo= YT (X =y | = Y e ]
and
rue )\
(84) T:AmaX{WH(dt )TC 1" CIF, (Sgﬂ,T,Y)}

for some & > 1 be specified later. Define
(85) E=n' L
where

86) 5L = {v<oorard 1(1—7)},

§+1

(€+1)°

. WW F}}
HXkH {\/W \/7} for all k € AC}

87) L = {Cm (e +1,T,Y) > Sal 0} with Coi = 1/ (10v2049)
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Now we show Equations (48)-(51) in Lemma 2 hold on the event E defined in Equation
(85). The following two results are helpful to establish our result. Their proofs are given

in the supplementary material.

ProproSITION 1.  For any £ > 1, on the event {u < ug_—}}, we have

&
(v +p) T }
1 CTF (26 +1,T,Y) )’

00 fdm) - ame

< max {(2 +2¢) H <dtm6>

1
I

TC

IN

(v+p) |d(w) - dme

(91) % Y (dre = d () -

PROPOSITION 2. Let {ci,a} be the solution of the scaled lasso (75). For any & > 1,

on the event I} = {1/ < UOM)‘E‘—T} (1— 7')} , we have

o

O-O’T‘CL

(92)

1‘§r.

Note that s = max; ¥;; min {1, |°&” l} is defined in terms of € which has bounded

spectrum, then on the event Iy,

mox{ (7).,

from the definition of 7" in Equation (82). On their intersection I; N Iy N I3, Proposition 2

1,>\|T|}§C>\s

and Proposition 1 with g = A¢ imply that there exist some constants c1, co and c3 such

that
c1A max { H (dtT“e) e ’
Co Max { H (dtme) e
[y (- d)[

L ],

then from the definition of 8 and Equations (6) and (78),

IN

|a_ _ O_ora|

,Aw@,
1

,A\Tr},
1

,)\]T\}.
1

IN

HCZ(M> — (true

1

R NN 2 (Xl
Bmk = A o> Omm =07, and Xy =Y - diag <> ,
" Do Vi) e

we immediately have

A~
ora
‘ Qmm - emm

=B, < ot
e (- Ba)[ < cirs

for some constants C, which are exactly Equations (48)-(50). From the definition of events

chem/nHoo < ).

_ |a__o_ora|.‘a_+0_ora’ SC{)\QS,

A

I, I3 and I, we obtain Equation (51), i.e.,
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8.1.2. Probabilistic Analysis. We will show that

P{If} < O(p~*!/Viogp),
P{I} < o(p~?) fori=2,3 and 4,

which implies
P{E}>1-o0 (p_(S‘H) .
We will first consider P{I$} and P {I{}, then P{IS}, and leave P {I{} to the last, which
relies on the bounds for P{If}, 2 <i < 4.
(1). To study P{I$} and P{I{}, we need the following tail bound for the chi-squared
distribution with n degrees of freedom,

2
Xy
n

> t} <2exp(—nt(tN1)/8),

(93) P {

for t > 0. Since 0" = ||le, || /+/n with €, ~ N (0,0 Iy), and Xy ~ N (0, o l,) with
ork € (1/M, M), we have

n (Uora)2 /Qmm ~ X%n)’ and HXkH2 /Jkk ~ X%”)’

then Equation (93) implies

P} = P{(0”") ¢ [1/ (2M), 2M]} sw{ “;::32 -1 > ;}
(94) < 2exp(-n/32) <o(p™),
and
(95)
P{I{} =P {”X;”Q ¢ [1/(2M),2M] for some k € AC} < 2pexp (—n/32) < o(p~?).

(2). To study the term CIF; (2§ + 1,T,Y) of the event I, we need to introduce some

notation first. Define
(YY) = max {:t (HYZ;YAu/nH - 1)} , and b, (Y) = mngTYngBu/n.
where
G = {(4,B,u,v) : (|A],|B], llull, ol}) = (,b,1,1) with AN\ B = 0} .

then 147} (Y) and 1—m, (Y) are the maximal and minimal eigenvalues of all submatrices

of Y'Y /n with dimensions no greater than a respectively, and 0, (Y) satisfies that

1/

(96) 0up (Y) < (1478 (V)2 (14w ()7 <1478, (Y).
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The following two propositions will be used to establish the probability bound for P {I5}.
Proposition 3 follows from Zhang and Huang (2008) Proposition 2(i). The proof of Propo-

sition 4 is given in the supplementary material.

PROPOSITION 3.  Let rows of the data matriz X be i.i.d. copies of N (0,%), and denote
the minimal and mazimal eigenvalues of X by Amin (X) and Amax (X) respectively. Assume

that m < c—2— with a sufficiently small constant ¢ > 0, then for ¢ > 0 we have
logp

(97)  P{1 =7 Anin (B) 1= 7 (X) S T 75, (X) < (14 7)* A (D)} > 1=,

where h = \/%4_ 2%1()%(5/2).

PROPOSITION 4. For CIF) (o, K,Y) defined in (81) with |K| = k, we have, for any
0<l<p-—k,
(98)
1

k
1=, (Y) - oz\/ie 7 (Y)) '
(1+a) ((1+a)/\M) ( L+k T

Note that there exists some constant C' such that C's is an upper bound of the |T'| from

the definitions of s and set T' (82) on I4. For | > C's Proposition 4 gives

CIFy (a,K,Y) >

1 - T
CIFy (26 +1,1,Y) > 10167 (1 = My (Y) = €+ 1)/ 77 Oy (Y))
1 _ Cs n
where the second inequality follows from (96). From the definition Y = X gc-diag ( H?\éfll ) heAe

and the property that 7Tai (Y) are increasing as functions of a, we have

keAe
Eéiﬁ { HQH } <1 T (X)> = i?elglc { HQH } (1 — Ty (XAc)) <1-my,(Y),

and by applying Proposition 3 to the data matrix Y with m = 41 = (4 (2 + 1) M3)2 Cs >

1+ (Y) < max o (1475 (Xa0)) < max v (17 (X)),
keae | Xl Xl
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Cs and € = p~2°, we have on Iy

1— 7y (Y) = (26 + 1) %;(1+7TL(Y))

. _ vn Cs 2 Vn
> (1= 1) i (%) puin { X, } ~ D () A () ?é%{llxki}
> (0~ Qe Y ) VIR

L qonp- Qen?>

e o203 ~10v2M3

— —26
with probability at least 1 — ¢, where h = \/% + \/leogp k;g(p ®2) o(1). Note
P {I5} < o(p~?), thus we established that P {I5} < o(p~9).
. Finally we study the probability of event /. e following tail probability of ¢
3). Finall dy th bability of I;. The followi il probability of

distribution is helpful in the analysis.

PROPOSITION 5.  Let T}, follows a t distribution with n degrees of freedom. Then there

exists €, — 0 as n — oo such that Vit > 0
P {Ts >n (6%2/(”71) — 1)} < (1+ep) 67t2/ (71'1/275) .

Please refer to Sun and Zhang (2012b) Lemma 1 for the proof. According to the defi-

nition of v in Equation (83) we have

T
v . Y e
= max |hy|, with h, = —2 for k € A°.
O-OTa keAc nO-OTCL

Note that each column of Y has norm ||Yg| = v/n by the normalization step (72). Given
X 4c, equivalently Y, we have

Yizth _ fioT (Y en/Vim) (/im0
m n (\/(tﬂem — el Y YFe,/n) /nOmm> / <\/m)

(Y%em/\/nemm)

~ tn-1)
(Vlrseol0-vom)

where t(,_1 is ¢ distribution with n — 1 degrees of freedom, since the numerator follows

a standard normal and the denominator follows an independent X%n—l)/ (n—1). From
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Proposition 5 we have

o)

(n—1h2 2(n—1)t*/n (n—1h2 2(n—-1)t3/(n—2)
- P{ 1fh§k> 1—2t2/n }SP{ 1fhik> 1—12/(n—2) }

IN

(n—1) h% 2t2 /(n—2 —t2 1/2
where the first inequality holds when 2 > 2, and the second inequality which follows the
fact e"—1 < z/(1-%) for 0 < z < 2. Now let t* = §logp > 2, and A = (\/25 (1+ E)) \/ lo%

with £ = 3/e+1, then we have )\% (1—-7)> 251% for sufficiently small 7. Clearly, the

7 defined in Equation (84) satisfies 7 = O (sA?) which is sufficiently small on Iy N I3 N Iy.

Therefore we have

201
P{ﬂéilli} > IP’{UZM < W} —P{(IoN 13N 1)}
20logp . po+1
> 1—p-P —P{(lanIzNI >1-—
(100) = D {|hk\>\/T} {(IoNIsN 1)} > O(\/@ 7

which implies immediately P{I{} < O (p“”l/\/log p).

8.2. Proof of Lemma 4. Now we establish the lower bound (60) for the total variation
affinity. Since the affinity [go A qidp =1 — % [|go — 1| dp for any two densities gy and

q1, Jensen’s Inequality implies

- ataf'- (f

1/2
Hence [qo Aqidp >1—3 (f g—id,u - 1) . To establish (60), it thus suffices to show that

A:/(nLZilfm)Q_lzniz%/(%_l)%O'

The following lemma is used to calculate the term [ (f,fi/fo — 1) in A.

qo — q1

2 2 2
qodﬂ> S/@oqﬂdu: Wy 1)
q0 q0

q0

LEMMA 6. Let gs be the density function of N (0,%s), s =0,m orl. Then

Imdi

- [det (1 =55 (S — 30) Tg™ (% — 20))}_1/2 .
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Let X, = Q;ll for 0 < m < m,. Lemma 6 implies

/J?fl(fl - (/ gglogly = [det (I — Qo (Sm — Xo) Qo (51 — %)) 2.

Let J(m,1) be the number of overlapping nonzero off-diagonal elements between ¥, and
¥, in the first row. Recall the simple structures of Q¢ (55) and X,,, — ¥ by our construction.

Elementary calculations yield that

1+b2
det (I — Qo (3 — o) Q0 (51 — o)) = (1 - G:LWJGQ)Qv
which is 1 when J = 0. Now we set d := -2 > 1 to simplify our notation. It is easy to

(1-b2)*
see that the total number of pairs (£,,, ¥;) such that J(m, 1) = jis (k,]"f2 ) (= 1y (=L ey
Hence,

n,p—1 J Fn,p—=1—=j
2 2o [

2
M 0<j<homp—1 J(ml)=

_ TT1L2 3 S ‘((1—dja2)*"—1>

* 0<j<kn,p—1 J(m,l)=j

1 p—2 knp—1\(p—1—ky, . 9N—n
(101) < - Z (k 1) ( np > (k L 7?) (1 —dja®)™".
T 1< =1 NP J e J

Note that

(1 —dja*)™™ < (1 + 2dja*)" < exp (n2dja2) = p?dni

where the first inequality follows from the fact that dja? < dk, pa < ( 1 b2)2 71Cp < 1/2.
Hence,
o i I
A < Z J p_;t,;u J dele
1§j§kn,p_1 (k'n,p_l)
(knp=D! )2
_ Z l ((kn p—1- J)) p2ini
} il (p—2)!(p—2kn p+j)!
1<j<knp— [(p— 1_kn,p)!]2
g2 p2dr \J
< Z n:pp ,
- . D—knp—1
1<j<knp—1 ,

where the last inequality follows from the facts that % is a product of j terms

(P=2)!(p=2kn.p+3)!
[(p—1—kn,p)1)?
terms with each term greater than (p — knp — 1). Recall the assumption (27) p > k;, ,

is bounded below by a product of j

with each term less than £, , and

So for large enough p, we have p — k;, , — 1 > p/2 and

) p2d7'1 o/ deTl
kpp—F— < 2p77——
’ p— kn,p -1

< 9p-(-2)/)
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where the last step follows from the fact that 7 < (v — 2) / (4vd). Thus

A<2 Y R/ g
1<j<kn,p—1

which immediately implies (60). B

SUPPLEMENTARY MATERIAL

Supplement to ” Asymptotic Normality and Optimalities in Estimation of
Large Gaussian Graphical Model”
(doi: 10.1214/00-AOSXXXXSUPP). In this supplement we collect proofs for proving aux-

iliary Lemma 1 and 5 and Proposition 1, 2 and 4.
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