
Submitted to the Annals of Statistics
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The Gaussian graphical model, a popular paradigm for study-

ing relationship among variables in a wide range of applications, has

attracted great attention in recent years. This paper considers a fun-

damental question: When is it possible to estimate low-dimensional

parameters at parametric square-root rate in a large Gaussian graph-

ical model? A novel regression approach is proposed to obtain asymp-

totically efficient estimation of each entry of a precision matrix under

a sparseness condition relative to the sample size. When the precision

matrix is not sufficiently sparse, or equivalently the sample size is not

sufficiently large, a lower bound is established to show that it is no

longer possible to achieve the parametric rate in the estimation of

each entry. This lower bound result, which provides an answer to the

delicate sample size question, is established with a novel construction

of a subset of sparse precision matrices in an application of Le Cam’s

Lemma. Moreover, the proposed estimator is proven to have optimal

convergence rate when the parametric rate cannot be achieved, under

a minimal sample requirement.

The proposed estimator is applied to test the presence of an edge

in the Gaussian graphical model or to recover the support of the

entire model, to obtain adaptive rate-optimal estimation of the entire

precision matrix as measured by the matrix lq operator norm, and to

make inference in latent variables in the graphical model. All these are

achieved under a sparsity condition on the precision matrix and a side

condition on the range of its spectrum. This significantly relaxes the

commonly imposed uniform signal strength condition on the precision

matrix, irrepresentable condition on the Hessian tensor operator of

the covariance matrix or the `1 constraint on the precision matrix.
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Numerical results confirm our theoretical findings. The ROC curve

of the proposed algorithm, Asymptotic Normal Thresholding (ANT),

for support recovery significantly outperforms that of the popular

GLasso algorithm.

1. Introduction. Gaussian graphical model, a powerful tool for investigating the re-

lationship among a large number of random variables in a complex system, is used in a

wide range of scientific applications. A central question for Gaussian graphical model is

to recover the structure of an undirected Gaussian graph. Let G = (V,E) be an undi-

rected graph representing the conditional dependence relationship between components of

a random vector Z = (Z1, . . . , Zp)
T as follows. The vertex set V = {V1, . . . , Vp} represents

the components of Z. The edge set E consists of pairs (i, j) indicating the conditional

dependence between Zi and Zj given all other components. In applications, the follow-

ing question is fundamental: Is there an edge between Vi and Vj? It is well known that

recovering the structure of an undirected Gaussian graph G = (V,E) is equivalent to

recovering the support of the population precision matrix of the data in the Gaussian

graphical model. Let

Z = (Z1, Z2, . . . , Zp)
T ∼ N (µ,Σ) ,

where Σ = (σij) is the population covariance matrix. The precision matrix, denoted by

Ω = (ωij), is defined as the inverse of covariance matrix, Ω = Σ−1. There is an edge

between Vi and Vj , i.e., (i, j) ∈ E, if and only if ωij 6= 0. See, for example, Lauritzen

(1996). Consequently, the support recovery of the precision matrix Ω yields the recovery

of the structure of the graph G.

Suppose n i.i.d. p-variate random vectors X(1), X(2), . . . , X(n) are observed from the

same distribution as Z, i.e. the Gaussian N
(
µ,Ω−1

)
. Assume without loss of generality

that µ = 0 hereafter. In this paper, we address the following two fundamental questions:

When is it possible to make statistical inference for each individual entry of a precision

matrix Ω at the parametric
√
n rate? When and in what sense is it possible to recover the

support of Ω in the presence of some small nonzero |ωij |?
The problems of estimating a large sparse precision matrix and recovering its support

have drawn considerable recent attention. There are mainly two approaches in literature.

The first one is a penalized likelihood estimation approach with a lasso-type penalty on

entries of the precision matrix. Yuan and Lin (2007) proposed to use the lasso penalty

and studied its asymptotic properties when p is fixed. Ravikumar et al. (2011) derived

the rate of convergence when the dimension p is high by applying a primal-dual witness
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construction under an irrepresentability condition on the Hessian tensor operator and a

constraint on the matrix l1 norm of the precision matrix. See also Rothman et al. (2008)

and Lam and Fan (2009) for other related results. The other one is the neighborhood-

based approach, by running a lasso-type regression or Dantzig selection type of each

variable on all the rest of variables to estimate precision matrix column by column. See

Meinshausen and Bühlmann (2006), Yuan (2010), Cai, Liu and Luo (2011), Cai, Liu and

Zhou (2012) and Sun and Zhang (2012a). The irrepresentability condition is no longer

needed in Cai, Liu and Luo (2011) and Cai, Liu and Zhou (2012) for support recovery,

but the thresholding level for support recovery depends on the matrix l1 norm of the

precision matrix. The matrix l1 norm is unknown and large, which makes the support

recovery procedures there nonadaptive and thus less practical. In Sun and Zhang (2012a),

optimal convergence rate in the spectral norm is achieved without requiring the matrix `1

norm constraint or the irrepresentability condition. However, support recovery properties

of the estimator was not analyzed.

In spite of an extensive literature on the topic, it is still largely unknown the funda-

mental limit of support recovery in the Gaussian graphical model, let alone an adaptive

procedure to achieve the limit.

Statistical inference of low-dimensional parameters at the
√
n rate has been considered

in the closely related linear regression model. Sun and Zhang (2012b) proposed an efficient

scaled Lasso estimator of the noise level under the sample size condition n � (s log p)2,

where s is the `0 or capped-`1 measure of the size of the unknown regression vector. Zhang

and Zhang (2011) proposed an asymptotically normal low-dimensional projection estima-

tor for the regression coefficients and their estimator was proven to be asymptotically

efficient by van de Geer, Bühlmann and Ritov (2013) in a semiparametric sense under

the same sample size condition. The asymptotic efficiency of these estimators can be also

understood through the minimum Fisher information in a more general context (Zhang,

2011). Alternative methods for testing and estimation of regression coefficients were pro-

posed in Belloni, Chernozhukov and Hansen (2012), Bühlmann (2012), and Javanmard

and Montanari (2013). However, the optimal rate of convergence is unclear from these

papers when the sample size condition n� (s log p)2 fails to hold.

This paper makes important advancements in the understanding of statistical inference

of low-dimensional parameters in the Gaussian graphical model in the following ways.

Let s be the maximum degree of the graph or a certain more relaxed capped-`1 measure

of the complexity of the precision matrix. We prove that the estimation of each ωij at

the parametric
√
n convergence rate requires the sparsity condition s ≤ O(1)n1/2/ log p
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or equivalently a sample size of order (s log p)2. We propose an adaptive estimator of

individual ωij and prove its asymptotic normality and efficiency when n � (s log p)2.

Moreover, we prove that the proposed estimator achieves the optimal convergence rate

when the sparsity condition is relaxed to s ≤ c0n/ log p for a certain positive constant c0.

The efficient estimator of the individual ωij is then used to construct fully data driven

procedures to recover the support of Ω and to make statistical inference about latent

variables in the graphical model.

The methodology we are proposing is a novel regression approach briefly described in

Sun and Zhang (2012c). In this regression approach, the main task is not to estimate

the slope as seen in Meinshausen and Bühlmann (2006), Yuan (2010), Cai, Liu and Luo

(2011), Cai, Liu and Zhou (2012) and Sun and Zhang (2012b), but to estimate the noise

level. For any index subset A of {1, 2, . . . , p} and a vector Z of length p, we use ZA to

denote a vector of length |A| with elements indexed by A. Similarly for a matrix U and

two index subsets A and B of {1, 2, . . . , p} we can define a submatrix UA,B of size |A|×|B|
with rows and columns of U indexed by A and B respectively. Consider A = {i, j}, for

example, i = 1 and j = 2, then ZA = (Z1, Z2)T and ΩA,A =

 ω11 ω12

ω21 ω22

. It is well

known that

ZA|ZAc = N
(
−Ω−1

A,AΩA,AcZAc ,Ω
−1
A,A

)
.

This observation motivates us to consider regression with two response variables above.

The noise level Ω−1
A,A has only three parameters. When Ω is sufficiently sparse, a penalized

regression approach is proposed in Section 2 to obtain an asymptotically efficient estima-

tion of ωij , i.e., the estimator is asymptotically normal and the variance matches that of

the maximum likelihood estimator in the classical setting where the dimension p is a fixed

constant. Consider the class of parameter spaces modeling sparse precision matrices with

at most kn,p off-diagonal nonzero elements in each column,

(1) G0(M,kn,p) =

 Ω = (ωij)1≤i,j≤p : max1≤j≤p
∑
i 6=j 1 {ωij 6= 0} ≤ kn,p,

and 1/M ≤ λmin (Ω) ≤ λmax (Ω) ≤M.

 ,
where 1 {·} is the indicator function and M is some constant greater than 1. The following

theorem shows that a necessary and sufficient condition to obtain a
√
n−consistent esti-

mation of ωij is kn,p = O
( √

n
log p

)
, and when kn,p = o

( √
n

log p

)
the procedure to be proposed

in Section 2 is asymptotically efficient.

Theorem 1. Let X(i)i.i.d.∼ Np(µ,Σ), i = 1, 2, . . . , n. Assume that kn,p ≤ c0n/ log p with

a sufficiently small constant c0 > 0 and p ≥ kνn,p with some ν > 2. We have the following
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probablistic results,

(i). There exists a constant ε0 > 0 such that

inf
i,j

inf
ω̂ij

sup
G0(M,kn,p)

P
{
|ω̂ij − ωij | ≥ ε0 max

{
n−1kn,p log p, n−1/2}} ≥ ε0.

(ii). The estimator ω̂ij defined in (12) is rate optimal in the sense of

max
i,j

sup
G0(M,kn,p)

P
{
|ω̂ij − ωij | ≥M max

{
n−1kn,p log p, n−1/2}}→ 0,

as (M,n)→ (∞,∞). Furthermore, the estimator ω̂ij is asymptotically efficient when

kn,p = o
( √

n
log p

)
, i.e., with F−1

ij = ωiiωjj + ω2
ij ,

(2)
√
nFij (ω̂ij − ωij)

D→ N (0, 1) .

Moreover, the minimax risk of estimating ωij over the class G0(k,Mn,p) satisfies, pro-

vided n = O
(
pξ
)

with some ξ > 0,

(3) inf
ω̂ij

sup
G0(M,kn,p)

E |ω̂ij − ωij | � max

{
kn,p

log p

n
,

√
1

n

}
.

The lower bound is established through Le Cam’s Lemma and a novel construction

of a subset of sparse precision matrices. An important implication of the lower bound is

that the difficulty of support recovery for sparse precision matrix is different from that for

sparse covariance matrix when kn,p �
( √

n
log p

)
, and when kn,p �

( √
n

log p

)
the difficulty of

support recovery for sparse precision matrix is just the same as that for sparse covariance

matrix.

It is worthwhile to point out that the asymptotic efficiency result is obtained without the

need to assume the irrepresentable condition or the l1 constraint of the precision matrix

which are commonly required in literature. An immediate consequence of the asymptotic

normality result (2) is to test individually whether there is an edge between Vi and Vj

in the set E, i.e., the hypotheses ωij = 0. The result is applied to do adaptive support

recovery optimally. In addition, we can strengthen other results in literature under weaker

assumptions, and the procedures are adaptive, including adaptive rate-optimal estimation

of the precision matrix under various matrix lq norms, and an extension of our framework

for inference and estimation to a class of latent variable graphical models. See Section 3

for details.

Our work on optimal estimation of precision matrix given in the present paper is closely

connected to a growing literature on estimation of large covariance matrices. Many reg-

ularization methods have been proposed and studied. For example, Bickel and Levina
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(2008a,b) proposed banding and thresholding estimators for estimating bandable and

sparse covariance matrices respectively and obtained rate of convergence for the two esti-

mators. See also El Karoui (2008) and Lam and Fan (2009). Cai, Zhang and Zhou (2010)

established the optimal rates of convergence for estimating bandable covariance matrices.

Cai and Zhou (2012) and Cai, Liu and Zhou (2012) obtained the minimax rate of con-

vergence for estimating sparse covariance and precision matrices under a range of losses

including the spectral norm loss. In particular, a new general lower bound technique for

matrix estimation was developed there. See also Sun and Zhang (2012a).

The proposed estimator was briefly described in Sun and Zhang (2012c) along with a

statement of the efficiency of the estimator without proof under the sparsity assumption

kn,p � n−1/2 log p. While we are working on the delicate issue of the necessity of the

sparsity condition kn,p � n1/2/ log p and the optimality of the method for support recovery

and estimation under the general sparsity condition kn,p � n/ log p, Liu (2013) developed

p-values for testing ωij = 0 and related FDR control methods under the stronger sparsity

condition kn,p � n1/2/ log p. However, his method cannot be converted into confidence

intervals, and the optimality of his method is unclear under either sparsity conditions.

The paper is organized as follows. In Section 2, we introduce our methodology and

main results for statistical inference. Applications to estimation under the spectral norm,

to support recovery and estimation of latent variable graphical model are presented in

Section 3. Section 4 discusses extensions of results in Sections 2 and 3. Numerical studies

are given in Section 5. Proofs for theorems in Sections 2-3 are given in Sections 6-7.

Proofs for main lemmas are given in Section 8. We collect auxiliary results for proving

main lemmas in the supplementary material.

Notations. We summarize here some notations to be used throughout the paper. For

1 ≤ w ≤ ∞, we use ‖u‖w and ‖A‖w to denote the usual vector lw norm, given a vector

u ∈ Rp and a matrix A = (aij)p×p respectively. In particular, ‖A‖∞ denote the entry-wise

maximum maxij |aij |. We shall write ‖·‖ without a subscript for the vector l2 norm. The

matrix `w operator norm of a matrix A is defined by |||A|||w = max‖x‖w=1 ‖Ax‖w. The

commonly used spectral norm ||| · ||| coincides with the matrix `2 operator norm ||| · |||2.

2. Methodology and Statistical Inference. In this section we will introduce our

methodology for estimating each entry and more generally, a smooth functional of any

square submatrix of finite size. Asymptotic efficiency results are stated in Section 2.2

under a sparseness assumption. The lower bound in Section 2.3 shows that the sparseness

condition to obtain the asymptotic efficiency in Section 2.2 is sharp.
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2.1. Methodology. We will first introduce the methodology to estimate each entry ωij ,

and discuss its extension to the estimation of functionals of a submatrix of the precision

matrix.

The methodology is motivated by the following simple observation with A = {i, j},

(4) Z{i,j}|Z{i,j}c = N
(
−Ω−1

A,AΩA,AcZ{i,j}c ,Ω
−1
A,A

)
.

Equivalently we write

(5) (Zi, Zj) = ZT{i,j}cβ + (ηi, ηj) ,

where the coefficients and error distributions are

(6) β = −ΩAc,AΩ−1
A,A, (ηi, ηj)

T ∼ N
(
0,Ω−1

A,A

)
.

Denote the covariance matrix of (ηi, ηj)
T by

ΘA,A = Ω−1
A,A =

 θii θij

θji θjj

 .

We will estimate ΘA,A and expect that an efficient estimator of ΘA,A yields an efficient

estimation of entries of ΩA,A by inverting the estimator of ΘA,A.

Denote the n by p dimensional data matrix by X. The ith row of data matrix is the

ith sample X(i). Let XA be the columns indexed by A = {i, j} . Based on the regression

interpretation (5), we have the following data version of the multivariate regression model

(7) XA = XAcβ + εA.

Here each row of (7) is a sample of the linear model (5). Note that β is a p − 2 by 2

dimensional coefficient matrix. Denote a sample version of ΘA,A by

(8) Θora
A,A = (θorakl )k∈A,l∈A = εTAεA/n

which is an oracle MLE of ΘA,A, assuming that we know β, and

(9) Ωora
A,A = (ωorakl )k∈A,l∈A =

(
Θora
A,A

)−1
.

But of course β is unknown, and we will need to estimate β and plug in its estimator to

estimate εA.

Now we formally introduce the methodology. For each m ∈ A = {i, j}, we apply a

scaled lasso penalization to the univariate linear regression of Xm against XAc as follows,

(10)
{
β̂m, θ̂

1/2
mm

}
= arg min

b∈Rp−2,σ∈R+

‖Xm −XAcb‖2

2nσ
+
σ

2
+ λ

∑
k∈Ac

‖Xk‖√
n
|bk|

 ,
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with a weighted `1 penalty, where the vector b is indexed by Ac. The penalty level will be

specified explicitly later. Define the residuals of the scaled lasso regression by

ε̂A = XA −XAc β̂,

and

(11) Θ̂A,A = ε̂TAε̂A/n.

It can be shown that this definition of θ̂mm is consistent with the θ̂mm obtained from the

scaled lasso (10) for eachm ∈ A. Finally we simply inverse the estimator Θ̂A,A =
(
θ̂kl
)
k,l∈A

to estimate entries in ΩA,A, i.e.

(12) Ω̂A,A = Θ̂−1
A,A.

This methodology can be routinely extended into a more general form. For any subset

B ⊂ {1, 2, . . . , p} with a bounded size, the conditional distribution of ZB given ZBc is

(13) ZB|ZBc = N
(
−Ω−1

B,BΩB,BcZBc ,Ω
−1
B,B

)
,

so that the associated multivariate linear regression model is XB = XBcβB,Bc + εB with

βBc,B = −ΩBc,BΩ−1
B,B and εB ∼ N

(
0,Ω−1

B,B

)
. Consider a slightly more general problem of

estimating a smooth functional of Ω−1
B,B, denoted by

ζ := ζ
(
Ω−1
B,B

)
.

When βBc,B is known, εB is sufficient for Ω−1
B,B due to the independence of εB and XBc ,

so that an oracle estimator of ζ can be defined as

ζora = ζ
(
εTBεB/n

)
.

We apply scaled lasso to the univariate linear regression of Xm against XBc for each

m ∈ B as in Equation (10),

{
β̂m, θ̂

1/2
mm

}
= arg min

b∈Rp−|B|,σ∈R+

‖Xm −XBcb‖2

2nσ
+
σ

2
+ λ

∑
k∈Bc

‖Xk‖√
n
|bk|


where |B| is the size of subset B. The residual matrix of the model is ε̂B = XB−XBc β̂Bc,B,

then the scaled lasso estimator of ζ
(
Ω−1
B,B

)
is defined by

(14) ζ̂ = ζ
(
ε̂TB ε̂B/n

)
.
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2.2. Statistical Inference. For λ > 0, define capped-`1 balls as

(15) G∗(M, s, λ) = {Ω : sλ(Ω) ≤ s, 1/M ≤ λmin (Ω) ≤ λmax (Ω) ≤M} ,

where sλ = sλ(Ω) = maxj Σi 6=j min {1, |ωij | /λ} for Ω = (ωij)1≤i,j≤p. In this paper, λ is of

the order
√

(log p)/n. We omit the subscript λ from s when it is clear from the context.

When |ωij | is either 0 or larger than λ, sλ is the maximum node degree of the graph,

which is denoted by kn,p in the class of parameter spaces (1). In general, kn,p is an upper

bound of the sparseness measurement sλ. The spectrum of Σ is bounded in the matrix

class G∗(M, s, λ) as in the `0 ball (1). The following theorem gives an error bound for our

estimators by comparing them with the oracle MLE (8), and shows that

κoraij =
√
n

ωoraij − ωij√
ωiiωjj + ω2

ij

is asymptotically standard normal, which implies the oracle MLE (8) is asymptotically

normal with mean ωij and variance n−1
(
ωiiωjj + ω2

ij

)
.

Theorem 2. Let Θ̂A,A and Ω̂A,A be estimators of ΘA,A and ΩA,A defined in (11) and

(12) respectively, and λ = (1 + ε)
√

2δ log p
n for any δ ≥ 1 and ε > 0 in Equation (10).

(i). Suppose s ≤ c0n/ log p for a sufficiently small constant c0 > 0. We have

(16) max
Ω∈G∗(M,s,λ)

max
A:A={i,j}

P
{∥∥∥Θ̂A,A −Θora

A,A

∥∥∥
∞
> C1s

log p

n

}
≤ o

(
p−δ+1

)
,

and

(17) max
Ω∈G∗(M,s,λ)

max
A:A={i,j}

P
{∥∥∥Ω̂A,A − Ωora

A,A

∥∥∥
∞
> C ′1s

log p

n

}
≤ o

(
p−δ+1

)
,

where Θora
A,A and Ωora

A,A are the oracle estimators defined in (8) and (9) respectively

and C1 and C ′1 are positive constants depending on {ε, c0,M} only.

(ii). There exist constants D1 and ϑ ∈ (0,∞), and three marginally standard normal

random variables Zkl, where kl = ii, ij, jj, such that whenever |Zkl| ≤ ϑ
√
n for all

kl, we have

(18)
∣∣∣κoraij − Z ′∣∣∣ ≤ D1√

n

(
1 + Z2

ii + Z2
ij + Z2

jj

)
,

where Z ′ ∼ N (0, 1), which can be defined as a linear combination of Zkl, kl =

ii, ij, jj.

Theorem 2 immediately yields the following results of estimation and inference for ωij .
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Theorem 3. Let Ω̂A,A be the estimator of ΩA,A defined in (12), and λ = (1 + ε)
√

2δ log p
n

for any δ ≥ 1 and ε > 0 in Equation (10). Suppose s ≤ c0n/ log p for a sufficiently small

constant c0 > 0. For any small constant ε > 0, there exists a constant C2 = C2 (ε, ε, c0,M)

such that

(19) max
Ω∈G∗(M,s,λ)

max
1≤i≤j≤p

P
{
|ω̂ij − ωij | > C2 max

{
s

log p

n
,

√
1

n

}}
≤ ε.

Moreover, there is constant C3 = C3 (ε, ε, c0,M) such that

(20) max
Ω∈G∗(M,s,λ)

P

∥∥∥Ω̂− Ω
∥∥∥
∞
> C3 max

s log p

n
,

√
log p

n


 ≤ o (p−δ+3

)
.

Furthermore, ω̂ij is asymptotically efficient

(21)
√
nFij (ω̂ij − ωij)

D→ N (0, 1) ,

when Ω ∈ G∗(M, s, λ) and s = o (
√
n/ log p), where

F−1
ij = ωiiωjj + ω2

ij.

Remark 1. The upper bounds max
{
s log p

n ,
√

1
n

}
and max

{
s log p

n ,
√

log p
n

}
in Equa-

tions (19) and (20) respectively are shown to be rate-optimal in Section 2.3.

Remark 2. The choice of λ = (1 + ε)
√

2δ log p
n is common in literature, but can be

too big and too conservative, which usually leads to some estimation bias in practice.

Let tq (α, n) denotes the α quantile of the t distribution with n degrees of freedom. In

Section 4 we show the value of λ can be reduced to λnewfinite = (1 + ε)B/
√
n− 1 +B2

where B = tq

(
1−

(
smax
p

)δ
/2, n− 1

)
for every smax = o

( √
n

log p

)
, which is asymptotically

equivalent to (1 + ε)
√

2δ log(p/smax)
n . See Section 4 for more details. In simulation studies

of Section 5, we use the penalty λnewfinite with δ = 1, which gives a good finite sample

performance.

Remark 3. In Theorems 2 and 3, our goal is to estimate each entry ωij of the preci-

sion matrix Ω. Sometimes it is more natural to consider estimating the partial correlation

rij = −ωij/(ωiiωjj)1/2 between Zi and Zj. Let Ω̂A,A be estimator of ΩA,A defined in

(12). Our estimator of partial correlation rij is defined as r̂ij = −ω̂ij/(ω̂iiω̂jj)1/2. Then

the results above can be easily extended to the case of estimating rij . In particular, un-

der the same assumptions in Theorem 3, the estimator r̂ij is asymptotically efficient:√
n(1− r2

ij)
−2(r̂ij − rij) converges to N (0, 1) when s = o (

√
n/ log p). This is stated as

Corollary 1 in Sun and Zhang (2012c) without proof.
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The following theorem extends Theorems 2 and 3 to estimation of ζ
(
Ω−1
B,B

)
, a smooth

functional of Ω−1
B,B for a bounded size subset B. Assume that ζ : R|B|×|B| → R is a unit

Lipschitz function in a neighborhood
{
G : |||G− Ω−1

B,B||| ≤ κ
}
, i.e.,

(22)
∣∣∣ζ (G)− ζ

(
Ω−1
B,B

)∣∣∣ ≤ |||G− Ω−1
B,B|||.

Theorem 4. Let ζ̂ be the estimator of ζ defined in (14), and λ = (1 + ε)
√

2δ log p
n for

any δ ≥ 1 and ε > 0 in Equation (10). Suppose s ≤ c0n/ log p for a sufficiently small

constant c0 > 0. Then,

(23) max
Ω∈G∗(M,s,λ)

P
{∣∣∣ζ̂ − ζora∣∣∣ > C1s

log p

n

}
≤ o

(
|B| p−δ+1

)
,

with a constant C1 = C1(ε, c0,M, |B|). Furthermore, ζ̂ is asymptotically efficient

(24)
√
nFζ

(
ζ̂ − ζ

)
D→ N (0, 1) ,

when Ω ∈ G∗(M, s, λ) and s = o (
√
n/ log p), where Fζ is the Fisher information of esti-

mating ζ for the Gaussian model N
(
0,Ω−1

B,B

)
.

Remark 4. The results in this section can be easily extended to the weak lq ball with

0 < q < 1 to model the sparsity of the precision matrix. A weak lq ball of radius c in Rp

is defined as follows,

Bq (c) =
{
ξ ∈ Rp :

∣∣∣ξq(j)∣∣∣ ≤ cj−1, for all j = 1, . . . , p
}
,

where
∣∣∣ξ(1)

∣∣∣ ≥ ∣∣∣ξ(2)

∣∣∣ ≥ . . . ≥ ∣∣∣ξ(p)

∣∣∣. Let

(25) Gq(M,kn,p) =

 Ω = (ωij)1≤i,j≤p : ω·j ∈ Bq (kn,p) ,

and 1/M ≤ λmin (Ω) ≤ λmax (Ω) ≤M.

 .
Since ξ ∈ Bq(k) implies

∑
j min(1, |ξj |/λ) ≤ bk/λqc+ {q/(1− q)}k1/qbk/λqc1−1/q/λ,

(26) Gq(M,kn,p) ⊆ G∗(M, s, λ), 0 ≤ q ≤ 1,

when kn,p/λ
q ≤ Cq(s ∨ 1), where Cq = 1 + q2q/(1 − q) for 0 < q < 1 and C0 = 1. Thus,

the conclusions of Theorems 2, 3 and 4 hold with G∗(M, s, λ) replaced by Gq(M,kn,p) and

s by kn,p(n/ log p)q/2, 0 ≤ q < 1.
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2.3. Lower Bound. In this section, we derive a lower bound for estimating ωij over the

matrix class G0(M,kn,p) defined in (1). Assume that

(27) p ≥ kνn,p with ν > 2,

and

(28) kn,p ≤ C0
n

log p

for some C0 > 0. Theorem 5 below implies that the assumption kn,p
log p
n → 0 is necessary

for consistent estimation of any single entry of Ω.

We carefully construct a finite collection of distributions G0 ⊂ G0(M,kn,p) and apply

Le Cam’s method to show that for any estimator ω̂ij ,

(29) sup
G0

P
{
|ω̂ij − ωij | > C1kn,p

log p

n

}
→1,

for some constant C1 > 0. It is relatively easy to establish the parametric lower bound√
1
n . These two lower bounds together immediately yield Theorem 5 below.

Theorem 5. Suppose we observe independent and identically distributed p-variate

Gaussian random variables X(1), X(2), . . . , X(n) with zero mean and precision matrix Ω =

(ωkl)p×p ∈ G0(M,kn,p). Under assumptions (27) and (28), we have the following minimax

lower bounds

(30) inf
ω̂ij

sup
G0(M,kn,p)

P
{
|ω̂ij − ωij | > max

{
C1
kn,p log p

n
,C2

√
1

n

}}
> c1 > 0,

and

(31) inf
Ω̂

sup
G0(M,kn,p)

P

∥∥∥Ω̂− Ω
∥∥∥
∞
> max

C ′1kn,p log p

n
,C ′2

√
log p

n


 > c2 > 0,

where C1, C2, C
′
1 and C ′2 are positive constants depending on M, ν and C0 only.

Remark 5. The lower bound
kn,p log p

n in Theorem 5 shows that estimation of sparse

precision matrix can be very different from estimation of sparse covariance matrix. The

sample covariance always gives a parametric rate of estimation of every entry σij. But

for estimation of sparse precision matrix, when kn,p�
√

n
log p , Theorem 5 implies that it is

impossible to obtain the parametric rate.
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Remark 6. Since G0(M,kn,p) ⊆ G∗(M,kn,p, λ) by the definitions in (1) and (15),

Theorem 5 also provides the lower bound for the larger class. Similarly, Theorem 5 can be

easily extended to the weak lq ball, 0 < q < 1, defined in (25) and the capped-`1 ball defined

in (15). For these parameter spaces, in the proof of Theorem 5 we only need to define H
as the collection of all p× p symmetric matrices with exactly

(
kn,p

(
n

log p

)q/2
− 1

)
rather

than (kn,p − 1) elements equal to 1 between the third and the last elements on the first

row (column) and the rest all zeros. Then it is easy to check that the sub-parameter space

G0 in (56) is indeed in Gq(M,kn,p). Now under assumptions p ≥
(
kn,p

(
n

log p

)q/2)v
with

ν > 2 and kn,p ≤ C0

(
n

log p

)1−q/2
,we have the following minimax lower bounds

inf
ω̂ij

sup
Gq(M,kn,p)

P
{
|ω̂ij − ωij | > max

{
C1kn,p

(
log p

n

)1−q/2
, C2

√
1

n

}}
> c1 > 0,

and

inf
Ω̂

sup
Gq(M,kn,p)

P

∥∥∥Ω̂− Ω
∥∥∥
∞
> max

C ′1kn,p
(

log p

n

)1−q/2
, C ′2

√
log p

n


 > c2 > 0.

These lower bounds match the upper bounds for the proposed estimator in Theorem 3 in

view of the discussion in Remark 4.

3. Applications. The asymptotic normality result is applied to obtain rate-optimal

estimation of the precision matrix under various matrix lw norms, to recover the sup-

port of Ω adaptively, and to estimate latent graphical models without the need of the

irrepresentable condition or the l1 constraint of the precision matrix commonly required

in literature. Our procedure is first obtaining an Asymptotically Normal estimation and

then do Thresholding. We thus call it ANT.

3.1. ANT for Adaptive Support Recovery. The support recovery of precision matrix

has been studied by several papers. See, for example, Friedman, Hastie and Tibshirani

(2008), d’Aspremont, Banerjee and El Ghaoui (2008), Rothman et al. (2008), Ravikumar

et al. (2011), Cai, Liu and Luo (2011), and Cai, Liu and Zhou (2012). In these liter-

ature, the theoretical properties of the graphical lasso (Glasso), CLIME and ACLIME

on the support recovery were obtained. Ravikumar et al. (2011) studied the theoretical

properties of Glasso, and showed that Glasso can correctly recover the support under

irrepresentable conditions and the condition min(i,j)∈S(Ω) |ωij | ≥ c
√

log p
n for some c > 0.

Cai, Liu and Luo (2011) does not require irrepresentable conditions, but need to assume

that min(i,j)∈S(Ω) |ωij | ≥ CM2
n,p

√
log p
n , where Mn,p is the matrix l1 norm of Ω. In Cai, Liu
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and Zhou (2012), they weakened the condition to min(i,j)∈S(Ω) |ωij | ≥ CMn,p

√
log p
n , but

the threshold level there is C
2 Mn,p

√
log p
n , where C is unknown and Mn,p can be very large,

which makes the support recovery procedure there impractical.

In this section we introduce an adaptive support recovery procedure based on the

variance of the oracle estimator of each entry ωij to recover the sign of nonzero entries of

Ω with high probability. The lower bound condition for min(i,j)∈S(Ω) |ωij | is significantly

weakened. In particular, we remove the unpleasant matrix l1 norm Mn,p. In Theorem 3,

when the precision matrix is sparse enough s = o
( √

n
log p

)
, we have the asymptotic normality

result for each entry ωij , i 6= j, i.e.,√
nFij (ω̂ij − ωij)

D→ N (0, 1) ,

where Fij =
(
ωiiωjj + ω2

ij

)−1
is the Fisher information of estimating ωij . The total number

of edges is p (p− 1) /2. We may apply thresholding to ω̂ij to correctly distinguish zero and

nonzero entries. However, the variance ωiiωjj + ω2
ij needs to be estimated. We define the

adaptive support recovery procedure as follows

(32) Ω̂thr = (ω̂thrij )p×p,

where ω̂thrii = ω̂ii and ω̂thrij = ω̂ij1{|ω̂ij | ≥ τ̂ij} for i 6= j with

(33) τ̂ij =

√√√√2ξ0

(
ω̂iiω̂jj + ω̂2

ij

)
log p

n
.

Here ω̂iiω̂jj + ω̂2
ij is the natural estimate of the asymptotic variance of ω̂ij defined in

(12) and ξ0 is a tuning parameter which can be taken as fixed at any ξ0 > 2. This

thresholding estimator is adaptive. The sufficient conditions in the Theorem 6 below for

support recovery are much weaker compared with other results in literature.

Define a thresholded population precision matrix as

(34) Ωthr = (ωthrij )p×p,

where ωthrii = ωii and ωthrij = ωij1
{
|ωij | ≥

√
8ξ(ωiiωjj + ω2

ij)(log p)/n
}

, with a certain

ξ > ξ0. Recall that E = E(Ω) = {(i, j) : ωij 6= 0} is the edge set of the Gauss-Markov

graph associated with the precision matrix Ω. Since Ωthr is composed of relatively large

components of Ω, (V,E(Ωthr)) can be view as a graph of strong edges. Define

S(Ω) = {sgn(ωij), 1 ≤ i, j ≤ p}.
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The following theorem shows that with high probability, ANT recovers all the strong edges

without false recovery. Moreover, under the uniform signal strength condition

(35) |ωij | ≥ 2

√√√√2ξ
(
ωiiωjj + ω2

ij

)
log p

n
, ∀ ωij 6= 0.

i.e. Ωthr = Ω, the ANT also recovers the sign matrix S(Ω).

Theorem 6. Let λ = (1 + ε)
√

2δ log p
n for any δ ≥ 3 and ε > 0. Let Ω̂thr be the

ANT estimator defined in (32) with ξ0 > 2 in the thresholding level (33). Suppose Ω ∈
G∗(M, s, λ) with s = o

(√
n/ log p

)
. Then,

(36) lim
n→∞

P
(
E(Ωthr) ⊆ E(Ω̂thr) ⊆ E(Ω)

)
= 1.

where Ωthr is defined in (34) with ξ > ξ0. If in addition (35), then

(37) lim
n→∞

P
(
S(Ω̂thr) = S(Ω)

)
= 1.

3.2. ANT for Adaptive Estimation under the Matrix lw Norm. In this section, we

consider the rate of convergence under the matrix lw norm. To control the improbable

case for which our estimator Θ̂A,A is nearly singular, we define our estimator based on the

thresholding estimator Ω̂thr defined in (32),

(38) Ω̆thr = (ω̂thrij 1 {|ω̂ij | ≤ log p})p×p.

Theorem 7 follows mainly from the convergence rate under element-wise norm and the

fact that the upper bound holds for matrix l1 norm. Then it follows immediately by the

inequality |||M |||w ≤ |||M |||1 for any symmetric matrix M and 1 ≤ w ≤ ∞, which can

be proved by applying the Riesz-Thorin interpolation theorem. See, e.g., Thorin (1948).

Note that under the assumption k2
n,p = O (n/ log p) , it can be seen from the Equations

(17) and (18) in Theorem 2 that with high probability the
∥∥∥Ω̂− Ω

∥∥∥
∞

is dominated by

‖Ωora − Ω‖∞ = Op

(√
log p
n

)
. From there the details of the proof is in nature similar to

the Theorem 3 in Cai and Zhou (2012) and thus will be omitted due to the limit of space.

Theorem 7. Under the assumptions s2 = O (n/ log p) and n = O
(
pξ
)

with some

ξ > 0, the Ω̆thr defined in (38) with λ = (1 + ε)
√

2δ log p
n for sufficiently large δ ≥ 3+ 2ξ

and ε > 0 satisfies, for all 1 ≤ w ≤ ∞ and kn,p ≤ s

(39) sup
G0(M,kn,p)

E|||Ω̆thr − Ω|||2w ≤ sup
G∗(M,kn,p,λ)

E|||Ω̆thr − Ω|||2w ≤ Cs2 log p

n
.
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Remark 7. It follows from Equation (26) that result (39) also holds for the classes

of weak `p balls Gq(M,kn,p) defined in Equation (25), with s = Cqkn,p
(

n
log p

)q/2
,

(40) sup
Gq(M,kn,p)

E|||Ω̆thr − Ω|||2w ≤ Ck2
n,p

(
log p

n

)1−q
.

Remark 8. Cai, Liu and Zhou (2012) showed the rates obtained in Equations (39)

and (40) are optimal when p ≥ cnγ for some γ > 1 and kn,p = o
(
n1/2 (log p)−3/2

)
.

3.3. Estimation and Inference for Latent Variable Graphical Model. Chandrasekaran,

Parrilo and Willsky (2012) first proposed a very natural penalized estimation approach

and studied its theoretical properties. Their work was discussed and appreciated by sev-

eral researchers. But it was not clear if the conditions in their paper are necessary and the

results there are optimal. Ren and Zhou (2012) observed that the support recovery bound-

ary can be significantly improved from an order of
√

p
n to

√
log p
n under certain conditions

including a bounded l1 norm constraint for the precision matrix. In this section we extend

the methodology and results in Section 2 to study latent variable graphical models. The

results in Ren and Zhou (2012) are significantly improved under weaker assumptions.

Let O and H be two subsets of {1, 2, . . . , p+ h} with Card(O) = p, Card(H) = h and

O∪H = {1, 2, . . . , p+ h}. Assume that
(
X

(i)
O , X

(i)
H

)
, i = 1, . . . , n, are i.i.d. (p+ h)-variate

Gaussian random vectors with a positive covariance matrix Σ(p+h)×(p+h). Denote the

corresponding precision matrix by Ω̄(p+h)×(p+h) = Σ−1
(p+h)×(p+h). We only have access to{

X
(1)
O , X

(2)
O , . . . , X

(n)
O

}
, while

{
X

(1)
H , X

(2)
H , . . . , X

(n)
H

}
are hidden and the number of latent

components is unknown. Write Σ(p+h)×(p+h) and Ω̄(p+h)×(p+h) as follows,

Σ(p+h)×(p+h) =

 ΣO,O ΣO,H

ΣH,O ΣH,H

 , and Ω̄(p+h)×(p+h) =

 Ω̄O,O Ω̄O,H

Ω̄H,O Ω̄H,H

 ,
where ΣO,O and ΣH,H are covariance matrices of X

(i)
O and X

(i)
H respectively and from the

Schur complement we have

(41) Σ−1
O,O = Ω̄O,O − Ω̄O,HΩ̄−1

H,HΩ̄H,O.

See, e.g., Horn and Johnson (1990). Define

S = Ω̄O,O, and L = Ω̄O,HΩ̄−1
H,HΩ̄H,O,

where h′ = rank (L) = rank
(
Ω̄O,H

)
≤ h.
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We are interested in estimating Σ−1
O,O as well as S and L. To make the problem identi-

fiable we assume that S is sparse and the effect of latent variables is spread out over all

coordinates, i.e.,

(42) S = (sij)1≤i,j≤p , max
1≤j≤p

∑
i 6=j

1 {sij 6= 0} ≤ kn,p;

and

(43) L = (lij)1≤i,j≤p , |lij | ≤
M0

p
.

The sparseness of S = Ω̄O,O can be seen to be inherited from the sparse full precision

matrix Ω̄(p+h)×(p+h), and it is particularly interesting for us to identify the support of

S = Ω̄O,O and make inference for each entry of S. A sufficient condition for the assumption

(43) is that the eigendecomposition of L =
∑h′
i=1 λiuiu

T
i satisfies ‖ui‖∞ ≤

√
c0
p for all i

and c0
∑h′
i=1 λi ≤M0. See Candès and Recht (2009) for a similar assumption. In addition,

we assume that

(44) 1/M ≤ λmin(Σ(p+h)×(p+h)) ≤ λmax(Σ(p+h)×(p+h)) ≤M

for some universal constant M , and

(45)
n

log p
= o(p).

Equation (44) implies that both the covariance ΣO,O of observations X
(i)
O and the sparse

component S = Ω̄O,O have bounded spectrum, and λmax(L) ≤M .

With a slight abuse of notation, denote the precision matrix Σ−1
O,O of X

(i)
O by Ω and

its inverse by Θ. We propose to apply the methodology in Section 2 to the observations

X(i) which are i.i.d. N (0,ΣO,O) with Ω = (sij − lij)1≤i,j≤p by considering the following

regression

(46) XA = XO\Aβ + εA

for A = {i, j} ⊂ O with β = ΩO\A,AΩ−1
A,A and εA

i.i.d.∼ N
(
0,Ω−1

A,A

)
and the penalized

scaled lasso procedure to estimate ΩA,A. When S = Ip and L = 1
2u0u

T
0 with uT0 =(

1/
√
p, . . . , 1/

√
p
)
, we see that

max
j

Σi 6=j min

{
1,
|sij − lij |

λ

}
=
p− 1

2pλ
= O

(√
n

log p

)
.

However, to obtain the asymptotic normality result as in Theorem 2, we required

max
j

Σi 6=j min

{
1,
|sij − lij |

λ

}
= o

( √
n

log p

)
,
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which is no longer satisfied for the latent variable graphical model. In Section 7.2 we

overcome the difficulty through a new analysis.

Theorem 8. Let Ω̂A,A be the estimator of ΩA,A defined in (12) with A = {i, j} for the

regression (46). Let λ = (1 + ε)
√

2δ log p
n for any δ ≥ 1 and ε > 0. Under the assumptions

(42)-(45) and kn,p = o
( √

n
log p

)
we have

(47)

√
n

ωiiωjj + ω2
ij

(ω̂ij − ωij)
D∼
√

n

ωiiωjj + ω2
ij

(ω̂ij − sij)
D→ N (0, 1) .

Remark 9. Without condition (45), our estimator may not be asymptotic efficient

but still has nice convergence property. We could obtain the following rate of convergence

for estimating ωij = sij− lij, provided kn,p = o
(

n
log p

)
, by simply applying Theorem 2 with

sparsity maxj Σi 6=j min
{

1,
|sij−lij |

λ

}
= O

(
kn,p + λ−1

)
,

P

|ω̂ij − ωij | > C3 max

kn,p log p

n
,

√
log p

n


 ≤ o (p−δ+1

)
,

which further implies the rate of convergence for estimating sij

P

|ω̂ij − sij | > C3 max

kn,p log p

n
,

√
log p

n
,
M0

p


 ≤ o (p−δ+1

)
.

Define the adaptive thresholding estimator Ω̂thr = (ω̂thrij )p×p as in (32) and (33). Fol-

lowing the proof of Theorems 6 and 7, we are able to obtain the following results. We

shall omit the proof due to the limit of space.

Theorem 9. Let λ = (1 + ε)
√

2δ log p
n for some δ ≥ 3 and ε > 0 in Equation (10).

Assume the assumptions (42)-(45) hold. Then

(i). Under the assumptions kn,p = o

(√
n

log p

)
and

|sij | ≥ 2

√√√√2ξ0

(
ωiiωjj + ω2

ij

)
log p

n
, ∀sij ∈ S(S)

for some ξ0 > 2, we have

lim
n→∞

P
(
S(Ω̂thr) = S(S)

)
= 1.

(ii). Under the assumption k2
n,p = O (n/ log p) and n = O

(
pξ
)

with some ξ > 0, the Ω̆thr

defined in (38) with sufficiently large δ ≥ 3+ 2ξ satisfies, for all 1 ≤ w ≤ ∞,

E|||Ω̆thr − S|||2w ≤ Ck2
n,p

log p

n
.
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4. Discussion. In the analysis of Theorem 2 and nearly all consequent results in

Theorems 3-4, and Theorems 6-9, we have picked the penalty term λ = (1 + ε)
√

2δ log p
n

for any δ ≥ 1 (or δ ≥ 3 for support recovery) and ε > 0. This choice of λ can be too

conservative and cause some finite sample estimation bias. In this section we show that λ

can be chosen smaller.

Let smax ≤ c0
n

log p with a sufficiently small constant c0 > 0 and smax = O
(
pt
)

for some

t < 1. Denote the cumulative distribution function of t(n−1) distribution by Ft(n−1)
. Let

λnewfinite = (1 + ε)B/
√
n− 1 +B2 where B = F−1

t(n−1)

(
1−

(
smax
p

)δ
/2

)
. It can be shown

that λnewfinite is asymptotically equivalent to λnew = (1 + ε)
√

2δ log(p/smax)
n . We can extend

Theorems 2-4 and 6-9 to the new penalties λnew and λnewfinite. All the results remain the same

except that we need to replace s (or kn,p) in those theorems by s+ smax (or kn,p + smax).

Since all theorems (except the minimax lower bound Theorem) are derived from Lemma

2, all we need is just an extension of Lemma 2 as follows.

Lemma 1. Let λ = λnew or λnewfinite for any δ ≥ 1 and ε > 0 in Equation (10). Assume

smax ≤ c0
n

log p with a sufficiently small constant c0 > 0 and smax = O
(
pt
)

for some t < 1

and define the event Em as follows,∣∣∣θ̂mm − θoramm

∣∣∣ ≤ C ′1λ
2 (s+ smax) ,∥∥∥βm − β̂m∥∥∥

1
≤ C ′2λ (s+ smax) ,∥∥∥XAc

(
βm − β̂m

)∥∥∥2
/n ≤ C ′3λ

2 (s+ smax) ,∥∥∥XT
Acεm/n

∥∥∥
∞
≤ C ′4λ,

for m = i or j and some constants C ′k, 1 ≤ k ≤ 4. Under the assumptions of Theorem 2,

we have

P (Ecm) ≤ o
(
p−δ+1

)
.

See its proof in the supplementary material for more details. Note that when s =

o
( √

n
log p

)
, we have

∥∥∥XAc

(
βm − β̂m

)∥∥∥2
/n ≤ C ′3λ2 (s+ smax) = o

(
1/
√
n
)

with high probability, for every smax = o
( √

n
log p

)
. Thus for every choice of smax = o

( √
n

log p

)
in the penalty, our procedure leads asymptotically efficient estimation of every entry of

the precision matrix as long as s = o
( √

n
log p

)
. In Section 5 we set λ = λnewfinite with δ = 1

for statistical inference and δ = 3 for support recovery.
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5. Numerical Studies. In this section, we present some numerical results for both

asymptotic distribution and support recovery. We consider the following 200×200 precision

matrix with three blocks. The block sizes are 100× 100, 50× 50 and 50× 50, respectively.

Let (α1, α2, α3) = (1, 2, 4). The diagonal entries are α1, α2, α3 in three blocks, respectively.

When the entry is in the k-th block, ωj−1,j = ωj,j−1 = 0.5αk, and ωj−2,j = ωj,j−2 = 0.4αk,

k = 1, 2, 3. The asymptotic variance for estimating each entry can be very different, thus

a naive procedure of setting one universal threshold for all entries would likely fail.

We first estimate the entries in the precision matrix, and partial correlations which was

discussed in Remark 3, and consider the distributions of the estimators. We generate a ran-

dom sample of size n = 400 from a multivariate normal distributionN (0,Σ) with Σ = Ω−1.

As mentioned in Remark 2, the penalty constant is chosen to be λnewfinite = B/
√
n− 1 +B2,

where B = tq(1− ŝ/(2p), n− 1) with ŝ =
√
n/ log p, which is asymptotically equivalent to√

(2/n) log(p/ŝ).

Table 1 reports the mean and standard error of our estimators for four entries in the

precision matrix and the corresponding correlations based on 100 replications. Figure 1

shows the histograms of our estimates with the theoretical normal density super-imposed.

We can see that the distributions of our estimates match pretty well to the asymptotic

normality in Theorem 3. We have tried other choices of dimensions, e.g. p = 1000, and

obtained similar results.

Table 1
Mean and standard error of the proposed estimators.

ω1,2 = 0.5 ω1,3 = 0.4 ω1,4 = 0 ω1,10 = 0
ω̂1,j 0.469 ± 0.051 0.380 ± 0.054 -0.042 ± 0.043 -0.003± 0.045

r1,2 = −0.5 r1,3 = −0.4 r1,4 = 0 r1,10 = 0
r̂1,j -0.480 ± 0.037 -0.392 ± 0.043 0.043 ± 0.043 0.003 ± 0.046

Support recovery of a precision matrix is of great interests. We compare our selection

results with the GLasso. In addition to the training sample, we generate an indepen-

dent sample of size 400 from the same distribution for validating the tuning parameter

for the GLasso. The GLasso estimators are computed based on training data with a

range of penalty levels and we choose a proper penalty level by minimizing likelihood

loss {trace(ΣΩ̂)− log det(Ω̂)} on the validation sample, where Σ is the sample covariance

matrix. Our ANT estimators are computed based on the training sample only. As stated

in Theorem 6, we use a slightly larger penalty constant to allow the selection consistency.

Let λnewfinite = B/
√
n− 1 +B2, where B = tq(1 − (ŝ/p)3/2, n − 1), which is asymptoti-

cally equivalent to
√

(6/n) log(p/ŝ). We then apply the thresholding step as in (33) with

ξ0 = 2. Table 2 shows the average selection performances of 10 replications. The true pos-
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Fig 1. Histograms of estimated entries. Top: entries ω1,2 and ω1,3 in the precision matrix; bottom: entries
ω1,4 and ω1,10 in the precision matrix.
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itive (rate) and false positive (rate) are reported. In addition to the overall performance,

the summary statistics are also reported for each block. We can see that while both our

ANT method and the graphical Lasso choose all nonzero entries, ANT outperforms the

GLasso in the sense of the false positive rate and the false discovery rate.

Table 2
The performance of support recovery

Block Method TP TPR FP FPR

Overall GLasso 391 1 5298.2 0.2716
ANT 391 1 3.5 0.0004

Block 1 GLasso 197 1 1961 0.4126
ANT 197 1 1.2 0.0003

Block 2 GLasso 97 1 288.4 0.2557
ANT 97 1 1.1 0.0010

Block 3 GLasso 97 1 162.1 0.1437
ANT 97 1 1.1 0.0010

Moreover, we compare our method with the GLasso with various penalty levels. Figure

2 shows the ROC curves for the GLasso with various penalty levels and ANT with various

thresholding levels in the follow-up procedure. It is noticed that the GLasso at any penalty

level cannot achieve similar performance as ours. In addition, the circle in the plot repre-

sents the performance of ANT with the selected threshold level as in (33). The triangle in

the plot represents the performance of the graphical Lasso with the penalty level chosen

by cross-validation. This again indicates that our method simultaneously achieves a very

high true positive rate and a very low false positive rate.

6. Proof of Theorems 1-5.

6.1. Proof of Theorem 2-4. We will only prove Theorems 2 and 3. The proof of The-

orem 4 is similar to that of Theorems 2 and 3. The following lemma is the key to the

proof.

Lemma 2. Let λ = (1 + ε)
√

2δ log p
n for any δ ≥ 1 and ε > 0 in Equation (10). Define

the event Em as follows, ∣∣∣θ̂mm − θoramm

∣∣∣ ≤ C ′1λ
2s,(48) ∥∥∥βm − β̂m∥∥∥

1
≤ C ′2λs,(49) ∥∥∥XAc

(
βm − β̂m

)∥∥∥2
/n ≤ C ′3λ

2s,(50) ∥∥∥XT
Acεm/n

∥∥∥
∞
≤ C ′4λ,(51)



23

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0.
6

0.
7

0.
8

0.
9

1.
0

fpr

tp
r

●

● ANT
GLasso
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for m = i or j and some constants C ′k, 1 ≤ k ≤ 4. Under the assumptions of Theorem 2,

we have

P (Ecm) ≤ o
(
p−δ+1

)
.

6.1.1. Proof of Theorems 2. We first prove (i). From Equation (48) of Lemma 2, the

large deviation probability in (16) holds for θoraii and θorajj . We then need only to consider

the entry θoraij . On the event Ei ∩ Ej ,∣∣∣θ̂ij − θoraij

∣∣∣ =
∣∣∣ε̂Ti ε̂j/n− εTi εj/n∣∣∣

=

∣∣∣∣(εi + XAc

(
βi − β̂i

))T (
εj + XAc

(
βj − β̂j

))
/n− εTi εj/n

∣∣∣∣
≤

∥∥∥XT
Acεi/n

∥∥∥
∞

∥∥∥βj − β̂j∥∥∥
1

+
∥∥∥XT

Acεj/n
∥∥∥
∞

∥∥∥βi − β̂i∥∥∥
1

+
∥∥∥XAc

(
βi − β̂i

)∥∥∥ · ∥∥∥XAc

(
βj − β̂j

)∥∥∥ /n
≤

(
2C ′2C

′
4 + C ′3

)
λ2s,

where the last step follows from inequalities (49)-(51) in Lemma 2. Thus we have

P
{∥∥∥Θ̂A,A −Θora

A,A

∥∥∥
∞
> C1s

log p

n

}
≤ o

(
p−δ+1

)
,

for some C1 > 0. Since ΘA,A has a bounded spectrum, the functional ζkl (ΘA,A) =(
Θ−1
A,A

)
kl

is Lipschitz in a neighborhood of ΘA,A for k, l ∈ A, then Equation (17) is

an immediate consequence of Equation (16).

Now we prove part (ii). Define random vector ηora =
(
ηoraii , ηoraij , ηorajj

)
, where ηorakl =

√
n

θorakl −θkl√
θkkθll+θ

2
kl

. The following result is a multidimensional version of KMT quantile in-

equality: there exist some constants D0, ϑ ∈ (0,∞) and random normal vector Z =

(Zii, Zij , Zjj) ∼ N
(
0, Σ̆

)
with Σ̆ = Cov(ηora) such that whenever |Zkl| ≤ ϑ

√
n for all kl,

we have

(52) ‖ηora − Z‖∞ ≤
D0√
n

(
1 + Z2

ii + Z2
ij + Z2

jj

)
.

See Proposition [KMT] in Mason and Zhou (2012) for one dimensional case and consult

Einmahl (1989) for multidimensional case. Note that
√
nηora can be written as a sum of

n i.i.d. random vectors with mean zero and covariance matrix Σ̆, each of which is sub-

exponentially distributed. Hence the assumptions of KMT quantile inequality in literature

are satisfied. With a slight abuse of notation, we define Θ = (θii, θij , θjj). To prove the

desired coupling inequality (18), let’s use the Taylor expansion of the function ωij (Θ) =
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−θij/
(
θiiθjj − θ2

ij

)
to obtain

ωoraij − ωij

= 〈∇ωij (Θ) ,Θora −Θ〉+
∑
|β|=2

Rβ (Θora) (Θ−Θora)β .(53)

The multi-index notation of β = (β1, β2, β3) is defined as |β| =
∑
k βk, x

β =
∏
k x

βk
k and

Dβf (x) = ∂|β|f

∂x
β1
1 ∂x

β2
2 ∂x

β3
3

. The derivatives can be easily computed. To save the space, we

omit their explicit formulas. The coefficients in the integral form of the remainder with

|β| = 2 have a uniform upper bound
∣∣∣Rβ (Θora

A,A

)∣∣∣ ≤ 2 max|α|=2
maxΘ∈B D

αωij (Θ) ≤ C2,

where B is some sufficiently small compact ball with center Θ when Θora is in this ball

B, which is satisfied by picking a sufficiently small value ϑ in our assumption ‖ηora‖∞ ≤
ϑ
√
n. Recall that κoraij and ηora are standardized versions of

(
ωoraij − ωij

)
and (Θ−Θora) .

Consequently there exist some deterministic constants h1, h2, h3 and Dβ with |β| = 2 such

that we can rewrite (53) in terms of κoraij and ηora as follows,

κoraij = h1η
ora
ii + h2η

ora
ij + h3η

ora
jj +

∑
|β|=2

DβRβ (Θora)√
n

(ηora)β ,

which, together with Equation (52), completes our proof of Equation (18),

∣∣∣κoraij − Z ′∣∣∣ ≤
(

3∑
k=1

|hk|
)
‖Z − ηora‖∞ +

C3√
n
‖ηora‖2 ≤ D1√

n

(
1 + Z2

ii + Z2
ij + Z2

jj

)
,

where constants C3, D1 ∈ (0,∞) and Z ′ := h1Z1 + h2Z2 + h3Z3 ∼ N (0, 1) . The last

inequality follows from ‖ηora‖2 ≤ C4

(
Z2
ii + Z2

ij + Z2
jj

)
for some large constant C4, which

can be shown using (52) easily.

6.1.2. Proof of Theorems 3. The triangle inequality gives

|ω̂ij − ωij | ≤
∣∣∣ω̂ij − ωoraij

∣∣∣+ ∣∣∣ωoraij − ωij
∣∣∣ ,∥∥∥Ω̂A,A − ΩA,A

∥∥∥
∞
≤

∥∥∥Ω̂A,A − Ωora
A,A

∥∥∥
∞

+
∥∥∥Ωora

A,A − ΩA,A

∥∥∥
∞

.

From Equation (17) we have

P
{∥∥∥Ω̂A,A − Ωora

A,A

∥∥∥
∞
> C1s

log p

n

}
≤ o

(
p−δ+1

)
.

Now we give a tail bound for
∣∣∣ωoraij − ωij

∣∣∣ and
∥∥∥Ωora

A,A − ΩA,A

∥∥∥
∞

respectively. For the con-

stant C > 0, we apply Equation (18) to obtain

P
{∣∣∣κoraij ∣∣∣ > C

}
≤ P

{
max {|Zkl|} > ϑ

√
n
}

+ Φ̄

(
C

2

)
+ P

{
D1√
n

(
1 + Z2

ii + Z2
ij + Z2

jj

)
>
C

2

}
≤ o(1) + 2 exp

(
−C2/8

)
,
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according to the inequality Φ̄ (x) ≤ 2 exp
(
−x2/2

)
for x > 0 and the union bound of three

normal tail probabilities. This immediately implies that for large C4 and large n,

P
{∣∣∣ωoraij − ωij

∣∣∣ > C4

√
1

n

}
≤ 3

4
ε,

which, together with Equations (17), yields that for C2 > C1 + C4,

P
{
|ω̂ij − ωij | > C2 max

{
s

log p

n
,

√
1

n

}}
≤ ε.

Similarly, Equation (18) implies

P
{∣∣∣κoraij ∣∣∣ > C

√
log p

}
≤ P

{
max {|Zkl|} > ϑ

√
n
}

+ Φ̄

(
C
√

log p

2

)

+P
{
D1√
n

(
1 + Z2

ii + Z2
ij + Z2

jj

)
>
C
√

log p

2

}
≤ O

(
p−C

2/8
)
,

where the first and last components in the first inequality are negligible due to log p ≤ c0n

with a sufficiently small c0 > 0, which follows from the assumption s ≤ c0n/ log p. That

immediately implies that for C5 large enough,

P

∥∥∥Ωora
A,A − ΩA,A

∥∥∥
∞
> C5

√
log p

n

 = o(p−δ),

which, together with Equations (17), yields that for C3 > C ′1 + C5.

P

∥∥∥Ω̂A,A − ΩA,A

∥∥∥
∞
> C3 max

s log p

n
,

√
log p

n


 ≤ o (p−δ+1

)
.

Thus we have the following union bound over all
(p
2

)
pairs of (i, j),

P

∥∥∥Ω̂− Ω
∥∥∥
∞
> C3 max

s log p

n
,

√
log p

n


 ≤ p2/2 · o

(
p−δ+1

)
= o

(
p−δ+3

)
.

Write
√
n
(
Ω̂A,A − ΩA,A

)
=
√
n
(
Ω̂A,A − Ωora

A,A

)
+
√
n
(
Ωora
A,A − ΩA,A

)
.

Under the assumption s = o
( √

n
log p

)
, we have

√
n
∥∥∥Ω̂A,A − Ωora

A,A

∥∥∥
∞

= op(1),

which together with Equation (18) further implies

√
n (ω̂ij − ωij)

D∼
√
n
(
ωoraij − ωij

)
D→ N

(
0, ωiiωjj + ω2

ij

)
.
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6.2. Proof of Theorem 5. In this section we show that the upper bound given in Section

2.2 is indeed rate optimal. We will only establish Equation (30). Equation (31) is an

immediate consequence of Equation (30) and the lower bound
√

log p
n for estimation of

diagonal covariance matrices in Cai, Zhang and Zhou (2010).

The lower bound is established by Le Cam’s method. To introduce Le Cam’s method we

first need to introduce some notation. Consider a finite parameter set G0 = {Ω0,Ω1, . . . ,Ωm∗} ⊂
G0(M,kn,p). Let PΩm denote the joint distribution of independent observations X(1),

X(2),. . . , X(n) with each X(i) ∼ N
(
0,Ω−1

m

)
, 0 ≤ m ≤ m∗, and fm denote the corre-

sponding joint density, and we define

(54) P̄ =
1

m∗

m∗∑
m=1

PΩm .

For two distributions P and Q with densities p and q with respect to any common dom-

inating measure µ, we denote the total variation affinity by ‖P ∧ Q‖ =
∫
p ∧ qdµ. The

following lemma is a version of Le Cam’s method (cf. Le Cam (1973), Yu (1997)).

Lemma 3. Let X(i) be i.i.d. N (0,Ω−1), i = 1, 2, . . . , n, with Ω ∈ G0. Let Ω̂ = (ω̂kl)p×p

be an estimator of Ωm =
(
ω

(m)
kl

)
p×p

, then

sup
0≤m≤m∗

P
{∣∣∣ω̂ij − ω(m)

ij

∣∣∣ > α

2

}
≥ 1

2

∥∥PΩ0 ∧ P̄
∥∥ ,

where α = inf1≤m≤m∗

∣∣∣ω(m)
ij − ω

(0)
ij

∣∣∣.
Proof of Theorem 5: We shall divide the proof into three steps. Without loss of

generality, consider only the cases (i, j) = (1, 1) and (i, j) = (1, 2). For the general case

ωii or ωij with i 6= j, we could always permute the coordinates and rearrange them to the

special case ω11 or ω12.

Step 1: Constructing the parameter set. We first define Ω0,

(55) Σ0 =



1 b 0 . . . 0

b 1 0 . . . 0

0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 0 1


, and Ω0 = Σ−1

0 =



1
1−b2

−b
1−b2 0 . . . 0

−b
1−b2

1
1−b2 0 . . . 0

0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 0 1


,

i.e. Σ0 =
(
σ

(0)
kl

)
p×p

is a matrix with all diagonal entries equal to 1, σ
(0)
12 = σ

(0)
21 = b and the

rest all zeros. Here the constant 0 < b < 1 is to be determined later. For Ωm, 1 ≤ m ≤ m∗,
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the construction is as follows. Without loss of generality we assume kn,p ≥ 2. Denote by

H the collection of all p× p symmetric matrices with exactly (kn,p − 1) elements equal to

1 between the third and the last elements on the first row (column) and the rest all zeros.

Define

(56) G0 =
{

Ω : Ω = Ω0 or Ω = (Σ0 + aH)−1 , for some H ∈ H
}
,

where a =
√

τ1 log p
n for some constant τ1 which is determined later. The cardinality of

G0/ {Ω0} is

m∗ = Card (G0)− 1 = Card (H) =

(
p− 2

kn,p − 1

)
.

We pick the constant b = 1
2 (1− 1/M) and 0 < τ1 < min

{
(1−1/M)2−b2

C0
,

(1−b2)
2

2C0(1+b2)
,

(1−b2)
2

4ν(1+b2)

}
such that G0 ⊂ G0(M,kn,p).

First we show that for all Ωi,

(57) 1/M ≤ λmin (Ωi) < λmax (Ωi) ≤M .

For any matrix Ωm, 1 ≤ m ≤ m∗, some elementary calculations yield that

λ1

(
Ω−1
m

)
= 1 +

√
b2 + (kn,p − 1) a2, λp

(
Ω−1
m

)
= 1−

√
b2 + (kn,p − 1) a2,

λ2

(
Ω−1
m

)
= λ3

(
Ω−1
m

)
= . . . = λp−1

(
Ω−1
m

)
= 1.

Since b = 1
2 (1− 1/M) and 0 < τ1 <

(1−1/M)2−b2
C0

, we can show that

1−
√
b2 + (kn,p − 1) a2 ≥ 1−

√
b2 + τ1C0 > 1/M,(58)

1 +
√
b2 + (kn,p − 1) a2 < 2− 1/M < M,

which imply

1/M ≤ λ−1
1

(
Ω−1
m

)
= λmin (Ωm) < λmax (Ωm) = λ−1

p

(
Ω−1
m

)
≤M .

As for matrix Ω0, similarly we have

λ1

(
Ω−1

0

)
= 1 + b, λp

(
Ω−1

0

)
= 1− b,

λ2

(
Ω−1

0

)
= λ3

(
Ω−1

0

)
= . . . = λp−1

(
Ω−1

0

)
= 1,

thus 1/M ≤ λmin (Ω0) < λmax (Ω0) ≤M for the choice of b = 1
2 (1− 1/M).

Now we show that the number of nonzero off-diagonal elements in Ωm, 0 ≤ m ≤
m∗ is no more than kn,p per row/column. From the construction of Ω−1

m , there exists
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some permutation matrix Pπ such that PπΩ−1
m P Tπ is a two-block diagonal matrix with

dimensions (kn,p + 1) and (p− kn,p − 1), of which the second block is an identity matrix,

then
(
PπΩ−1

m P Tπ

)−1
= PπΩmP

T
π has the same blocking structure with the first block of

dimension (kn,p + 1) and the second block being an identity matrix, thus the number of

nonzero off-diagonal elements is no more than kn,p per row/column for Ωm. Therefore, we

have G0 ⊂ G0(M,kn,p) from Equation (57).

Step 2: Bounding α. From the construction of Ω−1
m and the matrix inverse formula,

it can be shown that for any precision matrix Ωm we have

ω
(m)
11 =

1

1− b2 − (kn,p − 1) a2
, and ω

(m)
12 =

−b
1− b2 − (kn,p − 1) a2

,

for 1 ≤ m ≤ m∗, and for precision matrix Ω0 we have

ω
(0)
11 =

1

1− b2
, ω

(0)
12 =

−b
1− b2

.

Since b2 + (kn,p − 1) a2 < (1− 1/M)2 < 1 in Equation (58), we have

inf
1≤m≤m∗

∣∣∣ω(m)
11 − ω

(0)
11

∣∣∣ =
(kn,p − 1) a2

(1− b2) (1− b2 − (kn,p − 1) a2)
≥ C3kn,pa

2,(59)

inf
1≤m≤m∗

∣∣∣ω(m)
12 − ω

(0)
12

∣∣∣ =
b (kn,p − 1) a2

(1− b2) (1− b2 − (kn,p − 1) a2)
≥ C4kn,pa

2,

for some constants C3, C4 > 0.

Step 3: Bounding the affinity. The following lemma will be proved in Section 8.

Lemma 4. Let P̄ be defined in (54). We have

(60)
∥∥PΩ0 ∧ P̄

∥∥ ≥ C5

for some constant C5 > 0.

Lemma 3, together with Equations (59), (60) and a =
√

τ1 log p
n , imply

sup
0≤m≤m∗

P
{∣∣∣ω̂11 − ω(m)

11

∣∣∣ > 1

2
· C3τ1kn,p log p

n

}
≥ C5/2,

sup
0≤m≤m∗

P
{∣∣∣ω̂12 − ω(m)

12

∣∣∣ > 1

2
· C4τ1kn,p log p

n

}
≥ C5/2,

which match the lower bound in (30) by setting C1 = min {C3τ1/2, C4τ1/2} and c1 = C5/2.

Remark 10. Note that |||Ωm|||1 is at order of kn,p

√
log p
n , which implies

kn,p log p
n =

kn,p

√
log p
n ·

√
log p
n � |||Ωm|||1

√
log p
n . This observation partially explains why in literature
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people need assume bounded matrix l1 norm of Ω to derive the lower bound rate
√

log p
n .

For the least favorable parameter space, the matrix l1 norm of Ω cannot be avoided in the

upper bound. But the methodology proposed in this paper improves the upper bounds in

literature by replacing the matrix l1 norm for every Ω by only matrix l1 norm bound of Ω

in the least favorable parameter space.

6.3. Proof of Theorem 1. The probabilistic results (i) and (ii) are the immediate con-

sequences of Theorems 2 and 5. We only need to show the minimax rate of convergence

result (3). According to the probabilistic lower bound result (30) in Theorem 5, we im-

mediately obtain that

inf
ω̂ij

sup
G0(M,kn,p)

E |ω̂ij − ωij | ≥ c1 max

{
C1
kn,p log p

n
,C2

√
1

n

}
.

Thus it is enough to show there exists some estimator of ωij such that it attains this upper

bound. More precisely, we define the following estimator based on ω̂ij defined in (12) to

control the improbable case for which Θ̂A,A is nearly singular.

ω̆ij = sgn(ω̂ij) ·min {|ω̂ij | , log p} .

Define the event G =
{∣∣∣ω̂ij − ωoraij

∣∣∣ ≤ C1
kn,p log p

n ,
∣∣∣ωoraij

∣∣∣ ≤ 2M
}
. Note that the Equations

(16) and (18) in Theorem 2 imply P {Gc} ≤ C
(
p−δ+1 + exp (−cn)

)
for some constants C

and c. Now according to the variance of inverse Wishart distribution, we pick δ ≥ 2ξ + 1

to complete our proof

E |ω̆ij − ωij | ≤ E
(∣∣∣ω̆ij − ωoraij

∣∣∣ 1 {G})+ E
(∣∣∣ω̆ij − ωoraij

∣∣∣ 1 {Gc})+ E
∣∣∣ωoraij − ωij

∣∣∣
≤ C1

kn,p log p

n
+

(
P {Gc}E

(
log p+

∣∣∣ωoraij

∣∣∣)2
)1/2

+

(
E
(
ωoraij − ωij

)2
)1/2

≤ C1
kn,p log p

n
+ C2p

− δ+1
2 log p+ C3

1√
n

≤ C ′max

{
kn,p log p

n
,

√
1

n

}
,

where C2, C3 and C ′ are some constants and the last equation follows from the assumption

n = O
(
pξ
)
.

7. Proof of Theorems 6-9.

7.1. Proof of Theorem 6. When δ > 3, from Theorem 2 it can be shown that the

following three results hold:
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(i). For any constant ε > 0, we have

(61) P
{

sup
(i,j)

∣∣∣∣∣ ω̂iiω̂jj + ω̂2
ij

ωiiωjj + ω2
ij

− 1

∣∣∣∣∣ > ε

}
→ 0;

(ii). There is a constant C1 > 0 such that

(62) P
{

sup
(i,j)

∣∣∣ωoraij − ω̂ij
∣∣∣ > C1s

log p

n

}
→ 0;

(iii). For any constant 2 < ξ1, we have

(63) P

 sup
(i,j)

∣∣∣ωoraij − ωij
∣∣∣√

ωiiωjj + ω2
ij

>

√
2ξ1 log p

n

→ 0.

In fact, under the assumption δ ≥ 3, Equation (17) in Theorem 2 and the union bound

over all pair (i, j) imply the second result (62), which further shows the first result (61)

because that ω̂ij and ω̂ii are consistent estimators and ωiiωjj + ω2
ij is bounded below and

above. For the third result, we apply Equation (18) from Theorem 2 and pick 2 < ξ2 < ξ1

and a =
√
ξ1 −

√
ξ2 to show that

P
{ ∣∣∣κoraij ∣∣∣ > √2ξ1 log p

}
≤ P

{
max {|Zkl|} > ϑ

√
n
}

+ Φ̄
(√

2ξ2 log p
)

+P
{
D1√
n

(
1 + Z2

ii + Z2
ij + Z2

jj

)
> a

√
2 log p

}

≤ O(p−ξ2

√
1

log p
),

where the last inequality follows from log p = o(n). The third result (63) is thus obtained

by the union bound with 2 < ξ2.

Essentially Equation (36) and Equation (37) are equivalent to each other. Thus we

only show that Equation (37) in Theorem 6 is just a simple consequence of results (i),

(ii) and (iii). Set ε > 0 sufficiently small and ξ ∈ (2, ξ0) sufficiently close to 2 such that
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2
√

2ξ0 −
√

2ξ0 (1 + ε) >
√

2ξ and ξ0 (1− ε) > ξ, and 2 < ξ1 < ξ. We have

P
(
S(Ω̂thr) = S(Ω)

)
= P

(
ω̂thrij 6= 0 for all (i, j) ∈ S(Ω)

)
+ P

(
ω̂thrij = 0 for all (i, j) /∈ S(Ω)

)

= P

 |ω̂ij | >
√√√√2ξ0

(
ω̂iiω̂jj + ω̂2

ij

)
log p

n
for all (i, j) ∈ S(Ω)


+P

|ω̂ij | ≤
√√√√2ξ0

(
ω̂iiω̂jj + ω̂2

ij

)
log p

n
for all (i, j) /∈ S(Ω)


≥ P

sup
(i,j)

|ω̂ij − ωij |√
ωiiωjj + ω2

ij

≤

√
2ξ log p

n

− P
{

sup
(i,j)

∣∣∣∣∣ ω̂iiω̂jj + ω̂2
ij

ωiiωjj + ω2
ij

− 1

∣∣∣∣∣ > ε

}
,

which is bounded below by

P

 sup
(i,j)

∣∣∣ωoraij − ωij
∣∣∣√

ωiiωjj + ω2
ij

≤

√
2ξ1 log p

n

−
 P

{
sup(i,j)

∣∣∣ωoraij − ω̂ij
∣∣∣ > C1s

log p
n

}
+

P
{

sup(i,j)

∣∣∣∣ ω̂iiω̂jj+ω̂2
ij

ωiiωjj+ω2
ij
− 1

∣∣∣∣ > ε

}  = 1+o (1) ,

where s = o
(√

n/ log p
)

implies s log p
n = o

(√
(log p) /n

)
.

7.2. Proof of Theorem 8. The proof of this Theorem is very similar to that of Theorem

2. Due to the limit of space, we follow the line of the proof of Theorem 2 and Theorem 3,

but only give necessary details when the proof is different from that of Theorem 2. Note

that β for the latent variable graphical model is not sparse enough in the sense that

max
j

Σi 6=j min

{
1,
|sij − lij |

λ

}
6= o

( √
n

log p

)
.

Our strategy is to decompose it into two parts,

(64) β =SO\A,AΩ−1
A,A − LO\A,AΩ−1

A,A := βS−βL,

where βS = SO\A,AΩ−1
A,A and βL = LO\A,AΩ−1

A,A correspond the sparse and low-rank

components respectively. We expect the penalized estimator β̂ in (10) is closer to the

sparse part βS than β itself, which motivates us to rewrite the regression model as follows,

(65) XA = XO\Aβ
S +

(
εA −XO\Aβ

L
)

:= XO\Aβ
S + εSA,

with εSA =
(
εA −XO\Aβ

L
)
, and define

(66) Θora,S
A,A =

(
εSA

)T (
εSA

)
/n.
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We can show our estimator Θ̂A,A is within a small ball of the ”oracle” Θora,S
A,A with radius

at the rate of kn,pλ
2, where kn,p is the sparsity of model (65). More specifically, similar to

Lemma 2 for the proof of Theorem 2 we have the following result for the latent variable

graphical model. The proof is provided in the supplementary material.

Lemma 5. Let λ = (1 + ε)
√

2δ log p
n for any δ ≥ 1 and ε > 0 in Equation (10). Define

the event E as follows, ∣∣∣θ̂mm − θora,Smm

∣∣∣ ≤ C ′1kn,pλ
2,(67) ∥∥∥βSm − β̂m∥∥∥

1
≤ C ′2kn,pλ,∥∥∥XO\A

(
βSm − β̂m

)∥∥∥2
/n ≤ C ′3kn,pλ

2,∥∥∥XT
O\Aε

S
m/n

∥∥∥
∞
≤ C ′4λ.

for m = i and j and some constants C ′k, 1 ≤ k ≤ 4. Under the assumptions in Theorem

8, we have

P {Ec} ≤ o
(
p−δ+1

)
.

Similar to the argument in Section 6.1.1, from Lemma 5 we have∣∣∣θ̂ij − θora,Sij

∣∣∣ =

∣∣∣∣(εSi )T (εSj ) /n− ε̂Ti ε̂j/n∣∣∣∣ ≤ Ckn,pλ2

on the event E, thus there is a constant C1 > 0 such that

P
{∥∥∥Θ̂A,A −Θora,S

A,A

∥∥∥
∞
> C1kn,p

log p

n

}
≤ o

(
p−δ+1

)
.

Later we will show that there are some constant C2 and C3 such that

(68) P
{∥∥∥Θora

A,A −Θora,S
A,A

∥∥∥
∞
> C2kn,p

log p

n

}
≤ C3p

−2δ,

which implies

P
{∥∥∥Θ̂A,A −Θora

A,A

∥∥∥
∞
> C4kn,p

log p

n

}
≤ o

(
p−δ+1

)
,

for some constant C4 > 0. Then following the proof of Theorem 3 exactly, we establish

Theorem 8.

Now we conclude the proof by establishing Equation (68). In fact, we will only show

that

P
{∣∣∣θorai,i − θ

ora,S
i,i

∣∣∣ > C2kn,p
log p

n

}
≤ C5p

−2δ,
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for some C5 > 0. The tail bounds for
∣∣∣θoraj,j − θ

ora,S
j,j

∣∣∣ and
∣∣∣θorai,j − θ

ora,S
i,j

∣∣∣ can be shown

similarly. Write

(69)

θorai,i −θ
ora,S
i,i =

εTi εi −
(
εSi

)T (
εSi

)
n

=
εTi εi
n
−
(
εi −XO\Aβ

L
i

)T (
εi −XO\Aβ

L
i

)
/n = D1+D2.

where

D1 =
2

n
εTi XO\Aβ

L
i =

2

n

n∑
k=1

εi,k ·
(
X

(k)
O\Aβ

L
i

)
D2 =

1

n

(
βLi

)T
XT
O\AXO\Aβ

L
i ∼ var

(
X

(k)
O\Aβ

L
i

)
· χ2

(n)/n.

It is then enough to show that there are constants C2 and C5 such that

P
{
|Di| >

C2

2
kn,p

log p

n

}
≤ C5

2
p−2δ

for each Di, i = 1, 2. We first study D1, which is an average of n i.i.d. random variables

εi,k ·
(
X

(k)
O\Aβ

L
i

)
with

εi ∼ N
(
0,Ω−1

A,A

)
, and X

(k)
O\Aβ

L
i ∼ N

(
0,
(
βLi

)T
ΣO\A,O\Aβ

L
i

)
,

where Ω−1
A,A has bounded spectrum, and

(
βLi

)T
ΣO\A,O\Aβ

L
i ≤ C6

p for some C6 for the

assumption (43) that elements of βL are at an order of C5
p . From classical large deviations

bounds, there exist some uniform constants c1, c2 > 0 such that

P


∣∣∣∣∣∣
∑n
k=1 εi,k ·

√
pX

(k)
O\Aβ

L
i

n

∣∣∣∣∣∣ > t

 ≤ 2 exp
(
−nt2/c2

)
for 0 < t < c1.

See, for example, Theorem 2.8 of Petrov (1995). By setting t =
√

2δc2 log p
n = o (1), we have

(70) P
{
|D1| > 2

√
2δc2 log p

np

}
≤ 2p−2δ,

where 2
√

2δc2 log p
np = o

(
kn,p

log p
n

)
from Equation (45). The derivation for the tail bound of

D2 is similar by a large deviation bound for χ2
(n),

P
{
χ2

(n)

n
> 1 + t

}
≤ 2 exp

(
−nt2/c2

)
for 0 < t < c1,

which implies

(71) P

|D2| > var
(
X

(k)
O\Aβ

L
i

)1 +

√
2δc2 log p

n

 ≤ 2p−2δ,
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by setting t =
√

2δc2 log p
n = o (1), where var

(
X

(k)
O\Aβ

L
i

)(
1 +

√
2δc2 log p

n

)
= O (1/p) =

o
(
kn,p

log p
n

)
from Equation (45). Equations (70) and (71) imply the desired tail bound

(68).

8. Proof of Auxiliary Lemmas. In this section we prove two key lemmas, Lemmas

2 and 4, for establishing our main results.

8.1. Proof of Lemma 2. We first reparameterize Equations (7) and (10) by setting

(72) dk :=
‖Xk‖√
n
bk, and Y := XAc · diag

( √
n

‖Xk‖

)
k∈Ac

to make the analysis cleaner, and then rewrite the regression (7) and the penalized pro-

cedure (10) as follows,

(73) Xm = Ydtrue + εm.

and

Lλ (d, σ) : =
‖Xm −Yd‖2

2nσ
+
σ

2
+ λ ‖d‖1 ,(74) {

d̂, σ̂
}

: = arg min
d∈Rp−2,σ∈R

Lλ (d, σ) ,(75)

where the true coefficients of the reparameterized regression (74) are

(76) dtrue =
(
dtruek

)
k∈Ac

, where dtruek =
‖Xk‖√
n
βm,k.

Then the oracle estimator of σ can be written as

(77) σora := (θoramm)1/2 =

∥∥Xm −Ydtrue
∥∥

√
n

=
‖εm‖√
n
,

and we have the following relationship between
{
d̂, σ̂

}
and

{
β̂m, θ̂mm

}
,

(78) β̂m,k = d̂k

√
n

‖Xk‖
, and θ̂mm = σ̂2.

The proof has two parts. The first part is the algebraic analysis of the solution
{
d̂, σ̂

}
to the regression (74) by which we can define an event E such that Equations (48)-(51)

in Lemma 2 hold. The second part of the proof is the probabilistic analysis of the E.
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8.1.1. Algebraic Analysis. The function Lλ (d, σ) is jointly convex in (d, σ). For fixed

σ, denote the minimizer of Lλ (d, σ) over all d ∈ Rp−2 by d̂ (σλ), a function of σλ, i.e.,

(79) d̂ (σλ) = arg min
d∈Rp−2

Lλ (d, σ) = arg min
d∈Rp−2

{
‖Xm −Yd‖2

2n
+ λσ ‖d‖1

}
.

then if we knew σ̂ in the solution of Equation (75), the solution for the equation is{
d̂ (σ̂λ) , σ̂

}
. Let µ = λσ. From the Karush-Kuhn-Tucker condition, d̂ (µ) is the solution

of Equation (79) if and only if

YT
k

(
Xm −Yd̂ (µ)

)
/n = µ · sgn

(
d̂k (µ)

)
, if d̂k (µ) 6= 0,(80)

YT
k

(
Xm −Yd̂ (µ)

)
/n ∈ [−µ, µ] , if d̂k (µ) = 0.

To define the event E we need to introduce some notation. Define the l1 cone invertibility

factor (CIF1) as follows,

(81) CIF1 (α,K,Y) = inf

 |K|
∥∥∥YTY

n u
∥∥∥
∞

‖uK‖1
: u ∈ C (α,K) , u 6= 0

 ,
where |K| is the cardinality of an index set K, and

C (α,K) =
{
u ∈ Rp−2 : ‖uKc‖1 ≤ α ‖uK‖1

}
.

Let

T =
{
k ∈ Ac,

∣∣∣dtruek

∣∣∣ ≥ λ}(82)

ν =
∥∥∥YT

(
Xm −Ydtrue

)
/n
∥∥∥
∞

=
∥∥∥YT εm/n

∥∥∥
∞
,(83)

and

(84) τ = λmax

{
4 (1 + ξ)

σora

∥∥∥(dtrue)
T c

∥∥∥
1
,

8λ |T |
CIF1 (2ξ + 1, T,Y)

}
for some ξ > 1 be specified later. Define

(85) E = ∩4
i=1Ii

where

I1 =

{
ν ≤ σoraλξ − 1

ξ + 1
(1− τ)

}
,(86)

I2 =

{
CIF1 (2ξ + 1, T,Y) ≥ Ccif

(ξ + 1)2 > 0

}
with Ccif = 1/

(
10
√

2M3
)

(87)

I3 =

{
σora ∈

[√
1/ (2M),

√
2M

]}
(88)

I4 =

{‖Xk‖√
n
∈
[√

1/ (2M),
√

2M

]
for all k ∈ Ac

}
.(89)
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Now we show Equations (48)-(51) in Lemma 2 hold on the event E defined in Equation

(85). The following two results are helpful to establish our result. Their proofs are given

in the supplementary material.

Proposition 1. For any ξ > 1, on the event
{
ν ≤ µ ξ−1

ξ+1

}
, we have∥∥∥d̂ (µ)− dtrue

∥∥∥
1
≤ max

{
(2 + 2ξ)

∥∥∥(dtrue)
T c

∥∥∥
1
,

(ν + µ) |T |
CIF1 (2ξ + 1, T,Y)

}
,(90)

1

n

∥∥∥Y (
dtrue − d̂ (µ)

)∥∥∥2
≤ (ν + µ)

∥∥∥d̂ (µ)− dtrue
∥∥∥

1
.(91)

Proposition 2. Let
{
d̂, σ̂

}
be the solution of the scaled lasso (75). For any ξ > 1,

on the event I1 =
{
ν ≤ σoraλ ξ−1

ξ+1 (1− τ)
}
, we have

(92)

∣∣∣∣ σ̂

σora
− 1

∣∣∣∣ ≤ τ .

Note that s = maxj Σi 6=j min
{

1,
|ωij |
λ

}
is defined in terms of Ω which has bounded

spectrum, then on the event I4,

max

{∥∥∥(dtrue)
T c

∥∥∥
1
, λ |T |

}
≤ Cλs

from the definition of T in Equation (82). On their intersection I1 ∩ I2 ∩ I3, Proposition 2

and Proposition 1 with µ = λσ̂ imply that there exist some constants c1, c2 and c3 such

that

|σ̂ − σora| ≤ c1λmax

{∥∥∥(dtrue)
T c

∥∥∥
1
, λ |T |

}
,∥∥∥d̂ (µ)− dtrue

∥∥∥
1
≤ c2 max

{∥∥∥(dtrue)
T c

∥∥∥
1
, λ |T |

}
,∥∥∥Y (

dtrue − d̂
)∥∥∥2

n
≤ c3λmax

{∥∥∥(dtrue)
T c

∥∥∥
1
, λ |T |

}
.

then from the definition of β and Equations (6) and (78),

β̂m,k = d̂k

√
n

‖Xk‖
, θ̂mm = σ̂2, and XAc = Y · diag

(‖Xk‖√
n

)
k∈Ac

,

we immediately have ∣∣∣θ̂mm − θ̂oramm

∣∣∣ = |σ̂ − σora| · |σ̂ + σora| ≤ C ′1λ2s,∥∥∥βm − β̂m∥∥∥
1
≤ C ′2λs,∥∥∥XAc

(
βm − β̂m

)∥∥∥2
/n ≤ C ′3λ

2s,

for some constants C ′i, which are exactly Equations (48)-(50). From the definition of events

I1, I3 and I4 we obtain Equation (51), i.e.,
∥∥∥XT

Acεm/n
∥∥∥
∞
≤ C ′4λ.
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8.1.2. Probabilistic Analysis. We will show that

P {Ic1} ≤ O
(
p−δ+1/

√
log p

)
,

P {Ici } ≤ o(p−δ) for i = 2, 3 and 4,

which implies

P {E} ≥ 1− o
(
p−δ+1

)
.

We will first consider P {Ic3} and P {Ic4}, then P {Ic2}, and leave P {Ic1} to the last, which

relies on the bounds for P {Ici }, 2 ≤ i ≤ 4.

(1). To study P {Ic3} and P {Ic4}, we need the following tail bound for the chi-squared

distribution with n degrees of freedom,

(93) P
{∣∣∣∣∣χ

2
(n)

n
− 1

∣∣∣∣∣ ≥ t
}
≤ 2 exp (−nt (t ∧ 1) /8) ,

for t > 0. Since σora = ‖εm‖ /
√
n with εm ∼ N (0, θmmIn), and Xk ∼ N (0, σkkIn) with

σkk ∈ (1/M,M), we have

n (σora)2 /θmm ∼ χ2
(n), and ‖Xk‖2 /σkk ∼ χ2

(n),

then Equation (93) implies

P {Ic3} = P
{

(σora)2 /∈ [1/ (2M) , 2M ]
}
≤ P

{∣∣∣∣∣(σora)
2

θmm
− 1

∣∣∣∣∣ ≥ 1

2

}
≤ 2 exp (−n/32) ≤ o(p−δ),(94)

and

(95)

P {Ic4} = P
{
‖Xk‖2

n
/∈ [1/ (2M) , 2M ] for some k ∈ Ac

}
≤ 2p exp (−n/32) ≤ o(p−δ).

(2). To study the term CIF1 (2ξ + 1, T,Y) of the event I2, we need to introduce some

notation first. Define

π±a (Y) = max
G

{
±
(∥∥∥YT

AYAu/n
∥∥∥− 1

)}
, and θa,b (Y) = max

G
vTYT

AYBu/n.

where

G = {(A,B, u, v) : (|A| , |B| , ‖u‖ , ‖v‖) = (a, b, 1, 1) with A ∩B = ∅} .

then 1+π+
a (Y) and 1−π−a (Y) are the maximal and minimal eigenvalues of all submatrices

of YTY/n with dimensions no greater than a respectively, and θa,b (Y) satisfies that

(96) θa,b (Y) ≤
(
1 + π+

a (Y)
)1/2 (

1 + π+
b (Y)

)1/2
≤ 1 + π+

a∨b (Y) .
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The following two propositions will be used to establish the probability bound for P {Ic2}.
Proposition 3 follows from Zhang and Huang (2008) Proposition 2(i). The proof of Propo-

sition 4 is given in the supplementary material.

Proposition 3. Let rows of the data matrix X be i.i.d. copies of N (0,Σ), and denote

the minimal and maximal eigenvalues of Σ by λmin (Σ) and λmax (Σ) respectively. Assume

that m ≤ c n
log p with a sufficiently small constant c > 0, then for ε > 0 we have

(97) P
{

(1− h)2 λmin (Σ) ≤ 1− π−m (X) ≤ 1 + π+
m (X) ≤ (1 + h)2 λmax (Σ)

}
≥ 1− ε,

where h =
√

m
n +

√
2m log p−log(ε/2)

n .

Proposition 4. For CIF1 (α,K,Y) defined in (81) with |K| = k, we have, for any

0 < l ≤ p− k,

(98)

CIF1 (α,K,Y) ≥ 1

(1 + α)

(
(1 + α) ∧

√
1 + l

k

)
1− π−l+k (Y)− α

√
k

4l
θ4l,k+l (Y)

 .

Note that there exists some constant C such that Cs is an upper bound of the |T | from

the definitions of s and set T (82) on I4. For l ≥ Cs Proposition 4 gives

CIF1 (2ξ + 1, T,Y) ≥ 1

4 (1 + ξ)2

1− π−l+|T | (Y)− (2ξ + 1)

√
|T |
4l
θ4l,|T |+l (Y)


≥ 1

4 (1 + ξ)2

1− π−4l (Y)− (2ξ + 1)

√
Cs

4l

(
1 + π+

4l (Y)
) ,(99)

where the second inequality follows from (96). From the definition Y = XAc ·diag
( √

n
‖Xk‖

)
k∈Ac

and the property that π±a (Y) are increasing as functions of a, we have

1 + π+
4l (Y) ≤ max

k∈Ac

{ √
n

‖Xk‖

}(
1 + π+

4l (XAc)
)
≤ max

k∈Ac

{ √
n

‖Xk‖

}(
1 + π+

4l (X)
)
,

min
k∈Ac

{ √
n

‖Xk‖

}(
1− π−4l (X)

)
≤ min

k∈Ac

{ √
n

‖Xk‖

}(
1− π−4l (XAc)

)
≤ 1− π−4l (Y) ,

and by applying Proposition 3 to the data matrix Y with m = 4l =
(
4 (2ξ + 1)M3

)2
Cs >



40 Z. REN ET AL.

Cs and ε = p−2δ, we have on I4

1− π−4l (Y)− (2ξ + 1)

√
Cs

4l

(
1 + π+

4l (Y)
)

≥ (1− h)2 λmin (Σ) min
k∈Ac

{ √
n

‖Xk‖

}
− (2ξ + 1)

√
Cs

4l
(1 + h)2 λmax (Σ) max

k∈Ac

{ √
n

‖Xk‖

}

≥ (1− h)2 1√
2MM

− (2ξ + 1)

√
Cs

4l
(1 + h)2

√
2MM

≥ 1√
2M3

(1− h)2 − 1

2
√

2M3
(1 + h)2 ≥ 4

10
√

2M3

with probability at least 1 − ε, where h =
√

m
n +

√
2
m log p−log(p−2δ/2)

n = o(1). Note

P {Ic4} ≤ o(p−δ), thus we established that P {Ic2} ≤ o(p−δ).
(3). Finally we study the probability of event I1. The following tail probability of t

distribution is helpful in the analysis.

Proposition 5. Let Tn follows a t distribution with n degrees of freedom. Then there

exists εn → 0 as n→∞ such that ∀t > 0

P
{
T 2
n > n

(
e2t2/(n−1) − 1

)}
≤ (1 + εn) e−t

2
/
(
π1/2t

)
.

Please refer to Sun and Zhang (2012b) Lemma 1 for the proof. According to the defi-

nition of ν in Equation (83) we have

ν

σora
= max

k∈Ac
|hk| , with hk =

YT
k εm

nσora
for k ∈ Ac.

Note that each column of Y has norm ‖Yk‖ =
√
n by the normalization step (72). Given

XAc , equivalently Y, we have

√
n− 1hk√
1− h2

k

=

√
n− 1

n

(
YT
k εm/

√
nθmm

)
/

(√
εTmεm/nθmm

)
(√(

εTmεm − εTmYkY
T
k εm/n

)
/nθmm

)
/

(√
εTmεm/nθmm

)

=

(
YT
k εm/

√
nθmm

)
(√∥∥∥PYc

k
εm
∥∥∥2
/ (n− 1) θmm

) ∼ t(n−1),

where t(n−1) is t distribution with n − 1 degrees of freedom, since the numerator follows

a standard normal and the denominator follows an independent
√
χ2

(n−1)/ (n− 1). From
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Proposition 5 we have

P

|hk| >
√

2t2

n


= P

{
(n− 1)h2

k

1− h2
k

>
2 (n− 1) t2/n

1− 2t2/n

}
≤ P

{
(n− 1)h2

k

1− h2
k

>
2 (n− 1) t2/ (n− 2)

1− t2/ (n− 2)

}

≤ P
{

(n− 1)h2
k

1− h2
k

> (n− 1)
(
e2t2/(n−2) − 1

)}
≤ (1 + εn−1) e−t

2
/
(
π1/2t

)
.

where the first inequality holds when t2 ≥ 2, and the second inequality which follows the

fact ex−1 ≤ x/(1−x
2 ) for 0 < x < 2. Now let t2 = δ log p > 2, and λ =

(√
2δ (1 + ε)

)√
log p
n

with ξ = 3/ε+1, then we have λ ξ−1
ξ+1 (1− τ) ≥

√
2δ log p
n for sufficiently small τ. Clearly, the

τ defined in Equation (84) satisfies τ = O
(
sλ2

)
which is sufficiently small on I2 ∩ I3 ∩ I4.

Therefore we have

P
{
∩4
i=1Ii

}
≥ P

 ν

σora
≤

√
2δ log p

n

− P {(I2 ∩ I3 ∩ I4)c}

≥ 1− p · P

|hk| >
√

2δ log p

n

− P {(I2 ∩ I3 ∩ I4)c} ≥ 1−O
(
p−δ+1

√
log p

)
,(100)

which implies immediately P {Ic1} ≤ O
(
p−δ+1/

√
log p

)
.

8.2. Proof of Lemma 4. Now we establish the lower bound (60) for the total variation

affinity. Since the affinity
∫
q0 ∧ q1dµ = 1 − 1

2

∫
|q0 − q1| dµ for any two densities q0 and

q1, Jensen’s Inequality implies[∫
|q0 − q1| dµ

]2

=

(∫ ∣∣∣∣q0 − q1

q0

∣∣∣∣ q0dµ

)2

≤
∫

(q0 − q1)2

q0
dµ =

∫
q2

1

q0
dµ− 1.

Hence
∫
q0 ∧ q1dµ ≥ 1− 1

2

(∫ q21
q0
dµ− 1

)1/2
. To establish (60), it thus suffices to show that

∆ =

∫ ( 1
m∗

∑m∗
m=1 fm)2

f0
− 1 =

1

m2
∗

∑
m,l

∫ (
fmfl
f0
− 1

)
→ 0.

The following lemma is used to calculate the term
∫

(fmfl/f0 − 1) in ∆.

Lemma 6. Let gs be the density function of N (0,Σs), s = 0,m or l. Then∫
gmgl
g0

=
[
det

(
I − Σ−1

0 (Σm − Σ0) Σ−1
0 (Σl − Σ0)

)]−1/2
.
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Let Σm = Ω−1
m for 0 ≤ m ≤ m∗. Lemma 6 implies∫
fmfl
f0

=

(∫
gmgl
g0

)n
= [det (I − Ω0 (Σm − Σ0) Ω0 (Σl − Σ0))]−n/2 .

Let J(m, l) be the number of overlapping nonzero off-diagonal elements between Σm and

Σl in the first row. Recall the simple structures of Ω0 (55) and Σm−Σ0 by our construction.

Elementary calculations yield that

det (I − Ω0 (Σm − Σ0) Ω0 (Σl − Σ0)) = (1− 1 + b2

(1− b2)2Ja
2)2,

which is 1 when J = 0. Now we set d := 1+b2

(1−b2)2
> 1 to simplify our notation. It is easy to

see that the total number of pairs (Σm,Σl) such that J(m, l) = j is
( p−2
kn,p−1

)(kn,p−1
j

)(p−1−kn,p
kn,p−1−j

)
.

Hence,

∆ =
1

m2
∗

∑
0≤j≤kn,p−1

∑
J(m,l)=j

∫ (
fmfl
f0
− 1

)

=
1

m2
∗

∑
0≤j≤kn,p−1

∑
J(m,l)=j

(
(1− dja2)−n − 1

)

≤ 1

m2
∗

∑
1≤j≤kn,p−1

(
p− 2

kn,p − 1

)(
kn,p − 1

j

)(
p− 1− kn,p
kn,p − 1− j

)
(1− dja2)−n.(101)

Note that

(1− dja2)−n ≤ (1 + 2dja2)n ≤ exp
(
n2dja2

)
= p2dτ1j

where the first inequality follows from the fact that dja2 ≤ dkn,pa
2 ≤ 1+b2

(1−b2)2
τ1C0 < 1/2.

Hence,

∆ ≤
∑

1≤j≤kn,p−1

(kn,p−1
j

)(p−1−kn,p
kn,p−1−j

)
( p−2
kn,p−1

) p2dτ1j

=
∑

1≤j≤kn,p−1

1

j!

(
(kn,p−1)!

(kn,p−1−j)!

)2

(p−2)!(p−2kn,p+j)!

[(p−1−kn,p)!]2

p2dτ1j

≤
∑

1≤j≤kn,p−1

(
k2
n,pp

2dτ1

p− kn,p − 1

)j
,

where the last inequality follows from the facts that
(kn,p−1)!

(kn,p−1−j)! is a product of j terms

with each term less than kn,p and
(p−2)!(p−2kn,p+j)!

[(p−1−kn,p)!]2
is bounded below by a product of j

terms with each term greater than (p− kn,p − 1) . Recall the assumption (27) p ≥ kvn,p.

So for large enough p, we have p− kn,p − 1 ≥ p/2 and

k2
n,p

p2dτ1

p− kn,p − 1
≤ 2p2/ν · p

2dτ1

p

≤ 2p−(v−2)/(2v),
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where the last step follows from the fact that τ1 ≤ (ν − 2) / (4νd). Thus

∆ ≤ 2
∑

1≤j≤kn,p−1

p−j(v−2)/(2v) → 0,

which immediately implies (60).

SUPPLEMENTARY MATERIAL

Supplement to ”Asymptotic Normality and Optimalities in Estimation of

Large Gaussian Graphical Model”

(doi: 10.1214/00-AOSXXXXSUPP). In this supplement we collect proofs for proving aux-

iliary Lemma 1 and 5 and Proposition 1, 2 and 4.
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