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In this supplement we collect proofs for proving auxiliary lemmas.

1. Proof of Lemma 5. The proof of this Lemma is similar to that of Lemma 2 in

Section 8.1. But for the latent variables case in both algebraic analysis and probabilistic

analysis we need to replace βi, θ
ora
ij , σora, εi and ν by βSi , θora,Sij , σora,S , εSi and νS

respectively, and subsequently define

I1 =

{
νS ≤ σora,Sλξ − 1

ξ + 1
(1− τ)

}
,(102)

I3 =

{
σora,S ∈

[√
1/ (2M),

√
2M

]}
,(103)

where σora,S =
(
θora,Sii

)1/2
=
‖εSi ‖√
n

and νS =
∥∥∥YT εSi /n

∥∥∥
∞

, while the definitions of I2

and I4 are the same as before in Equations (87) and (89). As in Section 8.1 we define

E = ∩4i=1Ii and need to show that P {E} ≥ 1 − (1 + o(1))p−δ+1. We will need only to

show that

P {Ic1} ≤ o
(
p−δ+1

)
, and P {Ic3} ≤ o(p−δ).

The arguments for P {Ic2} and P {Ic4} are identical to those of the non-latent variables case

in Section 8.1.2.

It is relatively easy to establish the probabilistic bound for I3. It is a consequence of

the following two bounds,

(104)

P
{

(σora)2 /∈ [3/ (4M) , 5M/4]
}
≤ P

{∣∣∣∣∣(σora)
2

θii
− 1

∣∣∣∣∣ ≥ 1

4

}
= P

{∣∣∣∣∣χ
2
(n)

n
− 1

∣∣∣∣∣ ≥ 1

4

}
= o(p−δ),

which follows from Equation (93), and

(105) P
{∣∣∣∣(σora)2 − (σora,S)2∣∣∣∣ > 1/ (4M)

}
= o(p−δ)
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which follows two bounds for D1 (70) and D2 (71).

Now we establish the probabilistic bound for I1, i.e., P {Ic1} ≤ o
(
p−δ+1

)
. Write the

event Ic1 as follows,

νS − ν + ν

>

σora,Sλξ − 1

ξ + 1
(1− τ)− σora

√
2δ log p

n

+ σora

√
2δ log p

n

=

σora,S
λξ − 1

ξ + 1
(1− τ)−

√
2δ log p

n

+
(
σora,S − σora

)√2δ log p

n

+ σora

√
2δ log p

n
.

Set ξ = 6/ε+ 5 such that

λ
ξ − 1

ξ + 1
(1− τ) > (1 + ε/2)

√
2δ log p

n

for λ = (1 + ε)
√

2δ log p
n on I2 ∩ I3. Then probabilistic bound for I1 is a consequence the

following two bounds,

(106) P

ν > σora

√
2δ log p

n

 ≤ O (p−δ+1/
√

log p
)
,

which follows from Equation (100) or Proposition 5, and

(107) P

νS − ν > ε

2
σora,S

√
2δ log p

n
+
(
σora,S − σora

)√2δ log p

n

 = o
(
p−δ

)
,

which is established as follows. From Equations (103), D1 (70) and D2 (71), we have

ε

2
σora,S −

∣∣∣(σora,S)− (σora)
∣∣∣ ≥ ε

2

√
1

2M
−O

(
1

p
+

√
log p

np

)
≥ ε

4

√
1

2M

with probability 1− o
(
p−δ

)
. It is then enough to show

(108) P

νS − ν > ε

4

√
1

2M

√
2δ log p

n

 = o
(
p−δ

)
to establish Equation (107). On the event I4 we have

∣∣∣νS − ν∣∣∣ ≤ max
k∈Ac

∣∣∣∣∣
∣∣∣∣∣YT

k ε
S
i

n

∣∣∣∣∣−
∣∣∣∣∣YT

k εi
n

∣∣∣∣∣
∣∣∣∣∣ ≤ max

k∈Ac

∣∣∣∣∣YT
kXAcβLi
n

∣∣∣∣∣
= max

k∈Ac

∣∣∣∣∣
√
n∥∥XT
k

∥∥XT
kXAcβLi
n

∣∣∣∣∣ ≤ √2M max
k∈Ac

∣∣∣∣∣∣ 1n
n∑
g=1

X
(g)
k

(
X

(g)
Ac

)T
βLi

∣∣∣∣∣∣ ,(109)
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whereX(g) denotes the gth sample. Note that for each k ∈ Ac the term 1
n

∑n
g=1X

(g)
k

(
X

(g)
Ac

)T
βLi

in (109) is an average of n i.i.d. random variables with∣∣∣∣EX(g)
k

(
X

(g)
Ac

)T
βLi

∣∣∣∣ ≤ ∥∥∥ΣXXβ
L
i

∥∥∥
2
≤ ‖ΣXX‖2

∥∥∥βLi ∥∥∥
2
≤ CM
√
p
,

V ar

(
X

(g)
k

(
X

(g)
Ac

)T
βLi

)
≤ C

p
.

From the classical large deviations bound in Theorem 2.8 of Petrov (1995), there exist

some uniform constant c1, c2 > 0 such that

P


∣∣∣∣∣∣
√
p

n

n∑
g=1

[
X

(g)
k

(
X

(g)
Ac

)T
βLi − E

(
X

(g)
k

(
X

(g)
Ac

)T
βLi

)]∣∣∣∣∣∣ > t

 ≤ 2 exp
(
−nt2/c2

)
for 0 < t < c1.

then by setting t =
√

2δc2 log p
n , with probability 1− o

(
p−δ

)
, we have

∣∣∣νS − ν∣∣∣ ≤ √2M

CM√
p

+
1
√
p

√
2δc2 log p

n

 = o

√2δ log p

n

 .
where the last inequality follows from Equation (45). Therefore we have shown Equation

(108), i.e., with probability 1− o
(
p−δ

)
,

νS − ν = o

√2δ log p

n

 <
ε

4

√
1

2M

√
2δ log p

n
,

which together with Equation (106), imply the probabilistic bound for I1.

2. Proof of Proposition 1. From the KKT conditions (80) we have

(110)

∥∥∥∥∥YTY

n

(
d̂ (µ)− dtrue

)∥∥∥∥∥
∞

=

∥∥∥∥∥∥
YT

(
Xi −Yd̂ (µ)

)
n

− YT
(
Xi −Ydtrue

)
n

∥∥∥∥∥∥
∞

≤ µ+ν,

where ν is defined in Equation (83). We also have

1

n

∥∥∥Y (
dtrue − d̂ (µ)

)∥∥∥2
=

(
dtrue − d̂ (µ)

)T (
YT

(
Xi −Yd̂ (µ)

)
−YT

(
Xi −Ydtrue

))
n

≤ µ
(∥∥∥dtrue∥∥∥

1
−
∥∥∥d̂ (µ)

∥∥∥
1

)
+ ν

∥∥∥dtrue − d̂ (µ)
∥∥∥
1

(111)

≤ (µ+ ν)
∥∥∥(dtrue − d̂ (µ)

)
T

∥∥∥
1

+ 2µ
∥∥∥(dtrue)

T c

∥∥∥
1
− (µ− ν)

∥∥∥(dtrue − d̂ (µ)
)
T c

∥∥∥
1
,
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where the first inequality follows from the KKT conditions (80). Then on the event{
ν ≤ µ ξ−1ξ+1

}
we have

(112)

1

n

∥∥∥Y (
dtrue − d̂ (µ)

)∥∥∥2 ≤ 2µ

ξ
∥∥∥(dtrue − d̂ (µ)

)
T

∥∥∥
1

ξ + 1
+
∥∥∥(dtrue)

T c

∥∥∥
1
−

∥∥∥(dtrue − d̂ (µ)
)
T c

∥∥∥
1

ξ + 1

 .

If we could show that d̂ (µ)−dtrue ∈ C
(
ξ+ζ
1−ζ , T

)
, then by the definition (81) and inequality

(110) we would obtain

(113)
∥∥∥d̂ (µ)− dtrue

∥∥∥
1
≤ (ν + µ) |T |
CIF1

(
ξ+ζ
1−ζ , T,Y

) .
Suppose that

(114)
∥∥∥d̂ (µ)− dtrue

∥∥∥
1
≥ 1 + ξ

ζ

∥∥∥(dtrue)
T c

∥∥∥
1
,

then the inequality (112) becomes∥∥∥Y (
dtrue − d̂ (µ)

)∥∥∥2
n

≤ 2µ

ξ + 1

(
(ξ + ζ)

∥∥∥(dtrue − d̂ (µ)
)
T

∥∥∥
1
− (1− ζ)

∥∥∥(dtrue − d̂ (µ)
)
T c

∥∥∥
1

)
.

Thus we have

d̂ (µ)− dtrue ∈ C
(
ξ + ζ

1− ζ
, T

)
.

Combining this fact under the condition (114) with (113), we obtain the first desired

inequality (90)

∥∥∥d̂ (µ)− dtrue
∥∥∥
1
≤ max

1 + ξ

ζ

∥∥∥(dtrue)
T c

∥∥∥
1
,

(ν + µ) |T |
CIF1

(
ξ+ζ
1−ζ , T,Y

)
 .

We complete our proof by letting ζ = 1/2 and noting that (111) implies the second desired

inequality (91).

3. Proof of Proposition 2. For τ defined in Equation (84), we need to show that

σ̂ ≥ σora (1− τ) and σ̂ ≤ σora (1 + τ) on the event
{
ν ≤ σoraλ ξ−1ξ+1 (1− τ)

}
. Let d̂ (σλ) be

the solution of (79) as a function of σ, then

(115)
∂

∂σ
Lλ
(
d̂ (σλ) , σ

)
=

1

2
−

∥∥∥Xi −Yd̂ (σλ)
∥∥∥2

2nσ2

since
{
∂
∂dLλ (d, σ) |d=d̂(σλ)

}
k

= 0 for all d̂k (σλ) 6= 0, and
{
∂
∂σ d̂ (σλ)

}
k

= 0 for all d̂k (σλ) =

0 which follows from the fact that
{
k : d̂k (σλ) = 0

}
is unchanged in a neighborhood of σ

for almost all σ. Equation (115) plays a key in the proof.
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(1). To show that σ̂ ≥ σora (1− τ) it’s enough to show

∂

∂σ
Lλ
(
d̂ (σλ) , σ

)
|σ=t1 ≤ 0.

where t1 = σora (1− τ), due to the strict convexity of the objective function Lλ (d, σ) in

σ. Equation (115) implies that

2t21
∂

∂σ
Lλ
(
d̂ (σλ) , σ

)
|σ=t1 = t21 −

∥∥∥Xm −Yd̂ (t1λ)
∥∥∥2

n

≤ t21 −

∥∥∥Xm −Ydtrue + Y
(
d̂ (t1λ)− dtrue

)∥∥∥2
n

≤ t21 − (σora)2 + 2
(
dtrue − d̂ (t1λ)

)T YT
(
Xm −Ydtrue

)
n

≤ 2t1 (t1 − σora) + 2ν
∥∥∥dtrue − d̂ (t1λ)

∥∥∥
1

.(116)

From Equation (90) in Proposition 1, on the event
{
ν ≤ t1λ ξ−1ξ+1

}
=
{
ν/σora < λ ξ−1ξ+1 (1− τ)

}
we have ∥∥∥d̂ (t1λ)− dtrue

∥∥∥
1
≤ max

{
2 (1 + ξ)

∥∥∥(dtrue)
T c

∥∥∥
1
,

(ν + t1λ) |T |
CIF1 (2ξ + 1, T,Y)

}
.

then

2t21
∂

∂σ
Lλ
(
d̂ (σλ) , σ

)
|σ=t1

≤ 2t1 (t1 − σora) + 2t1λmax

{
2 (1 + ξ)

∥∥∥(dtrue)
T c

∥∥∥
1
,

(ν + t1λ) |T |
CIF1 (2ξ + 1, T,Y)

}
≤ 2t1

[
−τσora + λmax

{
2 (1 + ξ)

∥∥∥(dtrue)
T c

∥∥∥
1
,

2σoraλ |T |
CIF1 (2ξ + 1, T,Y)

}]
= 2t1σ

ora
[
−τ + λmax

{
2 (1 + ξ)

σora

∥∥∥(dtrue)
T c

∥∥∥
1
,

2λ |T |
CIF1 (2ξ + 1, T,Y)

}]
< 0

where last inequality is from the definition of τ .

(2). Let t2 = σora (1 + τ).To show the other side σ̂ ≤ σora (1 + τ) it is enough to show

∂

∂σ
Lλ
(
d̂ (σλ) , σ

)
|σ=t2 ≥ 0.

Equation (115) implies that on the event
{
ν ≤ t2λ ξ−1ξ+1

}
=
{
ν/σora < λ ξ−1ξ+1 (1 + τ)

}
we
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have

2t22
∂

∂σ
Lλ
(
d̂ (σλ) , σ

)
|σ=t2

= t22 −

∥∥∥Xm −Yd̂ (t2λ)
∥∥∥2

n

= t22 − (σora)2 + (σora)2 −

∥∥∥Xm −Yd̂ (t2λ)
∥∥∥2

n

= t22 − (σora)2 +

∥∥Xm −Ydtrue
∥∥2 − ∥∥∥Xm −Yd̂ (t2λ)

∥∥∥2
n

= t22 − (σora)2 +

(
d̂ (t2λ)− dtrue

)T
YT

(
Xm −Ydtrue + Xm −Yd̂ (t2λ)

)
n

≥ t22 − (σora)2 −
∥∥∥d̂ (t2λ)− dtrue

∥∥∥
1

(ν + t2λ) .

Equation (90) and the fact 1 + τ ≤ 2 imply

2t22
∂

∂σ
Lλ
(
d̂ (σλ) , σ

)
|σ=t2

≥ (t2 + σora)σoraτ −max

{
2 (1 + ξ) (ν + t2λ)

∥∥∥(dtrue)
T c

∥∥∥
1
,

(ν + t2λ)2 |T |
CIF1 (2ξ + 1, T,Y)

}

≥ (σora)2
(

(2 + τ) τ −max

{
2 (1 + ξ) (2λ (1 + τ))

σora

∥∥∥(dtrue)
T c

∥∥∥
1
,

8 (1 + τ)λ2 |T |
CIF1 (2ξ + 1, T,Y)

})
≥ (σora)2 τ,

where last inequality is from the definition of τ .

4. Proof of Proposition 4. This Proposition essentially follows from the shifting

inequality Proposition 5 in Ye and Zhang (2010). We will give a brief proof using results

and notations in that paper.

Define the generalized version of lq cone invertibility factor (81),

CIF ′q,l (α,K,Y) = inf

 |K|
1/q
∥∥∥YTY

n u
∥∥∥
∞

‖uA‖q
: u ∈ C (α,K) , u 6= 0, |A\K| ≤ l

 .
When q = 1 and l = p, CIF ′q,l (α,K,Y) = CIF ′1,p (α,K,Y) = CIF1 (α,K,Y). By Equa-

tions (17), (18) and (20) of Ye and Zhang (2010) we have

CIF1 (α,K,Y) = CIF ′1,p (α,K,Y) ≥
CIF ′2,l (α,K,Y)

C1,2

(
α, |K|l

)
≥

φ∗2,l (α,K,Y)

C1,2

(
α, |K|l

) ≥ φ̃∗2,l (α,K,Y)

C1,2

(
α, |K|l

) (
(1 + α) ∧

√
1 + l

|K|

)
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where C1,2

(
α, |K|l

)
, φ∗2,l (α,K,Y) and φ̃∗2,l (α,K,Y) are defined on page 3523-3524 of Ye

and Zhang (2010). From the definition of φ̃∗2,l (α,K,Y) in Equation (20) of Ye and Zhang

(2010), setting r = 2 (thus ar = 1/4 on page 3523) we have

φ̃∗2,l (α,K,Y) ≥ 1− π−l+k (Y)− α

√
k

4l
θ4l,k+l (Y) .

Since C1,2

(
α, |K|l

)
= 1 + α, then

CIF1 (α,K,Y) ≥ 1

(1 + α)

(
(1 + α) ∧

√
1 + l

k

)
1− π−l+k (Y)− α

√
k

4l
θ4l,k+l (Y)

 .

5. Proof of Lemma 1. Most of this proof is the same as that of Lemma 2. Hence

we only emphasize the differences here and provide details whenever necessary. The proof

also consists of algebraic analysis and probabilistic analysis. Recall that the main idea in

the proof of Lemma 2 is to show the events ∩4i=1Ii defined in (86)-(89) occur with high

probability and whenever they hold, Proposition 2 and Proposition 1 establish the desired

results. Since we decrease the penalty term λnew, the event I1 is no longer valid with high

probability. Now we need to redefine an appropriate event Inew1 and show that it occurs

with high probability and on Inew1 , similar properties like Proposition 2 and Proposition

1 also hold.

Recall ν = ‖h‖∞ with h := YT εm/n defined in (83). Similar as (82), we define the

index set T =
{
k ∈ Ac,

∣∣dtruek

∣∣ ≥ λnew} of dtrue with large coordinates. Now by using

smaller λnew, although ν is no longer smaller than σoraλnew ξ−1ξ+1(1− τ) in I1 w.h.p., most

coordinates of h still hold. Define a random index set

T̂0 =

{
k ∈ Ac, |hk| ≥ σoraλnew

ξ − 1

ξ + 1
(1− τ)

}
.

The new event can be defined as

Inew1 =

{
ν ≤ σora λ

new

1− t
ξ − 1

ξ + 1
(1− τ)

}
∪
{∣∣∣T̂0∣∣∣ ≤ Cusmax

}
,

where Cu is some universal constant. Note that λnew ≥ (1− t)λ by our assumption

smax = O(pt), thus the probabilistic analysis for I1 in Lemma 2 immediately implies

that the first component of Inew1 holds w.h.p.. The second component holds w.h.p. can

be shown by large deviation result of order statistics, where the first component is also

can be seen as a special case. (See, e.g. Reiss (1989)). Therefore, we briefly showed that

P {(Inew1 )c} ≤
(
p−δ+1/

√
log p

)
. We also need to modify the event I2 a little bit as we not
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only care about index T but also index T̂0 which are out of the bound.

Inew2 =

{
CIF1

(
ξ + 2 +

ξ − 1

1− t
, T̂0 ∪ T,Y

)
≥ C > 0

}
.

The probabilistic analysis of I2 in Lemma 2 implies that there is no difference by using

Inew2 since the probability bound for I2 is universal for all index sets with cardinality

less than s + Cusmax = o
(

n
log p

)
. We don’t change events I3 and I4. Thus we finish the

probabilistic analysis.

Now it’s enough for us to show that on ∩2i=1I
new
i ∩4i=3Ii, the desired results hold. It’s not

hard to see in the proof of Proposition 2 that as long as a similar property like Proposition

1 holds (we will provide details and prove this key result in a minute), Proposition 2 is still

valid when we replace I1 by Inew1 in the assumption. The only thing we need to show is

the following Proposition 6. Note on ∩2i=1I
new
i ∩4i=3 Ii, Proposition 2 is valid and hence the

assumption of the following Proposition with µ = σ̂λnew is also satisfied. We then apply

this Proposition 6 again to finish the algebraic analysis and hence complete our proof.

Proposition 6. For any ξ > 1, on the event
{
ν ≤ µ

1−t
ξ−1
ξ+1

}
∪
{∣∣∣T̂1∣∣∣ ≤ Cusmax

}
with

T̂1 =
{
k ∈ Ac, |hk| ≥ µ ξ−1ξ+1

}
, we have

∥∥∥d̂ (µ)− dtrue
∥∥∥
1
≤ max

(2 + 2ξ)
∥∥∥(dtrue)

T c

∥∥∥
1
,
(ν + µ)

∣∣∣T ∪ T̂1∣∣∣
CIF1

 ,(117)

1

n

∥∥∥Y (
dtrue − d̂ (µ)

)∥∥∥2 ≤ (ν + µ)
∥∥∥d̂ (µ)− dtrue

∥∥∥
1
,(118)

where CIF1 above is short for CIF1

(
ξ + 2 + ξ−1

1−t , T ∪ T̂1,Y
)
.

The proof is a modification of that for Proposition 1. We still have equation (110)∥∥∥YTY
n

(
d̂ (µ)− dtrue

)∥∥∥
∞
≤ µ+ ν. Define ∆ (µ) := dtrue− d̂ (µ) . The equation (112) needs

to be modified as follows,

‖Y∆ (µ)‖2

n
=

∆T (µ)
(
YT

(
Xi −Yd̂ (µ)

)
−YT

(
Xi −Ydtrue

))
n

≤ µ
(∥∥∥dtrue∥∥∥

1
−
∥∥∥d̂ (µ)

∥∥∥
1

)
+ ν

∥∥∥∆ (µ)T̂1

∥∥∥
1

+ µ
ξ − 1

ξ + 1

∥∥∥∆ (µ)T̂ c
1

∥∥∥
1

(119)

≤
(
µ+

µ

1− t
ξ − 1

ξ + 1

)∥∥∥∆ (µ)T∪T̂1

∥∥∥
1

+ 2µ
∥∥∥(dtrue)

T c

∥∥∥
1

(120)

−
(
µ− µξ − 1

ξ + 1

)∥∥∥∥∆ (µ)(T∪T̂1)
c

∥∥∥∥
1
.
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where the first inequality follows from the KKT conditions (80) and our assumed event.

The remaining part is the same as that in Proposition 1. Suppose ‖∆ (µ)‖1 ≥ 2 (1 + ξ)
∥∥(dtrue)T c

∥∥
1
,

then inequality (120) becomes((
ξ + 2 +

ξ − 1

1− t

)∥∥∥∆ (µ)T∪T̂1

∥∥∥
1
−
∥∥∥∥∆ (µ)(T∪T̂1)

c

∥∥∥∥
1

)
≥ 0.

Thus we have

dtrue − d̂ (µ) = ∆ (µ) ∈ C
(
ξ + 2 +

ξ − 1

1− t
, T ∪ T̂1

)
.

Combining this fact with equation (110), we obtain the first desired inequality (117). We

complete our proof by noting that (119) implies the second desired inequality (118).

Now we show that λnew can be replaced by its finite sample version λnewfinite. As we have

seen, the analysis of event I1 is the key result. All we need to show is that P
{
|hk| > λnewfinite

}
≤

O
(
p−δ

)
, where

√
n−1hk√
1−h2

k

follows an t distribution with n− 1 degrees of freedom. Since hk

is an increasing function of
√
n−1hk√
1−h2

k

on R+, we can take the quantile of t(n−1) distribution

rather than use the concentration inequality above.
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