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The singular subspaces perturbation theory is of fundamental importance
in probability and statistics. It has various applications across different fields.
We consider two arbitrary matrices where one is a leave-one-column-out sub-
matrix of the other one and establish a novel perturbation upper bound for the
distance between two corresponding singular subspaces. It is well-suited for
mixture models and results in a sharper and finer statistical analysis than clas-
sical perturbation bounds such as Wedin’s Theorem. Powered by this leave-
one-out perturbation theory, we provide a deterministic entrywise analysis for
the performance of the spectral clustering under mixture models. Our analysis
leads to an explicit exponential error rate for the clustering of sub-Gaussian
mixture models. For the mixture of isotropic Gaussians, the rate is optimal
under a weaker signal-to-noise condition than that of Löffler et al. (2021).

1. Introduction. The matrix perturbation theory [36, 4] is a central topic in probabil-
ity and statistics. It plays a fundamental role in spectral methods [10, 18], an umbrella term
for algorithms involving eigendecomposition or singular value decomposition. It has a wide
range of applications including principal component analysis [1, 7], covariance matrix esti-
mation [14], clustering [38, 33, 34, 29], and matrix completion [27, 13], throughout different
fields such as machine learning [5], network science [31, 2], and genomics [19].

Perturbation analysis for eigenspaces and singular subspaces dates back to seminal works
of Davis and Kahan [11] and Wedin [40]. Davis-Kahan Theorem provides a clean bound for
eigenspaces in terms of operator norm and Frobenius norm, and Wedin further extends it
to singular subspaces. In recent years, there has been growing literature in developing fine-
grained ℓ∞ analysis for singular vectors [2, 14] and ℓ2,∞ analysis for singular subspaces
[24, 9, 6, 3], which often lead to sharp upper bounds. For clustering problems, they can be
used to establish the exact recovery of spectral methods, but are usually not suitable for low
signal-to-noise ratio regimes where only partial recovery is possible.

In this paper, we consider a special matrix perturbation case where one matrix differs
from the other one by having one less column and investigate the difference between two
corresponding left singular subspaces. Consider two matrices

Y = (y1, . . . , yn−1) ∈R
p×(n−1) and Ŷ = (y1, . . . , yn−1, yn) ∈R

p×n,(1)

where Y is a leave-one-column-out submatrix of Ŷ with the last column removed. Let Ur and
Ûr include the leading r left singular vectors of Y and Ŷ , respectively. The two corresponding
left singular subspaces are span(Ur) and span(Ûr), where the former one can be interpreted
as a leave-one-out counterpart of the latter one.
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We establish a novel upper bound for the Frobenius norm of ÛrÛ
T
r −UrU

T
r to quantify the

distance between the two singular subspaces span(Ur) and span(Ûr). A direct application of
the generic Wedin’s Theorem leads to a ratio of the magnitude of perturbation (I−UrU

T
r )yn

to the corresponding spectral gap σr−σr+1. We go beyond Wedin’s Theorem and reveal that
the interplay between UrU

T
r yn and (I−UrU

T
r )yn plays a crucial role. Our new upper bound

is a product of the aforementioned ratio and a factor determined UT
r yn. That is, informally

(see Theorem 2.1 for a precise statement),
∥

∥

∥ÛrÛ
T
r −UrU

T
r

∥

∥

∥

F
.

∥

∥(I −UrU
T
r )yn

∥

∥

σr − σr+1
× a factor from UT

r yn.

When this factor is smaller than some constant, it results in a sharper upper bound than
Wedin’s Theorem. The established upper bound is particularly suitable for mixture models
where the contributions of UT

r yn are well-controlled, and consequently provides a key toolkit
for the follow-up statistical analysis on spectral clustering.

Spectral clustering is one of the most popular approaches to group high-dimensional data.
It first reduces the dimensionality of data by only using a few of its singular components,
followed by a classical clustering method such as k-means to the data of reduced dimension.
It is computationally appealing and often has remarkably good performance, and has been
widely used in various problems. In recent years there has been growing interest in theoretical
properties of spectral clustering, noticeably in community detection [2, 23, 17, 32, 33, 43, 15,
30, 22]. In spite of various polynomial-form upper bounds in terms of signal-to-noise ratios
for the performance of spectral clustering, sharper exponential error rates are established in
literature only for a few special scenarios, such as Stochastic Block Models with two equal-
size communities [2]. Spectral clustering is also investigated in mixture models [29, 25, 1,
12, 39, 35]. For isotropic Gaussian mixture models, [25] shows spectral clustering achieves
the optimal minimax rate. However, the proof technique used in [25] is very limited to the
isotropic Gaussian noise and it is unclear whether it is possible to be extended to either
sub-Gaussian distributed errors or unknown covariance matrices. Spectral clustering for sub-
Gaussian mixture models is studied in [1] but only under special assumptions on the spectrum
and geometry of the centers. It requires eigenvalues of the Gram matrix of centers to be all in
the same order and sufficiently large, which rules out many interesting cases.

We study the theoretical performance of the spectral clustering under general mixture mod-
els where each observation Xi is equal to one of k centers plus some noise ǫi. The spectral
clustering first projectsXi onto ÛT

1:rXi where Û1:r includes the leading r left singular vectors
of the data matrix, and then performs k-means on this low-dimensional space. Powered by
our leave-one-out perturbation theory, we provide a deterministic entrywise analysis for the
spectral clustering and show that whether Xi is correctly clustered or not is determined by
ÛT
−i,1:rǫi where Û−i,1:r is the leave-one-out counterpart of Û1:r that uses all the observations

except Xi. The independence between Û−i,1:r and ǫi enables us to derive explicit error risks
when the noises are randomly generated from certain distributions. Specifically:

1. For sub-Gaussian mixture models, we establish an exponential error rate for the perfor-
mance of the spectral clustering, assuming the centers are separated from each other and
the smallest non-zero singular value is away from zero. Our conditions are more gen-
eral than those needed in [1]. To remove the spectral gap condition, we further propose
a variant of the spectral clustering where the number of singular vectors used is selected
adaptively.

2. For Gaussian mixture models with isotropic covariance matrix, we fully recover the results
of [25]. Empowered by the leave-one-out perturbation theory, our proof is completely
different and is much shorter compared to that of [25]. In addition, the signal-to-noise
ratio condition of [25] is improved.
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3. For a two-cluster symmetric mixture model where coordinates of the noise ǫi are indepen-
dently and identically distributed, we provide a matching upper and lower bound for the
performance of the spectral clustering. This sharp analysis provides an answer to the opti-
mality of the spectral clustering in this setting: it is in general sub-optimal and is optimal
only if each coordinate of ǫi is normally distributed.

Organization. This paper is organized as follows. In Section 2, we first establish a gen-
eral leave-one-out perturbation theory for singular subspaces, followed by its application in
mixture models. In Section 3, we use our leave-one-out perturbation theory to provide theo-
retical guarantees for the spectral clustering under mixture models. The proofs of main results
in Section 2 and Section 3 are given in Section 4 and in Section 5, respectively. The remaining
proofs are included in the supplement [42].

Notation. For any positive integer r, let [r] = {1,2, . . . , r}. For two scalars a, b ∈ R, de-
note a ∧ b = min{a, b}. For two matrices A = (Ai,j) and B = (Bi,j), we denote 〈A,B〉 =
∑

i,j Ai,jBi,j to be the trace product, ‖A‖ to be its operator norm, ‖A‖F to be its Frobenius
norm, and span(A) to be the linear space spanned by columns of A. If both A,B are sym-
metric, we write A≺B if B −A is positive semidefinite. For scalars x1, . . . , xd, we denote
diag(x1, . . . , xd) to be a d×d diagonal matrix with diagonal entries being x1, . . . , xd. For any
integers d, p≥ 0, we denote 0d ∈ Rd to be a vector with all coordinates being 0, 1d ∈ Rd to
be a vector with all coordinates being 1, and Od×p ∈Rd×p to be a matrix with all entries be-
ing 0. We denote Id×d and Id to be the d× d identity matrix and we use I for short when the
dimension of clear according to context. Let Od×p =

{

V ∈Rd×p : V TV = I
}

be the set of
matrices in Rd×p with orthonormal columns. We denote I{·} to be the indicator function. For
two positive sequences {an} and {bn}, an . bn, an =O(bn), bn & an all mean an ≤Cbn for
some constant C > 0 independent of n. We also write an = o(bn) when lim supn→∞

an

bn
= 0.

For a random variable X , we say X is sub-Gaussian with variance proxy σ2 (denoted as
X ∼ SG(σ2)) if EetX ≤ exp

(

σ2t2/2
)

for any t ∈ R. For a random vector X ∈ Rd, we say
X is sub-Gaussian with variance proxy σ2 (denoted as X ∼ SGd(σ

2)) if uTX ∼ SG(σ2) for
any unit vector u ∈Rd.

2. Leave-one-out Singular Subspace Perturbation Analysis. In this section, we es-
tablish a general matrix perturbation theory for singular subspaces. In particular, we consider
two arbitrary matrices with one having a less column than the other and study the difference
between two corresponding left singular subspaces. We will first develop a general theory
and then apply it to mixture models.

2.1. General Results. Consider two matrices as in (1) such that they are equal to each
other except that Ŷ has an extra last column. Let the Singular Value Decomposition (SVD)
of these two matrices be

Y =
∑

i∈[p∧(n−1)]

σiuiv
T
i and Ŷ =

∑

i∈[p∧n]
σ̂iûiv̂

T
i ,

where σ1 ≥ . . .≥ σp∧(n−1) and σ̂1 ≥ . . .≥ σ̂p∧n. Consider any r ∈ [p∧ (n− 1)]. Define

Ur := (u1, . . . , ur) ∈O
p×r and Ûr := (û1, . . . , ûr) ∈O

p×r

to include the leading r left singular vectors of Y and Ŷ , respectively. Since Y can be viewed
as a leave-one-out submatrix of Ŷ that is without the last column yn, Ur can be interpreted
as a leave-one-out counterpart of Ûr .
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The two matrices Ur, Ûr correspond to two singular subspaces span(Ur), span(Ûr), re-
spectively. The difference between these two subspaces can be captured by sin Θ distances,
‖sin Θ(Ûr,Ur)‖ or ‖sin Θ(Ûr,Ur)‖F, where

Θ(Ûr,Ur) := diag(cos−1(α1), cos
−1(α2), . . . , cos

−1(αr))

with α1 ≥ α2 ≥ . . .≥ αr ≥ 0 being the r singular values of ÛT
r Ur . It is known (cf. Lemma

1 of [8]) that ‖ÛrÛ
T
r − UrU

T
r ‖F =

√
2‖sin Θ(Ûr,Ur)‖F. Throughout this section, we will

focus on establishing sharp upper bounds for ‖ÛrÛ
T
r −UrU

T
r ‖F, i.e., the Frobenius norm of

the difference between two corresponding projection matrices UrU
T
r and ÛrÛ

T
r .

Since the augmented matrix Y ′ := (Y,UrU
T
r yn) ∈Rp×n concatenated by Y and UrU

T
r yn

has the same leading r left singular subspace and projection matrix as Y , a natural idea is
to relate ‖ÛrÛ

T
r − UrU

T
r ‖F with the difference Ŷ − Y ′. The classical spectral perturbation

theory such as Wedin’s Theorem [41, 8] leads to that if σr−σr+1 > 2
∥

∥(I −UrU
T
r )yn

∥

∥, then

∥

∥

∥
ÛrÛ

T
r −UrU

T
r

∥

∥

∥

F
≤ 2

∥

∥(I −UrU
T
r )yn

∥

∥

σr − σr+1
.(2)

See Proposition D.1 in the supplement for its proof. The upper bound in (2) requires the
spectral gap σr − σr+1 is away from zero. It also indicates the magnitude of the difference
‖Ŷ −Y ′‖= ‖(I−UrU

T
r )yn‖ plays a crucial role. In spite of its simple form, (2) comes from

generic spectral perturbation theories not specifically designed for the setting (1).
In the following Theroem 2.1, we provide a deeper and finer analysis for ‖ÛrÛ

T
r −

UrU
T
r ‖F, utilizing the fact that Ŷ and Y differ by only one column and exploiting the in-

terplay between UrU
T
r yn and (I −UrU

T
r )yn.

THEOREM 2.1. If

ρ :=
σr − σr+1

‖(I −UrUT
r )yn‖

> 2,(3)

we have

∥

∥

∥ÛrÛ
T
r −UrU

T
r

∥

∥

∥

F
≤ 4

√
2

ρ

√

√

√

√

r
∑

i=1

(

uTi yn
σi

)2

.(4)

Theorem 2.1 gives an upper bound on ‖ÛrÛ
T
r − UrU

T
r ‖F that is essentially a product of

ρ−1 and some quantity determined by {σ−1
i uTi yn}i∈[r]. Since (σ−1

i uTi yn)
2 ≤ σ−2

r (uTi yn)
2

for each i ∈ [r], (4) leads to a simpler upper bound

‖ÛrÛ
T
r −UrU

T
r ‖F ≤ 4

√
2

ρ

‖UrU
T
r yn‖
σr

.

The condition (3) in Theorem 2.1 can be understood as a spectral gap assumption as it
needs the gap σr − σr+1 to be larger than twice the magnitude of the perturbation ‖(I −
UrU

T
r )yn‖. This condition can be slightly weakened into σ2r −σ2r+1−‖(I−UrU

T
r )yn‖2 > 0,

though resulting in a more involved upper bound. See Theorem 4.1 in Section 4.1 for details.
We are ready to have a comparison of our result (4) and (2) that is from Wedin’s Theorem.

Under the assumption (3), the upper bound in (2) can be written equivalently as 2ρ−1. As
a result, the comparison is about the magnitude of (

∑

i∈[r](σ
−1
i uTi yn)

2)1/2. If it is smaller

than 1/(2
√
2), then (4) gives a sharper upper bound than (2). To further compare these two

bounds, consider the following examples.
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• Example 1. When UT
r yn = 0 and (3) is satisfied, (4) gives the correct upper bound 0.

That is, ÛrÛ
T
r = UrU

T
r . On the contrary, (2) gives a non-zero bound 2/ρ−1. To be more

concrete, let Y = σ1(p
−1/2

1p)((n− 1)−1/2
1n−1)

T be a rank-one matrix and yn be some
vector that is orthogonal to 1p. Then if σ1 > 2‖yn‖, we have û1 = u1 = p−1/2

1p up to
sign. (4) gives the correct answer ‖û1ûT1 − u1u

T
1 ‖F = 0 as uT1 yn = 0, while (2) leads to a

loose upper bound 2‖yn‖/σ1.
• Example 2. Let Y be a matrix with two unique columns such that yj is equal to either θ or
−θ for all j ∈ [n− 1] and for some vector θ ∈Rp. Then Y is a rank-one matrix with σ1 =
‖θ‖

√
n− 1. Let yn = θ+ ǫ. As long as ‖θ‖

√
n− 1> 2‖ǫ‖, we have ‖û1ûT1 −u1u

T
1 ‖F ≤

4
√
2ρ−1(‖θ‖ + ‖ǫ‖)/σ1 from (4). If we further assume ‖θ‖ = 1 and ǫ ∼ N (0, Ip) with

p≪ n, we have ‖û1ûT1 −u1uT1 ‖F .
√

p/nρ−1 = o(ρ−1) with high probability. In contrast,
(2) only gives 2ρ−1.

In the next section, we consider mixture models where the magnitude of (
∑

i∈[r](σ
−1
i uTi yn)

2)1/2

is well-controlled and (4) leads to a much sharper upper bound compared to (2).

2.2. Singular Subspace Perturbation in Mixture Models. The general perturbation theory
presented in Theorem 2.1 is particularly suitable for analyzing singular subspaces of mixture
models.

Mixture Models. We consider a mixture model with k centers θ∗1, θ
∗
2, . . . , θ

∗
k ∈Rp and a cluster

assignment vector z∗ ∈ [k]n. The observations X1,X2, . . . ,Xn ∈Rp are generated from

Xi = θ∗z∗
i
+ ǫi,(5)

where ǫ1, . . . , ǫn ∈Rp are noises. The data matrix X := (X1, . . . ,Xn) ∈Rp×n can be written
equivalently in a matrix form

X = P +E,(6)

where P := (θ∗z∗
1
, θ∗z∗

2
, . . . , θ∗z∗

n
) is the signal matrix and E := (ǫ1, . . . , ǫn) is the noise matrix.

Define β := 1
n/k mina∈[k] |{i : z∗i = a}| such that βn/k is the smallest cluster size.

We are interested in the left singular subspaces of X and its leave-one-out counterparts.
For each i ∈ [n], define X−i to be a submatrix of X with its ith column removed. That is,

X−i := (X1, . . . ,Xi−1,Xi+1, . . . ,Xn) ∈R
p×(n−1).(7)

Let their SVDs be X =
∑

j∈[p∧n] λ̂jûj v̂
T
j and X−i =

∑

j∈[p∧(n−1)] λ̂−i,jû−i,j v̂
T
−i,j , where

λ̂1 ≥ λ̂2 ≥ . . .≥ λ̂p∧n and λ̂−i,1 ≥ λ̂−i,2 ≥ . . .≥ λ̂−i,p∧(n−1). Note that the signal matrix P
is at most rank-k. Then for any r ∈ [k], define

Û1:r := (û1, û2, . . . , ûr) ∈O
p×r and Û−i,1:r = (û−i,1, . . . , û−i,r) ∈O

p×r

to include the leading r left singular vectors of X and X−i, respectively. We are interested in
controlling the quantity ‖Û1:rÛ

T
1:r − Û−i,1:rÛ

T
−i,1:r‖F for each i ∈ [n].

In Theorem 2.2, we provide upper bounds for ‖Û1:κÛ
T
1:κ − Û−i,1:κÛ

T
−i,1:κ‖F for all i ∈ [n]

where κ ∈ [k] is the rank of the signal matrix P . In order to have such a uniform control
across all i ∈ [n], we consider the spectrum of the signal matrix P . Let λ1 ≥ λ2 ≥ . . .≥ λp∧n
be the singular values of P and κ be the rank of P such that κ ∈ [k], λκ > 0, and λκ+1 = 0.
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THEOREM 2.2. Assume βn/k2 ≥ 10. Assume

ρ0 :=
λκ
‖E‖ > 16.(8)

For any i ∈ [n], we have

∥

∥

∥
Û1:κÛ

T
1:κ − Û−i,1:κÛ

T
−i,1:κ

∥

∥

∥

F
≤ 128

ρ0





√

kκ

βn
+

∥

∥

∥
Û−i,1:κÛ

T
−i,1:κǫi

∥

∥

∥

λκ



 .(9)

Theorem 2.2 exploits the mixture model structure (5) that the signal matrix P has only k
unique columns with each appearing at least βn/k times. The assumption βn/k ≥ 16 helps
ensure that spectrum and singular vectors of P are not much changed if any column of P
is removed. We require the condition (8) so that λ̂−i,κ − λ̂−i,κ+1 > 2‖Û−i,1:κÛ

T
−i,1:κXi‖

holds for each i ∈ [n], and hence Theorem 2.1 can be applied uniformly for all i ∈ [n].
The upper bound (9) is a product of ρ−1

0 and a summation of two terms. The second term
‖Û−i,1:κÛ

T
−i,1:κǫi‖/λκ can be trivially upper bounded by ‖E‖/λκ ≤ ρ−1

0 . The first term
√

kκ/(βn) = o(1) if βn/k2 ≫ 1, for example, when β is a constant and k ≪ √
n. Then

(9) leads to ‖Û1:κÛ
T
1:κ − Û−i,1:κÛ

T
−i,1:κ‖F . o(1)ρ−1

0 + ρ−2
0 , superior to the upper bound (2)

obtained from the direct application of Wedin’s Theorem that is in an order of ρ−1
0 .

Theorem 2.2 studies the perturbation for the leading κ singular subspaces where κ is the
rank of P . In the following Theorem 2.3, we consider an extension to ‖Û1:rÛ

T
1:r − Û−i,1:rÛ

T
−i,1:r‖F

where r is not necessarily κ.

THEOREM 2.3. Assume βn/k2 ≥ 10. Assume there exists some r ∈ [k] such that

ρ̃0 :=
λr − λr+1

max
{

‖E‖ ,
√

k2

βnλr+1

} > 16.(10)

For any i ∈ [n], we have

∥

∥

∥Û1:rÛ
T
1:r − Û−i,1:rÛ

T
−i,1:r

∥

∥

∥

F
≤ 128

ρ̃0





√
kr√
βn

+

∥

∥

∥Û−i,1:rÛ
T
−i,1:rǫi

∥

∥

∥

λr



 .(11)

In Theorem 2.3, r ∈ [k] is any number such that (10) is satisfied. When r is chosen to be
κ, (10) is reduced to (8), and (11) leads to the same upper bound as (9). When r < κ, λr+1 is
non-zero and in (10) it needs to be smaller than the spectral gap λr −λr+1 after some scaling
factor.

To provide some intuition on the condition (10) when r < κ, let the SVD of the sig-
nal matrix P be P =

∑

j∈[p∧n]λjujv
T
j and define U1:r := (u1, u2, . . . , ur) ∈ Op×r and

U(r+1):κ := (ur+1, ur+2, . . . , uκ) ∈Op×(κ−r). Then the data matrix (6) can be written equiv-
alently as

X = P ′ +E′, where P ′ := U1:rU
T
1:rP and E′ :=E +U(r+1):κU

T
(r+1):κP.(12)

Since it is still a mixture model, Theorem 2.2 can be applied. Nevertheless, the condition
(8) essentially requires λr/(‖E‖ + λr+1) > 16 as ‖E′‖ ≤ ‖E‖ + ‖U(r+1):κU

T
(r+1):κP‖ =

‖E‖+ λr+1, which is stronger than the condition (10). In order to weaken the requirement
on the spectral gap into (10), we study the contribution of U(r+1):κU

T
(r+1):κP towards to the

leading r singular subspaces perturbation of E. It turns out that its contribution is roughly
√

k2/(βn)λr+1 instead of λr+1, due to the fact that U(r+1):κU
T
(r+1):κP has at most k unique

columns with each one appearing at least βn/k times.
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3. Spectral Clustering for Mixture Models.

3.1. Spectral Clustering and Polynomial Error Rate. Recall the definition of the mixture
model in (5) and also in (6). The goal of clustering is to estimate the cluster assignment vector
z∗ from the observationsX1,X2, . . . ,Xn. Since the signal matrix P is of low rank, a natural
idea is to project the observations {Xi}i∈[n] onto a low dimensional space before applying
classical clustering methods such as variants of k-means. This leads to the spectral clustering
presented in Algorithm 1.

Algorithm 1: Spectral Clustering

Input: Data matrix X = (X1, . . . ,Xn)∈ R
p×n, number of clusters k, number of singular vectors r

Output: Cluster assignment vector ẑ ∈ [k]n

1 Perform SVD on X to have

X =

p∧n
∑

i=1

λ̂iûiv̂
T
i ,

where λ̂1 ≥ λ̂2 ≥ . . .≥ λ̂p∧n ≥ 0 and {ûi}
p∧n
i=1 ∈R

p,{v̂i}
p∧n
i=1 ∈ R

n. Let

Û1:r := (û1, . . . , ûr) ∈R
p×r .

2 Perform k-means on the columns of ÛT
1:rX . That is,

(

ẑ,
{

ĉj
}

j∈[k]
)

= argmin
z∈[k]n,{cj}j∈[k]∈Rr

∑

i∈[n]

∥

∥

∥
ÛT
1:rXi − czi

∥

∥

∥

2
.(13)

In (13), the dimensionality of each data point ÛT
1:rXi is r, reduced from original dimen-

sionality p. This is computationally appealing as r can be much smaller than p. The second
step of Algorithm 1 is the k-means on the columns of ÛT

1:rX , which is equivalent to perform-
ing k-means onto the columns of Û1:rÛ

T
1:rX ∈ Rp×n. That is, define θ̂a = Û1:r ĉa for each

a ∈ [k]. It can be shown that (cf., Lemma 4.1 of [25])
(

ẑ,
{

θ̂j

}

j∈[k]

)

= argmin
z∈[k]n,{θj}j∈[k]

∈Rp

∑

i∈[n]

∥

∥

∥
Û1:rÛ

T
1:rXi − θzi

∥

∥

∥

2
,(14)

due to the fact that Û1:r has orthonormal columns. As a result, in the rest of the paper, we
carry out our analysis on ẑ using (14).

Before characterizing the theoretical performance of the spectral clustering ẑ, we give the
definition of the misclustering error which quantifies the distance between an estimator and
the ground truth z∗. For any z ∈ [k]n, its misclustering error is defined as

ℓ(z, z∗) = min
φ∈Φ

1

n

∑

i∈[n]
I{zi = φ(z∗i )},

where Φ = {φ : φ is a bijection from [k] to [k]}. The minimization of Φ is due to that the
cluster assignment vector z∗ is identifiable up to a permutation of the labels [k]. In addition
to β that controls the smallest cluster size, another important quantity in this clustering task
is the separation of the centers. Define ∆ to be the minimum distance among centers, i.e.,

∆ := min
a,b∈[k]:a6=b

‖θ∗a − θ∗b‖ .
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As we will see later, ∆ determines the difficulty of the clustering task and plays a crucial
role.

In Proposition 3.1, we give a rough upper bound on the misclustering error ℓ(ẑ, z∗) that
takes a polynomial expression (16) . It is worth mentioning that Proposition 3.1 is determin-
istic with no assumption on the distribution or the independence of the noises {ǫi}i∈[n]. In
fact, the noise matrix E can be an arbitrary matrix as long as the data matrix has the decom-
position (6) and the separation condition (15) is satisfied. In addition, it requires no spectral
gap condition. Proposition 3.1 is essentially an extension of Lemma 4.2 in [25] which is only
for the Gaussian mixture model and needs r = k. We include its proof in Appendix D for
completeness. Recall κ is the rank of the signal matrix P .

PROPOSITION 3.1. Consider the spectral clustering ẑ of Algorithm 1 with κ ≤ r ≤ k.

Assume

ψ0 :=
∆

β−0.5kn−0.5 ‖E‖ ≥ 16.(15)

Then ℓ(ẑ, z∗)≤ β/(2k). Furthermore, there exists one φ ∈Φ such that ẑ satisfies

ℓ(ẑ, z∗) =
1

n
|{i ∈ [n] : ẑi 6= φ(z∗i )}| ≤

C0k ‖E‖2
n∆2

,(16)

and

max
a∈[k]

∥

∥

∥
θ̂φ(a) − θ∗a

∥

∥

∥
≤C0β

−0.5kn−0.5 ‖E‖ ,(17)

where C0 = 128.

Proposition 3.1 provides a starting point for our further theoretical analysis. In the follow-
ing sections, we are going to provide a sharper analysis for the spectral clustering ẑ that is
beyond the polynomial rate stated in (16), with the help of singular subspaces perturbation
established in Section 2.

3.2. Entrywise Error Decompositions. In this section, we are going to develop a fine-
grained and entrywise analysis on the performance of ẑ. Proposition 3.1 points out that there
exists a permutation φ ∈ Φ such that nℓ(ẑ, z∗) = |{i ∈ [n] : ẑi 6= φ(z∗i )}| ≤ nβ/(2k). Since
the smallest cluster size in z∗ is at least βn/k, such permutation φ is unique. With φ identi-
fied, ẑi 6= φ(z∗i ) means that the ith data point Xi is incorrectly clustered in ẑ, for each i ∈ [n].
The following Lemma 3.2 studies the event ẑi 6= φ(z∗i ) and shows that it is determined by the
magnitude of ‖Û1:rÛ

T
1:rǫi‖.

LEMMA 3.1. Consider the spectral clustering ẑ of Algorithm 1 with κ≤ r ≤ k. Assume

(15) holds. Let φ ∈Φ be the permutation such that ℓ(ẑ, z∗) = 1
n |{i ∈ [n] : ẑi 6= φ(z∗i )}|. Then

there exists a constant C > 0 such that for any i ∈ [n],

I{ẑi 6= φ(z∗i )} ≤ I

{

(

1−Cψ−1
0

)

∆≤ 2
∥

∥

∥
Û1:rÛ

T
1:rǫi

∥

∥

∥

}

.(18)

To understand Lemma 3.1, recall that in (14) ẑ is obtained by k-means on {Û1:rÛ
T
1:rXi}i∈[n].

Since we have the decomposition Û1:rÛ
T
1:rXi = Û1:rÛ

T
1:rθ

∗
z∗
i
+ Û1:rÛ

T
1:rǫi for each i ∈ [n],

the data points {Û1:rÛ
T
1:rXi}i∈[n] follow a mixture model with centers {Û1:rÛ

T
1:rθ

∗
a}a∈[k]

and noises {Û1:rÛ
T
1:rǫi}i∈[n]. In the proof of Lemma 3.1 we can show these k centers pre-

serve the geometric structure of {θ∗a}a∈[k] with minimum distance around ∆. Intuitively,
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if ‖Û1:rÛ
T
1:rǫi‖ is smaller than half of the minimum distance, Û1:rÛ

T
1:rXi is closer to

Û1:rÛ
T
1:rθ

∗
z∗
i

than any other centers, and thus z∗i can be correctly recovered.
Lemma 3.1 itself is not sufficient to obtain explicit expressions for the performance of

spectral clustering when the noises {ǫi}i∈[n] are assumed to be random. The entrywise upper
bound (18) shows that the event ẑi 6= φ(z∗i ) is determined by the ‖Û1:rÛ

T
1:rǫi‖, but the fact

that Û1:rÛ
T
1:r depends on ǫi makes any follow-up probability calculations challenging. The

key to make use of Lemma 3.1 is our leave-one-out singular subspace perturbation theory,
particularly, Theorem 2.2. To decouple the dependence between Û1:rÛ

T
1:r and ǫi, we replace

the former quantity by its leave-one-out counterpart Û−i,1:rÛ
T
−i,1:r. Take r to be κ. Note that

∥

∥

∥
Û1:κÛ

T
1:κǫi

∥

∥

∥
≤
∥

∥

∥
Û−i,1:κÛ

T
−i,1:κǫi

∥

∥

∥
+ ‖U1:κÛ

T
1:κ − Û−i,1:κÛ

T
−i,1:κ‖F ‖ǫi‖ .(19)

The perturbation ‖U1:κÛ
T
1:κ − Û−i,1:κÛ

T
−i,1:κ‖F is well-controlled by Theorem 2.2, which

shows the second term on the RHS of the above display is essentiallyO(ρ−2
0 )‖Û−i,1:κÛ

T
−i,1:κǫi‖.

This leads to the following Lemma 3.2 on the entrywise clustering errors.

LEMMA 3.2. Consider the spectral clustering ẑ of Algorithm 1 with r = κ. Assume

βn/k2 ≥ 10, (8), and (15) hold. Let φ ∈ Φ be the permutation such that ℓ(ẑ, z∗) = 1
n |{i ∈

[n] : ẑi 6= φ(z∗i )}|. Then there exists a constant C such that for any i ∈ [n],

I{ẑi 6= φ(z∗i )} ≤ I

{

(

1−C
(

ψ−1
0 + ρ−2

0

))

∆≤ 2
∥

∥

∥
Û−i,1:κÛ

T
−i,1:κǫi

∥

∥

∥

}

.

Consequently, if the noises {ǫi}i∈[n] are random, we have the risk of ẑ satisfy

Eℓ(ẑ, z∗)≤ n−1
∑

i∈[n]
EI

{

(

1−C
(

ψ−1
0 + ρ−2

0

))

∆≤ 2
∥

∥

∥Û−i,1:rÛ
T
−i,1:rǫi

∥

∥

∥

}

.

Lemma 3.2 needs three conditions. The first one βn/k2 ≥ 10 is on the smallest cluster
sizes and can be easily satisfied if both β,k are constants. The second condition (8) is a
spectral gap condition on the smallest non-zero singular value λκ. The third one is for the
separation of the centers ∆. With all the three conditions satisfied, Lemma 3.2 shows that the
entrywise clustering error forXi boils down to ‖Û−i,1:κÛ

T
−i,1:κǫi‖. When the noises {ǫj}j∈[n]

are assumed to be random and independent of each other, the projection matrix Û−i,1:κÛ
T
−i,1:κ

is independent of ǫi for each i ∈ [n], a desired property crucial to our follow-up investigation
on the risk Eℓ(ẑ, z∗). When {Xi}i∈[n] are generated randomly as in the following sections,
Lemma 3.2 leads to explicit expressions for the performance of the spectral clustering.

The key towards establishing Lemma 3.2 is Theorem 2.2. Without Theorem 2.2, if the
classical perturbation theory such as Wedin’s theorem is used instead, then in order to ob-
tain similar upper bounds in Lemma 3.2, the second term on the RHS of (19) needs to be
much smaller than ∆. This essentially requires maxi∈[p] ‖ǫi‖2 . λκ∆, in addition to (8) and
(15). As we will show in the next section, for sub-Gaussian noises, this additional condition
requires p logn.

√
n in regimes where Lemma 3.2 only needs p. n.

, we provide an upper bound for
∥

∥

∥
Û ÛT − Û−iÛ

T
−i

∥

∥

∥
showing that it is essentially deter-

mined by
∥

∥U−iU
T
−iǫi

∥

∥ under an eigen-gap condition.

3.3. Sub-Gaussian Mixture Models. In this section, we investigate the performance of
the spectral clustering ẑ for mixture models with sub-Gaussian noises. Theorem 3.1 assumes
that each noise ǫi is an independent sub-Gaussian random vector with zero mean and variance
proxy σ2 and establishes an exponential rate for the risk Eℓ(ẑ, z∗).
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THEOREM 3.1. Consider the spectral clustering ẑ of Algorithm 1 with r = κ. Assume

ǫi ∼ SGp(σ
2) independently with zero mean for each i ∈ [n]. Assume βn/k2 ≥ 10. There

exist constants C,C ′ > 0 such that under the assumption that

ψ1 :=
∆

β−0.5k
(

1 +
√ p

n

)

σ
>C(20)

and

ρ1 :=
λκ

(√
n+

√
p
)

σ
> C,(21)

we have

Eℓ(ẑ, z∗)≤ exp

(

−
(

1−C ′ (ψ−1
1 + ρ−2

1

)) ∆2

8σ2

)

+ exp
(

−n
2

)

.

Under this sub-Gaussian setting, standard concentration theory shows that the noise matrix
E has its operator norm ‖E‖. σ(

√
n+

√
p) with high probability (cf. Lemma D.1). Under

this event, (20) and (21) are sufficient conditions for (8) and (15), respectively. The risk in
Theorem 3.3 has two terms, where the first term takes an exponential form of ∆2/(8σ2) and
the second term exp(−n/2) comes from the aforementioned event of ‖E‖. The first term is
the dominating one, as long as ∆2/σ2, which can be interpreted as the signal-to-noise ratio, is
smaller than n/2. In fact, ∆2/σ2 . logn is the most interesting regime as otherwise ẑ already
achieves the exact recovery (i.e., ẑ = z∗) with high probability, since E{ℓ(ẑ, z∗) = 0}= o(1).

Theorem 3.1 makes a substantial improvement over Proposition 3.1. Using the afore-
mentioned with-high-probability event on ‖E‖, (16) only leads to Eℓ(ẑ, z∗) . (1 +
√

p/n)2σ2/∆2 + exp(−n/2) which takes a polynomial form of the ∆2/σ2. On the con-
trary, Theorem 3.1 provides a much sharper exponential rate.

Our leave-one-out singular subspace perturbation theory and its consequence Lemma 3.2
provide the key toolkit towards Theorem 3.1. Since ÛT

−i,1:κ is independent of ǫi, we have

ÛT
−i,1:κǫi ∼ SGκ(σ

2) being another sub-Gaussian random vector. This makes it possible to

control the tail probabilities of ‖Û−i,1:κÛ
T
−i,1:κǫi‖2 = ‖ÛT

−i,1:κǫi‖2 which is a quadratic form
of sub-Gaussian random vectors. Without using our perturbation theory, if the classical per-
turbation bounds such as Wedin’s Theorem is used instead, the previous section shows that
maxi∈[p] ‖ǫi‖2 . λκ∆ is additionally needed to obtain results similar to Lemma 3.2. This
equivalently requires λκ∆/(σ2p logn) & 1. When ∆/σ, k, β are constants, this additional
condition essentially requires p logn.

√
n. In contrast, Theorem 3.1 only needs p. n.

Theorem 3.1 gives a finite-sample result for the performance of spectral clustering in sub-
Gaussian mixture models. In the following Corollary 3.1, by slightly strengthening conditions
(20) and (21), it immediately yields an asymptotic error bound with the exponent being (1−
o(1))∆2/(8σ2).

COROLLARY 3.1. Under the same setting as in Theorem 3.1, if ψ1, ρ1 →∞ is further

assumed, we have

Eℓ(ẑ, z∗)≤ exp

(

− (1− o(1))
∆2

8σ2

)

+ exp
(

−n
2

)

.

If ∆/σ ≥ (1 + c)2
√
2 logn is further assumed where c > 0 is any constant, ẑ achieves the

exact recovery, i.e., EI{ℓ(ẑ, z∗) 6= 0}= o(1).
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In the exponents of Theorem 3.1 and Corollary 3.1, we are able to obtain an explicit con-
stant 1/8. In addition, we obtain an explicit constant 2

√
2 for the exact recovery in Corollary

3.1. These constants are sharp when the noises are further assumed to be isotropic Gaussian,
as we will show in Section 3.5.

The recent related paper by [1] develops a ℓp perturbation theory and applies it to the
spectral clustering for sub-Gaussian mixture models. It obtains exponential error rates but
with unspecified constants in the exponents and under special assumptions on the spectrum
and geometric distribution of the centers. It first assumes both β and k are constants. Let
G ∈ Rk×k be the Gram matrix of the centers such that Gi,j = θ∗Ti θ∗j for each i, j ∈ [k].
It requires λ̄I ≺ G ≺ cλ̄I for some constant c > 1, i.e., all k eigenvalues of G are in the
same order. It implies that the maximum and minimum distances among centers are com-
parable. This rules out many interesting cases such as all the centers are on one single
line. In addition, [1] needs λ̄/σ → ∞. Equivalently it means that the leading k singular
values λ1, λ2, . . . , λk of the signal matrix P not only are all in the same order, but also
λk/(

√
nσ) ≫ max{1,

√

p/n}. As a comparison, we allow collinearity of the centers such
that the rank of G (and P ) can be smaller than k. We allow the singular values λ1, λ2, . . . , λκ
not in the same order as long as the smallest one satisfies (21), which can be equivalently
written as λκ/(

√
nσ)&max{1,

√

p/n}. The distances among the centers are also not nec-
essarily in the same order as long as the smallest distance satisfies (20). Hence, our conditions
are more general than those in [1].

The spectral gap condition (21) ensures that singular vectors corresponding to small non-
zero singular values are well-behaved. It is not needed in Section 3.4 where we propose a
variant of spectral clustering with adaptive dimension reduction. It can also be dropped in
Section 3.5 when the noise is isotropic Gaussian. When the mixture model is symmetric with
two components (for example, the model considered in Section 3.6), the signal matrix P is
rank-one. Hence, (21) is also no longer needed as it can be directly implied from (20).

3.4. Spectral Clustering with Adaptive Dimension Reduction. The theoretical analysis
for the spectral clustering ẑ of Algorithm 1 that is carried out in Lemma 3.2 and Theorem
3.1 requires the use of all the κ singular vectors where κ is the rank of the signal matrix
P . Nevertheless, not all singular components are equally useful towards the clustering task
and the importance of an individual singular vector can be characterized by its corresponding
singular value. This motivates us to propose the following algorithm where the number of
singular vectors used is carefully picked.

Algorithm 2: Spectral Clustering with Adaptive Dimension Reduction

Input: Data matrix X = (X1, . . . ,Xn)∈ R
p×n, number of clusters k, threshold T

Output: Clustering label vector z̃ ∈ [k]n

1 Perform SVD on X same as Step 1 of Algorithm 1.
2 Let r̂ be the largest index in [k] such that the difference between the corresponding two neighboring

singular values is greater than T , i.e.,

r̂=max{a ∈ [k] : λ̂a − λ̂a+1 ≥ T}.(22)

Let Û1:r̂ := (û1, . . . , ûr̂)∈ R
p×r̂ .

3 Perform k-means on the columns of ÛT
1:r̂X . That is,

(

z̃,
{

c̃j
}k
j=1

)

= argmin
z∈[k]n,{cj}kj=1∈Rr̂

∑

i∈[n]

∥

∥

∥Û
T
1:r̂Xi − czi

∥

∥

∥

2
.(23)
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Algorithm 2 is a variant of Algorithm 1 with the number of singular vectors selected by
(22), where r̂ is the largest integer such that the empirical spectral gap λ̂r̂ − λ̂r̂+1 is greater
or equal to some threshold T . The choice of the threshold T matters. When T is small, r̂
might be even bigger than the rank κ. When T & ‖E‖, it guarantees that the singular values
of the signal matrix P satisfy λr̂−λr̂+1 & T and λr̂+1 . T . When T is too large, the singular
subspace Û1:r̂ misses singular vectors such as ûr̂+1 whose importance scales with λr̂+1 that
can not be ignored. This in turn deteriorates the clustering performance of z̃.

A rule of thumb for the threshold T is that T/‖E‖ is at least in a constant order. It is
allowed to grow but not faster than φ̃0 defined in (24). The precise description of the choices
of T needed is given below in Lemma 3.3, which provides an entrywise analysis of z̃ that is
analogous to Lemma 3.2.

LEMMA 3.3. Consider the estimator z̃ from Algorithm 2. Assume βn/k4 ≥ 400. Let

φ ∈Φ be the permutation such that ℓ(ẑ, z∗) = 1
n |{i ∈ [n] : ẑi 6= φ(z∗i )}|. Define

ψ̃0 :=
∆

β−0.5k2n−0.5 ‖E‖(24)

and ρ̃ := T/‖E‖. Assume 256< ρ̃ < ψ̃0/64. There exist constants C,C ′ such that if φ̃0 >C ,

then

I{ẑi 6= φ(z∗i )} ≤ I

{(

1−C ′
(

ρ̃ψ̃−1
0 + ρ̃−1

))

∆≤ 2
∥

∥

∥
Û−i,1:rÛ

T
−i,1:rǫi

∥

∥

∥

}

.

Consequently, we have

Eℓ(ẑ, z∗)≤ n−1
∑

i∈[n]
EI

{(

1−C ′
(

ρ̃ψ̃−1
0 + ρ̃−1

))

∆≤ 2
∥

∥

∥Û−i,1:rÛ
T
−i,1:rǫi

∥

∥

∥

}

.

With a proper choice of the threshold T , Lemma 3.3 only poses requirements on the small-
est cluster size βn/k and minimum separation among the centers ∆. Compared to Lemma
3.2 and Theorem 3.1, it removes any condition on the smallest non-zero singular value such
as (8) or (21). In addition, it requires no knowledge on the rank κ.

With Lemma 3.3, we have the following exponential error bound on the performance of z̃
on sub-Gaussian mixture models, analogous to Theorem 3.1 and Corollary 3.1 for ẑ.

THEOREM 3.2. Consider the estimator z̃ from Algorithm 2. Assume ǫi ∼ SGp(σ
2) in-

dependently with zero mean for each i ∈ [n]. Assume βn/k4 ≥ 400. There exist constants

C,C ′,C1,C2 > 0 such that under the assumption that

ψ2 :=
∆

β−0.5k2
(

1 +
√ p

n

)

σ
> C

and ρ2 := T/(σ(
√
n+

√
p)) satisfies C1 ≤ ρ2 ≤ ψ2/C2, we have

Eℓ(z̃, z∗)≤ exp

(

−
(

1−C ′ (ρ2ψ
−1
2 + ρ−1

2

)) ∆2

8σ2

)

+ exp
(

−n
2

)

.

If ψ2, ρ2 →∞ and ρ2/ψ2 = o(1) are further assumed, we have

Eℓ(z̃, z∗)≤ exp

(

− (1− o(1))
∆2

8σ2

)

+ exp
(

−n
2

)

.
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3.5. Isotropic Gaussian Mixture Models. In this section, we consider the isotropic Gaus-
sian mixture models where the noises are sampled from N (0, σ2Ip) independently. As a
special case of the sub-Gaussian mixture models, Theorem 3.1 can be directly applied. Nev-
ertheless, the isotropic Gaussian noises make it possible to remove the spectral gap condition
(21). In addition, we study the performance of the spectral clustering ẑ from Algorithm 1
with exactly the leading k singular vectors, regardless of κ the rank of matrix P . As a result,
it requires no knowledge on κ and needs no adaptive dimension reduction such as Algorithm
2. We have the following theorem on its performance.

THEOREM 3.3. Consider the spectral clustering ẑ of Algorithm 1 with r = k. Assume

ǫi
iid∼ N (0, σ2Ip) for each i ∈ [n]. Assume βn/k4 ≥ 100 and

∆

k3.5β−0.5
(

1 + p
n

)

σ
→∞.(25)

We have

Eℓ(ẑ, z∗)≤ exp



−



1−C

(

∆

k3.5β−0.5
(

1 + p
n

)

σ

)−0.25




∆2

8σ2



+ 2e−0.08n,(26)

where C > 0 is some constant.

Theorem 3.3 shows that asymptotically Eℓ(ẑ, z∗) ≤ exp(−(1 − o(1))∆2/(8σ2)) +
2exp (−0.08n) where the first term dominates when ∆2/σ2 = o(n). The minmax lower
bound for recovering z∗ under the given model is established in [26]: inf ẑ sup(θ∗

1 ,...,θ
∗
k),z

∗ Eℓ(ẑ, z∗)≥
exp(−(1 + o(1))∆2/(8σ2)) as long as ∆2/σ2 ≫ log(kβ−1). This immediately implies that
the considered estimator is minimax optimal. Theorem 3.3 also implies ẑ achieves the ex-
act recovery E{ℓ(ẑ, z∗) 6= 0} = o(1) when ∆/σ ≥ (1 + c)2

√
2 logn for any small constant

c > 0. When ∆/σ ≤ (1− c)2
√
2 logn, no algorithm is able to recover z∗ exactly with high

probability according to the minimax lower bound.
It is worth mentioning that Theorem 3.3 requires no spectral gap condition such as (8) or

(21). The purpose of such conditions is to ensure that singular vectors of X are well con-
trolled, especially those corresponding to small non-zero singular values of the signal matrix
P . When the noises are isotropic Gaussian, the distribution of each right singular vector v̂j is
well-behaved for any j ∈ [p∧n]. Lemma 4.4 of [25] shows that each (I−V1:κV T

1:κ)v̂j is Haar
distributed on the sphere spanned by (I − V1:κV

T
1:κ), where V1:κ := (v1, v2, . . . , vκ) ∈ On×κ

is the right singular subspace of the signal matrix P . Theorem 3.3 is about the singular sub-
space Û1:k . In its proof, we decompose it into Û1:r and Û(r+1):k , for some index r ∈ [κ]

with sufficient large spectral gap λr − λr+1 so that the contribution of Û1:r can be precisely
quantified following similar arguments used to establish Lemma 3.3 and Theorem 3.1. The
contribution of each ûj where j ∈ {r + 1, . . . , k} is eventually connected with properties of
the corresponding right singular vector v̂j , particularly, the distribution of (I − V1:κV

T
1:κ)v̂j .

These two sources of errors together lead to the upper bound (26).
The performance of Algorithm 1 with r = k under the same isotropic Guassian mixture

model is the main topic of [25] which derives a similar upper bound for Eℓ(ẑ, z∗) assum-
ing ∆/(β−0.5k10.5(1 + p/n))→∞. The key technical tool used in [25] is spectral operator
perturbation theory of [20, 21] on the difference between empirical singular subspaces and
population ones, which works for the Gaussian noise case and it is not clear whether it is
possible to be extended to other distributions including sub-Gaussian distributions. In this
paper, the proof of Theorem 3.3 is completely different, using Theorem 2.3 on the difference
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between empirical singular subspaces and their leave-one-out counterparts. We not only re-
cover the main result of [25] with a much shorter proof, but also improve the dependence of
k. Despite that Theorem 3.3 needs an extra condition βn/k4 ≥ 100, it only requires k3.5 to
satisfy (25), while [25] needs k10.5 instead which is a stronger condition.

3.6. Lower Bounds and Sub-optimality of Spectral Clustering. In the above sections,
we focus on quantifying the performance of spectral clustering under mixture models. An
interesting question is whether the spectral clustering is optimal or not. When the noise is
the isotropic Gaussian, Theorem 3.3 matches with the minimax rate assuming (25) holds,
showing that the spectral clustering is indeed optimal in this case. It remains unclear whether
the spectral clustering is optimal or not when the noise is beyond the isotropic Gaussian
model.

To answer this question, in this section we consider a two-cluster symmetric mixture model
whether the centers are proportional to 1p and the noises have i.i.d. entries. This setup makes
it possible to apply the central limit theorem to characterize the performance of the spectral
clustering with sharp upper and lower bounds, as 1T

p ǫi is asymptotically normal for each
i ∈ [n] when p is large.

A Two-cluster Symmetric Mixture Model. Consider a mixture model (5) with two clusters
such that

θ∗1 =−θ∗2 = δ1p, and {ǫi,j}i∈[n],j∈[p] iid∼ F,(27)

for some δ ∈R and some distribution F , where {ǫi,j}j∈[p] are entries of ǫi for each i ∈ [n].

Under the above model (27), we have k = 2, ∆ = 2
√
pδ and the largest singular value

λ1 = δ
√
np. Since the signal matrix matrix P is rank-one (i.e., κ= 1) with u1 = (1/

√
p)1p,

a natural idea is to cluster using the first singular vector only. Define
(

ž,{čj}2j=1

)

= argmin
z∈[2]n,{cj}2

j=1∈R

∑

i∈[n]

(

ûT1Xi − czi
)2
.(28)

The performance of the spectral estimator ž will be the focus in this section. Note that ûT1X =

λ̂1v̂
T
1 where v̂1 is the leading right singular vector ofX , so ž equivalently performs clustering

on {v̂1,i}i∈[n], the entries of v̂1. This is closely related to the sign estimator {sign(v̂1,i)}i∈[n],
which estimates the cluster assignment by the signs of {v̂1,i}i∈[n].

Since ž is exactly the spectral clustering ẑ of Algorithm 1 with r = 1, Theorem 3.1 can
be directly applied when noises are sub-Gaussian and yields the following result. Under the
model (27), assume that F is a SG(σ2) distribution with zero mean and βn > 40. There exist
constants C,C ′ > 0 such that under the assumption that

ψ3 :=
∆

β−0.5
(

1 +
√ p

n

)

σ
> C,

we have Eℓ(ž, z∗)≤ exp(−(1−C ′ψ−1
3 )∆2/(8σ2)) + exp(−n/2).

The special structure of (27) makes it possible to derive a sharper upper bound than the
above one and a matching lower bound on the performance of ž with some additional as-
sumption on the distribution F . Instead of directly using Lemma 3.2 (which leads to Theorem
3.1 and then the above upper bound), we can further connect the clustering error with uT1 ǫi
where uT1 ǫi = p−1/2

∑p
j=1 ǫi,j is approximately normally distributed when p is large. On the

other hand, the structure of (27) enables us to have a lower bound for I{ẑi 6= φ(z∗i )} that is
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in an opposite direction of Lemma 3.2. See Lemma 5.1 for details. The key technical tool
used is Theorem 2.2 on the perturbation |û1ûT1 − û−i,1û

T
−i,1| for all i ∈ [n]. These together

give a sharp and matching lower bound for Eℓ(ž, z∗) where the clustering error is essentially
determined by ∆ and the variance σ̄2.

THEOREM 3.4. Consider the model (27). For any ξ ∼ F , assume Eξ = 0,Var(ξ) = σ̄2,

and ξ ∼ SG(σ2) where σ ≤Cσ̄ for some constant C > 0. Assume βn > 40. Then there exist

constants C ′,C ′′,C ′′′ > 0 such that if ψ3 ≥C ′, we have

Eℓ(ž, z∗)≤ exp

(

−
(

1−C ′′ψ−1
3

)2
∆2

8σ̄2

)

+ exp
(

−C ′′√p
)

+ exp
(

−n
2

)

,

and Eℓ(ž, z∗)≥ exp

(

−
(

1 +C ′′′ψ−1
3

)2
∆2

8σ̄2

)

− exp
(

−C ′′′√p
)

− exp
(

−n
2

)

.

In Theorem 3.4, the term exp(−C ′′√p) is due to the normal approximation of uT1 ǫi and
decays when the dimensionality p increases. The term exp(−n/2) is due to a with-high-
probability event on ‖E‖. If additionally ∆/σ̄≪max{p1/4, n1/2} is assumed, Theorem 3.4
concludes asymptotically

Eℓ(ž, z∗) = exp

(

−(1 + c)∆2

8σ̄2

)

,(29)

for some small constant c.
The upper and lower bounds in Theorem 3.4 give a sharp characterization on the perfor-

mance of ž. To answer the question of whether it is optimal or not, we need to establish the
minimax rate for the clustering task under the model (27). Since the model (27) is essentially
about a testing between two parametric distributions, the optimal procedure is the likelihood
ratio test. According to the classical asymptotics theory [37], the likelihood ratio behaves like
a normal random variable as p→∞ under some regularity condition. This leads to an error
rate determined by ∆ and the Fisher information.

LEMMA 3.4. Consider the model (27). Assume the distribution F has a positive,

continuously differentiable density f with mean zero and finite Fisher information I :=
∫

(f ′/f)2 fdx. Assume ∆ is a constant. We have

C1 exp

(

− ∆2

8I−1

)

≤ lim
p→∞

inf
z

sup
z∗∈[2]n

Eℓ(z, z∗)≤C2 exp

(

− ∆2

8I−1

)

,(30)

for some constants C1,C2 > 0.

With Lemma 3.4, the question of whether ž is optimal or not boils down to a comparison
of the variance σ̄2 and the inverse of the Fisher information I−1. Due to the fact that I−1 ≤
σ̄2 and the equation holds if and only if F is a normal distribution, we have the following
conclusion.

THEOREM 3.5. Consider the model (27). Assume all the assumptions needed in Theorem

3.4 and Lemma 3.4 hold. Then the spectral clustering ž is in general suboptimal, i.e., it fails to

achieve the minimax rate (30). It is optimal if and only if the noise distribution F is N(0, σ̄2).
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Theorem 3.5 establishes the sub-optimality of the spectral clustering ž under the model
(27). Though ž achieves an exponential error rate, it has a fundamentally sub-optimal ex-
ponent involving σ̄2 instead of I−1. This is due to the fact ž clusters data points based on
Euclidean distances while the optimal procedure is the likelihood ratio test. Only when the
noise is normally distributed, the likelihood ratio test is equivalent to a comparison of two
Euclidean distances, leading to the optimality of ž in the Gaussian case. Despite that Theo-
rem 3.5 is only limited to the model (27), the above reasoning suggests the spectral clustering
is generally sub-optimal under mixture models beyond (27) unless the noise is Gaussian.

4. Proof of Main Results in Section 2. In this section, we give the proofs of Theorem
2.1 and Theorem 2.2. The proof of Theorem 2.3 is included in the supplement [42] due to
page limit.

4.1. Proof of Theorem 2.1. Before giving the proof of Theorem 2.1, we first present and
prove a slightly more general perturbation result, Theorem 4.1, which only requires σ2r −
σ2r+1−‖(I−UrU

T
r )yn‖2 > 0 instead of assuming ρ > 2. We defer the proof of Theorem 2.1

to the end of this section, which is an immediate consequence of Theorem 4.1.

THEOREM 4.1. If σ2r − σ2r+1 −‖(I −UrU
T
r )yn‖2 > 0, we have

∥

∥

∥
ÛrÛ

T
r −UrU

T
r

∥

∥

∥

F
≤ 2

√
2σr

∥

∥(I −UrU
T
r )yn

∥

∥

σ2r − σ2r+1 − ‖(I −UrUT
r )yn‖2

√

√

√

√

r
∑

i=1

(

uTi yn
σi

)2

.

PROOF. Decompose yn into yn = θ+ ǫ with θ := UrU
T
r yn and ǫ := (I −UrU

T
r )yn. Then

we have uTi θ = uTi yn for each i ∈ [r].
Throughout the proof, we denote

α2 =
∥

∥

∥
ÛrÛ

T
r −UrU

T
r

∥

∥

∥

2

F
.

Denote d= p ∧ (n− 1). If p≤ n− 1, we have d= p and denote U := (u1, . . . , up) ∈ Rp×p

which is an orthogonal matrix. If p > n− 1, we let U ∈ Rp×p be an orthogonal matrix with
the first p ∧ (n − 1) columns being u1, . . . , up∧(n−1). In both cases, we have U being an

orthogonal matrix. Then Ûr can be written as Ûr = UB̂ for some B̂ = (B̂i,j) ∈Rp×r. Let B̂i,·
be the ith row of B̂ for each i ∈ [p]. Define b2i = 1−‖B̂i,·‖2 for each i ∈ [r] and b2i = ‖B̂i,·‖2
for each i > r. Then we have

α2 =
∥

∥

∥
ÛrÛ

T
r

∥

∥

∥

2

F
+
∥

∥UrU
T
r

∥

∥

2

F
− 2

〈

ÛrÛ
T
r ,UrU

T
r

〉

= 2k − 2
∥

∥

∥
UT
r Ûr

∥

∥

∥

2

F
= 2k − 2

∑

i∈[r]

∑

j∈[r]
B̂2

i,j

= 2
∑

i∈[r]
b2i = 2

p
∑

i=r+1

b2i ,(31)

where in the last equation we use the fact that ‖B̂‖2F = r.
Note that ÛrÛ

T
r Ŷ is the best rank-r approximation of Ŷ . We have

∥

∥

∥

(

I − ÛrÛ
T
r

)

Ŷ
∥

∥

∥

2

F
≤
∥

∥

∥

(

I −UrU
T
r

)

Ŷ
∥

∥

∥

2

F
.
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Due to the fact Ŷ = (Y, yn), we have
∥

∥

∥

(

I − ÛrÛ
T
r

)

Y
∥

∥

∥

2

F
+
∥

∥

∥

(

I − ÛrÛ
T
r

)

yn

∥

∥

∥

2
≤
∥

∥

(

I −UrU
T
r

)

Y
∥

∥

2

F
+
∥

∥

(

I −UrU
T
r

)

yn
∥

∥

2
,

which implies

∥

∥

∥

(

I − ÛrÛ
T
r

)

Y
∥

∥

∥

2

F
−
∥

∥

(

I −UrU
T
r

)

Y
∥

∥

2

F
≤
∥

∥

(

I −UrU
T
r

)

yn
∥

∥

2 −
∥

∥

∥

(

I − ÛrÛ
T
r

)

yn

∥

∥

∥

2
.

(32)

We are going to simplify terms in (32).

(Simplification of the LHS of (32)). Recall the decomposition Y =
∑

i∈[d] σiuiv
T
i . Since

(

I −UrU
T
r

)

Y =
∑d

i>r σiuiv
T
i , we have

∥

∥

(

I −UrU
T
r

)

Y
∥

∥

2

F
=
∑d

i>r σ
2
i . Since

UTY =UT





∑

i∈[d]
σiuiv

T
i



=









σ1v
T
1

. . .
σdv

T
d

0p−d









= diag(σ1, . . . , σd,0p−d)









vT1
. . .
vTd

O(p−d)×n









,

we have
∥

∥

∥

(

I − ÛrÛ
T
r

)

Y
∥

∥

∥

2

F
=
∥

∥

∥
U
(

I −UT ÛrÛ
T
r U
)

UTY
∥

∥

∥

2

F

=

∥

∥

∥

∥

∥

∥

∥

∥

(

I − B̂B̂T
)

diag(σ1, . . . , σd,0p−d)









vT1
. . .
vTd

O(p−d)×n









∥

∥

∥

∥

∥

∥

∥

∥

2

F

= tr
(

diag(σ1, . . . , σd,0p−d)
(

I − B̂B̂T
)

diag(σ1, . . . , σd,0p−d)

(

Id×d

O(p−d)×(p−d)

))

,

where in the last equation we use the following facts: (1) for any two square matrices of the
same size A,D, we have ‖AD‖2F = tr(DTATAD) = tr(ATADDT ); (2) B̂ has orthogonal
columns such that (I − B̂B̂T )2 = I − B̂B̂T ; and (3) {v1, . . . , vd} ∈ Rn−1 are orthogonal
vectors. Since the diagonal entries of B̂B̂T are {‖B̂i,·‖2}i∈[p], we have
∥

∥

∥

(

I − ÛrÛ
T
r

)

Y
∥

∥

∥

2

F
= tr

(

diag(σ1, . . . , σd,0p−d)
(

I − B̂B̂T
)

diag(σ1, . . . , σd,0p−d)
)

=

d
∑

i=1

σ2i

(

1−
∥

∥

∥B̂i,·
∥

∥

∥

2

F

)

.

Then we have

LHS of (32) =
r
∑

i=1

σ2i

(

1−
∥

∥

∥
B̂i,·
∥

∥

∥

2

F

)

−
d
∑

i>r

σ2i

∥

∥

∥
B̂i,·
∥

∥

∥

2

F
=

r
∑

i=1

σ2i b
2
i −

d
∑

i>r

σ2i b
2
i ≥

r
∑

i=1

σ2i b
2
i − σ2r+1

α2

2
,

where we use
∑d

i>r b
2
i ≤

∑p
i>r b

2
i = α2/2 from (31) in the last inequality .

(Simplification of the RHS of (32)). Recall that Ûr = UB̂. We decompose it into B̂ =
(B̂T

1 , B̂
T
2 )

T where B̂1 ∈Rr×r are the first r rows and B̂2 ∈R(p−r)×r . We have

RHS of (32) = yTn
(

I −UrU
T
r

)

yn − yTn

(

I − ÛrÛ
T
r

)

yn
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= yTn

(

ÛrÛ
T
r −UrU

T
r

)

yn

= yTnU

(

B̂1B̂
T
1 − Ir×r B̂1B̂

T
2

B̂2B̂
T
1 B̂2B̂

T
2

)

UT yn.

Define B̂⊥ ∈Rp×(p−r) to be the matrix such that (B̂, B̂⊥) ∈Rp×p is an orthonormal matrix.
We can further decompose it into B̂⊥ = (B̂⊥T

1 , B̂⊥Y
2 )T where B̂⊥

1 ∈ Rr×(p−r) including the
first r rows and B̂⊥

2 ∈R(p−r)×(p−r). Since (B̂, B̂⊥) has orthogonal columns, we have

(B̂1, B̂
⊥
1 )(B̂1, B̂

⊥
1 )

T = B̂1B̂
T
1 + B̂⊥

1 B̂
⊥T
1 = Ir×r,

and (B̂1, B̂
⊥
1 )(B̂2, B̂

⊥
2 )

T =Or×(p−r), which implies

B̂1B̂
T
2 =−B̂⊥

1 B̂
⊥T
2 .

We also decompose the matrix U =: (Ur,U⊥). Then

RHS of (32) = yTn (Ur,U⊥)

(

−B̂⊥
1 B̂

⊥T
1 −B̂⊥

1 B̂
⊥T
2

−B̂⊥
2 B̂

⊥T
1 B̂2B̂

T
2

)

(Ur,U⊥)
T yn

=−yTnUrB̂
⊥
1 B̂

⊥T
1 UT

r yn − 2yTnUrB̂
⊥
1 B̂

⊥T
2 UT

⊥yn + yTnU⊥B̂2B̂
T
2 U

T
⊥yn

≤−
∥

∥

∥
B̂⊥T

1 UT
r yn

∥

∥

∥

2
+2

∥

∥

∥
B̂⊥T

1 UT
r yn

∥

∥

∥

∥

∥

∥
B̂⊥T

2

∥

∥

∥

∥

∥UT
⊥yn

∥

∥+
∥

∥

∥
B̂T

2

∥

∥

∥

2 ∥
∥UT

⊥yn
∥

∥

2
.

Note that ‖B̂⊥T
2 ‖ ≤ 1 and ‖B̂T

2 ‖2 ≤ ‖B̂T
2 ‖2F =

∑p
i>r ‖B̂i,·‖2 = α2/2 which is by (31). We

also have
∥

∥UT
⊥yn

∥

∥= ‖ǫ‖ .

Since ‖B̂⊥
1 ‖2F =

∑r
i=1

(

1− ‖B̂i,·‖2
)

= α2/2 according to (31), we have ‖B̂⊥
1 ‖ ≤ α/

√
2.

Thus, using UT
r ǫ= 0, we have

∥

∥

∥
B̂⊥T

1 UT
r yn

∥

∥

∥
=
∥

∥

∥
B̂⊥T

1 UT
r θ
∥

∥

∥
.

Then,

RHS of (32) ≤ 2
∥

∥

∥
B̂⊥T

1 UT
r θ
∥

∥

∥
‖ǫ‖+ α2

2
‖ǫ‖2 .

To simplify ‖B̂⊥T
1 UT

r θ‖, denote wi = uTi θ and si = |wi|/σi for each i ∈ [r]. Recall that
uTi θ = uTi yn for each i ∈ [r]. We have

si =

∣

∣

∣

∣

uTi yn
σi

∣

∣

∣

∣

,∀i∈ [r].

We then have

∥

∥

∥
B̂⊥T

1 UT
r θ
∥

∥

∥
=

∥

∥

∥

∥

∥

r
∑

i=1

wiB̂
⊥
i,·

∥

∥

∥

∥

∥

≤
r
∑

i=1

|wi|
∥

∥

∥
B̂⊥

i,·

∥

∥

∥
=

r
∑

i=1

siσi |bi| ≤ ‖s‖

√

√

√

√

r
∑

i=1

σ2i b
2
i ,

where we denote the ith row of B̂⊥
1 as B̂⊥

i,· and we use the fact that ‖B̂⊥
i,·‖2 = 1−‖B̂i,·‖2 = b2i

for each i ∈ [r]. As a result,

RHS of (32) ≤ 2‖s‖

√

√

√

√

r
∑

i=1

σ2i b
2
i ‖ǫ‖+

α2

2
‖ǫ‖2 .
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(Combining the above simplifications for (32)). From the above simplifications on the LHS
and RHS of (32), we have

r
∑

i=1

σ2i b
2
i − σ2r+1

α2

2
≤ 2‖s‖

√

√

√

√

r
∑

i=1

σ2i b
2
i ‖ǫ‖+

α2

2
‖ǫ‖2 .

Define t=
√
∑r

i=1 σ
2
i b

2
i . Then after arrangement, the above display becomes

t2 − 2‖s‖‖ǫ‖ t≤ σ2r+1

α2

2
+
α2

2
‖ǫ‖2 .

Note that the function t2 − 2‖s‖‖ǫ‖ t is increasing as long as t≥ t0 where we define t0 :=
‖s‖‖ǫ‖. On the other hand, from (31), we have the domain t ≥ ασr/

√
2. We consider the

following two scenarios.
If ασr/

√
2≤ t0, we have

α≤
√
2t0
σr

=

√
2‖s‖‖ǫ‖
σr

.(33)

If ασr/
√
2> t0, we have

t2 − 2‖s‖ t≥ α2σ2r
2

−
√
2‖s‖‖ǫ‖ασr.

Hence, we have an inequality of α:

α2σ2r
2

−
√
2‖s‖‖ǫ‖ασr ≤ σ2r+1

α2

2
+
α2

2
‖ǫ‖2 ,

which can be arranged into
α

2

(

σ2r − σ2r+1 − ‖ǫ‖2
)

≤
√
2‖s‖σr ‖ǫ‖ .

Hence, under the assumption σ2r − σ2r+1 −‖ǫ‖2 > 0, we have

α≤ 2
√
2σr ‖s‖‖ǫ‖

σ2r − σ2r+1 −‖ǫ‖2
.(34)

Since 2σ2r > σ2r − σ2r+1 − ‖ǫ‖2, the upper bound in (33) is strictly below that in (34). Hence,
(34) holds for both scenarios. The proof is complete.

PROOF OF THEOREM 2.1. Since we assume ρ > 2, we have

σ2r − σ2r+1 −
∥

∥(I −UrU
T
r )ǫi

∥

∥

2 ≥ σr(σr − σr+1)− (σr − σr+1)
2/4

≥ σr(σr − σr+1)/2 = ρσr
∥

∥(I −UrU
T
r )ǫi

∥

∥/2.

Together with Theorem 4.1, we obtain the desired bound.

4.2. Proof of Theorem 2.2.

PROOF OF THEOREM 2.2. Consider any i ∈ [n]. In order to apply Theorem 2.1, we need
to verify that the spectral gap assumption (3) is satisfied. That is, define

ρ−i :=
λ̂−i,κ − λ̂−i,κ+1

∥

∥

∥

(

I − Û−i,1:κÛ
T
−i,1:κ

)

Xi

∥

∥

∥

.
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We need to show ρ−i > 2. In the following, we provide a lower bound for the numerator
λ̂−i,κ − λ̂−i,κ+1.

Define λ−i,1 ≥ λ−i,2 ≥ . . . ≥ λ−i,p∧(n−1) to be singular values of P−i, the leave-one-out
counterpart of the signal matrix P where

P−i := (θ∗z∗
1
, . . . , θ∗z∗

i−1
, θ∗z∗

i+1
, . . . , θ∗z∗

n
) ∈R

p×(n−1).(35)

We are interested in the value of λ−i,κ. Recall that λκ is the κth largest singular value of P
which is rank-κ. Since P has k unique columns {θ∗a}a∈[k], its left singular vectors uj ∈ Θ
for each j ∈ [k] where Θ := span({θ∗a}a∈[k]). Note that each θ∗a appears at least βn/k times
in the columns of P . Then P−i also has these k unique columns with each appearing at least
βn/k − 1 times. This concludes that P−i has the same leading left singular vector space as
P . We then have

λ2−i,κ = min
w∈Θ:‖w‖=1

∥

∥wTP−i

∥

∥

2
= min

w∈Θ:‖w‖=1

∑

j∈[n]:j 6=i

(wT θ∗z∗
j
)2

≥
βn
k − 1
βn
k

min
w∈Θ:‖w‖=1

∑

j∈[n]
(wT θ∗z∗

j
)2 =

(

1− k

βn

)

min
w∈Θ:‖w‖=1

∥

∥wTP
∥

∥

2

≥
(

1− k

βn

)

λ2κ.(36)

We also have λ−i,κ+1 = 0 as P−i is rank-κ.
Next, we are going to analyze λ̂−i,κ and λ̂−i,κ+1, the κth and (κ+ 1)th largest singular

values of X−i. Recall the SVD of X−i in Section 2.2. Define

E−i := (ǫ1, . . . , ǫi−1, ǫi+1, . . . , ǫn) ∈R
p×(n−1),(37)

so thatX−i = P−i+E−i. By Weyl’s inequality, we have |λ−i,κ − λ̂−i,κ|, |λ−i,κ+1 − λ̂−i,κ+1| ≤
‖E−i‖ ≤ ‖E‖. Then we have

λ̂−i,κ ≥ λ−i,κ −‖E‖ ≥
√

1− k

βn
λκ −‖E‖(38)

and

λ̂−i,κ − λ̂−i,κ+1 ≥ λ−i,κ − λ−i,κ+1 − 2‖E‖ ≥
√

1− k

βn
λκ − 2‖E‖ .(39)

Next, we study ‖(I − Û−i,1:κÛ
T
−i,1:κ)Xi‖. Since Û−i,1:κÛ

T
−i,1:κX−i is the best rank-κ ap-

proximation of X−i, we have
∥

∥

∥Û−i,1:κÛ
T
−i,1:κX−i −X−i

∥

∥

∥≤ ‖P−i −X−i‖= ‖E−i‖ ,

where we use the fact that P−i is rank-κ. Then by the triangle inequality, we have
∥

∥

∥

(

I − Û−i,1:κÛ
T
−i,1:κ

)

P−i

∥

∥

∥

=
∥

∥

∥
Û−i,1:κÛ

T
−i,1:κP−i − P−i

∥

∥

∥

≤
∥

∥

∥Û−i,1:κÛ
T
−i,1:κ(P−i −X−i)

∥

∥

∥+
∥

∥

∥Û−i,1:κÛ
T
−i,1:κX−i −X−i

∥

∥

∥+ ‖X−i −P−i‖

≤ 3‖E−i‖ .
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Using the fact P−i is rank-κ again, we have
∥

∥

∥

(

I − Û−i,1:κÛ
T
−i,1:κ

)

P−i

∥

∥

∥

F
≤√

κ
∥

∥

∥

(

I − Û−i,1:κÛ
T
−i,1:κ

)

P−i

∥

∥

∥≤ 3
√
κ‖E−i‖ ≤ 3

√
κ‖E‖ .

Since P−i has at least βn/k − 1 columns being exactly θ∗z∗
i
, we have

∥

∥

∥

(

I − Û−i,1:κÛ
T
−i,1:κ

)

θ∗z∗
i

∥

∥

∥
≤

∥

∥

∥

(

I − Û−i,1:κÛ
T
−i,1:κ

)

P−i

∥

∥

∥

F
√

βn
k − 1

≤ 3
√
κ‖E‖

√

βn
k − 1

,(40)

and consequently,
∥

∥

∥

(

I − Û−i,1:κÛ
T
−i,1:κ

)

Xi

∥

∥

∥≤
∥

∥

∥

(

I − Û−i,1:κÛ
T
−i,1:κ

)

θ∗z∗
i

∥

∥

∥+
∥

∥

∥

(

I − Û−i,1:κÛ
T
−i,1:κ

)

ǫi

∥

∥

∥

≤ 3
√
κ‖E‖

√

βn
k − 1

+ ‖E‖ .(41)

From (39) and (41), we have

ρ−i ≥

√

1− k
βnλκ − 2‖E‖

‖E‖+ 3
√
κ‖E‖√
βn

k
−1

≥ ρ0
8
> 2,(42)

where the last inequality is due to the assumption ρ0 > 16 and βn/k2 ≥ 10.
The next thing to do is to study {ûT−i,aXi}a∈[κ]. Denote the columns of P−i and E−i as

{(P−i)·,j}j∈[n−1] and {(E−i)·,j}j∈[n−1], respectively. Define S := {j ∈ [n− 1] : (P−i)·,j = θ∗z∗
i
}.

Then for any a ∈ [κ], by the SVD of X−i, we have

ûT−i,aθ
∗
z∗
i
=

1

|S|
∑

j∈S
ûT−i,a(P−i)·,j =

1

|S|
∑

j∈S
ûT−i,a(X−i)·,j +

1

|S|
∑

j∈S
ûT−i,a(E−i)·,j

=
1

|S|
∑

j∈S
λ̂−i,a(v−i,a)j +

1

|S| û
T
−i,a





∑

j∈S
(E−i)·,j



 .

Hence, by Cauchy-Schwarz inequality and the fact that ‖v−i,a‖= 1, we have
∣

∣

∣ûT−i,aθ
∗
z∗
i

∣

∣

∣≤ λ̂−i,a

√

|S|
|S| +

√

|S| ‖E−i‖
|S| ≤ λ̂−i,a

√

βn
k − 1

+
‖E‖

√

βn
k − 1

.(43)

Since |ûT−i,aXi| ≤ |ûT−i,aθ
∗
z∗
i
|+ |ûT−i,aǫi|, we have

|ûT−i,aXi|
λ̂−i,a

≤ 1
√

βn
k − 1

+
1

λ̂−i,a





‖E‖
√

βn
k − 1

+ |ûT−i,aǫi|





≤ 1
√

βn
k − 1

+
1

λ̂−i,κ

‖E‖
√

βn
k − 1

+
1

λ̂−i,κ

|ûT−i,aǫi|.

Consequently,
√

√

√

√

∑

a∈κ

(

ûT−i,aXi

λ̂−i,a

)2

≤
√
κ

√

βn
k − 1

+
1

λ̂−i,κ

‖E‖√κ
√

βn
k − 1

+
1

λ̂−i,κ

∥

∥

∥
Û−i,1:κÛ

T
−i,1:κǫi

∥

∥

∥
,
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where we use the fact ‖Û−i,1:κÛ
T
−i,1:κǫi‖= ‖ÛT

−i,1:κǫi‖= (
∑

i∈[κ](û
T
−i,aǫi)

2)1/2.
Lastly, by Theorem 2.1, we have

∥

∥

∥
Û1:κÛ

T
1:κ − Û−i,1:κÛ

T
−i,1:κ

∥

∥

∥

F
≤ 4

√
2

ρ−i

( √
κ

√

βn/k− 1
+

1

λ̂−i,κ

( √
κ‖E‖

√

βn/k− 1
+
∥

∥

∥
Û−i,1:κÛ

T
−i,1:κǫi

∥

∥

∥

))

.

Since βn/k2 ≥ 10 and ρ0 > 16 are assumed, we have λ̂−i,κ ≥ λκ/2 by (38). Then together
with (42), the above display can be simplified into

∥

∥

∥
Û1:κÛ

T
1:κ − Û−i,1:κÛ

T
−i,1:κ

∥

∥

∥

F
≤ 32

√
2

ρ0





2
√
kκ√
βn

+
2
∥

∥

∥
Û−i,1:κÛ

T
−i,1:κǫi

∥

∥

∥

λκ





≤ 128

ρ0





√
kκ√
βn

+

∥

∥

∥Û−i,1:κÛ
T
−i,1:κǫi

∥

∥

∥

λκ



 .

This concludes the proof of Theorem 2.2.

5. Proof of Main Results in Section 3. In this section, we include proofs of main results
in Section 3 except Lemma 3.3, Theorem 3.2, and Theorem 3.3. Their proofs are included in
the supplement [42] due to page limit.

5.1. Proof of Lemma 3.1 and Lemma 3.2.

PROOF OF LEMMA 3.1. For simplicity, we denote Û to be short for Û1:r throughout the
proof. From (14), we know ẑi must satisfy

ẑi = argmin
a∈[k]

∥

∥

∥
Û ÛTXi − θ̂a

∥

∥

∥
,

where {θ̂a}a∈[k] satisfies (17) according to Proposition 3.1. Hence, we have

I{ẑi 6= φ(z∗i )}= I

{

min
a∈[k]:a6=φ(z∗

i )

∥

∥

∥
Û ÛTXi − θ̂a

∥

∥

∥
≤
∥

∥

∥
Û ÛTXi − θ̂φ(z∗

i )

∥

∥

∥

}

.

Consider a fixed a ∈ [k] such that a 6= φ(z∗i ). Note that for any vectors x, y,w of same di-
mension, if ‖x− y‖ ≤ ‖x−w‖, then we must have ‖y −w‖/2≤ ‖x−w‖. Hence, we have

I

{∥

∥

∥
Û ÛTXi − θ̂a

∥

∥

∥
≤
∥

∥

∥
Û ÛTXi − θ̂φ(z∗

i )

∥

∥

∥

}

= I

{

1

2

∥

∥

∥
θ̂φ(z∗

i )
− θ̂a

∥

∥

∥
≤
∥

∥

∥
Û ÛTXi − θ̂φ(z∗

i )

∥

∥

∥

}

≤ I

{

1

2

∥

∥

∥
θ̂φ(z∗

i )
− θ̂a

∥

∥

∥
≤
∥

∥

∥
Û ÛT ǫi − θ̂φ(z∗

i )

∥

∥

∥
+
∥

∥

∥
Û ÛT θ∗z∗

i
− θ̂φ(z∗

i )

∥

∥

∥

}

≤ I

{∥

∥

∥
θ̂φ(z∗

i )
− θ̂a

∥

∥

∥
− 2

∥

∥

∥
θ∗z∗

i
− θ̂φ(z∗

i )

∥

∥

∥
≤ 2

∥

∥

∥
Û ÛT ǫi − θ̂φ(z∗

i )

∥

∥

∥

}

,

where we use the fact that Xi = θ∗z∗
i
+ ǫi and ‖Û ÛT θ∗z∗

i
− θ̂φ(z∗

i )
‖ ≤ ‖θ∗z∗

i
− θ̂φ(z∗

i )
‖. Since

θ̂φ(z∗
i )
− θ̂a = θ̂φ(z∗

i )
− θ∗z∗

i
+ θ∗z∗

i
− θ∗φ−1(a) + θ∗φ−1(a) − θ̂a, we have

I

{∥

∥

∥
Û ÛTXi − θ̂a

∥

∥

∥
≤
∥

∥

∥
Û ÛTXi − θ̂φ(z∗

i )

∥

∥

∥

}
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≤ I

{∥

∥

∥
θ∗z∗

i
− θ∗φ−1(a)

∥

∥

∥
−
∥

∥

∥
θ̂φ(z∗

i )
− θ∗z∗

i

∥

∥

∥
−
∥

∥

∥
θ∗φ−1(a) − θ̂a

∥

∥

∥

− 2
∥

∥

∥θ∗z∗
i
− θ̂φ(z∗

i )

∥

∥

∥≤ 2
∥

∥

∥Û ÛT ǫi

∥

∥

∥

}

≤ I

{

∥

∥

∥θ∗z∗
i
− θ∗φ−1(a)

∥

∥

∥− 4max
b∈[k]

∥

∥

∥θ∗b − θ̂φ(b)

∥

∥

∥≤ 2
∥

∥

∥Û ÛT ǫi

∥

∥

∥

}

≤ I

{(

1− 4C0β
−0.5kn−0.5 ‖E‖

∆

)

∆≤ 2
∥

∥

∥Û ÛT ǫi

∥

∥

∥

}

,(44)

where in the last inequality, we use the fact that maxb∈[k] ‖θ∗b − θ̂φ(b)‖ ≤C0β
−0.5kn−0.5 ‖E‖

from Proposition 3.1 and minb,b′∈[k]:b6=b′ ‖θ∗b − θ∗b′‖ = ∆. Since the above display holds for
each a ∈ [k] that is not φ(z∗i ), we have

I{ẑi 6= φ(z∗i )} ≤ I

{(

1− 4C0β
−0.5kn−0.5 ‖E‖

∆

)

∆≤ 2
∥

∥

∥
Û ÛT ǫi

∥

∥

∥

}

= I

{

(

1− 4C0ψ
−1
0

)

∆≤ 2
∥

∥

∥
Û ÛT ǫi

∥

∥

∥

}

,

where in the last inequality we use the definition of ψ0 in (15).

PROOF OF LEMMA 3.2. For simplicity, throughout the proof we denote Û and Û−i to be
short for Û1:κ and Û−i,1:κ, respectively. We have the following decomposition for Û ÛT ǫi,

∥

∥

∥Û ÛT ǫi

∥

∥

∥≤
∥

∥

∥Û−iÛ
T
−iǫi

∥

∥

∥+
∥

∥

∥Û ÛT − Û−iÛ
T
−i

∥

∥

∥

F
‖ǫi‖ .

Using the fact that ‖ǫi‖ ≤ ‖E‖ and Theorem 2.2, after rearrangement, we have
∥

∥

∥
Û ÛT ǫi

∥

∥

∥
≤ 128k ‖E‖√

nβρ0
+

(

1 +
128‖E‖
ρ0λk

)

∥

∥

∥
Û−iÛ

T
−iǫi

∥

∥

∥

= 128ψ−1
0 ρ−1

0 ∆+

(

1 +
128

ρ20

)

∥

∥

∥Û−iÛ
T
−iǫi

∥

∥

∥ .

In Lemma 3.1 we establish (18). From there we have

I{ẑi 6= φ(z∗i )} ≤ I

{

(

1−Cψ−1
0

)

∆≤ 256ψ−1
0 ρ−1

0 ∆+2

(

1 +
128

ρ20

)

∥

∥

∥
Û−iÛ

T
−iǫi

∥

∥

∥

}

≤ I

{

(

1−C ′ (ψ−1
0 + ρ−2

0

))

∆≤ 2
∥

∥

∥Û−iÛ
T
−iǫi

∥

∥

∥

}

,

for some constant C ′ > 0, where in the last inequality we use the assumption ρ0 > 16
from (8). The upper bound on Eℓ(ẑ, z∗) is an immediate consequence as Eℓ(ẑ, z∗) =
n−1

∑

i∈[n]EI{ẑi 6= φ(z∗i )}.

5.2. Proofs of Theorem 3.1.

PROOF OF THEOREM 3.1. For simplicity, we denote Û−i to be short for Û−i,1:κ through-
out the proof. Define ψ := ψ−1

1 + ρ−2
1 . Then ψ < 2/C .

Since E is a random matrix with independent sub-Gaussian columns, we have

P
(

‖E‖ ≤ 8σ(
√
n+

√
p)
)

≥ 1− e−n/2,(45)
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by Lemma D.1. Denote F to be this event. Under F , as long as ψ1, ρ1 ≥ 128, we have both
(15) and (8) hold. Let φ ∈ Φ satisfy ℓ(ẑ, z∗) = n−1

∑

i∈[n] I{ẑi 6= φ(z∗i )}. Consider a fixed
i ∈ [n]. Then from Lemma 3.2, we have

I{ẑi 6= φ(z∗i )}I{F} ≤ I

{

(1−C1ψ)∆≤ 2
∥

∥

∥
Û−iÛ

T
−iǫi

∥

∥

∥

}

I{F}

≤ I

{

(1−C1ψ)∆≤ 2
∥

∥

∥
Û−iÛ

T
−iǫi

∥

∥

∥

}

,

where C1 > 0 is some constant that does not depend on C . Then,

Eℓ(ẑ, z∗)≤ EI

{

F∁
}

+Eℓ(ẑ, z∗)I{F}

≤ e−n/2 + n−1
∑

i∈[n]
EI

{

(1−C1ψ)∆≤ 2
∥

∥

∥
Û−iÛ

T
−iǫi

∥

∥

∥

}

.(46)

Since ǫi ∼ SGp(σ
2) and it is independent of Û−iÛ

T
−i, we can apply concentration inequalities

for ‖Û−iÛ
T
−iǫi‖ from Lemma D.2. Define t = (1 − C2ψ)∆

2/(8σ2) where C2 = C1 + 16.
Since C2 does not depend on C , we can let C >max{4C2,128} such that 1−C2ψ > 1/2.
Then we have k/t≤ 16k2σ2/∆2 ≤ 16ψ2

1 where we use the fact that ∆
kσ > ψ−1

1 from (20) as
β ≤ 1. Then we have

σ2(κ+2
√
κt+2t) = 2σ2t

(

1

2

κ

t
+

√

κ

t
+1

)

≤ 2σ2t
(

8ψ2
1 +4ψ1 + 1

)

≤ 2σ2t (1 + 8ψ1)

≤ (1−C2ψ)∆
2/(8σ2) (1 + 8ψ)≤ (1−C1ψ)∆

2/(8σ2),

where we use that ψ1 < 1/128 and ψ < 1/64 as we let C > 128. Then from Lemma D.2, we
have

EI

{

(1−C1ψ)∆≤ 2
∥

∥

∥Û−iÛ
T
−iǫi

∥

∥

∥

}

≤ exp (−t) = exp

(

−(1−C2ψ)
∆2

8σ2

)

.

5.3. Proof of Theorem 3.4. The proof of Theorem 3.4 relies on the following entrywise
decomposition that is analogous to Lemma 3.2 but in an opposite direction. Note the the
singular vectors û1, and {û1,−i}i∈[n] are all identifiable up to sign. Without loss of generality,
we assume 〈û1, u1〉 ≥ 0 and 〈û1,−i, u1〉 ≥ 0 for all i ∈ [n].

LEMMA 5.1. Consider the model (27). Let φ ∈Φ be the permutation such that ℓ(ž, z∗) =
1
n |{i ∈ [n] : ži 6= φ(z∗i )}|. Then there exists a constants C,C1 > 0 such that if

∆

β−0.5n−0.5 ‖E‖ ≥C,(47)

then for any i ∈ [n],

I{ži 6= φ(z∗i )} ≥ I

{(

1 +
C1β

−0.5n−0.5 ‖E‖
∆

)

∆≤−2(ûT1,−iǫi)sign(uT1 θφ(z∗
i )
)

}

.(48)

PROOF. The proof mainly follows the proofs of Lemma 3.1 and Lemma 3.2 with some
modifications such as adding a negative term instead of a positive term in order to obtain a
lower bound.
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We first write ž equivalently as
(

ž,
{

θ̌j
}2

j=1

)

= argmin
z∈[2]n,{θj}2

j=1
∈Rp

∑

i∈[n]

∥

∥û1û
T
1Xi − θzi

∥

∥

2
,

where θ̌a = û1ča for each a ∈ [2]. Note that k = 2. From Proposition 3.1, we have

1

n
|{i ∈ [n] : ži 6= φ(z∗i )}| ≤

C0k ‖E‖2
n∆2

,

and

max
a∈[2]

∥

∥θ̌φ(a) − θ∗a
∥

∥≤C0β
−0.5kn−0.5 ‖E‖ ,(49)

for some permutation φ : [2] → [2] and some constant C0 > 0. Without loss of generality,
assume φ= Id.

Recall that θ∗1 = −θ∗2 = δ1p, u1 = 1/
√
p1p, λ1 = δ

√
np = ∆

√
n

2 , and |uT1 (θ∗z∗
i
−

(−θ∗z∗
i
))|= 2δ

√
p=∆. By Davis-Kahan Theorem, we have

min
s∈±1

‖û1 − su1‖ ≤
‖E‖
λ1

=
2‖E‖√
n∆

≤ 1/16,

where the last inequality is due to the assumption (15). Since we assume 〈û1, u1〉 ≥ 0, we
have ‖û1 − su1‖=mins∈±1 ‖û1 − su1‖.

Consider any i ∈ [n] and any a ∈ [2] such that a 6= z∗i . Note that for any scalars x, y,w,
if |x− y| ≤ |x−w|, we have equivalently sign(w − y)(y + w)/2 ≥ sign(w − y)x. Since
(y +w)/2 = (y −w)/2 +w, a sufficient condition is |w− y|/2 + |w| ≤ (−sign(w − y))x.
Hence, we have

I
{∥

∥û1û
T
1Xi − θ̌a

∥

∥≤
∥

∥û1û
T
1Xi − θ̌z∗

i

∥

∥

}

= I
{∣

∣ûT1Xi − ûT1 θ̌a
∣

∣≤
∣

∣ûT1Xi − ûT1 θ̌z∗
i

∣

∣

}

= I

{∣

∣

∣
ûT1 ǫi − ûT1

(

θ̌a − θ∗z∗
i

)∣

∣

∣
≤
∣

∣

∣
ûT1 ǫi − ûT1

(

θ̌z∗
i
− θ∗z∗

i

)∣

∣

∣

}

≥ I

{

1

2

∣

∣ûT1 (θ̌z∗
i
− θ̌a)

∣

∣+
∣

∣

∣
ûT1

(

θ̌z∗
i
− θ∗z∗

i

)∣

∣

∣
≤−(ûT1 ǫi)sign(ûT1 (θ̌z∗

i
− θ̌a))

}

≥ I

{

∥

∥θ̌z∗
i
− θ̌a

∥

∥+2
∥

∥

∥
θ̌z∗

i
− θ∗z∗

i

∥

∥

∥
≤−2(ûT1 ǫi)sign(ûT1 (θ̌z∗

i
− θ̌a))

}

.

We are going to show sign(ûT1 (θ̌z∗
i
− θ̌a)) = sign(uT1 (θ

∗
z∗
i
− θ∗a)). By (49), we have

〈

θ̌z∗
i
− θ̌a, θ

∗
z∗
i
− θ∗a

〉

=
∥

∥

∥
θ∗z∗

i
− θ∗a

∥

∥

∥

2
+
〈

θ̌z∗
i
− θ∗z∗

i
, θ∗z∗

i
− θ∗a

〉

+
〈

θ̌a − θ∗a, θ
∗
z∗
i
− θ∗a

〉

≥∆2

(

1− 2C0kβ
−0.5n−0.5 ‖E‖

∆

)

> 0,

where the last inequality holds as long as ∆ > 2C0β
−0.5kn−0.5 ‖E‖. Due to the fact

θ∗z∗
i
− θ∗a ∈ span(u1), θ̌z∗

i
− θ̌∗a ∈ span(û1), and 〈û1, u1〉 ≥ 0, if u1, θ∗z∗

i
− θ∗a are in the same

direction, then û1, θ̌z∗
i
− θ̌∗a must also be in the same direction, and vice versa. Hence, we

have sign(ûT1 (θ̌z∗
i
− θ̌a)) = sign(uT1 (θ

∗
z∗
i
− θ∗a)). Thus,

I
{∥

∥û1û
T
1Xi − θ̌a

∥

∥≤
∥

∥û1û
T
1Xi − θ̌z∗

i

∥

∥

}

≥ I

{

∥

∥θ̌z∗
i
− θ̌a

∥

∥+2
∥

∥

∥θ̌z∗
i
− θ∗z∗

i

∥

∥

∥≤−2(ûT1 ǫi)sign(uT1 (θ
∗
z∗
i
− θ∗a))

}

.
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Following the same analysis as in the proof of Lemma 3.1, we can get the following result
that is analogous to (44):

I
{∥

∥û1û
T
1Xi − θ̌a

∥

∥≤
∥

∥û1û
T
1Xi − θ̌z∗

i

∥

∥

}

≥ I

{(

1 +
4C0β

−0.5kn−0.5 ‖E‖
∆

)

∆≤−2(ûT1 ǫi)sign(uT1 (θ
∗
z∗
i
− θ∗a))

}

.

Next, we are going to decompose ûT1 ǫi following the proof of Lemma 3.2. Denote û1,−i

be the leave-one-out counterpart of û1, i.e., û1,−i is the leading left singular vector of X−i.
Since we assume 〈û1,−i, u1〉 ≥ 0, we have ‖û1,−i − u1‖ ≤ 2‖E‖/(

√
n− 1∆). As a result,

we have ‖û1,−i − û1‖ ≤ 4‖E‖/(
√
n− 1∆) which leads to

〈û1,−i, û1〉 ≥ 1− 4‖E‖/(
√
n− 1∆)> 0.(50)

We have the following decomposition:

(ûT1 ǫi)sign(uT1 (θ
∗
z∗
i
− θ∗a))

=
〈

û1, û1û
T
1 ǫi
〉

sign(uT1 (θ
∗
z∗
i
− θ∗a))

=
〈

û1, (û1,−iû
T
1,−i)ǫi

〉

sign(uT1 (θ
∗
z∗
i
− θ∗a)) +

〈

û1, (û1û
T
1 − û1,−iû

T
1,−i)ǫi

〉

sign(uT1 (θ
∗
z∗
i
− θ∗a))

= 〈û1, û1,−i〉 (ûT1,−iǫi)sign(uT1 (θ
∗
z∗
i
− θ∗a)) +

〈

û1, (û1û
T
1 − û1,−iû

T
1,−i)ǫi

〉

sign(uT1 (θ
∗
z∗
i
− θ∗a))

≤ 〈û1, û1,−i〉 (ûT1,−iǫi)sign(uT1 (θ
∗
z∗
i
− θ∗a)) +

∥

∥û1û
T
1 − û1,−iû

T
1,−i

∥

∥‖ǫi‖ .
Note that λ1/‖E‖=∆

√
n/(2‖E‖) is greater than 16 under the assumption (47) holds for a

large constant C . From Theorem 2.2 we have

∥

∥û1û
T
1 − û1,−iû

T
1,−i

∥

∥≤ 128

λ1/‖E‖





k√
βn

+

∥

∥

∥û1,−iû
T
1,−iǫi

∥

∥

∥

λ1



 .

Then,

(ûT1 ǫi)sign(uT1 (θ
∗
z∗
i
− θ∗a))

≤ 〈û1, û1,−i〉 (ûT1,−iǫi)sign(uT1 (θ
∗
z∗
i
− θ∗a)) +





128k√
nβ(λ1/‖E‖) +

128
∥

∥

∥
û1,−iû

T
1,−iǫi

∥

∥

∥

λ21/‖E‖



‖E‖

= 〈û1, û1,−i〉 (ûT1,−iǫi)sign(uT1 (θ
∗
z∗
i
− θ∗a)) +

256n−0.5kβ−0.5 ‖E‖2
∆

+
512

∣

∣

∣
ûT1,−iǫi

∣

∣

∣
n−1 ‖E‖2

∆2
.

So far we have obtained

I
{∥

∥û1û
T
1Xi − θ̌a

∥

∥≤
∥

∥û1û
T
1Xi − θ̌z∗

i

∥

∥

}

≥ I

{

(

1 +
4C0β

−0.5kn−0.5 ‖E‖
∆

)

∆≤−2 〈û1, û1,−i〉 (ûT1,−iǫi)sign(uT1 (θ
∗
z∗
i
− θ∗a))

− 256n−0.5kβ−0.5 ‖E‖2
∆

−
512

∣

∣

∣
ûT1,−iǫi

∣

∣

∣
n−1 ‖E‖2

∆2

}

= I

{(

1 +
4C0β

−0.5kn−0.5 ‖E‖
∆

+
256n−0.5kβ−0.5 ‖E‖2

∆2

)

∆
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≤−2 〈û1, û1,−i〉 (ûT1,−iǫi)sign(uT1 (θ
∗
z∗
i
− θ∗a))−

512
∣

∣

∣
ûT1,−iǫi

∣

∣

∣
n−1 ‖E‖2

∆2

}

.

From (50) we have

〈û1,−i, û1〉 −
512n−1 ‖E‖2

∆2
≥ 1− 4

‖E‖ (n− 1)−0.5

∆
− 512n−1 ‖E‖2

∆2

≥ 1− 16n−0.5 ‖E‖
∆

≥ 1

2
,

assuming ∆
n−0.5‖E‖ ≥ 64. For any x, y, z,w ∈R such that x≥ 0, 1≥ z ≥ 0, and z |y|>w≥ 0,

we have I{x≤ zy−w} ≥ I{x≤ (z −w/|y|) y}. We then have,

I
{∥

∥û1û
T
1Xi − θ̌a

∥

∥≤
∥

∥û1û
T
1Xi − θ̌z∗

i

∥

∥

}

≥ I

((

1 +
4C0β

−0.5kn−0.5 ‖E‖
∆

+
256n−0.5kβ−0.5 ‖E‖2

∆2

)

∆

≤−2

(

1− 16n−0.5 ‖E‖
∆

)

(ûT1,−iǫi)sign(uT1 (θ
∗
z∗
i
− θ∗a))

)

≥ I

{(

1 +
C1β

−0.5n−0.5 ‖E‖
∆

)

∆≤−2(ûT1,−iǫi)sign(uT1 (θ
∗
z∗
i
− θ∗a))

}

.

Since θ∗a =−θ∗z∗
i
, we have sign(uT1 (θ

∗
z∗
i
− θ∗a)) = sign(uT1 θ

∗
z∗
i
). The proof is complete.

PROOF OF THEOREM 3.4. Recall that λ1 =∆
√
n/2. Same as the proof of Theorem 3.1,

we work on the with-high-probability event (45).
For the upper bound, from Lemma 3.2, there exists some φ ∈Φ such that for any i ∈ [n],

I{ẑi 6= φ(z∗i )} ≤ I
{(

1−C1ψ
−1
3

)

∆≤ 2
∥

∥û1,−iû
T
−iǫi

∥

∥

}

= I
{(

1−C1ψ
−1
3

)

∆≤ 2
∣

∣ûT1,−iǫi
∣

∣

}

,

for some C1 > 0, where the last inequality is due to that ψ3 is large. By Davis-Kahan Theo-
rem, we know there exists some si ∈ {−1,1} such that ‖û1,−i − siu1‖ ≤ 2‖E‖/(

√
n− 1∆)≤

4ψ−1
3 . Since 〈û1,−i, u1〉 ≥ 0 is assumed, we have si = 1 for all i ∈ [n]. Then

I{ẑi 6= φ(z∗i )} ≤ I

{

(

1−C1ψ
−1
3

)

∆≤ 2
∣

∣uT1 ǫi
∣

∣+2
∣

∣

∣
(û1,−i − siu1)

T ǫi

∣

∣

∣

}

≤ I
{(

1− (C1 +C2)ψ
−1
3

)

∆≤ 2
∣

∣uT1 ǫi
∣

∣

}

+ I

{

C2ψ
−1
3 ∆≤ 2

∣

∣

∣(û1,−i − siu1)
T ǫi

∣

∣

∣

}

,

where C2 > 0 is a constant whose value will be determined later. Due to the independence of
û1,−i − siu1 and ǫi, we have (û1,−i − siu1)

T ǫi ∼ SG(16ψ−2
3 σ2) and then

EI

{

C2∆≤ 2
∣

∣

∣
(û1,−i − siu1)

T ǫi

∣

∣

∣

}

≤ 2exp

(

−C
2
2∆

2

128σ2

)

.

On the other hand, uT1 ǫi = p−
1

2

∑p
j=1 ǫi,j where {ǫi,j}j∈[p] are i.i.d. with variance σ̄2, which

can be approximated by a normal distribution. Since the distribution F is sub-Gaussian, its
moment generating function exists. Then we can use the following KMT quantile inequality

(cf., Proposition [KMT] of [28]). Let Y d
= σ̄−1p−

1

2

∑p
j=1 ǫi,j . There exist some constants

D,η > 0 and Z ∼N (0,1), such that whenever |Y | ≤ η
√
p, we have

|Y −Z| ≤ DY 2

√
p

+
D√
p
.
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Then,

EI
{(

1− (C1 +C2)ψ
−1
3

)

∆≤ 2
∣

∣uT1 ǫi
∣

∣

}

= EI

{

(

1− (C1 +C2)ψ
−1
3

) ∆

σ̄
≤ 2 |Y |

}

≤ EI

{

(

1− (C1 +C2)ψ
−1
3

) ∆

σ̄
≤ 2 |Z|+ 2DY 2

√
p

+
2D√
p

}

+ EI{|Y |> η
√
p}

≤ EI

{

(

1− (C1 +C2 +C3 + 2D)ψ−1
3

)∆

σ̄
≤ 2 |Z|

}

+EI

{

2DY 2

√
p

≥C3

}

+EI{|Y |> η
√
p},

where C3 > 0 is a constant. Using the fact that Y ∼ SG(1) with zero mean, we have

EI
{(

1− (C1 +C2)ψ
−1
3

)

∆≤ 2
∣

∣uT1 ǫi
∣

∣

}

≤ 2exp

(

−
(

1− (C1 +C2 +C3 + 2D)ψ−1
3

)2
∆2

8σ̄2

)

+2exp

(

−C3
√
p

4D

)

+2exp

(

−η
2p

2

)

.

Then we have

Eℓ(ž, z∗)

≤ 1

n

n
∑

i=1

EI
{(

1− (C1 +C2)ψ
−1
3

)

∆≤ 2
∣

∣uT1 ǫi
∣

∣

}

+
1

n

n
∑

i=1

EI

{

C2∆≤ 2
∣

∣

∣
(û1,−i − siu1)

T ǫi

∣

∣

∣

}

+ e−0.5n

≤ 2exp

(

−
(

1− (C1 +C2 +C3 + 2D)ψ−1
3

)2
∆2

8σ̄2

)

+ 2exp

(

−C
2
2∆

2

128σ2

)

+2exp

(

−C3
√
p

4D

)

+2exp

(

−η
2p

2

)

+ e−0.5n,

where e−0.5n is the probability that (45) does not hold. Since σ ≤Cσ̄, when C2 is chosen to
satisfy C2

2/(128C
2)≥ 16, we have

Eℓ(ž, z∗)≤ 2exp

(

−
(

1−C ′′ψ−1
3

)2
∆2

8σ̄2

)

+ exp
(

−C ′′√p
)

+ e−0.5n,

for some constant C ′′ > 0.
For the lower bound, from (48) we know

I{ži 6= φ(z∗i )} ≥ I
{(

1 +C4ψ
−1
3

)

∆≤−2(ûT1,−iǫi)sign(uT1 (θφ(z∗
i )
− θ3−φ(z∗

i )
))
}

,

for some constant C4 > 0 assuming ψ3 is large. Using the same argument as in the upper
bound, we are going to decompose ûT1,−iǫi into uT1 ǫi and (û1,−i − y1)

T ǫi. Hence,

I{ži 6= φ(z∗i )} ≥ I
{(

1 +C4ψ
−1
3

)

∆≤−2(uT1 ǫi)sign(uT1 (θφ(z∗
i )
− θ3−φ(z∗

i )
))− 2

∣

∣(û1,−i − siu1)
T ǫi
∣

∣

}

≥ I
{(

1 + (C4 +C5)ψ
−1
3

)

∆≤−2(uT1 ǫi)sign(uT1 (θφ(z∗
i )
− θ3−φ(z∗

i )
))
}

− I
{

C5ψ
−1
3 ∆≤ 2

∣

∣(û1,−i − siu1)
T ǫi
∣

∣

}

,

for some constant C5 > 0 whose value to be chosen. Let

Y ′ d
= σ̄−1(uT1 ǫi)sign(uT1 (θφ(z∗

i )
− θ3−φ(z∗

i )
)) = sign(uT1 (θφ(z∗

i )
− θ3−φ(z∗

i )
))σ̄−1p−

1

2

p
∑

j=1

ǫi,j.
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Then using the same argument above, there exists some Z ′ ∼ N (0,1) such that whenever
Y ′ ≤ η′

√
p, we have |Y ′ −Z ′| ≤ D′Y ′2√

p + D′√
p where D′, η′ > 0 are constants. Then

EI
{(

1 + (C4 +C5)ψ
−1
3

)

∆≤−2(uT1 ǫi)sign(uT1 (θφ(z∗
i )
− θ3−φ(z∗

i )
))
}

= EI

{

(

1 + (C4 +C5)ψ
−1
3

)∆

σ̄
≤−2Y ′

}

≥ EI

{

(

1 + (C4 +C5)ψ
−1
3

)∆

σ̄
≤−2Z ′ − 2DY ′2

√
p

− 2d√
p

}

I
{

Y ′ ≤ η′
√
p
}

≥ EI

{

(

1 + (C4 +C5 +2D+C6)ψ
−1
3

)∆

σ̄
≤−2Z ′

}

−EI

{

2DY ′2
√
p

≥C6

}

− EI
{

Y ′ > η′
√
p
}

,

where C6 > 0 is a constant. Then following the proof of the upper bound, and by a proper
choice of C5, we have

Eℓ(ž, z∗)≥ 2exp

(

−
(

1 +C ′′′ψ−1
3

)2
∆2

8σ̄2

)

− exp
(

−C ′′′√p
)

− e−0.5n,

for some constant C ′′′ > 0.

5.4. Proofs of Lemma 3.4 and Theorem 3.5.

PROOF OF LEMMA 3.4. For the upper bound, we consider the following likelihood ratio
test. For any x ∈Rp, define the two log-likelihood functions as

l1(x) =

p
∑

j=1

log f(xj − δ), and l2(x) =
p
∑

j=1

log f(xj + δ).

Then for each i ∈ [n], define the likelihood ratio test as

ẑLRT
i =

{

1, if l1(Xi)≥ l2(Xi),

2, otherwise.

Then for any i ∈ [n] such that z∗i = 1, we have

EI
{

ẑLRT
i = 2

}

= P (l2(Xi)> l1(Xi)) = P





p
∑

j=1

log
f(2δ+ ǫi,j)

f(ǫi,j)
> 0



= P





p
∑

j=1

log
f ∆

√
p

(ǫi,j)

f0(ǫi,j)
> 0



 ,

where we use the fact 2δ = ∆√
p . Since ∆ is a constant, by local asymptotic normality (c.f.,

Chapter 7, [37]), we have
p
∑

j=1

log
f ∆

√
p

(ǫi,j)

f0(ǫi,j)

d→N
(

−I∆2

2
,I∆2

)

.

Then, limp→∞EI
{

ẑLRT
i = 2

}

≤ C1 exp
(

−I∆2/8
)

for some constant C1 > 0. We have the
same upper bound if z∗i = 2 instead. Hence,

lim
p→∞

inf
z

sup
z∗∈[2]n

Eℓ(z, z∗)≤ lim
p→∞

sup
z∗∈[2]n

Eℓ(ẑLRT, z∗)≤ exp

(

−I∆2

8

)

.

For the lower bound, instead of allowing z∗ ∈ [2]n, we consider a slightly smaller pa-
rameter space. Define Z = {z ∈ [2]n : zi = 1,∀1≤ i≤ n/3, zi = 2,∀n/3 + 1≤ i≤ 2n/3}.
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Then for any z, z′ ∈ Z we have ℓ(z, z′) = n−1
∑n

i=1 I{zi 6= z′i} ≤ 1/3 due to the fact
n−1

∑n
i=1 I{φ(zi) 6= z′i} ≥ 1/3 if φ 6= Id. Hence,

inf
z

sup
z∗∈[2]n

Eℓ(z, z∗)≥ inf
z

sup
z∗∈Z

Eℓ(z, z∗)≥ n−1 inf
z

sup
z∗∈Z

E

∑

i∈[n]
I{zi 6= z∗i }

≥ n−1
∑

i>2n/3

inf
zi

sup
z∗
i ∈[2]

EI{zi 6= z∗i }=
1

3
inf
zn

sup
z∗
n∈[2]

EI{zn 6= z∗n},

where it is reduced into a testing problem on whether Xn has mean θ∗1 or θ∗2 . According to
the Neyman-Pearson Lemma, the optimal procedure is the likelihood ratio test ẑLRT

n defined
above. By the same argument, we have

lim
p→

inf
z

sup
z∗∈[2]n

Eℓ(z, z∗)≥ 1

3
lim
p→

inf
zn

sup
z∗
n∈[2]

EI{zn 6= z∗n} ≥C2 exp

(

−I∆2

8

)

,

for some constant C2 > 0.

PROOF OF THEOREM 3.5. First, we have the following connection between the Fisher
information I and the variance σ̄2:

Iσ̄2 =
(

∫ (

f ′

f

)2

fdx

)

(∫

x2fdx

)

≥
(∫

f ′

f
xfdx

)2

=

(∫

xf ′dx

)2

= 1,

where we use Cauchy-Schwarz inequality and the integral by part
∫

xf ′dx =
∫

xfdx −
∫

fdx = 0 − 1 = −1. The equation holds if and only if f ′/f ∝ x, which is equivalent to
F being normally distributed.

SUPPLEMENTARY MATERIAL

Supplement A: Supplement to “Leave-one-out Singular Subspace Perturbation Anal-

ysis for Spectral Clustering”

(url to be specified). In the supplement [42], we first provide the proof of Theorem 2.3 in Ap-
pendix A, followed by the proofs of Lemma 3.3 and Theorem 3.2 in Appendix B. The proof
of Theorem 3.3 is given in Appendix C. Auxiliary lemmas and propositions and their proofs
are included in Appendix D.
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APPENDIX A: PROOF OF THEOREM 2.3

The proof idea is similar to that of Theorem 2.2 but with more involved calculation as r is
not necessarily κ. Consider any i ∈ [n]. Define

ρ̃−i :=
λ̂−i,r − λ̂−i,r+1

∥

∥

∥

(

I − Û−i,1:rÛT
−i,1:r

)

Xi

∥

∥

∥

.

We need to verify ρ̃−i > 2 first in order to apply Theorem 2.1. Recall the definition of P−i in
(35) and E−i in (37). Let the SVD of P−i be

P−i =

p∧(n−1)
∑

j=1

λ−i,ju−i,jv
T
−i,j,

where λ−i,1 ≥ λ−i,2 ≥ . . .≥ λ−i,p∧(n−1). Denote U−i,1:r = (u−i,1, u−i,2, . . . , u−i,r) ∈Op×r.
Then by Weyl’s inequality, we have

|λ̂−i,r − λ−i,r|, |λ̂−i,r+1 − λ−i,r+1| ≤ ‖E−i‖ ≤ ‖E‖ .(51)

Then the numerator

λ̂−i,r − λ̂−i,r+1 ≥ λ−i,r − λ−i,r+1 − 2‖E‖ .(52)

In the following, we are going to connect λ−i,r − λ−i,r+1 with λr − λr+1.
To bridge the gap between λ−i,r, λ−i,r+1 and λr, λr+1, define

P̃−i := (θ∗z∗
1
, . . . , θ∗z∗

i−1
,U−i,1:rU

T
−i,1:rθ

∗
z∗
i
, θ∗z∗

i+1
, . . . , θ∗z∗

n
) ∈R

p×n.

Let λ̃−i,1 ≥ λ̃−i,2 ≥ . . . ≥ λ̃−i,p∧n be its singular values. Note that U−i,1:rU
T
−i,1:rP̃−i is the

best rank-r approximation of P̃−i. This is because for any rank-r projection matrix M ∈
Rp×p such that M2 =M , we have

∥

∥

∥
P̃−i −MMT P̃−i

∥

∥

∥

2

F
=
∥

∥(I −MMT )P−i

∥

∥

2

F
+
∥

∥

∥
(I −MMT )U−i,1:rU

T
−i,1:rθ

∗
z∗
i

∥

∥

∥

2

F

≥
∥

∥(I −U−i,1:rU
T
−i,1:r)P−i

∥

∥

2

F
+0

=
∥

∥

∥
P̃−i −U−i,1:rU

T
−i,1:rP̃−i

∥

∥

∥

2

F
,

where we use the fact U−i,1:rU
T
−i,1:rP−i is the best rank-r approximation of P−i. Hence,

span(U−i,1:r) is exactly the leading r left singular space of P̃−i. It immediately implies:

• λ̃−i,j = λ−i,j for any j ≥ r+1, including

λ̃−i,r+1 = λ−i,r+1.(53)
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• Since U−i,1:rU
T
−i,1:rP̃−i and U−i,1:rU

T
−i,1:rP−i only differ by one column where the lat-

ter one can be seen as the leave-one-out counterpart of the former one, using the same
argument as in (36), we have

λ2−i,r ≥
(

1− k

βn

)

λ̃2−i,r.(54)

Then from (52), we have

λ̂−i,r − λ̂−i,r+1 ≥
√

1− k

βn
λ̃−i,r − λ̃−i,r+1 − 2‖E‖ .(55)

For the difference between λ̃−i,r, λ̃−i,r+1 and λr, λr+1, we use the Weyl’s inequality again:

max
j∈[k]

∣

∣

∣λ̃−i,j − λj

∣

∣

∣≤
∥

∥

∥P − P̃−i

∥

∥

∥=
∥

∥

∥θ∗z∗
i
−U−i,1:rU

T
−i,1:rθ

∗
z∗
i

∥

∥

∥ .

In the proof of Theorem 2.2, we show u−i,j ∈ span({θ∗a}a∈[k]) for each j ∈ [κ]. Then
∥

∥

∥
θ∗z∗

i
−U−i,1:rU

T
−i,1:rθ

∗
z∗
i

∥

∥

∥
=
∥

∥

∥
(u−i,r+1, . . . , u−i,κ) (u−i,r+1, . . . , u−i,κ)

T θ∗z∗
i

∥

∥

∥

=

√

√

√

√

∑

a∈[κ]:a≥r+1

(

uT−i,aθ
∗
z∗
i

)2
.

For any a ∈ [κ] such a≥ r+1, we have
(

uT−i,aθ
∗
z∗
i

)2
≤ 1
∣

∣

∣

{

j ∈ [n] : z∗j = z∗i

}∣

∣

∣
− 1

∑

j∈[n]:j 6=i,z∗
j=z∗

i

(

uT−i,aθ
∗
z∗
j

)2
≤ 1

βn
k − 1

(uT−i,aP−i)
2

≤
λ2−i,a

βn
k − 1

≤
λ2−i,r+1

βn
k − 1

.

Hence, we obtain ‖θ∗z∗
i
−U−i,1:rU

T
−i,1:rθ

∗
z∗
i
‖ ≤√

κλ−i,a/
√

βn/k − 1 and consequently,

max
j∈[k]

∣

∣

∣λ̃−i,j − λj

∣

∣

∣≤
√
κλ−i,r+1
√

βn
k − 1

.(56)

Then together with (53), we have |λ−i,r+1 − λr+1| ≤
√
κλ−i,r+1/

√

βn/k− 1 and hence

λ−i,r+1 ≤
λr+1

1−
√
κ√

βn

k
−1

.(57)

Denote d := βn/k. With (55), we have

λ̂−i,r − λ̂−i,r+1 ≥
√

d− 1

d

(

λr −
λ−i,r+1√
d− 1

)

−
(

λr+1 +
λ−i,r+1√
d− 1

)

− 2‖E‖

≥
√

d− 1

d
λr − λr+1



1 +

(

1√
d
+

1√
d− 1

)

1

1−
√
κ√

d−1



− 2‖E‖

≥
√

d− 1

d

(

λr − λr+1 −
4√
d
λr+1

)

− 2‖E‖

≥ 3

4

(

λr − λr+1 −
4√
d
λr+1

)

− 2‖E‖ ,(58)



SINGULAR SUBSPACE PERTURBATION AND SPECTRAL CLUSTERING 3

where in the last two inequalities we use the assumption that d/k ≥ 10. As a consequence,
we have

ρ̃−i ≥
λ̂−i,r − λ̂−i,r+1

∥

∥

∥

(

I − Û−i,1:rÛ
T
−i,1:r

)

Xi

∥

∥

∥

≥
3
4

(

λr − λr+1 − 4√
d
λr+1

)

− 2‖E‖
∥

∥

∥

(

I − Û−i,1:rÛ
T
−i,1:r

)

Xi

∥

∥

∥

.

Next, we are going to simplify the denominator of the above display. Using the orthogo-
nality of the singular vectors, we have

∥

∥

∥

(

I − Û−i,1:rÛ
T
−i,1:r

)

θ∗z∗
i

∥

∥

∥

≤
∥

∥

∥

(

I − Û−i,1:κÛ
T
−i,1:κ

)

θ∗z∗
i

∥

∥

∥
+
∥

∥

∥
(û−i,r+1, . . . , û−i,κ) (û−i,r+1, . . . , û−i,κ)

T θ∗z∗
i

∥

∥

∥

=
∥

∥

∥

(

I − Û−i,1:κÛ
T
−i,1:κ

)

θ∗z∗
i

∥

∥

∥
+

√

√

√

√

κ
∑

j=r+1

(

ûT−i,jθ
∗
z∗
i

)2

≤ 3
√
κ‖E‖

√

βn
k − 1

+

√

√

√

√

√

κ
∑

j=r+1





λ̂−i,j
√

βn
k − 1

+
‖E‖

√

βn
k − 1





2

≤ 3
√
κ‖E‖

√

βn
k − 1

+
√
κ





λ̂−i,r+1
√

βn
k − 1

+
‖E‖

√

βn
k − 1



 ,

where the second to the inequality is due to (40) and (43). By (57) and the Weyl’s inequality,
we have

λ̂−i,r+1 ≤ λ−i,r+1 + ‖E‖ ≤ 1

1−
√
κ√

βn

k
−1

λr+1 + ‖E‖ .

Then, with the assumption βn/k2 ≥ 10, we have

∥

∥

∥

(

I − Û−i,1:rÛ
T
−i,1:r

)

θ∗z∗
i

∥

∥

∥≤ 3
√
κ‖E‖

√

βn
k − 1

+
√
κ





λr+1
√

βn
k − 1−√

κ
+

2‖E‖
√

βn
k − 1





≤
√
kκ√
βn

(6‖E‖+ 2λr+1).

Hence,
∥

∥

∥

(

I − Û−i,1:rÛ
T
−i,1:r

)

Xi

∥

∥

∥≤
∥

∥

∥

(

I − Û−i,1:rÛ
T
−i,1:r

)

θ∗z∗
i

∥

∥

∥+
∥

∥

∥

(

I − Û−i,1:rÛ
T
−i,1:r

)

ǫi

∥

∥

∥

≤
√
kκ√
βn

(6‖E‖+2λr+1) + ‖E‖ .

As a result,

ρ̃−i ≥
3
4

(

λr − λr+1 − 4√
βn/k

λr+1

)

− 2‖E‖
√
kκ√
βn

(6‖E‖+2λr+1) + ‖E‖
≥ ρ̃0

8
> 2,

under the assumption that βn/(k2)≥ 10 and (10).



4

The remaining part of the proof is to study {ûT−i,aXi}a∈[r] and then apply Theorem 2.1.
Following the exact argument as in the proof of Theorem 2.2, we have

√

√

√

√

∑

a∈r

(

ûT−i,aXi

λ̂−i,a

)2

≤
√
r

√

βn
k − 1

+
1

λ̂−i,r

‖E‖√r
√

βn
k − 1

+
1

λ̂−i,r

∥

∥

∥Û−i,1:rÛ
T
−i,1:rǫi

∥

∥

∥ .

Under the assumption that βn/(k2)≥ 10 and (10), (58) is lower bounded by λr/2. This also
implies λ̂−i,r ≥ λr/2. Then a direct application of Theorem 2.1 leads to

∥

∥

∥
Û1:rÛ

T
1:r − Û−i,1:rÛ

T
−i,1:r

∥

∥

∥

F
≤ 4

√
2

ρ̃−i

( √
r

√

βn/k− 1
+

1

λ̂−i,r

( √
r ‖E‖

√

βn/k− 1
+
∥

∥

∥
Û−i,1:rÛ

T
−i,1:rǫi

∥

∥

∥

))

≤ 128

ρ̃0





√
kr√
βn

+

∥

∥

∥
Û−i,1:rÛ

T
−i,1:rǫi

∥

∥

∥

λr



 .

APPENDIX B: PROOFS OF LEMMA 3.3 AND THEOREM 3.2

PROOF OF LEMMA 3.3. Note that r̂ ∈ [k] is a random variable. We are going to associate
it with some deterministic index in [k]. Recall λ1 ≥ λ2 ≥ . . . ≥ λp∧n are singular values
of the signal matrix P and κ is the its rank. Let its SVD be P =

∑

i∈[p∧n]λiuiv
T
i with

{uj}j∈[p∧n] ∈Rp being its left singular vectors.

By the definition of r̂ in (22) and the definition of ρ̃, we know λ̂r̂ − λ̂r̂+1 ≥ ρ̃‖E‖ and
λ̂r̂+1 ≤ kρ̃‖E‖. By Weyl’s inequality, we have |λ̂a − λa| ≤ ‖E‖ for all singular values of
X and P . Then we have λr̂ − λr̂+1 ≥ (ρ̃ − 2)‖E‖ and λr̂+1 ≤ (kρ̃ + 1)‖E‖. Note that
(ρ̃− 2)‖E‖> 0 is as long as ρ̃ > 2. Define

R := {a ∈ [k] : λa − λa+1 ≥ (ρ̃− 2)‖E‖ and λa+1 ≤ (kρ̃+ 1)‖E‖} ,(59)

which is a deterministic subset of [κ]. Then r̂ ∈R.
Consider an arbitrary r ∈R and define Û1:r := (û1, . . . , ûr) ∈Rp×r. Perform k-means on

the columns of Û1:rÛ
T
1:rX and let the output be

(

ž(r),
{

θ̌j(r)
}k

j=1

)

= argmin
z∈[k]n,{θj}k

j=1
∈Rp

∑

i∈[n]

∥

∥

∥
Û1:rÛ

T
1:rX − θzi

∥

∥

∥

2
.

In the following, we are going to establish statistical properties for ž(r) and eventually obtain
a desired upper bound for ℓ(ž(r), z∗). Since performing k-means on the columns of ÛT

1:rX

is equivalent to k-means on the columns of Û1:rÛ
T
1:rX , and since r̂ ∈ R, we have z̃ = ž(r̂)

and thus the desired upper bound also holds for ℓ(z̃, z∗).
In the rest of the proof we are going to analyze ž(r) for any r ∈R. For simplicity, we use

the notation ž,{θ̌j}j∈[n] instead of ž(r),{θ̌j(r)}j∈[n]. The remaining proof can be decom-
posed into several parts.

(Preliminary Results for ž,{θ̌j}j∈[n]). We are going to use Proposition 3.1 to have some
preliminary results. Define U1:r := (u1, . . . , ur) and U(r+1):k := (ur+1, . . . , uk). Instead of
the decomposition (5), we can write

Xi = U1:rU
T
1:rθ

∗
z∗
i
+U(r+1):kU

T
(r+1):kθ

∗
z∗
i
+ ǫi =U1:rU

T
1:rθ

∗
z∗
i
+ ǫ̌i,
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where ǫ̌i := U(r+1):kU
T
(r+1):kθ

∗
z∗
i
+ ǫi. In this way, we have a new mixture model with the

centers being {U1:rU
T
1:rθ

∗
a}a∈[k] and the additive noises being {ǫ̌i}. Define Ě := (ǫ̌1, . . . , ǫ̌n).

Then
∥

∥Ě
∥

∥≤ ‖E‖+
∥

∥

∥

(

U(r+1):kU
T
(r+1):kθ

∗
z∗
1
, . . . ,U(r+1):kU

T
(r+1):kθ

∗
z∗
n

)∥

∥

∥

= ‖E‖+
∥

∥

∥
U(r+1):kU

T
(r+1):kP

∥

∥

∥
= ‖E‖+ λr+1

≤ (kρ̃+ 2)‖E‖ .(60)

The separation among the new centers is no longer ∆. Define

∆̌ := min
a,b∈[k]:a6=b

∥

∥U1:rU
T
1:rθ

∗
a −U1:rU

T
1:rθ

∗
b

∥

∥ .

For any a, b ∈ [k], U1:rU
T
1:rθ

∗
a−U1:rU

T
1:rθ

∗
b = (θ∗a−θ∗b )−U(r+1):kU

T
(r+1):kθ

∗
a+U(r+1):kU

T
(r+1):kθ

∗
b .

Also,

max
a∈[k]

∥

∥

∥
U(r+1):kU

T
(r+1):kθ

∗
a

∥

∥

∥
=max

a∈[k]

√

√

√

√

∑

i∈[n]:z∗
i =a

∥

∥

∥
U(r+1):kU

T
(r+1):kθ

∗
a

∥

∥

∥

2

|{i ∈ [n] : z∗i = a}| ≤

∥

∥

∥
U(r+1):kU

T
(r+1):kP

∥

∥

∥

F
√

βn/k

≤ 2
√
kλr+1

√

βn/k
≤

√
k(kρ̃+ 1)‖E‖
√

βn/k
.(61)

Hence, we have

∆̌≥ min
a,b∈[k]:a6=b

‖θ∗a − θ∗b‖ − 2max
a∈[k]

∥

∥

∥
U(r+1):kU

T
(r+1):kθ

∗
a

∥

∥

∥
≥∆− 2

√
k(kρ̃+1)‖E‖
√

βn/k
.(62)

Then from Proposition 3.1, as long as (which will be verified later)

ψ̌0 :=
∆̌

β−0.5kn−0.5
∥

∥Ě
∥

∥

≥ 16,(63)

we have

ℓ(ž, z∗) =
1

n
|i ∈ [n] : ži 6= φ(z∗i )| ≤

C0k
∥

∥Ě
∥

∥

2

n∆̌2
,

and

max
a∈[k]

∥

∥θ̌φ(z) −U1:rU
T
1:rθ

∗
a

∥

∥≤C0β
−0.5kn−0.5

∥

∥Ě
∥

∥ .

where C0 = 128.

(Entrywise Decomposition for ž). Next, we are going to have an entrywise decomposition for
I{ẑi 6= φ(z∗i )} that is analogous to that of Lemma 3.2. When (63) is satisfied, from Lemma
3.1, we have

I{ži 6= φ(z∗i )} ≤ I

{

(

1−C0ψ̌
−1
0

)

∆̌≤ 2
∥

∥

∥Û1:rÛ
T
1:r ǫ̌i

∥

∥

∥

}

.

By the definition of ǫ̌i and (61), we have
∥

∥

∥
Û1:rÛ

T
1:r ǫ̌i

∥

∥

∥
≤
∥

∥

∥
Û1:rÛ

T
1:rǫi

∥

∥

∥
+
∥

∥

∥
Û1:rÛ

T
1:rU(r+1):kU

T
(r+1):kθ

∗
z∗
i

∥

∥

∥

≤
∥

∥

∥
Û1:rÛ

T
1:rǫi

∥

∥

∥
+
∥

∥

∥
U(r+1):kU

T
(r+1):kθ

∗
z∗
i

∥

∥

∥

≤
∥

∥

∥Û1:rÛ
T
1:rǫi

∥

∥

∥+

√
k(kρ̃+1)‖E‖
√

βn/k
.
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Then, we have

I{ži 6= φ(z∗i )} ≤ I

{

(

1−C0ψ̌
−1
0

)

∆̌≤ 2

(

∥

∥

∥
Û1:rÛ

T
1:rǫi

∥

∥

∥
+

√
k(kρ̃+1)‖E‖
√

βn/k

)}

= I

{(

1−C0ψ̌
−1
0 − 2

√
k(kρ̃+ 1)‖E‖
√

βn/k∆̌

)

∆̌≤ 2
∥

∥

∥
Û1:rÛ

T
1:rǫi

∥

∥

∥

}

.

From (59), under the assumption that ρ̃ > 4 and βn/k4 > 400, we have ρ̃0 defined as in
(10) to satisfy

ρ̃0 ≥
(ρ̃− 1)‖E‖

max
{

‖E‖ ,
√

k2

βn(kρ̃+ 1)‖E‖
} ≥ 2.

Then Theorem 2.3 can be applied, with which we have

∥

∥

∥
Û1:rÛ

T
1:r − Û−i,1:rÛ

T
−i,1:r

∥

∥

∥

F
≤ 256

√
rk√

nβ
+

256
∥

∥

∥
Û−i,1:rÛ

T
−i,1:rǫi

∥

∥

∥

λr
.

Then following the proof of Lemma 3.2, we have

I{ži 6= φ(z∗i )}

≤ I

{(

1−C0ψ̌
−1
0 − 2

√
k(kρ̃+ 1)‖E‖
√

βn/k∆̌

)

∆̌≤ 2
(∥

∥

∥
Û−i,1:rÛ

T
−i,1:rǫi

∥

∥

∥
+
∥

∥

∥
Û1:rÛ

T
1:r − Û−i,1:rÛ

T
−i,1:r

∥

∥

∥

F
‖E‖

)

}

≤ I

{(

1−C0ψ̌
−1
0 − 2

√
k(kρ̃+ 1)‖E‖
√

βn/k∆̌

)

∆̌≤ 2

(

256
√
rk ‖E‖√
nβ

+

(

1 +
256‖E‖
λr

)

∥

∥

∥
Û−i,1:rÛ

T
−i,1:rǫi

∥

∥

∥

)}

≤ I

{(

1−C0ψ̌
−1
0 − 2

√
k(kρ̃+ 257)‖E‖
√

βn/k∆̌

)

∆̌≤ 2

(

1 +
256‖E‖
λr

)

∥

∥

∥
Û−i,1:rÛ

T
−i,1:rǫi

∥

∥

∥

}

≤ I

{(

1−C0ψ̌
−1
0 − 2

√
k(kρ̃+ 257)‖E‖
√

βn/k∆̌

)

∆̌≤ 2

(

1 +
256

ρ̃− 2

)

∥

∥

∥Û−i,1:rÛ
T
−i,1:rǫi

∥

∥

∥

}

,

where in the last inequality we use λr ≥ (ρ̃− 2)‖E‖> 0 (as long as ρ̃ > 2) from (59).
The last step of the proof is to simplify the above display using ∆ instead of ∆̌. Then,

under the assumption that ρ̃ > 256, we have (1 + 256/(ρ̃− 2))−1 ≤ (1− 512/ρ̃). Recall the
definition of ψ̃0 in (24). Under the assumption that ρ̃≤ ψ̃0/64, we have

∆̌≥∆

(

1− 4β−0.5k2n−0.5ρ̃‖E‖
∆

)

=∆

(

1− 4ρ̃

ψ̃0

)

≥ ∆

2
,(64)

according to (62). Then together with (60), we can verify (63) holds due to

ψ̌0 ≥
∆/2

β−0.5kn−0.5(kρ̃+2)‖E‖ ≥ ∆

4β−0.5k2n−0.5ρ̃‖E‖ =
ψ̃0

4ρ̃
≥ 16.

Rearranging all the terms with the help of (64), we can simplify I{ži 6= φ(z∗i )} into

I{ži 6= φ(z∗i )}

≤ I

{(

1− 4C0ρ̃ψ̃0 −
4β−0.5k2n−0.5ρ̃‖E‖

∆/2

)(

1− 256

ρ̃

)(

1− 4ρ̃

ψ̃0

)

∆≤ 2
∥

∥

∥
Û−i,1:rÛ

T
−i,1:rǫi

∥

∥

∥

}

≤ I

{(

1− 5C0ρ̃ψ̃
−1
0 − 256ρ̃−1

)

∆≤ 2
∥

∥

∥
Û−i,1:rÛ

T
−i,1:rǫi

∥

∥

∥

}

.
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PROOF OF THEOREM 3.2. Recall the definition of F in (45). Then if F holds, by appro-
priate choices of C1,C2, we can verify the assumptions needed in Lemma 3.3 hold, which
lead to

I{z̃i 6= φ(z∗i )}I{F} ≤ I

{

(

1−C ′′(ρ2ψ
−1
2 + ρ−1

2 )
)

∆≤ 2
∥

∥

∥
Û−i,1:r̂Û

T
−i,1:r̂ǫi

∥

∥

∥

}

I{F},

for some constant C ′′ > 0. Though r̂ is random, the proof of Lemma 3.3 shows that r̂ ∈R⊂
[k] where R is defined in (59). Note that for any r ∈ [k], we can follow the proof of Theorem
3.1 to show

EI

{

(

1−C ′′(ρ2ψ
−1
2 + ρ−1

2 )
)

∆≤ 2
∥

∥

∥
Û−i,1:rÛ

T
−i,1:rǫi

∥

∥

∥

}

≤ exp

(

−(1−C ′′′(ρ2ψ
−1
2 + ρ−1

2 ))
∆2

8σ2

)

,

for some constant C ′′′ > 0. Hence, the same upper bound holds for EI{(1 − C ′′(ρ2ψ
−1
2 +

ρ−1
2 ))∆ ≤ 2‖Û−i,1:r̂Û

T
−i,1:r̂ǫi‖}. The rest of the proof follows that of Theorem 3.1 and is

omitted here.

APPENDIX C: PROOF OF THEOREM 3.3

Define F =
{

‖E‖ ≤
√
2(
√
n+

√
p)σ
}

. Then by Lemma B.1 of [25], we have P (F) ≥
1− e−0.08n. Then under the event F , the assumption (25) implies (15) holds, and hence (16)
and (17) hold. For simplicity, and without loss of generality, we can let φ in (16)-(17) to be
the identity, and we get

ℓ(ẑ, z∗) =
1

n
|{i ∈ [n] : ẑi 6= z∗i }| ≤

C0k
(

1 +
√ p

n

)2
σ2

∆2
,

and

max
a∈[k]

∥

∥

∥
θ̂a − θ∗a

∥

∥

∥
≤C0β

−0.5k

(

1 +

√

p

n

)

σ,

where C0 > 0 is some constant.
Denote P̂ = Û1:kÛ

T
1:kX and let P̂·,i be its ith column so that P̂·,i = Û1:kÛ

T
1:kXi. We define

r ∈ [k] as (with λk+1 := 0)

r =max
{

j ∈ [k] : λj − λj+1 ≥ τ
√
n+ pσ

}

,(65)

for a sequence τ →∞ to be determined later. We note that if ∆/(k
3

2 τβ
1

2 (1 + p/n)
1

2 σ)→
∞, the set {j ∈ [k] : λj − λj+1 ≥ τ

√
n+ pσ} is not empty. Otherwise, this would imply λ1 ≤

kτ
√
n+ pσ which would contradict with the fact λ1 ≥

√

βn/k∆/(2σ) (cf. Proposition A.1
of [25]). By the definition of r in (65), we immediately have

λr − λr+1 ≥ τ
√
n+ pσ,(66)

and λr+1 ≤ kτ
√
n+ pσ.(67)

We split Û1:k into (Û1:r, Û(r+1):k) where Û1:r := (û1, . . . , ûr) and Û(r+1):k := (ûr+1, . . . , ûk).

We decompose P̂·,i = P̂
(1)
·,i +P̂

(2)
·,i , where P̂ (1)

·,i := Û1:rÛ
T
1:rP̂·,i and P̂ (2)

·,i := Û(r+1):kÛ
T
(r+1):kP̂·,i.

Similarly, for each a ∈ [k], we decompose θ̂a = θ̂
(1)
a + θ̂

(2)
a , where θ̂(1)a := Û1:rÛ

T
1:rθ̂a and
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θ̂
(2)
a := Û(r+1):kÛ

T
(r+1):kθ̂a. Due to the orthogonality of {ûl}l∈[k], we obtain that for any

i ∈ [n] and any a ∈ [k] such that a 6= z∗i ,

I{ẑi = a} ≤ I

{

∥

∥

∥P̂
(1)
·,i + P̂

(2)
·,i − θ̂(1)a − θ̂(2)a

∥

∥

∥

2
≤
∥

∥

∥P̂
(1)
·,i + P̂

(2)
·,i − θ̂

(1)
z∗
i
− θ̂

(2)
z∗
i

∥

∥

∥

2
}

= I

{

2
〈

P̂
(1)
·,i − θ̂

(1)
z∗
i
, θ̂

(1)
z∗
i
− θ̂(1)a

〉

+
∥

∥

∥
θ̂
(1)
z∗
i
− θ̂(1)a

∥

∥

∥

2
≤ 2

〈

P̂
(2)
·,i , θ̂

(2)
a − θ̂

(2)
z∗
i

〉

−
∥

∥

∥
θ̂(2)a

∥

∥

∥

2
+
∥

∥

∥
θ̂
(2)
z∗
i

∥

∥

∥

2
}

We denote τ ′′ = o(1) to be another sequence which we will specify later. Then the above
display can be decomposed and upper bounded by

I{ẑi = a} ≤I











∥

∥

∥
θ̂
(1)
z∗
i
− θ̂(1)a

∥

∥

∥
−
τ ′′∆2 +

∥

∥

∥
θ̂
(2)
z∗
i

∥

∥

∥

2

∥

∥

∥
θ̂
(1)
z∗
i
− θ̂

(1)
a

∥

∥

∥

≤ 2
∥

∥

∥
P̂

(1)
·,i − θ̂

(1)
z∗
i

∥

∥

∥











+ I

{

τ ′′∆2 ≤ 2
〈

P̂
(2)
·,i , θ̂

(2)
a − θ̂

(2)
z∗
i

〉}

=:Ai,a +Bi,a.

Then

Eℓ(ẑ, z∗)≤ 1

n

∑

i∈[n]

∑

a∈[k]:a6=z∗
i

EI{ẑi = a}

≤ P

(

F∁
)

+
1

n

∑

i∈[n]

∑

a∈[k]:a6=z∗
i

EAi,aI{F}+ 1

n

∑

i∈[n]

∑

a∈[k]:a6=z∗
i

EBi,aI{F}.(68)

We are going to establish upper bounds first for n−1
∑

i∈[n]
∑

a∈[k]:a6=z∗
i
EBi,aI{F} and then

for n−1
∑

i∈[n]
∑

a∈[k]:a6=z∗
i
EAi,aI{F}.

(Analysis on n−1
∑

i∈[n]
∑

a6=z∗
i
EBi,aI{F}). For

∑

i∈[n]
∑

a6=z∗
i
EBi,aI{F}, we can di-

rectly use upper bounds established in Section 4.4.3 of [25]1. It proves that for any i ∈ [n],

∑

a∈[k]:a6=z∗
i

Bi,aI{F ∩ T } ≤ 2exp



−1

2

(

c4
τ ′′∆

k
7

2 τ2β−
1

2 (1 + p
n)σ

√

n− k

3n

)2
∆2

σ2



 ,

where c4 > 0 is some constant, and T is some with-high-probability event in the sense that

P (T )≥ 1− nk exp

(

−(n− k)

9

)

.

Hence,

1

n

∑

i∈[n]

∑

a∈[k]:a6=z∗
i

EBi,aI{F} ≤ 1

n

∑

i∈[n]

∑

a∈[k]:a6=z∗
i

EBi,aI{F ∩ T }+ P

(

T ∁
)

≤ 2exp



−1

2

(

c4
τ ′′∆

k
7

2 τ2β−
1

2 (1 + p
n)σ

√

n− k

3n

)2
∆2

σ2



+ nk exp

(

−(n− k)

9

)

.

1The model in [25] assumes {ǫj}
iid
∼ N (0, I) while in this paper we assume {ǫj}

iid
∼ N (0, σ2I). To directly

use results from [25], we can re-scale our data to have X′
j =Xj/σ for all j ∈ [n]. Then {X′

j} has N (0, I) noise
and the separation between their centers becomes ∆/σ. Then all the results from [25] can be used here with ∆
replaced by ∆/σ.
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(Analysis on n−1
∑

i∈[n]
∑

a6=z∗
i
EAi,aI{F}). We first follow some algebra as in Section

4.4.2 of [25] to simplify Ai,aI{F}. For any i ∈ [n] and a 6= z∗i , it proves

Ai,aI{F} ≤ I

{(

1− c1τ
′′ − c1k

2τβ−
1

2

√

1 + p
nσ

∆

)

∆≤ 2
∥

∥

∥
P̂

(1)
·,i − θ̂

(1)
z∗
i

∥

∥

∥

}

I{F},(69)

for some constant c1 > 0. Still working on the event F , it also proves
∥

∥

∥
P̂

(1)
·,i − θ̂

(1)
z∗
i

∥

∥

∥
≤
∥

∥

∥
P̂

(1)
·,i − Û1:rÛ

T
1:rθ

∗
z∗
i

∥

∥

∥
+ 8

√
2

√

β−1k2
(

1 +
p

n

)

σ.(70)

Our following analysis on Ai,aI{F} is different from the rest proof in Section 4.4.2 of

[25]. Note that P̂ (1)
·,i − Û1:rÛ

T
1:rθ

∗
z∗
i
= Û1:rÛ

T
1:rXi − Û1:rÛ

T
1:rθ

∗
z∗
i
= Û1:rÛ

T
1:rǫi. Then (69) and

(70) give

Ai,aI{F} ≤ I

{(

1− c2τ
′′ − c2k

2τβ−
1

2

(

1 +
√ p

n

)

σ

∆

)

∆≤ 2
∥

∥

∥
Û1:rÛ

T
1:rǫi

∥

∥

∥

}

I{F},(71)

where we use τ →∞ and the fact that 1 +
√

p/n,
√

1 + p/n are in the same order.
Recall the definition of X−i in (7) and Û−i,1:rÛ

T
−i,1:r is the leave-one-out counterpart of

Û1:rÛ
T
1:r . For (71), we can decompose ‖Û1:rÛ

T
1:rǫi‖ into

∥

∥

∥Û1:rÛ
T
1:rǫi

∥

∥

∥≤
∥

∥

∥Û−i,1:rÛ
T
−i,1:rǫi

∥

∥

∥+
∥

∥

∥Û1:rÛ
T
1:r − Û−i,1:rÛ

T
−i,1:r

∥

∥

∥

F
‖ǫi‖ .

To upper bound ‖Û1:rÛ
T
1:r − Û−i,1:rÛ

T
−i,1:r‖F, we are going to use Theorem 2.3. Since (66)-

(67) hold, under the assumption βn/k4 ≥ 100, we have

λr − λr+1

max
{

‖E‖ ,
√

k2

nβλr+1

} ≥ τ

2
.

Applying Theorem 2.3, we have

∥

∥

∥
Û1:rÛ

T
1:r − Û−i,1:rÛ

T
−i,1:r

∥

∥

∥

F
≤ 256

√
rk√

nβ
+

256
∥

∥

∥
Û−i,1:rÛ

T
−i.1:rǫi

∥

∥

∥

λr
.

Hence,

∥

∥

∥
Û1:rÛ

T
1:rǫi

∥

∥

∥
≤
∥

∥

∥
Û−i,1:rÛ

T
−i,1:rǫi

∥

∥

∥
+





256
√
rk√

nβ
+

256
∥

∥

∥
Û−i,1:rÛ

T
−i.1:rǫi

∥

∥

∥

λr



‖E‖

=
256k ‖E‖√

nβ
+

(

1 +
256‖E‖
λr

)

∥

∥

∥
Û−i,1:rÛ

T
−i.1:rǫi

∥

∥

∥

≤ 256
√
2k(

√
n+

√
p)σ√

nβ
+

(

1 +
256

√
2(
√
n+

√
p)σ

τ
√
n+ pσ

)

∥

∥

∥Û−i,1:rÛ
T
−i.1:rǫi

∥

∥

∥

≤ 512kβ−0.5

(

1 +

√

p

n

)

σ+
(

1 + 512τ−1
)

∥

∥

∥
Û−i,1:rÛ

T
−i.1:rǫi

∥

∥

∥
,
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where in the second to the last inequality, we use (66) for λr and the event F for ‖E‖. Then
(71) leads to

Ai,aI{F} ≤ I

{(

1− c3τ
′′ − c3k

2τβ−
1

2

(

1 +
√ p

n

)

σ

∆

)

∆≤ 2
(

1 + 512τ−1
)

∥

∥

∥Û−i,1:rÛ
T
−i.1:rǫi

∥

∥

∥

}

I{F}

≤ I

{(

1− c4

(

k2τβ−
1

2

(

1 +
√ p

n

)

σ

∆
+ τ−1

))

∆≤ 2
∥

∥

∥Û−i,1:rÛ
T
−i,1:rǫi

∥

∥

∥

}

,

where c3, c4 > 0 are some constants. As long as 1− c4(k
2τβ−0.5(1+

√

p/n)σ/∆+ τ−1)>

1/2, we can use Lemma D.2 to calculate the tail probability of ‖Û−i,1:rÛ
T
−i,1:rǫi‖. Following

the proof of Theorem 3.1, we have

EAi,aI{F} ≤ exp

(

−
(

1− c5

(

k2τβ−
1

2

(

1 +
√ p

n

)

σ

∆
+ τ−1

))

∆2

8σ2

)

,

for some constant c5 > 0. Then we have,

n−1
∑

i∈[n]

∑

a∈[k]:a6=z∗
i

EAi,aI{F} ≤ k exp

(

−
(

1− c5

(

k2τβ−
1

2

(

1 +
√

p
n

)

σ

∆
+ τ−1

))

∆2

8σ2

)

.

(Obtaining the Final Result.) From (68) and the above upper bounds on n−1
∑

i∈[n]
∑

a∈[k]:a6=z∗
i
EBi,aI{F}

and n−1
∑

i∈[n]
∑

a∈[k]:a6=z∗
i
EAi,aI{F}, we have

Eℓ(ẑ, z∗)≤ e−0.08n +2exp



−1

2

(

c4
τ ′′∆

k
7

2 τ2β−
1

2 (1 + p
n)σ

√

n− k

3n

)2
∆2

σ2



+ nk exp

(

−(n− k)

9

)

+ k exp

(

−
(

1− c5

(

k2τβ−
1

2

(

1 +
√ p

n

)

σ

∆
+ τ−1

))

∆2

8σ2

)

.

Since we assume βn/k4 ≥ 100, we have (n − k)/n > 0.99. Hence, under the assumption
that ∆/(k3.5β−0.5(1 + p

n)σ)→∞, we can take τ, τ ′′ to be

τ = τ ′′−1 :=

(

∆

k3.5β−0.5
(

1 + p
n

)

σ

)0.25

such that τ →∞ and τ ′′ = o(1). Then for some constant c6 > 0, we have

Eℓ(ẑ, z∗)≤ e−0.08n + 2exp



− c24
12

(

∆

k3.5β−0.5
(

1 + p
n

)

σ

)0.5
∆2

σ2



+ nke−0.1n

+ k exp



−



1− 2c5

(

∆

k3.5β−0.5
(

1 + p
n

)

σ

)−0.25




∆2

8σ2





≤ exp



−



1− c6

(

∆

k3.5β−0.5
(

1 + p
n

)

σ

)−0.25




∆2

8σ2



+2e−0.08n.
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APPENDIX D: AUXILIARY LEMMAS AND PROPOSITIONS AND THEIR PROOFS

PROPOSITION D.1. For Y and Ŷ defined in (1), we have (2) holds assuming σr−σr+1 >
2
∥

∥(I −UrU
T
r )yn

∥

∥.

PROOF. Recall the definition of the augmented matrix Y ′. Note that UrU
T
r Y is the best

rank-r approximation of Y . Since
∥

∥

(

I −UrU
T
r

)

Y ′∥
∥

F
=
∥

∥

((

I −UrU
T
r

)

Y,0
)∥

∥

F
=
∥

∥

(

I −UrU
T
r

)

Y
∥

∥

F
,

we have UrU
T
r Y

′ also being the best rank-r approximation of Y ′. This proves that span(Ur)
and UrU

T
r are also the leading r left singular subspace and projection matrix of Y ′. Then

ÛrÛ
T
r −UrU

T
r is about the perturbation between Ŷ and Y ′.

Let σ′r, σ
′
r+1 be the rth and (r+1)th largest singular values of Y ′, respectively. By Wedin’s

Thereom (cf. Section 2.3 of [8]), if σ′r − σ̂r+1 > 0, then we have

∥

∥

∥
ÛrÛ

T
r −UrU

T
r

∥

∥

∥

F
≤

∥

∥

∥Ŷ − Y ′
∥

∥

∥

F

σ′r − σ̂r+1
=

∥

∥(I −UrU
T
r )yn

∥

∥

σ′r − σ̂r+1
.

Regarding the values of σ′r and σ′r+1, first we have σ′r ≥ σr . This is because

σ′r = inf
x∈span(Ur)

∥

∥xTY ′∥
∥= inf

x∈span(Ur)

∥

∥

(

xTY,xT yn
)∥

∥≥ inf
x∈span(Ur)

∥

∥xTY
∥

∥≥ σr.

In addition, we have σ′r+1 = σr+1, due to the fact that (I − UrU
T
r )Y

′ = ((I − UrU
T
r )Y,0).

By Weyl’s inequality, we have

|σ̂r+1 − σ′r+1| ≤
∥

∥Y − Y ′∥
∥=

∥

∥(I −UrU
T
r )yn

∥

∥ .

Hence, if σr − σr+1 > 2
∥

∥(I −UrU
T
r )yn

∥

∥ is further assumed, we have

σ′r − σ̂r+1 ≥ σr − σr+1 −
∥

∥(I −UrU
T
r )yn

∥

∥≥ 1

2
(σr − σr+1) .

The proof is complete.

LEMMA D.1. Let E = (ǫ1, . . . , ǫn) ∈ Rp×n be a random matrix with each column ǫi ∼
SGp(σ

2),∀i ∈ [n] independently. Then

P
(

‖E‖ ≥ 4tσ(
√
n+

√
p)
)

≤ exp

(

−(t2 − 3)n

2

)

,

for any t≥ 2.

PROOF. We follow a standard ǫ-net argument. Let U and V be a 1/4 covering set of the
unit sphere in Rp and in Rn, respectively. That is, for any u ∈ Rp such that ‖u‖ = 1, there
exists a u′ ∈ U such that ‖u′‖ = 1 and ‖u− u′‖ ≤ 1/4. Similarly, for any v ∈ Rn such that
‖v‖= 1, there exists a v′ ∈ V such that ‖v′‖= 1 and ‖v− v′‖ ≤ 1/4. Then

∣

∣uTEv
∣

∣=
∣

∣

∣
u

′TEv′ + u
′TE(v − v′) + (u− u′)TEv′ + (u− u′)TE(v − v′)

∣

∣

∣

≤
∣

∣

∣
u

′TEv′
∣

∣

∣
+
∣

∣

∣
u

′TE(v− v′)
∣

∣

∣
+
∣

∣(u− u′)TEv′
∣

∣+
∣

∣(u− u′)TE(v − v′)
∣

∣ .

Maximizing over u, v on both sides, we have

‖E‖= max
u∈Rp,v∈Rn:‖u‖=‖v‖=1

∣

∣uTEv
∣

∣≤ max
u′∈U ,v′∈V

∣

∣

∣
u

′TEv′
∣

∣

∣
+

1

4
‖E‖+ 1

4
‖E‖+ 1

16
‖E‖ .
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Hence,

‖E‖ ≤ 4 max
u′∈U ,v′∈V

∣

∣

∣u
′TEv′

∣

∣

∣ .

For any u′ ∈ U , v′ ∈ V , we have each u′T ǫi being an independent SG(σ2) and then u′TEv′ ∼
SG(σ2). Note |U | ≤ 9p ≤ e3p and similarly |V | ≤ e3n. Then by the tail probability of sub-
Gaussian random variable and by the union bound, we have

P
(

‖E‖ ≤ 4tσ(
√
n+

√
p)
)

≤ P

(

max
u′∈U ,v′∈V

∣

∣u′TEv′
∣

∣≤ tσ(
√
n+

√
p)

)

≤ |U | |V | exp
(

− t
2
(√
n+

√
p
)2

2

)

≤ exp

(

−(t2 − 3)n

2

)

,

for any t≥ 2.

LEMMA D.2. LetX ∼ SGd(σ
2). Consider any k ≤ d. For any matrixU = (u1, . . . , uk) ∈

Rd×k that is independent of X and is with orthogonal columns {ui}i∈[k]. We have

P

(

∥

∥UUTX
∥

∥

2 ≥ σ2(k+2
√
kt+ 2t)

)

≤ e−t.

PROOF. Note that tr(UUT ) = tr((UUT )2) = k and
∥

∥UUT
∥

∥ = 1. This is a direct conse-
quence of Theorem 1 in [16] for concentration of quadratic forms of sub-Gaussian random
vectors.

PROOF OF PROPOSITION 3.1. Define P̂ =
∑

i∈[r] λ̂iûiv̂
T
i . Due to the fact that P̂ is the

best rank-r approximation of X in spectral norm and P is rank-κ, under the assumption that
κ≤ r, we have that

∥

∥

∥
P̂ −X

∥

∥

∥
≤ ‖P −X‖= ‖E‖.

Since r≤ k is assumed, the rank of P̂ −P his at most 2k, and we have
∥

∥

∥
P̂ −P

∥

∥

∥

F
≤
√
2k
∥

∥

∥
P̂ − P

∥

∥

∥
≤
√
2k
(∥

∥

∥
P̂ −X

∥

∥

∥
+ ‖P −X‖

)

≤ 2
√
2k ‖E‖(72)

Now, denote Θ̂ := (θ̂ẑ1 , θ̂ẑ2 , . . . , θ̂ẑn). Since Θ̂ is the solution to the k-means objective (14),
we have that

∥

∥

∥
Θ̂− P̂

∥

∥

∥

F
≤
∥

∥

∥
P − P̂

∥

∥

∥

F
.

Hence, by the triangle inequality, we obtain that
∥

∥

∥
Θ̂− P

∥

∥

∥

F
≤ 2

∥

∥

∥
P̂ −P

∥

∥

∥

F
≤ 4

√
2k ‖E‖ .

Now, define the set S as

S =

{

i ∈ [n] :
∥

∥

∥
θ̂ẑi − θ∗z∗

i

∥

∥

∥
>

∆

2

}

.
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Since
{

θ̂ẑi − θ∗z∗
i

}

i∈[n]
are exactly the columns of Θ̂− P , we have that

|S| ≤

∥

∥

∥
Θ̂− P

∥

∥

∥

2

F

(∆/2)2
≤ 128k ‖E‖2

∆2
.

Under the assumption (15) we have

β∆2n

k2 ‖E‖2
≥ 256,

which implies

|S| ≤ βn

2k
.

We now show that all the data points in SC are correctly clustered. We define

Cj =
{

i ∈ [n] : z∗i = j, i ∈ SC
}

, j ∈ [k].

The following holds:

• For each j ∈ [k], Cj cannot be empty, as |Cj | ≥ |{i : z∗i = j}| − |S|> 0.
• For each pair j, l ∈ [k], j 6= l, there cannot exist some i ∈ Cj, i

′ ∈ Cl such that ẑi = ẑi′ .
Otherwise θ̂ẑi = θ̂ẑi′ which would imply

∥

∥θ∗j − θ∗l
∥

∥=
∥

∥

∥θ∗z∗
i
− θ∗z∗

i′

∥

∥

∥

≤
∥

∥

∥
θ∗z∗

i
− θ̂ẑi

∥

∥

∥
+
∥

∥

∥
θ̂ẑi − θ̂ẑi′

∥

∥

∥
+
∥

∥

∥
θ̂ẑi′ − θ∗z∗

i′

∥

∥

∥
<∆,

contradicting with the definition of ∆.

Since ẑi can only take values in [k], we conclude that the sets {ẑi : i ∈Cj} are disjoint for all
j ∈ [k]. That is, there exists a permutation φ ∈Φ, such that

ẑi = φ(j), i ∈Cj, j ∈ [k].

This implies that
∑

i∈SC I{ẑi 6= φ(z∗i )}= 0. Hence, we obtain that

|{i ∈ [n] : ẑi 6= φ(z∗i )}| ≤ |S| ≤ 128k ‖E‖2
∆2

.

Since |S| ≤ βn
2k (which means ℓ(ẑ, z∗)≤ βn

2k from the above display), for any ψ ∈Φ such that
ψ 6= φ, we have |{i ∈ [n] : ẑi 6= ψ(z∗i )}| ≥ 2βn/k − |S| ≥ βn/k. As a result, we have

ℓ(ẑ, z∗) =
1

n
|{i ∈ [n] : ẑi 6= φ(z∗i )}| ≤

128k ‖E‖2
n∆2

.

Moreover, for each a ∈ [k], we have

∥

∥

∥
θ̂φ(a) − θ∗a

∥

∥

∥

2
≤

∥

∥

∥Θ̂−P
∥

∥

∥

2

F

|{i ∈ [n] : ẑi = φ(a), z∗i = a}| ≤

∥

∥

∥Θ̂−P
∥

∥

∥

2

F
βn
k − |S|

≤ 64k2 ‖E‖2
βn
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