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Abstract

We obtain sharp minimax results for estimation of an n�dimensional normal mean
under quadratic loss. The estimators are chosen by penalized least squares with a

penalty that grows like ck log(n=k), for k equal to the number of nonzero elements in

the estimating vector. For a wide range of sparse parameter spaces, we show that the

penalized estimator achieves the exact minimax rate with the correct multiplication

constant if and only if c equals 2. Our results unify the theory obtained by many

other authors for penalized estimation of normal means. In particular we establish

that a conjecture by Abramovich, Benjamini, Donoho and Johnstone (2006) is true.
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1 Introduction

Consider the standard multivariate normal mean problem

yi = �i + �nzi, i = 1; :::; n; (1)

where �n is the noise level, and z
;
is are independent standard normal variables. The goal

is to estimate the unknown mean f�ig based on sample fyig.
In light of recent advances of high dimensional estimation, we assume that the para-

meter set f�ig has a sparse structure for which its de�nition varies in literature but the
essence can be captured by considering situations where most of the unknown coordinates

�i take the value 0 or very close to 0. This normal mean estimation problem is essential

to wavelet Gaussian regression (cf. Donoho and Johnstone (1994a, 1994b, 1995, 1998)).

It is of independent interest as well such as in microarray data analysis (cf. Efron (2003)).

Recent advances of asymptotic equivalence theory showed that nonparametric Gaussian

regression captures the essence of many nonparametric estimation problems. See for ex-

ample Brown and Low (1996), Nussbaum (1996), Golubev, Nussbaum and Zhou (2009),

Brown, Cai and Zhou (2008, 2009), and Cai and Zhou (2009). Therefore the problem of

normal mean estimation is fundamentally important for general nonparametric estimation

too.

For sparse parameter estimation it is natural to consider model selection procedures.

Many in�uential model selection procedures have been proposed in literature such as AIC,

BIC and RIC. The AIC model selection procedure was proposed in Akaike (1973, 1974).

It had a great in�uence in statistical practice, but was not accepted for a while in our �eld.

From the hypothesis testing point of view, the AIC procedure rejects �i = 0 when y2i � 2,
which is equivalent to testing whether each �i is zero or not at the level of test 16%. When

f�ig is sparse and n is large, AIC is too aggressive in the sense that it tends to select too
many spurious non-zero �i. Donoho and Johnstone (1994a) and George and Foster (1994)

proposed the RIC procedure independently to avoid such a problem. The RIC procedure is

equivalent to Bonferroni correction in multiple comparisons. Usually Bonferroni correction

is too conservative in multiple comparisons so that too many unknown coordinates �i are

estimated by zero.

Benjamini and Hochberg (1995) proposed a new multiple comparison procedure called

FDR which is less aggressive than AIC and less conservative than RIC. Abramovich,

Benjamini, Donoho and Johnstone (2006) showed the FDR procedure is asymptotically

sharp minimax, in the sense that it achieves optimal rates and constants in minimax
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sense adaptively over a wide range of sparse parameter spaces. This celebrated work built

an important and possibly productive connection between multiple hypotheses testing

and sparse signal estimation. In that paper it was observed that the FDR procedure

is closely connected to a penalized estimator with a penalty approximately 2k log(n=k)

for an actual model size k. This type of penalty has arisen naturally in several areas

including information theory, empirical Bayes and model complexity. See for example

Foster and Stine (1999), George and Foster (2000), Birgé and Massart (2001) etc. It

was then conjectured in Abramovich, Benjamini, Donoho and Johnstone (2006) that the

penalized estimation procedure with a simple penalty 2k log(n=k) is asymptotically sharp

minimax. However Benjamini and Gavrilov (2009) showed that for some examples the

�nite sample performance of FDR procedure is similar to CIC by Tibshirani and Knight

(1999) for which the penalty is approximately 4k log(n=k). In Abramovich, Grinshtein

and Pensky (2007) some Bayesian model selection procedures are proposed with penalties

approximately ck log(n=k) for some c > 2.

It is thus desirable to have a uni�ed study of asymptotic risk properties of those

penalized estimation which are approximately ck log(n=k). When a penalty is su¢ ciently

close to 2k log nk as n!1, we show it achieves sharp asymptotic minimaxity adaptively
over a wide range of sparse parameter spaces. As a consequence we solve the conjecture

1.2 in Abramovich, Benjamini, Donoho and Johnstone (2006, page 597) which states as

follows. Let �n;p (�n) be a sparse (weak) lp ball de�ned in (9) or (10) in Section 3, and

Rn (�n;p (�n)) be the minimax risk under the squared error loss. De�ne Pen (�) = 2k log
n
k

where k = k�k0. For two sequences an and bn we denote an � bn if an = (1 + o (1)) bn. It
was conjectured that

sup
�2�n;p(�n)

E
�̂ � �2

2
� Rn (�n;p (�n)) ;

where

�̂ = argmin
n
ky � �k22 + �

2
nPen (�)

o
.

Apparently the search range of model sizes can not cover n, otherwise we have to choose

model size k = n for which Pen (k) = 0 and consequently the minimum of the objec-

tive function is 0. We will restrict the range of model size to be k � n= log n, which is

acceptable when the parameter space is sparse. This restriction is equivalent to de�ne

Pen (�) = 2k log nk when k�k0 = k � n= log n and +1 otherwise. For a penalized proce-

dure approximately ck log nk with c > 2 we show its risk di¤ers from the risk of minimax

estimator with a constant factor. However for c < 2, it can be shown that the ratio of the

risk of the corresponding penalized estimator with the minimax risk tends to 1.
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The paper is organized as follows. In Section 2 we introduce model selection proce-

dures. Main theoretical results are given in Section 3. In Section 4 we consider a new

range of penalty functions in more general parameter spaces and discuss the relations to

other works. The proofs of theorems and lemmas are given in Section 5.

2 Penalized Estimation Procedures

In this section we introduce various penalty functions and the corresponding estimation

procedures. Their risk properties are given in Section 3.

There has been an enormous amount of work in statistics to study penalized estima-

tion. Let � = (�1; �2; : : : ; �n), y = (y1; y2; : : : ; yn) and Pen (�) be the penalty function.

The penalized estimator �̂ is the minimizer of the following objective function

K(�; y) = ky � �k22 + Pen (�) . (2)

Without loss of generality we assume that �n = 1 (see Remark 1 for general �n). Here

is a short list of some classical penalized procedures including AIC with Pen (�) = 2 k�k0,
BIC with Pen (�) = (log n) k�k0, RIC with Pen (�) = 2 (log n) k�k0, and Ridge regression
with Pen (�) = � k�k22 and LASSO with Pen (�) = � k�k1 for some � > 0 (usually it is

challenging to pick a practical � for LASSO when the true signal is sparse). An exhaustive

survey of penalty functions is beyond our scope.

In the last decade much progress has been made in the area of model selection to

adaptively estimate sparse signals. Several penalized procedures for model selection have

been proposed from di¤erent aspects. Let k = k�k0. We use C to denote a generic

constant, which may vary from places to places. The following penalties Pen (�) were

proposed in the past decade:

(A). 2
Pk
i=1 log

n
i in Foster and Stine (1999) from an information-theoretic point of view;

(B). Approximately 2
Pk
i=1 log

�
n+1
i � 1

�
in George and Foster (2000) from an empirical

Bayes approach;

(C). Approximately ck log nk with c > 2 (c = 4 was recommended) in Birgé and Massart

(2001) from model complexity;

(D). 4
Pk
i=1 log

n
i in Tibshirani and Knight (1999) from a covariance in�ation criterion;

(E).
Pk
i=1

�
���1

�
qni
2n

��2
with a small qn in Abramovich, Benjamini, Donoho and John-

stone (2006) from a false discovery rate control approach;
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(F). 2k log nk in Abramovich, Benjamini, Donoho and Johnstone (2006) as a conjecture;

(G). Approximately ck log nk with c > 2 in Abramovich, Grinshtein and Pensky (2007)

from a Bayes approach.

The advances above motivate us to give a uni�ed theory for all these penalized proce-

dures. For all penalties listed above, they depend only on the model size. From now on

we write the penalty as Pen (k�k0). Let

�̂ = argmin
�

K(�; y) = argmin
�

h
ky � �k22 + Pen (k�k0)

i
: (3)

For a model size k = k�k0, the penalty is Pen (k), and it is easy to see that the smallest
residual sum squares for this model size is

Pn
i=k+1 y

2
[i] where y

2
[1] � ::: � y2[n]. Then we

have

min
�
K(�; y) = min

k
min

f�:k�k0=kg

h
ky � �k22 + Pen (k)

i
= min

k

"
nX

i=k+1

y2[i] + Pen (k)

#
. (4)

De�ne

k̂ = argmin
k

"
nX

i=k+1

y2[i] + Pen (k)

#
; (5)

which attains the minimum of equation (4). The penalized estimators �̂, i.e., the global

minimizer of K(�; y), is just a hard thresholding rule with

�̂i = yiI
n
jyij � jyj[k̂]

o
.

We set Pen (0) = 0, and �̂i = 0 if k̂ = 0.

We consider a type of penalties as follows. De�ne

Pen (k) =

kX
i=1

u2ni; u
2
ni =

(
cni log

n
i ; i � n= log n

+1; i > n= log n
; (6)

where cni ! c � 2 uniformly over i � n= log n as n ! 1. This de�nition is equivalent
to restrict the search range of the model size k be within 0 � k � n= log(n), i.e., k̂ =

argmin
0�k�n= log(n)

hPn
i=k+1 y

2
[i] + Pen (k)

i
. Additionally when c = 2 we require that the penalty

function satis�es

2 log
n

i
� (1� ") log log n

i
� cni log

n

i
; (7)
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for some 0 < " < 1. In the scenario of asymptotics, the log log term in (7) is related

to the second order approximation to the magnitude of the ith order statistics of n i.i.d.

N (0; 1). When k is not very large, e.g., 0 � k � n= log n, it is fairly easy to show that

for such penalties we have Pen (k�k0) � ~cnkk log
n
k for some ~cnk ! c � 2 uniformly over

k � n= log n as n!1; which is essentially an l0 penalty of the form � k�k0 with � data
driven.

Among those penalties de�ned in equation (6), a simple class is Pen (k) = ck log (n=k)

with c � 2, which can be argued as follows. We may write Pen (k) =
Pk
i=1 (Pen (i)� Pen (i� 1)).

For k � n
logn , it is easy to see the penalty term ck log (n=k) can be written as ck log (n=k) =Pk

i=1 u
2
ni, where

u2ni =

(
c log n; for i = 1

c log
�
n
i

�
+ c (i� 1) log

�
i�1
i

�
; for k � i > 1

: (8)

Note that c (i� 1) log
�
i�1
i

�
= c (i� 1) log

�
1� 1

i

�
! �c as i ! 1. The sequence

c (i� 1) log
�
i�1
i

�
is then a bounded sequence. Write c log

�
n
i

�
+ c (i� 1) log

�
i�1
i

�
=

cni log
n
i , where in this case

cni = c+
c (i� 1) log

�
i�1
i

�
log
�
n
i

� :

For i � n
logn , we have n=i � log n!1 as n!1, then cni ! c uniformly over i � n= log n

as n!1.
Thus penalties de�ned in (6) cover all penalties from (A) to (G) when k � n= log n.

In particular, the penalty 2k log nk in the conjecture of Abramovich, et al. (2006) is a very

special case.

3 Theoretical Properties

We shall now investigate the asymptotic properties of the procedures proposed in Section

2. Our model selection procedure is based on the assumption that the underlying structure

of the unknown true parameter is sparse. We study the theoretical properties of our

procedures over the (weak) lp balls which is by now standard for sparse signals estimation.

More speci�cally, we assume that � is in one of the following balls:

� lp balls:

lp [�n] =

(
� 2 Rn : 1

n

nX
i=1

j�ijp � �n

)
; (9)
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where 0 � p < 2. When p = 0, we denote 00 = 0 for this speci�c de�nition of

parameter space that constrains the percentage of nonzero �i be no more than �n.

When 0 < p < 2, the parameter space constrains the overall magnitude of �.

� mp (weak lp) balls:

mp [�n] =

�
� 2 Rn : j�j[k] �

�
�n
n

k

�1=p
; k = 1; :::; n

�
; (10)

where 0 < p < 2, constrains the rate of ordered j�j[k] with j�j[1] � ::: � j�j[n]. Note
that lp [�n] � mp [�n] because for � 2 lp [�n] we have j�j

p
[k] �

P
j�ijp
k � �n nk .

The parameter space consisting of an lp or mp ball will be denoted by �n;p (�n) for

simplicity. We assume that �n satis�es the following condition

�n 2
h
b1n

�1 log n; b2n
�b3
i
; (11)

where b1 > 0; b2 > 0; 1 > b3 > 0, and  > 4:5 for a technical reason. Under spar-

sity assumptions for p < 2 and �n ! 0, the minimax risks over lp or mp balls, i.e.,

Rn (�n;p (�n)) = inf �̂ sup�2�n;p(�n)E�

�̂ � �2
2
were studied in Donoho et al. (1992),

Johnstone (1994), and Donoho and Johnstone (1994b). Under the condition (11), it has

been shown that the minimax risk for the lp ball is

Rn (lp [�n]) � kn�2�n = n�n
�
2 log ��1n

�(2�p)=2
; (12)

where

kn = n�n�
�p
�n
; ��n =

�
2 log ��1n

�1=2
; (13)

and for the mp ball

Rn (mp [�n]) �
2

2� pRn (lp [�n]) : (14)

We �rst consider the case c > 2 for penalties in (6) with cni ! c uniformly over

i � n= log n, as n ! 1. The corresponding penalized procedures are shown failing to
achieve sharp asymptotic minimaxity by missing the optimal constant.

Theorem 1 Consider penalties de�ned in (6) with cni ! c > 2 uniformly over i �
n= log n as n!1. Let the parameter space �n;p (�n) be an lp or mp ball with �n de�ned

in (11). Then the corresponding penalized estimation procedure �̂ de�ned in (3) satis�es

sup
�2�n;p(�n)

E
�̂ � �2

2
� c�Rn (�n;p (�n)) ;

where c� =
�
c
2

�1�p=2.
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For the case c = 2 the following theorem shows that a range of model selection proce-

dures achieve sharp asymptotic minimaxity adaptively over these sparse spaces.

Theorem 2 Consider penalties de�ned in (6) with

2 log
n

i
� (1� ") log log n

i
� u2ni � (2 + �n) log

n

i
,

for some constant 0 < " < 1 and a sequence �n ! 0. Let the parameter space �n;p (�n)

be an lp or mp ball with �n de�ned in (11). Then the corresponding penalized estimation

procedure �̂ de�ned in (3) satis�es

sup
�2�n;p(�n)

E
�̂ � �2

2
� Rn (�n;p (�n)) :

As discussed in Section 2, the penalty term ck log (n=k) with c � 2 is one of the

procedures considered in Theorems 1 or 2. We then immediately have the following

result.

Corollary 1 Consider penalties Pen (k) = ck log
�
n
k

�
, c � 2 when k � n= log n, and

Pen (k) = 1 when k > n= log n. Let the parameter space �n;p (�n) be an lp or mp ball

with �n de�ned in (11). Then

sup
�2�n;p(�n)

E
�̂ � �2

2
� c�Rn (�n;p (�n)) ;

where c� =
�
c
2

�1�p=2.
When c = 2, we have c� = 1. Thus the conjecture 1.2 in Abramovich, Benjamini,

Donoho and Johnstone (2006) is solved as a consequence. For penalties approximately

ck log
�
n
k

�
with c < 2 as n ! 1, the convergence rate of the corresponding penalized

procedure is no longer optimal as implied by the following theorem.

Theorem 3 Consider penalties de�ned in (6) with cni ! c < 2 uniformly over all i.

Let the parameter space �n;p (�n) be an lp or mp ball with �n de�ned in (11). Then the

corresponding penalized estimation procedure �̂ de�ned in (3) satis�es

sup
�2�n;p(�n)

E
�̂ � �2

2
� C n

log n
log log n; (15)

for some C > 0.

Note that n
logn (log log n) =Rn (�n;p (�n)) ! 1. Thus for c < 2 the corresponding

penalized procedure is not rate optimal in lp or mp ball with �n de�ned in (11).
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Remark 1 The above results can be extended to general variance �n 6= 1 case. We can
rescale the parameter by �=�n in the parameter spaces in (9) and (10). The penalty

functions in (6) and (8) need to add a factor �2n.

The proofs of results in this section are given in Section 5.

4 Discussion

We discuss three topics in this section. First, we consider a new range of penalty functions,

for which our main results still hold, but the restriction of the searching range of the model

size is now removed. Then, we discuss some results for more general parameter spaces

that include very sparse and dense cases. Finally, we comment on some other related

works.

4.1 Full range of model searching

The penalty function de�ned in (6) restricts the searching range of the model size be

within
h
0; n
logn

i
. In the following we consider a class of penalties which lead the penalized

model selection procedure to minimax estimation without restricting the searching range.

The penalty function is

Pen (k) = ck log
�
edn=k

�
with c � 2; d � 0; (16)

It can be rewritten as Pen (k) =
Pk
i=1 (Pen (i)� Pen (i� 1)), such that the penalty

ck log
�
edn=k

�
=
Pk
i=1 u

02
ni, where

u02ni =

(
c [log n+ d] ; for i = 1

c
�
log
�
n
i

�
+ d+ (i� 1) log

�
i�1
i

��
; for n � k � i > 1

:

For the penalty class (16), we have the following result.

Proposition 1 Consider penalties in (16) with c � 2 and d � 5:37
c +1. Let the parameter

space �n;p (�n) be an lp or mp ball with �n de�ned in (11). We have

sup
�2�n;p(�n)

E
�̂ � �2

2
� c�Rn (�n;p (�n)) ;

where c� =
�
c
2

�1�p=2.
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Note that when c = 2, the above proposition indicates that the penalty function

2k log
�
edn=k

�
leads the penalized model selection procedure to the sharp asymptotically

minimax estimation if d � 3:685. The proposition can be proved based on Remark 3 in
Section 5.4.8. Speci�cally, we can show that the selected model size is o

�
n

logn

�
with high

probability (see Remark 3). Then the rest of proof is similar to that for Theorems 1 and

2.

Penalty function (16) is closely related to the penalty function Pen0 (k) = c1k +

c2 log
�
n
k

�
, which was considered in Yang and Barron (1998) and Yang (1999). Propo-

sition 1 immediately implies the following corollary. See Section 5.4.9 for details.

Corollary 2 Let �̂ be the penalized estimation of procedure (3) with Pen0 (k) = c1k +

c2 log
�
n
k

�
with c2 � 2 and c1 > 5:37 + c2. Under condition (11), we have

sup
�2�n;p(�n)

E
�̂ � �2

2
� c�Rn (�n;p (�n)) ;

where c� =
�
c
2

�1�p=2.
4.2 More general parameter spaces

In this section, we consider an lp [�n] ball with 0 < p <1 and �n � a
n for a constant a > 0,

which is more general than the lp ball studied in Section 3. For two sequences an and bn

we denote an � bn if there exist constants C2 � C1 > 0 such that C1 � an=bn � C2. It
has been proved that the minimax risk over the general lp ball is

Rn (lp [�n]) �

8>><>>:
(n�n)

2=p if �n � n�1 (1 + log n)p=2

n�n
�
1 + log ��1n

�1�p=2 if n�1 (1 + log n)p=2 < �n � �
n if �n � �

; (17)

for 0 < p < 2 and any �xed constant � > 0, and for p � 2,

Rn (lp [�n]) �
(
n�

2=p
n if �n � �

n if �n � �
;

(cf. Johnstone (2011, Theorem 11.7)).

We can show that a family of ck log e
dn
k type penalty procedures are still rate optimal

for these general lp balls.
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Proposition 2 Consider a general lp [�n] ball with 0 < p < 1 and �n � a
n for any

constant a > 0. For penalties de�ned in (16) with c > 2 and d > c
c�2+

1
2 , the corresponding

penalized estimation procedure �̂ de�ned in (3) satis�es

sup
�2lp[�n]

E
�̂ � �2

2
� CRn (lp [�n]) : (18)

Proposition 3 Consider a general lp [�n] ball with 0 < p <1 and �n = � for any � > 0.

For penalties de�ned in (16) with c � 2 and d > 1, the corresponding penalized estimation
procedure �̂ de�ned in (3) satis�es

sup
�2lp[�n]

E
�̂ � �2

2
� CRn (lp [�n]) : (19)

Both propositions follow easily from Theorems 11.3 and 11.7 of Johnstone (2011),

whose proof and formulation can be traced back to Barron, Birgé, and Massart (1999)

and Birgé and Massart (2001). Speci�cally, the penalties in (16) can be written as the

penalties considered by Johnstone (2011), i.e., Pen (k) = �k
�
1 + 2

p
Ln;k + Ln;k

�
, where

� > 1 and Ln;k = 2(log nk + n;k) with n;k �  > 1. For example, we can set � =
c+2
4 > 1

to obtain the conditions on c and d in Proposition 2.

Propositions 2 and 3 can be similarly extended to the penalties Pen0 (k) = c1k +

c2 log
�
n
k

�
considered in Yang and Barron (1998) and Yang (1999) by connecting Pen0 (k)

with the penalties in (16).

Remark 2 First, consider a general lp [�n] ball with 0 < p < 1 and �n � a
n for any

constant a > 0. For penalties Pen0 (k) = c1k + c2 log
�
n
k

�
with c2 > 2 and c1 >

c22
c2�2 +

c2
2 ,

the corresponding penalized estimation procedure �̂ de�ned in (3) satis�es (18). Second,

consider a general lp [�n] ball with 0 < p < 1 and �n = � for any � > 0. For penalties

Pen0 (k) with c1 > 2 and c2 � 2, the corresponding penalized estimation procedure �̂ de�ned
in (3) satis�es (19).

We observe that it is hard to extend the general methodology of this paper to very

sparse cases, e.g., �n = n
�1 (log n)� with � < p=2 and 0 < p < 2. Our methodology utilizes

the bound E
� � �̂2

2
� K (�0; �)+E2

D
z; �̂ � �

E
and hopes that K (�0; �) is the dominant

term. However, it can be shown (cf. the proof of Lemma 3) that sup�2�n;p(�n)K (�0; �) �
CRn (�n;p (�n)) does not hold, since Rn (�n;p (�n)) � (n�n)2=p and

sup
�2�n;p(�n)

K (�0; �) = (n�n)
2=p = C (log n)1�p=2+(1�2=p)� !1:
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4.3 Relations to some other works

Barron, Birgé and Massart (1999) and Birgé and Massart (2001) studied very general

models for penalties corresponding to the c > 2 case. They obtained rate optimality. It

remains an open problem to extend their results to the c = 2 case. In this paper, we

consider a simpler normal mean problem and give explicit constants for risks when c � 2,
which implies sharp minimaxity for c = 2. For the case c < 2, Theorem 3 can be extended

to penalties de�ned in (16)). That is, we have

sup
�2lp[�n]

E
�̂ � �2

2
� C n

log n
log log n:

Both our result and Birgé and Massart (2007) indicate that penalty functions with c < 2

are not optimal in sparse parameter spaces. But they are di¤erent in at least two aspects.

First, Birgé and Massart (2007) only considered l0 ball with size at most at an order of

n�, 0 < � < 1. So their results do not directly cover the entire lp ball nor mp ball. Second,

our conclusions are di¤erent. Birgé and Massart (2007) established a risk lower bound of

order n� log n, which is smaller than n
logn log log n.

5 Proofs

In this section we �rst give technical lemmas in Section 5.1, then a brief outline of the

proof of Theorems 1-3 in Section 5.2. Details of the proofs for the theorems and the

lemmas are followed in Sections 5.3-5.4.

5.1 Technical lemmas

Lemma 1 establishes that for a speci�c � de�ned in either lp ball ormp ball, the ck log(n=k)

type penalty functions with c > 2 lead to a small model size k̂ with high probability.

Lemma 1 is applied to prove the lower bound for Theorem 1.

Lemma 1 Let � be de�ned in (24) or (25) for lp ball or mp ball respectively, and k̂ be

de�ned in equation (5) for penalties in (6) with cni ! c > 2 uniformly over all i � n= log n.
We have

P
�
k̂ � n~kn

�
! 1,

where n =
1

log logn and
~kn = n�n

�
c log ��1n

��p=2.

12



Lemma 2 says that for any � in lp ball or mp ball, the size k̂ of the selected model

by penalties de�ned in (6) is properly upper bounded. Lemma 2 is used in proving both

upper and lower bounds in Theorems 1 and 2.

Lemma 2 Let k̂ be de�ned in equation (5) for penalties considered in Theorems 1 and 2.

Then

P (Acn) � CDn�D, for all D > 0;

where An =
n
k̂ � k+ (�; qn)

o
, k+ (�; qn) is de�ned in (34) with 1 > qn � 1p

log log logn
.

Lemmas 3 and 4 show the upper bounds of the bias part and the error part of the

risk, respectively. They are used to prove the upper bounds for Theorems 1 and 2.

Lemma 3 Let �n;p (�n) be one of those spaces de�ned in (9) and (10). Assume that the

penalty function satis�es equation (6). Then the objective function de�ned in (2) with �0

given in (28) satis�es

sup
�2�n;p(�n)

K (�0; �) � c� (1 + o (1))Rn (�n;p (�n)) ; (20)

where c� =
�
c
2

�1�p=2.
Lemma 4 Let �n;p (�n) be one of those spaces de�ned in (9) and (10). Assume that the

penalty function satis�es equation (6). Then the procedure �̂ de�ned in (3) satis�es

sup
�2�n;p(�n)

E
D
z; �̂ � �

E
= o (1)Rn (�n;p (�n)) : (21)

Lemma 5 says that the selected model size k̂ for � = 0 is large when the penalty

corresponds to c < 2:Lemma 5 is applied to prove Theorem 3.

Lemma 5 Let � = 0, and k̂ be de�ned in equation (5) for penalties de�ned in (6) with

cni ! c < 2 uniformly over all i � n
logn . Then there exists an " 2 (0; 1) such that

P
�
k̂ > "

n

log n

�
! 1.

Lemma 6 gives the boundaries of sum of extremes from a standard normal vector, and

is used to prove Lemmas 1 and 5.

13



Lemma 6 Let zi
i:i:d:� N(0; 1), i = 1; :::; n, z2[1] � z

2
[2] � ::: � z

2
[n]. For any kn = o (n), any

� > 0, D > 0, we have

P

 
knX
i=1

z2[i] > (2 + �) kn log
n

kn
+ 2 (log n)3

!
< CDn

�D;

P

 
knX
i=1

z2[i] < (2� �) kn log
n

kn
� 2 (log n)3

!
< CDn

�D:

Lemma 7 is applied to prove Lemma 1.

Lemma 7 Let �1, cn, "n and ~kn be de�ned in (24). For any � 2 (0; c� 2), k1, k2 > 0

with k1 + k2 = k, k 2
�
n
~kn; C~kn

�
, n !1, we have

k1�
2
1 + (2 + �) k2 log

n

k2
� cnk (1� "n) log

n
~kn
+ C~kn:

Lemma 8 shows that penalties of the type ck log
�
edn=k

�
, c � 2, d � 0, are larger than

the FDR penalty by Abramovich et al. 2006 for proper qn. Lemma 8 is used for proving

Lemmas 3 and 4 and Proposition 1.

Lemma 8 De�ne z (x) = ���1 (x) be the upper (1� x)th percentile of standard normal
distribution. Let qn � 1p

log log logn
. If u2ni be de�ned in (6), we have

z2
�
iqn
2n

�
� u2ni;

and u2ni =
c
2 (1 + �ni) z

2
�
iqn
2n

�
; for some �ni ! 0 uniformly over i � n

logn . If u
02
ni is

de�ned in (16) with d � 5:37
c + 1, we have

z2
�
i

2n

�
< u02ni;

for each i � n.

5.2 An outline of proofs of Theorems 1-3

Let �̂ be the penalized procedure considered in Theorems 1-3. We will �rst prove the

lower bound for Theorem 1 in Section 5.3.1. We will show that there is a speci�c � in

lp [�n] or mp [�n] such that

E
�̂ � �2

2
� c� (1 + o (1))Rn (�n;p (�n)) ; (22)

14



where c� =
�
c
2

�1� p
2 , �n;p (�n) is either lp [�n] or mp [�n] ball, Rn (�n;p (�n)) is the minimax

risk among all estimators given in (12) or (14) with �n de�ned in (11). Then we will prove

the upper bounds in Theorems 1 and 2 in Section 5.3.2,

sup
�2�n;p(�n)

E
�̂ � �2

2
� c� (1 + o (1))Rn (�n;p (�n)) ; (23)

with penalties considered in both theorems, where c� =
�
c
2

�1�p=2, in particular c� = 1

when c = 2. The lower bound (22) and the upper bound (23) imply Theorem 1. Theorem

2 for sharp asymptotic minimaxity follows immediately from the upper bound (23). For

Theorem 3, we obtain the lower bound in Section 5.3.3 by considering the risk of the

penalized procedure at � = 0.

5.3 Proofs of Theorems

5.3.1 Lower bounds for Theorem 1

In this section we de�ne a speci�c � 2 �n;p (�n) for proving (22). Theorem 1 follows

immediately from this lower bound and the upper bound to be proved in Section 5.3.2.

Let "n = 1= log log n, ~kn =
j
n�n

�
c log ��1n

��p=2k and cn = mini�n= logn cni. For the

lp [�n] ball we de�ne

�i =

8<:
q
cn (1� "n) log n

~kn
; i � ~kn � 1

0; i � ~kn
; (24)

while for the mp [�n] ball we set

�i =

8>><>>:
q
cn (1� "n) log n

~kn
; i � ~kn � 1�

��n
n
i

�1=p
; ~kn � i < rn~kn

0; i � rn~kn

; (25)

where rn = log log n and ��n = min
�h
cn (1� "n) log n

~kn

ip=2
~kn=n; �n

�
� �n. It is easy to

see that � de�ned in (24) and (25) are truly in lp [�n] ball de�ned in (9) and mp [�n] ball

de�ned in (10) respectively.

From the de�nition of � in (24) and (25), the actual model size is more than or equal

to ~kn, but estimated model size is o
�
~kn

�
by Lemma 1. The resulting loss in estimation is

then expected to be (1� o (1))
P
�2i � c�Rn (�n;p (�n)), which can be rigorously proved

15



as follows. Write

E
nX
i=1

�
�̂i � �i

�2
= E

X
z2i

n
i : jyij � jyj[k̂]

o
+ E

X
�2i

n
i : jyij < jyj[k̂]

o
= R1 +R2:

To establish the result E
�̂ � �2 � c�Rn (�n;p (�n)), it is enough to show

R1 = o (1) �Rn (�n;p (�n)) = o (1) � ~kn log
n
~kn
; (26)

where ~kn � n�n
�
c log ��1n

��p=2 and ~kn log n
~kn
� ~kn log n, and show

R2 � c�Rn (�n;p (�n)) �
( �

c
2

�1�p=2
n�n

�
2 log ��1n

�1�p=2
; for lp ball�

c
2

�1�p=2 2
2�pn�n

�
2 log ��1n

�1�p=2
; for mp ball

; (27)

where c� =
�
c
2

�1� p
2 . The dominating term is then R2. In the following we establish

equations (26) and (27).

Negligibility of R1 Since R1 is a sum of k̂ number of z2i , an upper bound for R1 is

then E
P
z2[i]

n
i � k̂

o
which can be written as

E
X

z2[i]

n
i � k̂

ohn
k̂ � n~kn

o
+
n
n
~kn < k̂ � k+ (qn)

o
+
n
k̂ > k+ (qn)

oi
� Ez2[1]

X
i

n
i � k̂

ohn
k̂ � n~kn

o
+
n
n
~kn < k̂ � k+ (qn)

o
+
n
k̂ > k+ (qn)

oi
� R11 +R12 +R13,

where k+ (qn) is de�ned in (34) with qn = 1p
log log logn

. We will show R1i = o (1) � ~kn log n
for i = 1; 2 and 3 separately. For R11 term we have

R11 � Ez2[1]
X
i

n
i � n~kn

o
� n~knEz2[1] � Cn~kn log n = o

�
~kn log n

�
.

Note that

R12 � Ez2[1]
X
i

fi � k+ (qn)g
n
n
~kn < k̂

o
= k+ (qn)E

h
z2[1]

n
n
~kn < k̂

oi
;

which can be further bounded by

k+ (qn)
q
Ez4[1]P

1=2
�
n
~kn < k̂

�
� Ck+ (qn) log n � P1=2

�
n
~kn < k̂

�
;

by applying the Cauchy-Schwarz inequality and Ez4[1] = O
�
log2 n

�
. Since k+ (qn) =

O
�
~kn

�
and P

n
n
~kn < k̂

o
= o (1) by Lemma 1, we have R12 = o

�
~kn log n

�
.
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The Negligibility of R13 is mainly due to Lemma 2 whose proof is given in Section

5.4.2. From Lemma 2 we know P1=2
�
k̂ > k+ (qn)

�
� CDn�D for all D > 0. We apply the

Cauchy-Schwarz to R13, then

R13 � Ez2[1]
X
i

n
k̂ > k+ (qn)

o
= nEz2[1]

n
k̂ > k+ (qn)

o
� n

q
Ez4[1]P

1=2
�
k̂ > k+ (qn)

�
= o

�
~kn log n

�
.

Upper and Lower bounds for R2 From the de�nition of �, it is easy to see

R2 �
nX
i=1

�2i �

8<: c~kn log
n
~kn
; for lp ball

c~kn log
n
~kn
+
Prn~kn
i=~kn+1

�
�n

n
i

�2=p
; for mp ball

� c�Rn (�n;p (�n)) .

In the following we show that the above upper bound is sharp, i.e., R2 � c� (1 + o (1))Rn (�n;p (�n)).
Since (�i) is a deceasing sequence, we have

R2 = E
X

�2i

n
i : jyij < jyj[k̂]

o
� E

X
�2i

n
i : i > k̂

o
:

Note that
n
i : i > k̂

on
k̂ � n~kn

o
�
n
i : i > n

~kn

on
k̂ � n~kn

o
. We then have

R2 � E
X

�2i

n
i : i > k̂

on
k̂ � n~kn

o
� E

X
�2i

n
i : i > n

~kn

on
k̂ � n~kn

o
=

X
�2i

n
i : i > n

~kn

o
� P
�
k̂ � n~kn

�
;

where P
�
k̂ � n~kn

�
= 1 + o (1). For the lp ball case,X

�2i

n
i : i > n

~kn

o
=
�
~kn � n~kn

�
cn (1� "n) log

n
~kn
� c~kn log

n
~kn
� c�Rn (�n;p (�n)) :

For the mp ball case,X
�2i

n
i : i > n

~kn

o
=

X
�2[i]

n
i : ~kn � i > n~kn

o
+
X

�2[i]

n
i : rn~kn � i > ~kn

o
=

�
~kn � n~kn

�
cn (1� "n) log

n
~kn
+

rn~knX
i=~kn+1

�
��n
n

i

�2=p

� c~kn log
n
~kn
+

rn~knX
i=~kn+1

�
��n
n

i

�2=p
� c�Rn (�n;p (�n)) .
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5.3.2 Upper bounds for Theorems 1 and 2

Let the penalty term be de�ned as in (6). De�ne the minimizer of the theoretical com-

plexity over � as

�0 = argmin
�

K (�; �) = argmin
�

h
k� � �k22 + Pen (k�k0)

i
; (28)

which can be understood as the parameter estimator in the noiseless case. By de�nitions of

K (�; y) in (2) and �̂ in (3), we have K
�
�̂; y
�
� K (�0; y). Also note that E

D
z; �̂ � �0

E
=

E
D
z; �̂ � �

E
. It is straightforward to derive (see for example Abramovich et al. 2006 page

632) that

E
� � �̂2

2
� K (�0; �) + E2

D
z; �̂ � �

E
: (29)

The upper bound (23) follows from (29) and Lemmas 3 and 4 whose proofs are given in

Sections 5.4.3 and 5.4.4. Speci�cally, we have

sup
�2�n;p(�n)

E
�̂ � �2

2
� sup
�2�n;p(�n)

K (�0; �)+ sup
�2�n;p(�n)

E
D
z; �̂ � �

E
� c� (1 + o (1))Rn (�n;p (�n)) .

5.3.3 Proof of Theorem 3

We obtain the lower bound n
logn log log n in equation (15) by considering the risk of the

penalized procedure at � = 0. From Lemma 5 we have

E
�̂2

2
= E

X
z2[i]

n
i : i � k̂

o
� E

X
z2[i]

n
i : i � k̂

o�
k̂ > "

n

log n

�

� E
X

z2[i]

�
i : i � " n

log n

��
k̂ > "

n

log n

�
= E

"n= lognX
i=1

z2[i]

�
1�

�
k̂ � " n

log n

��
:

Then the Cauchy�Schwarz inequality implies

E
�̂2

2
� E

"n= lognX
i=1

z2[i] �

24E
0@"n= lognX

i=1

z2[i]

1A2351=2 P1=2�k̂ � " n

log n

�
:

By Theorem 1.5 in Csörg½o and Mason (1985) it is easy to show that

E
"n= lognX
i=1

z2[i] �

24E
0@"n= lognX

i=1

z2[i]

1A2351=2 � 2 ("n= log n)�log n

"n= log n

�
� 2"

n

log n
log log n.

Thus E
�̂ � �2

2
= E

�̂2
2
� C n

logn log log n for some C > 0.
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5.4 Proofs of lemmas

5.4.1 Proof of Lemma 1

By (34) and (38), we have k+ (qn) < Cc;p~kn for some positive constant Cc;p depending on

c; p. By Lemma 2, we have P
�
k̂ < C~kn

�
! 1. Let

S (k) =

nX
i=k+1

y2[i] + Pen (k) ; (30)

where Pen (k) is de�ned in (6). It is enough for us to show that

P
�
\n~kn<k<C~kn fS (k) > S (0)g

�
! 1;

which immediately implies P
�
k̂ < n

~kn

�
! 1. In the following we show P (S (k) > S (0)) =

1� o
�
1
n

�
for each k 2

�
n
~kn; C~kn

�
.

For lp ball: We divide the indices i�s for �i into two sets: S1 �
n
1; :::; ~kn � 1

o
, S2 �n

~kn; :::; n
o
. Let y21[i] denote the decreasing order statistics from

n
y2i = (�i + zi)

2 ; i 2 S1
o
,

y22[i] = z
2
2[i] denote the decreasing order statistics from

�
y2i = z

2
i ; i 2 S2

	
. We have

kX
i=1

y2[i] = sup
k1+k2=k

(
k1X
i=1

y21[i] +

k2X
i=1

y22[i]

)
� sup
k1+k2=k

8<:k1�21 + 2�1
~kn�1X
i=1

jzij+
~kn�1X
i=1

z2i +

k2X
i=1

z22[i]

9=; .
The Cherno¤ inequality implies that for any D > 0,

(A) : P

0@ ~knX
i=1

jzij > 2~kn

1A < CDn
�D ,

(B) : P

0@ ~knX
i=1

z2i > 2
~kn

1A < CDn
�D,

and by Lemmas 6 and 7, we have that for � = c�2
2 > 0 and any D > 0,

(C) : P

 
k2X
i=1

z22[i] > (2 + �) k2 log
n

k2
+ 2 (log n)3

!
< CDn

�D,

(D) : k1�
2
1 + (2 + �) k2 log

n

k2
� cnk (1� "n) log

n
~kn
+ C~kn.

Since "n = n = 1
log logn , under condition (11), it is easy to see that "nk log

n
~kn

�

"nn
~kn log

n
~kn
� logn

(log logn)2
~kn and �1~kn �

p
log n~kn = o

�
"nk log

n
~kn

�
. From (A), (B),
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(C) and (D), we have, with probability 1� o
�
1
n

�
; that

kX
i=1

y2[i] � 2�1 � 2~kn + 2~kn + cnk (1� "n) log
n
~kn
+ C~kn + 2 (log n)

3

= cnk (1� "n) log
n
~kn
+ o

�
cn"nk log

n
~kn

�
.

Since cni ! c > 2 uniformly over 1 � i � n
logn , cn = mini� n

logn
cni ! c > 2, as n!1.

Further note that
Pk
i=1 log i �

R k
1 log xdx = k log k � k, so

Pk
i=1 u

2
ni � cn

�
k log nk + k

�
�

cnk log
n
~kn
� C 0k. Thus, with probability 1� o

�
1
n

�
, we have

S (k)� S (0) =
kX
i=1

u2ni �
kX
i=1

y2[i] (31)

� cnk log
n
~kn
� cnk (1� "n) log

n
~kn
�o
�
cn"nk log

n
~kn

�
= cn"nk log

n
~kn
� o

�
cn"nk log

n
~kn

�
> 0:

Formp ball: The proof is similar as above for lp ball, except we de�ne S1 �
n
1; :::; rn~kn � 1

o
,

S2 �
n
rn~kn; :::; n

o
, rn = log log n. From the statements (A) and (B) we have

P

0@rn~knX
i=1

jzij > 2rn~kn

1A < CDn
�D and P

0@rn~knX
i=1

z2i > 2rn
~kn

1A < CDn
�D;

which yields

kX
i=1

y2[i] � 2�1 � 2rn~kn + 2rn~kn + cnk (1� "n) log
n
~kn
+ C~kn + 2 (log n)

3

= cnk (1� "n) log
n
~kn
+ o

�
cn"nk log

n
~kn

�
with probability 1�o

�
1
n

�
. Then by similar arguments as in (31) we have S (k)�S (0) � 0

with probability 1� o
�
1
n

�
.

5.4.2 Proof of Lemma 2

It is shown in Lemma 8 that u2ni � z2
�
iqn
2n

�
uniformly over i � n

logn . Let k̂
F de�ned in

(32) be the selected model size based on the FDR penalty (Abramovich et al. (2006)),

and let S (k) de�ned in (30) correspond to the penalties in (6). Then for all k̂F < k � n
logn
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we have

S
�
k̂F
�
� S (k) =

kX
i=k̂F+1

y2[i] �
kX

i=k̂F+1

u2ni �
kX

i=k̂F+1

y2[i] �
kX

i=k̂F+1

z2
�
iq

2n

�
;

which is non-positive, since the minimum of the objective function K (�; y) with penaltyPk
i=1 z

2
�
iq
2n

�
is attained at

�̂F
0
= k̂F . The inequality S

�
k̂F
�
� S (k) ; uniformly over

k̂F < k � n
logn ; implies k̂ � k̂

F . Therefore we have P
�
k̂ � k+ (qn)

�
� P

�
k̂F � k+ (qn)

�
�

CDn
�D from Property (P2) in (36).

Note that Abramovich, et al.(2006) require  > 5 for condition (11) in order to prove

the aforementioned inequality. By careful calculations it can be shown that a looser

condition of  > 4:5 is enough.

5.4.3 Proof of Lemma 3

Let k = k�k0 and u2ni be de�ned in (6). We have

sup
�2�n;p(�n)

K (�0; �) = sup
�2�n;p(�n)

min
k� n

logn

min
f�:k�k0=kg

"
k� � �k22 +

kX
i=1

u2ni

#

= sup
�2�n;p(�n)

min
k� n

logn

"
nX

i=k+1

�2[i] +

kX
i=1

u2ni

#
:

By Lemma 8 we have u2ni =
c
2 (1 + �ni) z

2
�
iqn
2n

�
; for qn � 1p

log log logn
, c � 2, and some

�ni ! 0 uniformly over i � n
logn as n ! 1. De�ne t2ni = (1 + �ni) z

2
�
iqn
2n

�
. Let �0i =�

c
2

��1=2
�i and �0n = �n

�
c
2

��p=2. It is clear that �0 2 �n;p (�0n) which is either lp [�0n] or
mp [�

0
n] as de�ned in (9) and (10). Note that �

0
n satis�es the condition in (11). Write

sup
�2�n;p(�n)

K (�0; �) =
c

2
sup

�02�n;p(�0n)
min
k� n

logn

"
nX

i=k+1

�02[i] +
kX
i=1

t2ni

#

� c

2
sup

�02�n;p(�0n)
min
k� n

logn

"
nX

i=k+1

�02[i] +
kX
i=1

z2
�
iqn
2n

�#
:

In Abramovich, et al. (2006, pages 633-634) it has been shown that

sup
�02�n;p(�0n)

min
k0

"
nX

i=k0+1

�02[i] +
k0X
i=1

z2
�
iqn
2n

�#
� R

�
�n;p

�
�0n
��

with the minimizer attained at k0 � n�0n�
�p
�0n
� n

logn . We then immediately have

sup
�2�n;p(�n)

K (�0; �) �
c

2
R
�
�n;p

�
�0n
��
�
� c
2

�1�p=2
R (�n;p (�n)) ;

where the last step follows from equations (12) and (14).

21



5.4.4 Proof of Lemma 4

Recall that for both lp and mp balls, Rn (�n;p (�n)) � Ckn�
2
�n
, where C = 1 for lp ball

and 2
2�p for mp ball. So we need only to show sup� E

D
z; �̂ � �

E
= o

�
kn�

2
�n

�
.

Some auxiliary results Our proof is closely related to previous results in Abramovich,

et al. (2006). In this section we review some notations and results on the estimation based

on the FDR-penalty procedure there. Speci�cally, the FDR-thresholding estimators are

k̂F = argmin
k�n

"
nX

i=k+1

y2[i] +
kX
i=1

z2
�
iqn
2n

�#
; (32)

�̂
F

i = yiI
n
jyij � jyj[k̂F ]

o
;

where qn is the FDR control level. Based on the mean discovery number

k (�; qn) = inf

(
k : E�

nX
i=1

�
y2i � z2

�
kqn
2n

��
= k

)
; (33)

there are two important bounding points for the location of k̂F :

k� (�; qn) =

(
k (�; qn)� �nkn; for k (�; qn) � 2�nkn
0; otherwise

; (34)

k+ (�; qn) = k (�; qn) _ �nkn + �nkn;

where kn is de�ned in (13) and �n �
�
b4��n

��1 for some constant b4 > 0. It has been

shown in Abramovich, et al. (2006, pages 637-639) that for qn = o(1),

(P1)

sup
�
E
D
z; �̂

F � �0
E
= o (1)Rn (�n;p (�n)) ; (35)

Furthermore, for any qn such that qn � C
logn and qn ! q 2 [0; 12), Abramovich, et al.

(2006, pages 608, 640, 607 and 624, respectively) showed that

(P2)

P
�
k̂F � k+ (qn)

�
� CDn�D, for any constant D; (36)

(P3)

Card

�
i : j�ij > z

�
k+ (�; qn) qn

2n

��
� Ckn; (37)

(P4)

k (�; qn) � (1 + o (1)) kn, for all � 2 �n;p (�n) : (38)
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Proof of Lemma 4 From Property (P1) in equation (35) it is then enough to show

that

E
D
z; �̂ � �

E
� E

D
z; �̂

F � �
E
= o (1)Rn (�n;p (�n)) .

Let qn = 1p
log log logn

. De�ne

� (yi; t) = yi fjyij � tg ;

An =
n
k̂F � k+ (�; qn)

o
Sn =

�
i : j�ij � t��

	
;

where the simpli�ed notations t2i;qn = z2
�
iqn
2n

�
and t�� = tk+(�;qn);qn . Note that �̂i =

�
�
yi; uk̂

�
= yi

n
jyij � jyj[k̂]

o
and �̂

F

i = �
�
yi; tk̂F ;qn

�
. Write �̂i = zi

�
�
�
yi; uk̂

�
� �

�
yi; tk̂F ;qn

��
.

So we have

E
D
z; �̂ � �

E
� E

D
z; �̂

F � �
E

= E
X

zi

�
�̂i � �̂

F

i

�
= E

X
zi

�
�
�
yi; uk̂

�
� �

�
yi; tk̂F ;qn

��
= E

"X
Sn

�̂iAn

#
+ E

hX
�̂iA

c
n

i
+ E

24X
Scn

�̂iAn

35
� T1n + T2n + T3n.

We �rst study the term T1n. It can be shown that zi (� (yi; t)� �i) is deceasing
over t � j�ij, because for any t1, t2 such that t2 � t1 � j�ij, � � zi (� (yi; t1)� �i) �
zi (� (yi; t2)� �i) � 0. To show this is true, note that in the case jyij � t1 � t2 or t1 �
t2 � jyij, we have� = 0; in the case t1 � jyij � t2, the inequality j�ij � t1 � jyij = j�i + zij
indicates �i and zi have the same sign, so � = ziyi � 0. By Lemma 8, we have ti;qn � uni
for each i, which further indicates k̂ � k̂F (refer to the proof of Lemma 2 for details). So
we have uk̂ � tk̂;qn � tk̂F ;qn . Moreover, under the event An and within the set Sn, we have
tk̂F ;qn � t

�
� � j�ij. Thus uk̂ � tk̂F ;qn � j�ij, which implies �̂i � 0 and T1n � 0.

The Negligibility of T2n is basically due to the fact that P (Acn) � CDn
�D. Since

uk̂ � tk̂;qn � tk̂F ;qn , it is easy to see that���� �yi; uk̂�� � �yi; tk̂F ;qn���� � uk̂ � Cu1; (39)

then

T2n =
X

E
�
�̂iA

c
n

�
� Cu1

X
E jzij fAcng � Cu1n [P (Acn)]

1=2 = o
�
kn�

2
�n

�
;
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where the second inequality is due to the Cauchy�Schwarz inequality, i.e., E jzij fAcng �q
Ez2i [P (Acn)]

1=2 = [P (Acn)]
1=2.

We now show that T3n is o
�
kn�

2
�n

�
. From equation (39), we have

T3n = E

24X
Scn

�̂iAn

35 �X
Scn

E
���zi h� �yi; uk̂�� � �yi; tk̂F ;qn�i��� � Cu1X

Scn

E jzij � Cu1 jScnj .

Since jScnj � Ckn from Property (P3) in equation (37) we immediately have

T3n � Cu1 jScnj = o
�
�2�nkn

�
:

5.4.5 Proof of Lemma 5

Let S (k) =
Pn
i=k+1 z

2
[i] +

Pk
i=1 u

2
ni, where u

2
ni = cni log

n
i , cni ! c < 2 uniformly

over 1 � i � n
logn . We show that there exists a constant 0 < " < 1 such that

P
�
\k�"n= logn

n
S (k) > S

�
n

logn

�o�
! 1, which immediately implies P

�
k̂ > " n

logn

�
! 1.

It is enough to show that P
�
S (k) > S

�
n

logn

��
= 1 � o

�
1
n

�
for each 0 � k � " n

logn to

complete the proof.

Since cni ! c < 2 uniformly over 1 � i � n
logn , then cn � max1�i�n= logn cni ! c < 2.

Let �1 = 2�c
2 . The identity

�
x log nx + x

�0
= log nx yields

n= lognX
i=k+1

u2ni � cn
Z n= logn

k
log

n

x
dx � (2� �1)

�
n

log n
(log log n+ 1)� k log n

k
� k
�
;

for n su¢ ciently large. Let �2 = 2�c
4 . Following Lemma 6 we have

n= lognX
i=k+1

z2[i] � (2� �2)
n

log n
log log n� (2 + �2) k log

n

k
� 4 (log n)3

with probability 1 � o
�
1
n

�
. Note that k log nk �

n
logn log log n for k �

n
logn . Thus for n

su¢ ciently large we have

S (k)� S
�

n

log n

�
=

n= lognX
i=k+1

z2[i] �
n= lognX
i=k+1

u2ni

� (�1 � �2�" (�1 + �2))
n

log n
log log n� 4 (log n)3 � (2� �1)

n

log n
> 0;

where 0 < " < �1��2
�1+�2

, with probability 1� o
�
1
n

�
.
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5.4.6 Proof of Lemma 6

First we consider the upper bound. Let mn = (2 + �) kn log
n
kn
+ 2 (log n)3. We have

P

 
knX
i=1

z2[i] > mn

!
�
�
n

kn

�
P

 
knX
i=1

z2i > mn

!
=

�
n

kn

�
�
�
kn
2 ;

mn
2

�
�
�
kn
2

� ,

where

� (s; x) =

Z 1

x
ts�1e�tdt � xs+1e�x

Z 1

x
t�2dt � xse�x;

when x � s� 1. By Stirling�s approximation n! �
p
2�n

�
n
e

�n, we then have
P

 
knX
i=1

z2[i] > mn

!
�

�
n

kn

��mn
2

�kn=2 exp ��mn
2

�
�
�
kn
2

�
� C

nn

kknn (n� kn)n�kn

�
emn

kn

�kn=2
exp

�
� (1 + �=2) kn log

n

kn

�
exp

�
� (log n)3

�
� exp

�
��
4
kn log

n

kn

�
exp

�
� (log n)3

�
< CDn

�D.

Now we consider the lower bound. When kn � (log n)2, the result is obvious as the

bound is 0. When kn > (log n)
2, for any t > 0, we have

P

 
knX
i=1

z2[i] < (2� �) kn log
n

kn

!
� P

�
knz

2
[kn]

< (2� �) kn log
n

kn

�

� E
�
e
�tz2

[kn]
+t(2��) log n

kn

�
= E

�
e
�tz2

[kn]

�� n
kn

�t(2��)
;

where the last inequality follows from the Markov inequality. Let F (x) be the c.d.f. of

z2i � �21, i.e., F�1 (p) =
�
���1

�
1�p
2

��2
. When 1�p

2 � 0:01, equation (12.7) in Abramovich,
et al. (2006) gives F�1 (p) = 2 log 2

1�p � log log
2
1�p � r (p), where r (p) 2 (1:8; 3), which

implies F�1 (p) �
�
2� �

2

�
log 2

1�p � C for some constant C > 0 for 0 < p < 1. Thus by

Stirling�s approximation, for t = o (kn), we have

E
�
e
�tz2

[kn]

�
=

1

B (n� kn + 1; kn)

Z 1

0
e�tF

�1(p)pn�kn (1� p)kn�1 dp

� 1

B (n� kn + 1; kn)

Z 1

0
e
�t
�
(2� �

2) log
2

1�p�C
�
pn�kn (1� p)kn�1 dp

=
e�t((2�

�
2) log 2�C)

B (n� kn + 1; kn)

Z 1

0
(1� p)t(2�

�
2) � pn�kn (1� p)kn�1 dp

� eC
0tB

�
n� kn + 1; kn + t

�
2� �

2

��
B (n� kn + 1; kn)

� eC0t
 
kn + t

�
2� �

2

�
n+ t

�
2� �

2

� !t(2� �
2)

:
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Let t = log n. We then have

E
�
e
�tz2

[kn]

�� n
kn

�t(2��)
� eC0t

 
kn + t

�
2� �

2

�
n+ t

�
2� �

2

� !t �2 < CDn�D:
5.4.7 Proof of Lemma 7

Since �21 = cn (1� "n) log n
~kn
, it is enough to show

(2 + �) k2 log
n

k2
� cnk2 (1� "n) log

n
~kn
+ C~kn;

which follows immediately from the following inequalities

(2 + �) k2 log
n

k2
�
(
~kn; for k2 � ~kn= log2 n
cnk2 (1� "n) log n

~kn
; for k2 > ~kn= log2 n

under condition (11), as n su¢ ciently large.

5.4.8 Proof of Lemma 8

For u2ni de�ned in (6), we have u
2
ni = cni log

n
i � 2 log ni � (1� ") log log

n
i , for each

i � n
logn , some " 2 (0; 1) and n su¢ ciently large. By equation (12.7) in Abramovich, et al.

(2006), if � � 0:01, we have z2 (�) = 2 log ��1 � log log ��1 � r (�), where r (�) 2 [1:8; 3].
Thus for q�n =

1p
log log logn

and i � n
logn ,

z2
�
iqn
2n

�
� z2

�
iq�n
2n

�
� 2 log 2n

iq�n
� log log 2n

iq�n

� 2 log
n

i
+ 2 log

2

q�n
� log log n

i
� log log 2

q�n
+ C (40)

� 2 log
n

i
� (1� ") log log n

i
� " log log n

i
+ 2 log

2

q�n
+ C

� 2 log
n

i
� (1� ") log log n

i
� " log log log n+ 2 log

�
2
p
log log log n

�
+ C

� 2 log
n

i
� (1� ") log log n

i
;

which immediately implies u2ni � z2
�
iqn
2n

�
. Note that u2ni = cni log

n
i =

c
2 �

cni
c �

2 log n
i

z2( iqn2n )
�

z2
�
iqn
2n

�
. Since cni

c ! 1 and
2 log n

i

z2( iqn2n )
! 1 uniformly over i � n

logn , we then have u
2
ni =

c
2 (1 + �ni) z

2
�
iqn
2n

�
where �ni ! 1 over i � n

logn .
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For u02ni de�ned in (16) and q = 1, with each i � n, we have

z2
�
iq

2n

�
< 2 log

2n

i
� log log 2n

i
� 1:8 + z2 (0:01)

= 2 log
n

i
� log log 2n

i
+ 2 log 2� 1:8 + z2 (0:01)

< 2 log
n

i
� log log 2n

i
+ 5:

Since u02ni = c log
n
i + c

�
d+ (i� 1) log i�1i

�
� c log ni + c (d� 1) and log log

2n
i � log log 2,

we have z2
�
i
2n

�
< u02ni for each i 2 [1; n] if � log log 2 + 5 � c (d� 1), i.e., d � 5:37

c + 1.

Remark 3 For every D > 0 and d � 5:37
c + 1, by a similar argument as in the proof of

Lemma 2, Lemma 8 together with Equition (36) imply that there is a q 2 (0; 1) such that
P
�
k̂ � k+ (q)

�
� CDn�D for penalties in (16), where k+ (q) = o

�
n

logn

�
.

5.4.9 Proof of Corollary 2

Let S0 (k) be the objective function de�ned in (30) with penalty function Pen0 (k). Let

k̂ and k̂0 be the minimizers of S (k) and S0 (k), respectively. By de�nition, we have

S
�
k̂
�
+S0

�
k̂0
�
� S

�
k̂0
�
+S0

�
k̂
�
, and thus Pen0

�
k̂0
�
�Pen

�
k̂0
�
� Pen0

�
k̂
�
�Pen

�
k̂
�
.

Since
�
n
k

�k � �
n
k

�
�
�
en
k

�k, with c2 = c, we have (c1 � cd) k � Pen0 (k) � Pen (k) �
(c1 � cd+ c) k. So (c1 � cd) k̂0 � (c1 � cd+ c) k̂. According to Remark 3, the selected
model size by Pen0 (k) is k̂0 � Ck̂ = o

�
n

logn

�
with high probability. Then the corollary

for Pen0 (k) follows Proposition 1 for Pen (k) in (16) with c � 2 and d � 5:37
c + 1.
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