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Abstract

Precision matrix is of significant importance in a wide range of applications in

multivariate analysis. This paper considers adaptive minimax estimation of sparse

precision matrices in the high dimensional setting. Optimal rates of convergence are

established for a range of matrix norm losses. A fully data driven estimator based

on adaptive constrained `1 minimization is proposed and its rate of convergence is

obtained over a collection of parameter spaces. The estimator, called ACLIME, is easy

to implement and performs well numerically.

A major step in establishing the minimax rate of convergence is the derivation of

a rate-sharp lower bound. A “two-directional” lower bound technique is applied to

obtain the minimax lower bound. The upper and lower bounds together yield the

optimal rates of convergence for sparse precision matrix estimation and show that the

ACLIME estimator is adaptively minimax rate optimal for a collection of parameter

spaces and a range of matrix norm losses simultaneously.
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1 Introduction

Precision matrix plays a fundamental role in many high-dimensional inference problems.

For example, knowledge of the precision matrix is crucial for classification and discriminant

analyses. Furthermore, precision matrix is critically useful for a broad range of applications

such as portfolio optimization, speech recognition, and genomics. See, for example, Lau-

ritzen (1996), Yuan and Lin (2007), Saon and Chien (2011). Precision matrix is also closely

connected to the graphical models which are a powerful tool to model the relationships

among a large number of random variables in a complex system and are used in a wide ar-

ray of scientific applications. It is well known that recovering the structure of an undirected

Gaussian graph is equivalent to the recovery of the support of the precision matrix. See

for example, Lauritzen (1996), Meinshausen and Bühlmann (2006) and Cai, Liu and Luo

(2011). Liu, Lafferty and Wasserman (2009) extended the result to a more general class of

distributions called nonparanormal distributions.

The problem of estimating a large precision matrix and recovering its support has drawn

considerable recent attention and a number of methods have been introduced. Meinshausen

and Bühlmann (2006) proposed a neighborhood selection method for recovering the support

of a precision matrix. Penalized likelihood methods have also been introduced for estimating

sparse precision matrices. Yuan and Lin (2007) proposed an `1 penalized normal likelihood

estimator and studied its theoretical properties. See also Friedman, Hastie and Tibshirani

(2008), d’Aspremont, Banerjee and El Ghaoui (2008), Rothman et al. (2008), Lam and Fan

(2009), and Ravikumar et al. (2011). Yuan (2010) applied the Dantzig Selector method to

estimate the precision matrix and gave the convergence rates for the estimator under the

matrix `1 norm and spectral norm. Cai, Liu and Luo (2011) introduced an estimator called

CLIME using a constrained `1 minimization approach and obtained the rates of convergence

for estimating the precision matrix under the spectral norm and Frobenius norm.

Although many methods have been proposed and various rates of convergence have been

obtained, it is unclear which estimator is optimal for estimating a sparse precision matrix

in terms of convergence rate. This is due to the fact that the minimax rates of convergence,

which can serve as a fundamental benchmark for the evaluation of the performance of

different procedures, is still unknown. The goals of the present paper are to establish the

optimal minimax rates of convergence for estimating a sparse precision matrix under a

class of matrix norm losses and to introduce a fully data driven adaptive estimator that is

simultaneously rate optimal over a collection of parameter spaces for each loss in this class.

Let X1, . . . , Xn be a random sample from a p-variate distribution with a covariance

matrix Σ = (σij)1≤i,j≤p. The goal is to estimate the inverse of Σ, the precision matrix Ω =

(ωij)1≤i,j≤p. It is well known that in the high-dimensional setting structural assumptions

are needed in order to consistently estimate the precision matrix. The class of sparse
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precision matrices, where most of the entries in each row/column are zero or negligible, is

of particular importance as it is related to sparse graphs in the Gaussian case. For a matrix

A and a number 1 ≤ r ≤ ∞, the matrix `w norm is defined as ‖A‖w = sup|x|w≤1 |Ax|w.

In particular, the commonly used spectral norm is the matrix `2 norm. For a symmetric

matrix A, it is known that the spectral norm ‖A‖2 is equal to the largest magnitude of

eigenvalues of A. The sparsity of a precision matrix can be modeled by the `q balls with

0 ≤ q < 1. More specifically, we define the parameter space Gq(cn,p,Mn,p) by

Gq(cn,p,Mn,p) =

{
Ω = (ωij)1≤i,j≤p : maxj

∑p
i=1 |ωij |q ≤ cn,p,

‖Ω‖1 ≤Mn,p, λmax(Ω)/λmin(Ω) ≤M1,Ω � 0

}
, (1)

where 0 ≤ q < 1, Mn,p and cn,p are positive and bounded away from 0, M1 > 0 is a given

constant, λmax(Ω) and λmin(Ω) are the largest and smallest eigenvalues of Ω respectively,

and c1n
β ≤ p ≤ exp (γn) for some constants β > 1, c1 > 0 and γ > 0. The notation A � 0

means that A is symmetric and positive definite. In the special case of q = 0, a matrix in

G0(cn,p,Mn,p) has at most cn,p nonzero elements on each row/column.

Our analysis establishes the minimax rates of convergence for estimating the preci-

sion matrices over the parameter space Gq(cn,p,Mn,p) under the matrix `w norm losses for

1 ≤ w ≤ ∞. We shall first introduce a new method using an adaptive constrained `1

minimization approach for estimating the sparse precision matrices. The estimator, called

ACLIME, is fully data-driven and easy to implement. The properties of the ACLIME are

then studied in detail under the matrix `w norm losses. In particular, we establish the rates

of convergence for the ACLIME estimator which provide upper bounds for the minimax

risks.

A major step in establishing the minimax rates of convergence is the derivation of rate

sharp lower bounds. As in the case of estimating sparse covariance matrices, conventional

lower bound techniques, which are designed and well suited for problems with parameters

that are scalar or vector-valued, fail to yield good results for estimating sparse precision

matrices under the spectral norm. In the present paper we apply the “two-directional”

lower bound technique first developed in Cai and Zhou (2012) for estimating sparse covari-

ance matrices. This lower bound method can be viewed as a simultaneous application of

Assouad’s Lemma along the row direction and Le Cam’s method along the column direc-

tion. The lower bounds match the rates in the upper bounds for the ACLIME estimator

and thus yield the minimax rates.

By combining the minimax lower and upper bounds developed in later sections, the

main results on the optimal rates of convergence for estimating a sparse precision matrix

under various norms can be summarized in the following theorem. We focus here on the

exact sparse case of q = 0; the optimal rates for the general case of 0 ≤ q < 1 are given in

the end of Section 4. Here for two sequences of positive numbers an and bn, an � bn means
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that there exist positive constants c and C independent of n such that c ≤ an/bn ≤ C.

Theorem 1. Let Xi
i.i.d.∼ Np(µ,Σ), i = 1, 2, . . . , n, and let 1 ≤ k = o(n

1
2 (log p)−

3
2 ). The

minimax risk of estimating the precision matrix Ω = Σ−1 over the class G0(k,Mn,p) based

on the random sample {X1, ..., Xn} satisfies

inf
Ω̂

sup
G0(k,Mn,p)

E
∥∥∥Ω̂− Ω

∥∥∥2

w
�M2

n,pk
2 log p

n
(2)

for all 1 ≤ w ≤ ∞.

In view of Theorem 1, the ACLIME estimator, which is fully data driven, attains the

optimal rates of convergence simultaneously for all k-sparse precision matrices in the param-

eter spaces G0(k,Mn,p) with k � n
1
2 (log p)−

3
2 under the matrix `w norm for all 1 ≤ w ≤ ∞.

As will be seen in Section 4, the adaptivity holds for the general `q balls Gq(cn,p,Mn,p) with

0 ≤ q < 1. The ACLIME procedure is thus rate optimally adaptive to both the sparsity

patterns and the loss functions.

In addition to its theoretical optimality, the ACLIME estimator is computationally easy

to implement for high dimensional data. It can be computed column by column via linear

programming and the algorithm is easily scalable. A simulation study is carried out to

investigate the numerical performance of the ACLIME estimator. The results show that

the procedure performs favorably in comparison to CLIME.

Our work on optimal estimation of precision matrix given in the present paper is closely

connected to a growing literature on estimation of large covariance matrices. Many regular-

ization methods have been proposed and studied. For example, Bickel and Levina (2008a,

b) proposed banding and thresholding estimators for estimating bandable and sparse co-

variance matrices respectively and obtained rate of convergence for the two estimators. See

also El Karoui (2008) and Lam and Fan (2009). Cai, Zhang and Zhou (2010) established the

optimal rates of convergence for estimating bandable covariance matrices. Cai and Yuan

(2012) introduced an adaptive block thresholding estimator which is simultaneously rate

optimal rate over large collections of bandable covariance matrices. Cai and Zhou (2012)

obtained the minimax rate of convergence for estimating sparse covariance matrices under

a range of losses including the spectral norm loss. In particular, a new general lower bound

technique was developed. Cai and Liu (2011) introduced an adaptive thresholding proce-

dure for estimating sparse covariance matrices that automatically adjusts to the variability

of individual entries.

The rest of the paper is organized as follows. The ACLIME estimator is introduced in

detail in Section 2 and its theoretical properties are studied in Section 3. In particular,

a minimax upper bound for estimating sparse precision matrices is obtained. Section 4

establishes a minimax lower bound which matches the minimax upper bound derived in
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Section 2 in terms of the convergence rate. The upper and lower bounds together yield

the optimal minimax rate of convergence. A simulation study is carried out in Section 5

to compare the performance of the ACLIME with that of the CLIME estimator. Section

6 gives the optimal rate of convergence for estimating sparse precision matrices under the

Frobenius norm and discusses connections and differences of our work with other related

problems. The proofs are given in Section 7.

2 Methodology

In this section we introduce an adaptive constrained `1 minimization procedure, called

ACLIME, for estimating a precision matrix Ω. The properties of the estimator are then

studied in Section 3 under the matrix `w norm losses for 1 ≤ w ≤ ∞ and a minimax upper

bound is established. The upper bound together with the lower bound given in Section 4

will show that the ACLIME estimator is adaptively rate optimal.

We begin with basic notation and definitions. For a vector a = (a1, . . . , ap)
T ∈ Rp,

define |a|1 =
∑p

j=1 |aj | and |a|2 =
√∑p

j=1 a
2
j . For a matrix A = (aij) ∈ Rp×q, we define the

elementwise `r norm by |A|r = (
∑

i,j |aij |r)1/r. The Frobenius norm of A is the elementwise

`2 norm. I denotes a p × p identity matrix. For any two index sets T and T
′

and matrix

A, we use ATT ′ to denote the |T | × |T ′ | matrix with rows and columns of A indexed by T

and T
′

respectively.

For an i.i.d. random sample {X1, . . . , Xn} of p-variate observations drawn from a pop-

ulation X, let the sample mean X̄ = 1
n

∑n
k=1Xk and the sample covariance matrix

Σ∗ = (σ∗ij)1≤i,j≤p =
1

n− 1

n∑
l=1

(
Xl − X̄

) (
Xl − X̄

)T
, (3)

which is an unbiased estimate of the covariance matrix Σ = (σij)1≤i,j≤p.

It is well known that in the high dimensional setting, the inverse of the sample covari-

ance matrix either does not exist or is not a good estimator of Ω. As mentioned in the

introduction, a number of methods for estimating Ω have been introduced in the literature.

In particular, Cai, Liu and Luo (2011) proposed an estimator called CLIME by solving the

following optimization problem:

min |Ω|1 subject to: |Σ∗Ω− I|∞ ≤ τn, Ω ∈ Rp×p, (4)

where τn = CMn,p

√
log p/n for some constant C. The convex program (4) can be further

decomposed into p vector-minimization problems. Let ei be a standard unit vector in Rp

with 1 in the i-th coordinate and 0 in all other coordinates. For 1 ≤ i ≤ p, let ω̂i be the

solution of the following convex optimization problem

min |ω|1 subject to |Σnω − ei|∞ ≤ τn, (5)
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where ω is a vector in Rp. The final CLIME estimator of Ω is obtained by putting the

columns ω̂i together and applying an additional symmetrization step. This estimator is

easy to implement and possesses a number of desirable properties as shown in Cai, Liu and

Luo (2011).

The CLIME estimator has, however, two drawbacks. One is that the estimator is

not rate optimal, as will be shown later. Another drawback is that the procedure is not

adaptive in the sense that the tuning parameter λn is not fully specified and needs to be

chosen through an empirical method such as cross-validation.

To overcome these drawbacks of CLIME, we now introduce an adaptive constrained `1-

minimization for inverse matrix estimation (ACLIME). The estimator is fully data-driven

and adaptive to the variability of individual entries. A key technical result which provides

the motivation for the new procedure is the following fact.

Lemma 1. Let X1, ..., Xn
iid∼ Np(µ,Σ) with log p = O(n1/3). Set S∗ = (s∗ij)1≤i,j≤p =

Σ∗Ω− Ip×p, where Σ∗ is the sample covariance matrix defined in (3). Then

V ar
(
s∗ij
)

=

{
n−1(1 + σiiωii), for i = j

n−1σiiωjj , for i 6= j

and for all δ ≥ 2,

P

{
|(Σ∗Ω− Ip×p)ij | ≤ δ

√
σiiωjj log p

n
, ∀ 1 ≤ i, j ≤ p

}
≥ 1−O((log p)−

1
2 p−

δ2

4
+1). (6)

A major step in the construction of the adaptive data-driven procedure is to make the

constraint in (4) and (5) adaptive to the variability of individual entries based on Lemma

1, instead of using a single upper bound λn for all the entries. In order to apply Lemma

1, we need to estimate the diagonal elements of Σ and Ω, σii and wjj , i, j = 1, ..., p. Note

that σii can be easily estimated by the sample variances σ∗ii, but ωjj are harder to estimate.

Hereafter, (A)ij denotes the (i, j)-th entry of the matrix A, (a)j denotes the j-th element

of the vector a. Denote bj = (b1j , . . . , bpj)
′
.

The ACLIME procedure has two steps: The first step is to estimate ωjj and the second

step is to apply a modified version of the CLIME procedure to take into account of the

variability of individual entries.

Step 1: Estimating ωjj . Note that σiiωjj ≤ (σii ∨ σjj)ωjj and (σii ∨ σjj)ωjj ≥ 1. So the

inequality on the left hand side of (6) can be relaxed to

|(Σ∗Ω− Ip×p)ij | ≤ 2(σii ∨ σjj)ωjj

√
log p

n
, 1 ≤ i, j ≤ p. (7)
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Let Ω̂1 := (ω̂1
ij) = (ω̂1

·1, . . . , ω̂
1
·p) be a solution to the following optimization problem:

ω̂1
·j = arg min

bj∈Rp

{
|bj |1 : |Σ̂bj − ej |∞ ≤ λn(σ∗ii ∨ σ∗jj)× bjj , bjj > 0

}
, (8)

where bj = (b1j , . . . , bpj)
′
, 1 ≤ j ≤ p, Σ̂ = Σ∗ + n−1Ip×p and

λn = δ

√
log p

n
. (9)

Here δ is a constant which can be taken as 2. The estimator Ω̂1 yields estimates of

the conditional variance ωjj , 1 ≤ j ≤ p. More specifically, we define the estimates of

ωjj by

ω̆jj = ω̂1
jjI

{
σ∗jj ≤

√
n

log p

}
+

√
log p

n
I

{
σ∗jj >

√
n

log p

}
.

Step 2: Adaptive estimation. Given the estimates ω̆jj , the final estimator Ω̂ of Ω is con-

structed as follows. First we obtain Ω̃1 =: (ω̃1
ij) by solving p optimization problems:

for 1 ≤ j ≤ p

ω̃1
·j = arg min

b∈Rp

{
|b|1 : |(Σ̂b− ej)i| ≤ λn

√
σ∗iiω̆jj , 1 ≤ i ≤ p

}
, (10)

where λn is given in (9). We then obtain the estimator Ω̂ by symmetrizing Ω̃1,

Ω̂ = (ω̂ij), where ω̂ij = ω̂ji = ω̃1
ijI{|ω̃1

ij | ≤ |ω̃1
ji|}+ ω̃1

jiI{|ω̃1
ij | > |ω̃1

ji|}. (11)

We shall call the estimator Ω̂ adaptive CLIME, or ACLIME. The estimator adapts to the

variability of individual entries by using an entry-dependent threshold for each individual

ωij . Note that the optimization problem (8) is convex and can be cast as a linear program.

The constant δ in (9) can be taken as 2 and the resulting estimator will be shown to be

adaptively minimax rate optimal for estimating sparse precision matrices.

Remark 1. Note that δ = 2 used in the constraint sets is tight, it can not be further

reduced in general. If one chooses the constant δ < 2, then with probability tending to 1,

the true precision matrix will no longer belong to the feasible sets. To see this, consider

Σ = Ω = Ip×p for simplicity. It follows from Liu, Lin and Shao (2008) and Cai and Jiang

(2011) that √
n

log p
max

1≤i<j≤p
|σ̂ij | → 2

in probability. Thus P (|Σ̂Ω− Ip×p|∞ > λn)→ 1, which means that if δ < 2, the true Ω lies

outside of the feasible set with high probability and solving the corresponding minimization

problem cannot lead to a good estimator of Ω.
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Remark 2. The CLIME estimator uses a universal tuning parameter λn = CMn,p

√
log p/n

which does not take into account the variations in the variances σii and the conditional

variances ωjj . It will be shown that the convergence rate of CLIME obtained by Cai, Liu

and Luo (2011) is not optimal. The quantity Mn,p is the upper bound of the matrix `1

norm which is unknown in practice. The cross validation method can be used to choose the

tuning parameter in CLIME. However, the estimator obtained through CV can be variable

and its theoretical properties are unclear. In contrast, the ACLIME procedure proposed in

the present paper does not depend on any unknown parameters and it will be shown that

the estimator is minimax rate optimal.

3 Properties of ACLIME and Minimax Upper Bounds

We now study the properties of the ACLIME estimator Ω̂ proposed in Section 2. We shall

begin with the Gaussian case whereX ∼ N(µ,Σ). Extensions to non-Gaussian distributions

will be discussed later. The following result shows that the ACLIME estimator adaptively

attains the convergence rate of

M1−q
n,p cn,p

(
log p

n

)(1−q)/2

over the class of sparse precision matrices Gq(cn,p,Mn,p) defined in (1) under the matrix `w

norm losses for all 1 ≤ w ≤ ∞. The lower bound given in Section 4 shows that this rate

is indeed optimal and thus ACLIME adapts to both sparsity patterns and this class of loss

functions.

Theorem 2. Suppose we observe a random sample X1, ..., Xn
iid∼ Np(µ,Σ). Let Ω = Σ−1

be the precision matrix. Let δ ≥ 2, log p = O(n1/3) and

cn,p = O
(
n

1−q
2 /(log p)

1−q
2

)
. (12)

Then for some constant C > 0

inf
Ω∈Gq(cn,p,Mn,p)

P

(
‖Ω̂− Ω‖w ≤ CM1−q

n,p cn,p

(
log p

n

) 1−q
2

)
≥ 1−O

(
(log p)−

1
2 p−

δ2

4
+1

)
for all 1 ≤ w ≤ ∞.

For q = 0 a sufficient condition for estimating Ω consistently under the spectral norm is

Mn,pcn,p

√
n

log p
= o(1), i.e., Mn,pcn,p = o

(√
n

log p

)
.
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This implies that the total number of nonzero elements on each column needs be �
√
n in

order for the precision matrix to be estimated consistently over G0(cn,p,Mn,p). In Theorem

5 we show that the upper bound Mn,pcn,p

√
log p
n is indeed rate optimal over G0(cn,p,Mn,p).

We now consider the rate of convergence under the expectation. For technical reasons,

we require the constant δ ≥ 3 in this case.

Theorem 3. Suppose we observe a random sample X1, ..., Xn
iid∼ Np(µ,Σ). Let Ω = Σ−1

be the precision matrix. Let log p = O(n1/3) and δ ≥ 3. Suppose that p ≥ n13/(δ2−8) and

cn,q = o((n/ log p)
1
2
− q

2 ).

The ACLIME estimator Ω̂ satisfies, for all 1 ≤ w ≤ ∞ and 0 ≤ q < 1,

sup
Gq(cn,p,Mn,p)

E
∥∥∥Ω̂− Ω

∥∥∥2

w
≤ CM2−2q

n,p c2
n,p

(
log p

n

)1−q
,

for some constant C > 0.

Theorem 3 can be extended to non-Gaussian distributions. Let Z = (Z1, Z2, . . . , Zn)′

be a p−variate random variable with mean µ and covariance matrix Σ = (σij)1≤i,j≤p. Let

Ω = (ωij)1≤i,j≤p be the precision matrix. Define Yi = (Zi − µi)/σ
1/2
ii , 1 ≤ i ≤ p and

(W1, . . . ,Wp)
′ := Ω(Z−µ). Assume that there exist some positive constants η and M such

that for all 1 ≤ i ≤ p,

E exp(ηY 2
i ) ≤M, E exp(ηW 2

i /ωii) ≤M . (13)

Then we have the following result.

Theorem 4. Suppose we observe an i.i.d. sample X1, ..., Xn with the precision matrix Ω

satisfying Condition (13). Let log p = O(n1/3), p ≥ nγ for some γ > 0. Suppose that

cn,q = o((n/ log p)
1
2
− q

2 ).

Then there is a δ depending only on η, M and γ such that the ACLIME estimator Ω̂

satisfies, for all 1 ≤ w ≤ ∞ and 0 ≤ q < 1,

sup
Gq(cn,p,Mn,p)

E
∥∥∥Ω̂− Ω

∥∥∥2

w
≤ CM2−2q

n,p c2
n,p

(
log p

n

)1−q
,

for some constant C > 0.

Remark 3. Under Condition (13) it can be shown that an analogous result to Lemma 1

in Section 2 holds with some δ depending only on η and M . Thus, it can be proved that,

under Condition (13), Theorem 4 holds. The proof is similar to that of Theorem 3. A

practical way to choose δ is using cross validation.
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Remark 4. Theorems 2, 3 and 4 follow mainly from the convergence rate under the

element-wise `∞ norm and the inequality ‖M‖w ≤ ‖M‖1 for any symmetric matrix M

from Lemma 8. The convergence rate under element-wise norm plays an important role

in graphical model selection and in establishing the convergence rate under other matrix

norms, such as the Frobenius norm ‖ · ‖F . Indeed, from the proof, Theorems 2, 3 and 4

hold under the matrix `1 norm. More specifically, under the conditions of Theorems 3 and

4 we have

sup
Gq(cn,p,Mn,p)

E|Ω̂− Ω|2∞ ≤ CM2
n,p

log p

n
,

sup
Gq(cn,p,Mn,p)

E‖Ω̂− Ω‖21 ≤ CM2−2q
n,p c2

n,p

(
log p

n

)1−q
,

sup
Gq(cn,p,Mn,p)

1

p
E‖Ω̂− Ω‖2F ≤ CM2−q

n,p cn,p

(
log p

n

)1−q/2
.

Remark 5. The results in this section can be easily extended to the weak `q ball with

0 ≤ q < 1 to model the sparsity of the precision matrix Ω. A weak `q ball of radius c in Rp

is defined as follows,

Bq(c) =
{
ξ ∈ Rp : |ξ|q(k) ≤ ck

−1, for all k = 1, ..., p
}
,

where |ξ|(1) ≥ |ξ|(2) ≥ . . . ≥ |ξ|(p). Let

G∗q (cn,p,Mn,p) =

{
Ω = (ωij)1≤i,j≤p : ω·,j ∈ Bq(cn,p),

‖Ω‖1 ≤Mn,p, λmax(Ω)/λmin(Ω) ≤M1,Ω � 0

}
. (14)

Theorems 2, 3 and 4 hold with the parameter spaceGq(cn,p,Mn,p) replaced byG∗q(cn,p,Mn,p)

by a slight extension of Lemma 7 for the `q ball to for the weak `q ball similar to Equation

(51) in Cai and Zhou (2012).

4 Minimax Lower Bounds

Theorem 3 shows that the ACLIME estimator adaptively attains the rate of convergence

M2−2q
n,p c2

n,p

(
log p

n

)1−q
(15)

under the squared matrix `w norm loss for 1 ≤ w ≤ ∞ over the collection of the parameter

spaces Gq(cn,p,Mn,p). In this section we shall show that the rate of convergence given in

(15) cannot be improved by any other estimator and thus is indeed optimal among all

estimators by establishing minimax lower bounds for estimating sparse precision matrices

under the squared matrix `w norm.
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Theorem 5. Let X1, . . . , Xn
iid∼ Np(µ,Σ) with p > c1n

β for some constants β > 1 and

c1 > 0. Assume that

cM q
n,p

(
log p

n

) q
2

≤ cn,p = o
(
M q
n,pn

1−q
2 (log p)−

3−q
2

)
(16)

for some constant c > 0. The minimax risk for estimating the precision matrix Ω = Σ−1

over the parameter space Gq(cn,p,Mn,p) under the condition (16) satisfies

inf
Ω̂

sup
Gq(cn,p,Mn,p)

E
∥∥∥Ω̂− Ω

∥∥∥2

w
≥ CM2−2q

n,p c2
n,p

(
log p

n

)1−q

for some constant C > 0 and for all 1 ≤ w ≤ ∞.

The proof of Theorem 5 is involved. We shall discuss the key technical tools and outline

the important steps in the proof of Theorem 5 in this section. The detailed proof is given

in Section 7.

4.1 A General Technical Tool

We use a lower bound technique introduced in Cai and Zhou (2012), which is particularly

well suited for treating “two-directional” problems such as matrix estimation. The tech-

nique can be viewed as a generalization of both Le Cam’s method and Assouad’s Lemma,

two classical lower bound arguments. Let X be an observation from a distribution Pθ where

θ belongs to a parameter set Θ which has a special tensor structure. For a given positive

integer r and a finite set B ⊂ Rp/ {01×p}, let Γ = {0, 1}r and Λ ⊆ Br. Define

Θ = Γ⊗ Λ = {(γ, λ) : γ ∈ Γ and λ ∈ Λ} . (17)

In comparison, the standard lower bound arguments work with either Γ or Λ alone. For

example, the Assouad’s Lemma considers only the parameter set Γ and the Le Cam’s

method typically applies to a parameter set like Λ with r = 1. Cai and Zhou (2012) gives a

lower bound for the maximum risk over the parameter set Θ to the problem of estimating

a functional ψ(θ), belonging to a metric space with metric d.

We need to introduce a few notations before formally stating the lower bound. For

two distributions P and Q with densities p and q with respect to any common dominating

measure µ, the total variation affinity is given by ‖P ∧ Q‖ =
∫
p ∧ qdµ. For a parameter

γ = (γ1, ..., γr) ∈ Γ where γi ∈ {0, 1}, define

H
(
γ, γ′

)
=

r∑
i=1

∣∣γi − γ′i∣∣ (18)

be the Hamming distance on {0, 1}r.

11



Let DΛ =Card(Λ). For a given a ∈ {0, 1} and 1 ≤ i ≤ r, we define the mixture

distribution P̄a,i by

P̄a,i =
1

2r−1DΛ

∑
θ

{Pθ : γi(θ) = a}. (19)

So P̄a,i is the mixture distribution over all Pθ with γi(θ) fixed to be a while all other

components of θ vary over all possible values. In our construction of the parameter set

for establishing the minimax lower bound, r is the number of possibly non-zero rows in

the upper triangle of the covariance matrix, and Λ is the set of matrices with r rows to

determine the upper triangle matrix.

Lemma 2. For any estimator T of ψ(θ) based on an observation from the experiment

{Pθ, θ ∈ Θ}, and any s > 0

max
Θ

2sEθds (T, ψ (θ)) ≥ αr
2

min
1≤i≤r

∥∥P̄0,i ∧ P̄1,i

∥∥ (20)

where P̄a,i is defined in Equation (19) and α is given by

α = min
{(θ,θ′):H(γ(θ),γ(θ′))≥1}

ds(ψ(θ), ψ(θ′))

H(γ(θ), γ(θ′))
. (21)

We introduce some new notations to study the affinity
∥∥P̄0,i ∧ P̄1,i

∥∥ in Equation (20).

Denote the projection of θ ∈ Θ to Γ by γ (θ) = (γi (θ))1≤i≤r and to Λ by λ (θ) =

(λi (θ))1≤i≤r. More generally we define γA (θ) = (γi (θ))i∈A for a subset A ⊆ {1, 2, . . . , r},
a projection of θ to a subset of Γ. A particularly useful example of set A is

{−i} = {1, . . . , i− 1, i+ 1, · · · , r} ,

for which γ−i (θ) = (γ1 (θ) , . . . , γi−1 (θ) , γi+1 (θ) , γr (θ)). λA (θ) and λ−i (θ) are defined

similarly. We denote the set {λA (θ) : θ ∈ Θ} by ΛA. For a ∈ {0, 1}, b ∈ {0, 1}r−1, and

c ∈ Λ−i ⊆ Br−1, let

DΛi(a,b,c) = Card {γ ∈ Λ : γi(θ) = a, γ−i(θ) = b and λ−i(θ) = c}

and define

P̄(a,i,b,c) =
1

DΛi(b,c)

∑
θ

{Pθ : γi(θ) = a, γ−i(θ) = b and λ−i(θ) = c}. (22)

In other words, P̄(a,i,b,c) is the mixture distribution over all Pθ with λi(θ) varying over all

possible values while all other components of θ remain fixed.

The following lemma gives a lower bound for the affinity in Equation (20). See SEction

2 of Cai and Zhou (2012) for more details.

Lemma 3. Let P̄a,i and P̄(a,i,b,c) be defined in Equation (19)and (22) respectively, then∥∥P̄0,i ∧ P̄1,i

∥∥ ≥ Average
γ−i,λ−i

∥∥P̄(0,i,γ−i,λ−i) ∧
(
P̄(1,i,γ−i,λ−i)

)∥∥ ,

where the average over γ−i and λ−i is induced by the uniform distribution over Θ.

12



4.2 Lower Bound for Estimating Sparse Precision Matrix

We now apply the lower bound technique developed in Section 4.1 to establish rate sharp

results under the matrix `w norm. Let X1, . . . , Xn
iid∼ Np(µ,Ω

−1) with p > c1n
β for some

β > 1 and c1 > 0, where Ω ∈ Gq(cn,p,Mn,p). The proof of Theorem 5 contains four

major steps. We first reduce the minimax lower bound under the general matrix `w norm,

1 ≤ w ≤ ∞, to under the spectral norm. In the second step we construct in detail a

subset F∗ of the parameter space Gq(cn,p,Mn,p) such that the difficulty of estimation over

F∗ is essentially the same as that of estimation over Gq(cn,p,Mn,p), the third step is the

application of Lemma 2 to the carefully constructed parameter set, and finally in the fourth

step we calculate the factors α defined in (21) and the total variation affinity between two

multivariate normal mixtures. We outline the main ideas of the proof here and leave detailed

proof of some technical results to Section 7.

Proof of Theorem 5: We shall divide the proof into four major steps.

Step 1: Reducing the general problem to the lower bound under the spectral

norm. The following lemma implies that the minimax lower bound under the spectral

norm yields a lower bound under the general matrix `w norm up to a constant factor 4.

Lemma 4. Let X1, . . . , Xn
iid∼ N(µ,Ω−1), and F be any parameter space of precision

matrices. The minimax risk for estimating the precision matrix Ω over F satisfies

inf
Ω̂

sup
F

E
∥∥∥Ω̂− Ω

∥∥∥2

w
≥ 1

4
inf
Ω̂

sup
F

E
∥∥∥Ω̂− Ω

∥∥∥2

2
(23)

for all 1 ≤ w ≤ ∞.

Step 2: Constructing the parameter set. Let r = dp/2e and let B be the collection of

all vectors (bj)1≤j≤p such that bj = 0 for 1 ≤ j ≤ p− r and bj = 0 or 1 for p− r+ 1 ≤ j ≤ p
under the constraint ‖b‖0 = k (to be defined later). For each b ∈ B and each 1 ≤ m ≤ r,

define a p× p matrix λm(b) by making the mth row of λm(b) equal to b and the rest of the

entries 0. It is clear that Card(B)=
(
r
k

)
. Set Γ = {0, 1}r. Note that each component bi of

λ = (b1, ..., br) ∈ Λ can be uniquely associated with a p× p matrix λi(bi). Λ is the set of all

matrices λ with the every column sum less than or equal to 2k. Define Θ = Γ⊗ Λ and let

εn,p ∈ R be fixed. (The exact value of εn,p will be chosen later.) For each θ = (γ, λ) ∈ Θ

with γ = (γ1, ..., γr) and λ = (b1, ..., br), we associate θ with a precision matrix Ω(θ) by

Ω(θ) =
Mn,p

2

[
Ip + εn,p

r∑
m=1

γmλm(bm)

]
.

Finally we define a collection F∗ of precision matrices as

F∗ =

{
Ω(θ) : Ω(θ) =

Mn,p

2

[
Ip + εn,p

r∑
m=1

γmλm(bm)

]
, θ = (γ, λ) ∈ Θ

}
.

13



We now specify the values of εn,p and k. Set

εn,p = υ

√
log p

n
, for some 0 < υ < min

{( c
2

)1/q
,
β − 1

8β

}
, (24)

and

k =
⌈
2−1cn,p(Mn,pεn,p)

−q⌉− 1. (25)

which is at least 1 from Equation (24). Now we show F∗ is a subset of the parameter space

Gq(cn,p,Mn,p). From the definition of k in (25) note that

max
j≤p

∑
i 6=j
|ωij |q ≤ 2 · 2−1ρn,p (Mn,pεn,p)

−q ·
(
Mn,p

2
εn,p

)q
≤ cn,p. (26)

From Equation (16) we have cn,p = o
(
M q
n,pn

1−q
2 (log p)−

3−q
2

)
, which implies

2kεn,p ≤ cn,pε1−qn,p M
−q
n,p = o (1/ log p) , (27)

then

max
i

∑
j

|ωij | ≤
Mn,p

2
(1 + 2kεn,p) ≤Mn,p. (28)

Since ‖A‖2 ≤ ‖A‖1, we have∥∥∥∥∥εn,p
r∑

m=1

γmλm(bm)

∥∥∥∥∥
2

≤

∥∥∥∥∥εn,p
r∑

m=1

γmλm(bm)

∥∥∥∥∥
1

≤ 2kεn,p = o (1) ,

which implies that every Ω(θ) is diagonally dominant and positive definite, and

λmax (Ω) ≤ Mn,p

2
(1 + 2kεn,p) , and λmin (Ω) ≥ Mn,p

2
(1− 2kεn,p) (29)

which immediately implies
λmax (Ω)

λmin (Ω)
< M1. (30)

Equations (26), (28), (29) and (30) all together imply F∗ ⊂ Gq(cn,p,Mn,p).

Step 3: Applying the general lower bound argument. LetX1, . . . , Xn
iid∼ Np

(
0, (Ω(θ))−1

)
with θ ∈ Θ and denote the joint distribution by Pθ. Applying Lemmas 2 and 3 to the pa-

rameter space Θ, we have

inf
Ω̂

max
θ∈Θ

22Eθ

∥∥∥Ω̂− Ω(θ)
∥∥∥2

2
≥ α · p

4
·min

i
Average
γ−i,λ−i

∥∥P̄(0,i,γ−i,λ−i) ∧ P̄(1,i,γ−i,λ−i)

∥∥ (31)

where

α = min
{(θ,θ′):H(γ(θ),γ(θ′))≥1}

‖Ω(θ)− Ω(θ′)‖22
H(γ(θ), γ(θ′))

(32)
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and P̄0,i and P̄1,i are defined as in (19).

Step 4: Bounding the per comparison loss α defined in (32) and the affinity

min
i

Average
γ−i,λ−i

∥∥P̄(0,i,γ−i,λ−i) ∧ P̄(1,i,γ−i,λ−i)

∥∥ in (31). This is done separately in the next two

lemmas which are proved in detailed in Section 7.

Lemma 5. The per comparison loss α defined in (32) satisfies

α ≥ (Mn,pkεn,p)
2

4p
.

Lemma 6. Let X1, . . . , Xn
iid∼ N

(
0, (Ω(θ))−1

)
with θ ∈ Θ and denote the joint distribution

by Pθ. For a ∈ {0, 1} and 1 ≤ i ≤ r, define P̄(a,i,b,c) as in (22). Then there exists a constant

c1 > 0 such that

min
i

Average
γ−i,λ−i

∥∥P̄(0,i,γ−i,λ−i) ∧ P̄(1,i,γ−i,λ−i)

∥∥ ≥ c1.

Finally, the minimax lower bound for estimating a sparse precision matrix over the

collection Gq(cn,p,Mn,p) is obtained by putting together (31) and Lemmas 5 and 6,

inf
Ω̂

sup
Gq(cn,p,Mn,p)

E
∥∥∥Ω̂− Ω(θ)

∥∥∥2

2
≥ max

Ω(θ)∈F∗
Eθ

∥∥∥Ω̂− Ω(θ)
∥∥∥2

2
≥ (Mn,pkεn,p)

2

4p
· p

16
· c1

≥ c1

64
(Mn,pkεn,p)

2 = c2M
2−2q
n,p c2

n,p

(
log p

n

)1−q
,

for some constant c2 > 0.

Putting together the minimax upper and lower bounds in Theorems 3 and 5 as well

as Remark 5 yields the optimal rates of convergence for estimating Ω over the collection

of the `q balls Gq(cn,p,Mn,p) defined in (1) as well as the collection of the weak `q balls

G∗q (cn,p,Mn,p) defined in (14).

Theorem 6. Suppose we observe a random sample Xi
i.i.d.∼ Np(µ,Σ), i = 1, 2, . . . , n. Let

Ω = Σ−1 be the precision matrix. Assume that log p = O(n1/3) and

cM q
n,p

(
log p

n

) q
2

≤ cn,p = o
(
M q
n,pn

1−q
2 (log p)−

3−q
2

)
(33)

for some constant c > 0. Then

inf
Ω̂

sup
Ω∈G

E
∥∥∥Ω̂− Ω

∥∥∥2

w
�M2−2q

n,p c2
n,p

(
log p

n

)1−q
(34)

for all 1 ≤ w ≤ ∞, where G = Gq(cn,p,Mn,p) or G∗q (cn,p,Mn,p).
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5 Numerical results

In this section, we consider the numerical performance of ACLIME. In particular, we shall

compare the performance of ACLIME with that of CLIME. The following three graphical

models are considered. Let D = diag(U1, . . . , Up), where Ui, 1 ≤ i ≤ p, are i.i.d. uniform

random variables on the interval (1, 5). Let Σ = Ω−1 = DΩ−1
1 D. The matrix D makes the

diagonal entries in Σ and Ω different.

• Band graph. Let Ω1 = (ωij), where ωii = 1, ωi,i+1 = ωi+1,i = 0.6, ωi,i+2 = ωi+2,i =

0.3, ωij = 0 for |i− j| ≥ 3.

• AR(1) model. Let Ω1 = (ωij), where ωij = (0.6)|j−i|.

• Erdös-Rényi random graph. Let Ω2 = (ωij), where ωij = uij ∗ δij , δij is the

Bernoulli random variable with success probability 0.05 and uij is uniform random

variable with distribution U(0.4, 0.8). We let Ω1 = Ω2 + (|min(λmin)|+ 0.05)Ip. It is

easy to check that the matrix Ω1 is symmetric and positive definite.

We generate n = 200 random training samples from Np(0,Σ) distribution for p =

50, 100, 200. For ACLIME, we set δ = 2 in Step 1 and choose δ in Step 2 by a cross

validation method. To this end, we generate an additional 200 testing samples. The tuning

parameter in CLIME is selected by cross validation. Note that ACLIME chooses different

tuning parameters for different columns and CLIME chooses a universal tuning parameter.

The log-likehood loss

L(Σ̂1,Ω) = log(det(Ω))− 〈Σ̂1,Ω〉,

where Σ̂1 is the sample covariance matrix of the testing samples, is used in the cross

validation method. For δ in (9), we let δ = δj = j/50, 1 ≤ j ≤ 100. For each δj , ACLIME

Ω̂(δj) is obtained and the tuning parameter δ in (9) is selected by minimizing the following

log-likehood loss

δ̂ = ĵ/50, where ĵ = arg min
1≤j≤100

L(Σ̂1, Ω̂(δj)).

The tuning parameter λn in CLIME is also selected by cross validation. The detailed steps

can be found in Cai, Liu and Luo (2011).

The empirical errors of ACLIME and CLIME estimators under various settings are

summarized in Table 1 below. Three losses under the spectral norm, matrix `1 norm and

Frobenius norm are given to compare the performance between ACLIME and CLIME. As

can be seen from Table 1, ACLIME, which is tuning-free, outperforms CLIME in most of

the cases for each of the three graphs.
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ACLIME CLIME

p 50 100 200 50 100 200

Spectral norm

Band 0.30(0.01) 0.45(0.01) 0.65(0.01) 0.32(0.01) 0.50(0.01) 0.72(0.01)

AR(1) 0.75(0.01) 1.04(0.01) 1.25(0.01) 0.73(0.01) 1.05(0.01) 1.30(0.01)

E-R 0.65(0.03) 0.95(0.02) 2.62(0.02) 0.72(0.03) 1.21(0.04) 2.28(0.02)

Matrix `1 norm

Band 0.62(0.02) 0.79(0.01) 0.94(0.01) 0.65(0.02) 0.86(0.02) 0.99(0.01)

AR(1) 1.19(0.02) 1.62(0.02) 1.93(0.01) 1.17(0.01) 1.59(.01) 1.89(0.01)

E-R 1.47(0.08) 2.15(0.06) 5.47(0.05) 1.53(0.06) 2.34(0.06) 5.20(0.04)

Frobenius norm

Band 0.80(0.01) 1.61(0.02) 3.11(0.02) 0.83(0.01) 1.73(0.02) 3.29(0.03)

AR(1) 1.47(0.02) 2.73(0.01) 4.72(0.01) 1.47(0.02) 2.82(0.02) 4.97(0.01)

E-R 1.53(0.05) 3.15(0.03) 9.89(0.07) 1.62(0.04) 3.61(0.05) 8.86(0.04)

Table 1: Comparisons of ACLIME and CLIME for the three graphical models under three

matrix norm losses. Inside the parentheses are the standard deviations of the empirical

errors over 100 replications.
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6 Discussions

We established in this paper the optimal rates of convergence and introduced an adaptive

method for estimating sparse precision matrices under the matrix `w norm losses for 1 ≤
w ≤ ∞. The minimax rate of convergence under the Frobenius norm loss can also be easily

established. As seen in the proof of Theorems 2 and 3, with probability tending to one,

|Ω̂− Ω|∞ ≤ CMn,p

√
log p

n
, (35)

for some constant C > 0. From Equation (35) one can immediately obtain the following

risk upper bound under the Frobenius norm, which can be shown to be rate optimal using

a similar proof to that of Theorem 5.

Theorem 7. Suppose we observe a random sample Xi
i.i.d.∼ Np(µ,Σ), i = 1, 2, . . . , n. Let Ω =

Σ−1 be the precision matrix. Under the assumption (33), the minimax risk of estimating

the precision matrix Ω over the class Gq(cn,p,Mn,p) defined in (1) satisfies

inf
Ω̂

sup
Gq(cn,p,Mn,p)

E
1

p

∥∥∥Ω̂− Ω
∥∥∥2

F
�M2−q

n,p cn,p

(
log p

n

)1− q
2

.

As shown in Theorem 6, the optimal rate of convergence for estimating sparse precision

matrices under the squared `w norm loss isM2−2q
n,p c2

n,p

(
log p
n

)1−q
. It is interesting to compare

this with the minimax rate of convergence for estimating sparse covariance matrices under

the same loss which is c2
n,p

(
log p
n

)1−q
(cf. Theorem 1 in Cai and Zhou (2012)). These

two convergence rates are similar, but have an important distinction. The difficulty of

estimating a sparse covariance matrix does not depend on the `1 norm bound Mn,p, while

the difficulty of estimating a sparse precision matrix does.

As mentioned in the introduction, an important related problem to the estimation of

precision matrix is the recovery of a Gaussian graph which is equivalent to the estimation

of the support of Ω. Let G = (V,E) be an undirected graph representing the conditional

independence relations between the components of a random vector X. The vertex set V

contains the components of X, V = X = {V1, . . . , Vp}. The edge set E consists of ordered

pairs (i, j), indicating conditional dependence between the components Vi and Vj . An edge

between Vi and Vj is in the set E, i.e., (i, j) ∈ E, if and only ωij = 0. The adaptive CLIME

estimator, with an additional thresholding step, can recover the support of Ω. Define the

estimator of the support of Ω by

̂SUPP(Ω) = {(i, j) : |ω̂ij | ≥ τij},

where the choice of τij depends on the bound |ω̂ij − ωij |. Equation (35) implies that the

right threshold levels are τij = CMn,p

√
log p/n. If the magnitudes of the nonzero entries
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exceed 2CMn,p

√
log p/n, then ̂SUPP(Ω) recovers the support of Ω exactly. In the context of

covariance matrix estimation, Cai and Liu (2011) introduced an adaptive entry-dependent

thresholding procedure to recover the support of Σ. That method is based on the sharp

bound

max
1≤i≤j≤p

|σ̂ij − σij | ≤ 2

√
θ̂ij log p/n,

where θ̂ij is an estimator of Var((Xi − µi)(Xj − µj)). It is natural to ask whether one can

use data and entry-dependent threshold levels τij to recover the support of Ω. It is clearly

that the optimal choice of τij depends on the sharp bounds for |ω̂ij − ωij | which are much

more difficult to establish than in the covariance matrix case.

Several recent papers considered the estimation of nonparanormal graphical models

where the population distribution is non-Gaussian, see Xue and Zou (2012) and Liu, et al.

(2012). The nonparanormal model assumes that the variables follow a joint normal distri-

bution after a set of unknown marginal monotone transformations. Xue and Zou (2012)

estimated the nonparanormal model by applying CLIME (and graphical lasso, neighbor-

hood Dantzig selector) to the adjusted Spearman’s rank correlations. ACLIME can also be

used in such a setting. It would be interesting to investigate the properties of the resulting

estimator under the nonparanormal model. Detailed analysis is involved and we leave this

as future work.

7 Proofs

In this section we prove the main results, Theorems 2 and 3, and the key technical results,

Lemmas 4, 5 and 6, used in the proof of Theorem 5. The proof of Lemma 6 is involved.

We begin by proving Lemma 1 stated in Section 2 and collecting a few additional technical

lemmas that will be used in the proofs of the main results.

7.1 Proof of Lemma 1 and Additional Technical Lemmas

Proof of Lemma 1 Let Σ̃ = (σ̃ij) = n−1
∑n−1

k=1 XkX
′
k. Note that Σ∗ has the same

distribution as that of Σ̃ with Xk ∼ N(0,Σ). So we can replace Σ∗ in Section 2 by

Σ̃n = Σ̃ + n−1Ip×p and assume Xk ∼ N(0,Σ). Let An = 1 − O
(

(log p)−1/2p−δ
2/4+1

)
and

set λn = δ
√

log p/n + O((n log p)−1/2). It suffices to prove that with probability greater

than An, ∣∣∣∣∣
n−1∑
k=1

XkiX
′
kω·j

∣∣∣∣∣ ≤ nλn
√
σiiωjj , for i 6= j∣∣∣∣∣

n−1∑
k=1

XkjX
′
kω·j − n

∣∣∣∣∣ ≤ nλn
√
σjjωjj − 1, for i = j. (36)
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Note that Cov(X
′
kΩ) = Ω, Var(X

′
kω·j) = ωjj and Cov(XkiX

′
kω·j) =

∑p
k=1 σikωkj = 0 for

i 6= j. So Xki and X
′
kω·j are independent. Hence, E(XkiX

′
kω·j)

3 = 0. By Theorem 5.23

and (5.77) in Petrov (1995), we have

P

(∣∣∣∣∣
n−1∑
k=1

XkiX
′
kω·j

∣∣∣∣∣ ≥ nλn√σiiωjj
)

= (1 + o(1))P
(
|N(0, 1)| ≥ δ

√
log p

)
≤ C(log p)−1/2p−δ

2/2. (37)

We next prove the second inequality in (36). We have E(XkjX
′
kω·j) = 1 and Var(XkjX

′
kω·j) =

σjjωjj + 1. Note that E exp(t0(XkjX
′
kω·j)

2/(1 + σjjωjj) ≤ c0 for some absolute constants

t0 and c0. By Theorem 5.23 in Petrov (1995),

P
(∣∣∣ n−1∑

k=1

XkjX
′
kω·j − n+ 1

∣∣∣ ≥ δ√(σjjωjj + 1) log p
)
≤ C(log p)−1/2p−δ

2/2. (38)

Since 1 = E(XkjX
′
kω·j) ≤ E1/2(XkjX

′
kω·j)

2 ≤ σ1/2
jj ω

1/2
jj , we have σjjωjj ≥ 1. This, together

with (37) and (38), yields (36).

Lemma 7. Let Ω̂ be any estimator of Ω and set tn = |Ω̂− Ω|∞. Then on the event

{|ω̂·j |1 ≤ |ω·j |, for 1 ≤ j ≤ p} ,

we have

‖Ω̂− Ω‖1 ≤ 12cn,pt
1−q
n . (39)

Proof. Define

hj = ω̂·j − ω·j , h1
j = (ω̂ijI{|ω̂ij | ≥ 2tn}; 1 ≤ i ≤ p)T − ωj , h2

j = hj − h1
j .

Then

|ω·j |1 − |h1
j |1 + |h2

j |1 ≤ |ω·j + h1
j |1 + |h2

j |1 = |ω̂·j |1 ≤ |ω·j |1,

which implies that |h2
j |1 ≤ |h1

j |1. This follows that |hj |1 ≤ 2|h1
j |1. So we only need to upper

bound |h1
j |1. We have

|h1
j |1 ≤

p∑
i=1

|ω̂ij − ωij |I{|ω̂ij | ≥ 2tn}+

p∑
i=1

|ωij |I{|ω̂ij | < 2tn}

≤
p∑
i=1

tnI{|ωij | ≥ tn}+

p∑
i=1

|ωij |I{|ωij | < 3tn} ≤ 4cn,pt
1−q
n .

So (39) holds.
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The following Lemma is a classical result. It implies that, if we only consider estimators

of symmetric matrices, an upper bound under the matrix `1 norm is an upper bound for

the general matrix `w norm for all 1 ≤ w ≤ ∞, and a lower bound under the matrix `2

norm is also a lower bound for the general matrix `w norm. We give a proof to this lemma

to be self-contained.

Lemma 8. Let A be a symmetric matrix, then

‖A‖2 ≤ ‖A‖w ≤ ‖A‖1

for all 1 ≤ w ≤ ∞.

Proof of Lemma 8. The Riesz-Thorin Interpolation Theorem (See, e.g., Thorin, 1948)

implies

‖A‖w ≤ max
{
‖A‖w1

, ‖A‖w2

}
, for all 1 ≤ w1 ≤ w ≤ w2 ≤ ∞. (40)

Set w1 = 1 and w2 = ∞, then Equation (40) yields ‖A‖w ≤ max {‖A‖1 , ‖A‖∞} for all

1 ≤ w ≤ ∞. When A is symmetric, we know ‖A‖1 = ‖A‖∞, then immediately we have

‖A‖w ≤ ‖A‖1. Since 2 is sandwiched between w and w
w−1 , and ‖A‖w = ‖A‖ w

w−1
by duality,

from Equation (40) we have ‖A‖2 ≤ ‖A‖w for all 1 ≤ w ≤ ∞ when A symmetric.

7.2 Proof of Theorems 2 and 3

We first prove Theorem 2. From Lemma 8 it is enough to consider the w = 1 case. By

Lemma 1, we have with probability greater than An,

|Ω̂1 − Ω|∞ = |(ΩΣ̂− Ip×p)Ω̂1 + Ω(Ip×p − Σ̂Ω̂1)|∞

≤ C‖Ω̂1‖1

√
log p

n
+ 2‖Ω‖1 max

j
σjj max

j
ω̂1
jj

√
log p

n
. (41)

We first assume that maxi ωii > 0.5
√

log p/n. By the above inequality,

max
i

∣∣∣∣ ω̂1
ii

ωii
− 1

∣∣∣∣ ≤ Ccn,p max
i
ω−qii

√
log p

n
+ 3Mcn,p max

i
ω−qii max

j

ω̂1
jj

ωjj

√
log p

n

with probability greater than An. Because λmax(Ω)/λmin(Ω) ≤ M1, we have maxi ω
−q
ii ≤

2(n/ log p)q/2. Thus by the conditions in Theorems 3 and 2, we have

max
i

∣∣∣∣ ω̂1
ii

ωii
− 1

∣∣∣∣ =

{
o(1), under conditions of Theorem 3

O(1/(log p)), under conditions of Theorem 2

with probability greater than An. By (36), we can see that, under conditions of Theorem

2, Ω belongs to the feasible set in (10) with probability greater than An. Under conditions

of Theorem 3, Ω belongs to the feasible set in (10) with probability greater than 1 −
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O
(

(log p)−1/2p−δ
2/4+1+o(1)

)
. So by a similar argument as in (41), we can get |Ω̃1 −Ω|∞ ≤

CMn,p

√
log p
n and

|Ω̂− Ω|∞ ≤ CMn,p

√
log p

n
.

By Lemma 7, we see that

‖Ω̂− Ω‖1 ≤ CM1−q
n,p cn,p(log p/n)(1−q)/2.

We consider the case maxi ωii ≤ 0.5
√

log p/n. Under this setting, we have min1≤i≤j σ
∗
ii >√

n/ log p with probability greater than An. Hence ω̌ii =
√

log p/n ≥ ωii and Ω be-

longs to the feasible set in (10) with probability greater than An. So ‖Ω̂‖1 ≤ ‖Ω‖1 ≤
Ccn,p(log p/n)(1−q)/2. This proves Theorem 2.

To prove Theorem 3, note that ‖Ω̂‖1 ≤ ‖Ω̃1‖1 ≤ ‖Σ̂−1‖1 ≤ np1/2. We have

E
∥∥∥Ω̂− Ω

∥∥∥2
≤ CM2−2q

n,p c2
n,p

(
log p

n

)1−q
+ C(n2p+M2−2q

n,p c2
n,p)p

−δ2/4+1+o(1)(log p)−1/2

≤ CM2−2q
n,p c2

n,p

(
log p

n

)1−q
.

This proves Theorem 3.

7.3 Proof of Lemma 4

We first show that the minimax lower bound over all possible estimators is at the same

order of the minimax lower over only estimators of symmetric matrices under each matrix

`w norm. For each estimator Ω̂, we define a projection of Ω̂ to the parameter space F ,

Ω̂project = arg min
Ω∈F

∥∥∥Ω̂− Ω
∥∥∥
w
,

which is symmetric, then

sup
F

E
∥∥∥Ω̂project − Ω

∥∥∥2

w
≤ sup

F
E
[∥∥∥Ω̂− Ω̂project

∥∥∥
w

+
∥∥∥Ω̂− Ω

∥∥∥
w

]2

≤ sup
F

E
[∥∥∥Ω̂− Ω

∥∥∥
w

+
∥∥∥Ω̂− Ω

∥∥∥
w

]2

= 4 sup
F

E
∥∥∥Ω̂− Ω

∥∥∥2

w
, (42)

where the first inequality follows from the triangle inequality and the second one follows

from the definition of Ω̂project. Since Equation (42) holds for every Ω̂, we have

inf
Ω̂,symmetric

sup
F

E
∥∥∥Ω̂− Ω

∥∥∥2

w
≤ 4 inf

Ω̂
sup
F

E
∥∥∥Ω̂− Ω

∥∥∥2

w
.
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From Lemma 8, we have

inf
Ω̂,symmetric

sup
F

E
∥∥∥Ω̂− Ω

∥∥∥2

w
≥ inf

Ω̂,symmetric
sup
F

E
∥∥∥Ω̂− Ω

∥∥∥2

2
≥ inf

Ω̂
sup
F

E
∥∥∥Ω̂− Ω

∥∥∥2

2
,

which, together with Equation (42), establishes Lemma 4.

7.4 Proof of Lemma 5

Let v = (vi) be a column vector with length p, and

vi =

{
1, p− dp/2e+ 1 ≤ i ≤ p
0, otherwise

i.e., v = (1 {p− dp/2e+ 1 ≤ i ≤ p})p×1. Set

w = (wi) =
[
Ω(θ)− Ω(θ′)

]
v.

Note that for each i, if |γi(θ)− γi(θ′)| = 1, we have |wi| =
Mn,p

2 kεn,p. Then there are at

least H(γ(θ), γ(θ′)) number of elements wi with |wi| = Mn,p

2 kεn,p, which implies

∥∥[Σ(θ)− Σ(θ′)
]
v
∥∥2

2
≥ H(γ(θ), γ(θ′)) ·

(
Mn,p

2
kεn,p

)2

.

Since ‖v‖2 = dp/2e ≤ p, the equation above yields

∥∥Ω(θ)− Ω(θ′)
∥∥2 ≥

‖[Ω(θ)− Ω(θ′)] v‖22
‖v‖2

≥
H(γ(θ), γ(θ′)) · (Mn,p

2 kεn,p)
2

p
,

i.e.,
‖Ω(θ)− Ω(θ′)‖2

H(γ(θ), γ(θ′))
≥ (Mn,pkεn,p)

2

4p

when H(γ(θ), γ(θ′)) ≥ 1.

7.5 Proof of Lemma 6

Without loss of generality we assume that Mn,p is a constant, since the total variance

affinity is scale invariant. The proof of the bound for the affinity given in Lemma 6 is

involved. We break the proof into a few major technical lemmas Without loss of generality

we consider only the case i = 1 and prove that there exists a constant c2 > 0 such that∥∥P̄1,0 ∧ P̄1,1

∥∥ ≥ c2. The following lemma turns the problem of bounding the total variation

affinity into a chi-square distance calculation on Gaussian mixtures. Define

Θ−1 = {(b, c) : there exists a θ ∈ Θ such that γ−1(θ) = b and λ−1(θ) = c} .

which is the set of all values of the upper triangular matrix Ω (θ) could possibly take, with

the first row leaving out.
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Lemma 9. If there is a constant c2 < 1 such that

Average
(γ−1,λ−1)∈Θ−1


∫ (

dP̄(1,1,γ−1,λ−1)

dP̄(1,0,γ−1,λ−1)

)2

dP̄(1,0,γ−1,λ−1) − 1

 ≤ c2
2, (43)

then
∥∥P̄1,0 ∧ P̄1,1

∥∥ ≥ 1− c2 > 0.

From the definition of P̄(1,0,γ−1,λ−1) in Equation (22) and θ in Equation (17), γ1 = 0

implies P̄(1,0,γ−1,λ−1) is a single multivariate normal distribution with a precision matrix,

Ω0 =

(
1 01×(p−1)

0(p−1)×1 S(p−1)×(p−1)

)
(44)

where S(p−1)×(p−1) = (sij)2≤i,j≤p is uniquely determined by (γ−1, λ−1) = ((γ2, ..., γr), (λ2, ..., λr))

with

sij =


1, i = j

εn,p, γi = λi (j) = 1

0, otherwise

.

Let

Λ1 (c) = {a : there exists a θ ∈ Θ such that λ1(θ) = a and λ−1(θ) = c} ,

which gives the set of all possible values of the first row with rest of rows given, i.e., λ−1(θ) =

c, and define pλ−1 = Card (Λ1 (λ−1)), the cardinality of all possible λ1 such that (λ1, λ−1) ∈
Λ for the given λ−1. Then from definitions in Equations (22) and (17) P̄(1,1,γ−1,λ−1) is an

average of
(pλ−1

k

)
multivariate normal distributions with precision matrices of the following

form (
1 r1×(p−1)

r(p−1)×1 S(p−1)×(p−1)

)
(45)

where ‖r‖0 = k with nonzero elements of r equal εn,p and the submatrix S(p−1)×(p−1) is

the same as the one for Σ0 given in (44). It is helpful to observe that pλ−1 ≥ p/4. Let

nλ−1 be the number of columns of λ−1 with column sum equal to 2k for which the first

row has no choice but to take value 0 in this column. Then we have pλ−1 = dp/2e − nλ−1 .

Since nλ−1 · 2k ≤ dp/2e · k, the total number of 1’s in the upper triangular matrix by the

construction of the parameter set, we thus have nλ−1 ≤ dp/2e /2, which immediately implies

pλ−1 = dp/2e − nλ−1 ≥ dp/2e /2 ≥ p/4.

With Lemma 9 in place, it remains to establish Equation (43) in order to prove Lemma

6. The following lemma is useful for calculating the cross product terms in the chi-square

distance between Gaussian mixtures. The proof of the lemma is straightforward and is thus

omitted.
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Lemma 10. Let gi be the density function of N
(
0,Ω−1

i

)
for i = 0, 1 and 2. Then∫

g1g2

g0
=

det (I)[
det
(
I − Ω−1

1 Ω−1
2 (Ω2 − Ω0) (Ω1 − Ω0)

)]1/2 .

Let Ωi, i = 1 or 2, be two precision matrices of the form (45). Note that Ωi, i = 0, 1

or 2, differs from each other only in the first row/column. Then Ωi − Ω0, i = 1 or 2, has

a very simple structure. The nonzero elements only appear in the first row/column, and

in total there are 2k nonzero elements. This property immediately implies the following

lemma which makes the problem of studying the determinant in Lemma 10 relatively easy.

Lemma 11. Let Ωi, i = 1 and 2, be the precision matrices of the form (45). Define J to

be the number of overlapping εn,p’s between Ω1 and Ω2 on the first row, and

Q
4
= (qij)1≤i,j≤p = (Ω2 − Ω0) (Ω1 − Ω0) .

There are index subsets Ir and Ic in {2, . . . , p} with Card (Ir) = Card (Ic) = k and

Card (Ir ∩ Ic) = J such that

qij =


Jε2n,p, i = j = 1

ε2n,p, i ∈ Ir and j ∈ Ic
0, otherwise

and the matrix (Ω2 − Ω0) (Ω1 − Ω0) has rank 2 with two identical nonzero eigenvalues Jε2n,p.

Let

R
γ−1,λ−1

λ1,λ́1
= − log det

(
I − Ω−1

1 Ω−1
2 (Ω2 − Ω0) (Ω1 − Ω0)

)
, (46)

where Ω0 is defined in (44) and determined by (γ−1, λ−1), and Ω1 and Ω2 have the first row

λ1 and λ́1 respectively. We drop the indices λ1, λ́1 and (γ−1, λ−1) from Ωi to simplify the

notations. Define

Θ−1 (a1, a2)

= {0, 1}r−1 ⊗ {c ∈ Λ−1 : there exist θi ∈ Θ, i = 1 and 2, such that λ1(θi) = ai, λ−1(θi) = c} .

It is a subset of Θ−1 in which the element can pick both a1 and a2 as the first row to form

parameters in Θ. From Lemma 10 the left hand side of Equation (43) can be written as

Average
(γ−1,λ−1)∈Θ−1

{
Average

λ1,λ́1∈Λ1(λ−1)

[
exp(

n

2
·Rγ−1,λ−1

λ1,λ́1
)− 1

]}

= Average
λ1,λ́1∈B

 Average
(γ−1,λ−1)∈Θ−1(λ1,λ́1)

[
exp(

n

2
·Rγ−1,λ−1

λ1,λ́1
)− 1

] .
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The following result shows thatR
γ−1,λ−1

λ1,λ́1
is approximately− log det (I − (Ω2 − Ω0) (Ω1 − Ω0))

which is equal to −2 log
(
1− Jε2n,p

)
from Lemma 11. Define

Λ1,J =
{(
λ1, λ

′
1

)
∈ Λ1 ⊗ Λ1 : the number of overlapping εn,p’s between λ1and λ′1is J

}
.

Lemma 12. For Rλ1,λ́1
defined in Equation (46) we have

R
γ−1,λ−1

λ1,λ́1
= −2 log

(
1− Jε2n,p

)
+R

γ−1,λ−1

1,λ1,λ́1
(47)

where R
γ−1,λ−1

1,λ1,λ́1
satisfies

Average
(λ1,λ′1)∈Λ1,J

 Average
(γ−1,λ−1)∈Θ−1(λ1,λ́1)

exp
(n

2
R
γ−1,λ−1

1,λ1,λ́1

) = 1 + o (1) , (48)

where J is defined in Lemma 11.

7.5.1 Proof of Equation (43)

We are now ready to establish Equation (43) which is the key step in proving Lemma 6. It

follows from Equation (47) in Lemma 12 that

Average
λ1,λ́1∈B

 Average
(γ−1,λ−1)∈Θ−1(λ1,λ́1)

[
exp(

n

2
R
γ−1,λ−1

λ1,λ́1
)− 1

]
= Average

J

exp
[
−n log

(
1− Jε2n,p

)]
· Average
(λ1,λ′1)∈Λ1,J

 Average
(γ−1,λ−1)∈Θ−1(λ1,λ́1)

exp(
n

2
R
γ−1,λ−1

1,λ1,λ́1
)

− 1

 .

Recall that J is the number of overlapping εn,p’s between Σ1 and Σ2 on the first row. It

can be shown that J has the hypergeometric distribution with

P (number of overlapping εn,p’s = j) =

(
k

j

)(
pλ−1 − k
k − j

)
/

(
pλ−1

k

)
≤
(

k2

pλ−1 − k

)j
. (49)

Equation (49) and Lemma 12, togetehr with Equation (24), imply

Average
(γ−1,λ−1)∈Θ−1


∫ (

dP̄(1,1,γ−1,λ−1)

dP̄(1,0,γ−1,λ−1)

)2

dP̄(1,0,γ−1,λ−1) − 1


≤

∑
j≥0

(
k2

p/4− 1− k

)j {
exp

[
−n log

(
1− jε2n,p

)]
· (1 + o (1))− 1

}
(50)

≤ (1 + o (1))
∑
j≥1

(
p
β−1
β

)−j
exp

[
2j
(
υ2 log p

)]
+ o (1)

≤ C
∑
j≥1

(
p
β−1
β
−2υ2

)−j
+ o (1) < c2

2,
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where the last step follows from υ2 < β−1
8β , and k2 ≤ [cn,p(Mn,pεn,p)

−q]
2

= O
(

n
log3 p

)
=

o
(
p1/β

log p

)
from Equations (25) and (16) and the condition p > c1n

β for some β > 1, and c2

is a positive constant.

7.6 Proof of Lemma 12

Let

A =
(
I − Ω−1

1 Ω−1
2

)
(Ω2 − Ω0) (Ω1 − Ω0) [I − (Ω2 − Ω0) (Ω1 − Ω0)]−1 . (51)

Since ‖Ωi − Ω0‖ ≤ ‖Ωi − Ω0‖1 ≤ 2kεn,p = o (1/ log p) from Equation(27), it is easy to see

that

‖A‖ = O (kεn,p) = o (1) . (52)

Define

R
γ−1,λ−1

1,λ1,λ́1
= − log det (I −A) .

Then we can rewrite R
γ−1,λ−1

λ1,λ́1
as follows

R
γ−1,λ−1

λ1,λ́1
= − log det

(
I − Ω−1

1 Ω−1
2 (Ω2 − Ω0) (Ω1 − Ω0)

)
= − log det ([I −A] · [I − (Ω2 − Ω0) (Ω1 − Ω0)])

= − log det [I − (Ω2 − Ω0) (Ω1 − Ω0)]− log det (I −A)

= −2 log
(
1− Jε2n,p

)
+R

γ−1,λ−1

1,λ1,λ́1
, (53)

where the last equation follows from Lemma 11. To establish Lemma 12 it is enough to

establish Equation (48).

Let

B1 = (b1,ij)p×p =
[
I − (Ω1 − Ω0 + I)−1 (Ω2 − Ω0 + I)−1

]
,

B2 = (b2,ij)p×p = (Ω2 − Ω0) (Ω1 − Ω0) [I − (Ω2 − Ω0) (Ω1 − Ω0)]−1 ,

and define

A1 = (a1,ij) = B1B2. (54)

Similar to Equation (52), we have ‖A1‖ = o (1), and write

R
γ−1,λ−1

1,λ1,λ́1
= − log det (I −A1)− log det

[
(I −A1)−1 (I −A)

]
.

To establish Equation (48), it is enough to show that

exp
[
−n

2
log det (I −A1)

]
= 1 + o (1) , (55)

27



and that

Average
(γ−1,λ−1)∈Θ−1(λ1,λ́1)

exp
(
−n

2
log det

[
(I −A1)−1 (I −A)

])
= 1 + o (1) . (56)

The proof for Equation (55) is as follows. Write

Ω1−Ω0 =

(
0 v1×(p−1)(

v1×(p−1)

)T
0(p−1)×(p−1)

)
, and Ω2−Ω0 =

 0 v∗1×(p−1)(
v∗1×(p−1)

)T
0(p−1)×(p−1)


where v1×(p−1) = (vj)2≤j≤p satisfies vj = 0 for 2 ≤ j ≤ p − r and vj = 0 or 1 for

p − r + 1 ≤ j ≤ p with ‖v‖0 = k, and v∗1×(p−1) =
(
v∗j

)
2≤j≤p

satisfies a similar property.

Without loss of generality we consider only a special case with

vj =

{
1, p− r + 1 ≤ j ≤ p− r + k

0, otherwise
, and v∗j =

{
1, p− r + k − J ≤ j ≤ p− r + 2k − J
0, otherwise

.

Note that B1 can be written as a polynomial of Ω1−Ω0 and Ω2−Ω0, and B2 can be written

as a polynomial of (Ω2 − Ω0) (Ω1 − Ω0) . By a straightforward calculation it can be shown

that

|b1,ij | =


O (εn,p) ,

i = 1 and p− r + 1 ≤ j ≤ p− r + 2k − J ,

or j = 1 and p− r + 1 ≤ i ≤ p− r + 2k − J , or i = j = 1

O
(
ε2n,p
)
, p− r + 1 ≤ i ≤ p− r + 2k − J , and p− r + 1 ≤ j ≤ p− r + 2k − J

0, otherwise

,

and

0 ≤ b2,ij =


O
(
Jε2n,p

)
, i = j = 1

τn,p, p− r + 1 ≤ i ≤ p− r + k, and p− r + k − J ≤ j − 1 ≤ p− r + 2k − J
0, otherwise

,

where τn,p = O
(
ε2n,p
)
, which implies

|a1,ij | =


O
(
kε3n,p

)
, i = 1 and p− r + k − J ≤ j − 1 ≤ p− r + 2k − J , or i = j = 1

O
(
Jε3n,p

)
, j = 1 and p− r + 1 ≤ i ≤ p− r + 2k − J

O
(
kε4n,p

)
, p− r + 1 ≤ i ≤ p− r + 2k − J , and p− r + k − J ≤ j − 1 ≤ p− r + 2k − J

0, otherwise

.

Note that rank (A1) ≤ 2 due to the simple structure of (Ω2 − Ω0) (Ω1 − Ω0). Let A2 =

(a2,ij) with

|a2,ij | =


O
(
kε3n,p

)
, i = 1 and j = 1

O
(
kε4n,p + Jkε6n,p

)
, p− r + 1 ≤ i ≤ p− r + 2k − J

and p− r + k − J ≤ j − 1 ≤ p− r + 2k − J
0, otherwise

,

28



and rank (A2) ≤ 4 by eliminating the non-zero off-diagonal elements of the first row and

column of A1, and

exp
[
−n

2
log det (I −A1)

]
= exp

[
−n

2
log det (I −A2)

]
.

We can show that all eigenvalues of A∗1 are O
(
Jk2ε6n,p + k2ε4n,p + kε3n,p

)
. Since kεn,p =

o (1/ log p) , then

nkε3n,p = υ3k (log p)1/2

√
n

log p = o (1)

which implies

n
(
Jk2ε6n,p + k2ε4n,p + kε3n,p

)
= o (1) .

Thus

exp
[
−n

2
log det (I −A1)

]
= 1 + o (1) .

Now we establish Equation (56), which, together with Equation (55), yields Equation

(48) and thus Lemma 12 is established. Write

(I −A1)−1 (I −A)− I = (I −A1)−1 [(I −A)− (I −A1)] = (I −A1)−1 (A1 −A)

= (I −A1)−1
[
Ω−1

1 Ω−1
2 − (Ω1 − Ω0 + I)−1 (Ω2 − Ω0 + I)−1

]
· (Ω2 − Ω0) (Ω1 − Ω0) [I − (Ω2 − Ω0) (Ω1 − Ω0)]−1

where

Ω−1
1 Ω−1

2 − (Ω1 − Ω0 + I)−1 (Ω2 − Ω0 + I)−1

= Ω−1
1 Ω−1

2 [(Ω2 − Ω0 + I) (Ω1 − Ω0 + I)− Ω2Ω1] (Ω1 − Ω0 + I)−1 (Ω2 − Ω0 + I)−1

= Ω−1
1 Ω−1

2

[
(−Ω0 + I) Ω1 + Ω2 (−Ω0 + I) + (−Ω0 + I)2

]
(Ω1 − Ω0 + I)−1 (Ω2 − Ω0 + I)−1 .

It is important to observe that rank
(

(I −A1)−1 (I −A)− I
)
≤ 2 again due to the simple

structure of (Ω2 − Ω0) (Ω1 − Ω0), then − log det
[
(I −A1)−1 (I −A)

]
is determined by at

most two nonzero eigenvalues, which are bounded by∥∥∥(I −A1)−1 (I −A)− I
∥∥∥ = (1 + o (1)) ‖(I − Ω0) (Ω2 − Ω0) (Ω1 − Ω0)‖ . (57)

Note that
∥∥∥(I −A1)−1 (I −A)− I

∥∥∥ = o (1), and

|log (1− x)| ≤ 2 |x| , for |x| < 1/3,

which implies ∣∣∣− log det
[
(I −A1)−1 (I −A)

]∣∣∣ ≤ 2
∥∥∥(I −A1)−1 (I −A)− I

∥∥∥ ,
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i.e.,

exp
(n

2
· − log det

[
(I −A1)−1 (I −A)

])
≤ exp

(
n
∥∥∥(I −A1)−1 (I −A)− I

∥∥∥) .

Define

A∗ = (I − Ω0) (Ω2 − Ω0) (Ω1 − Ω0) ,

then

exp
(n

2
· − log det

[
(I −A1)−1 (I −A)

])
≤ exp ((1 + o(1))n ‖A∗‖)

from Equations (57). It is then sufficient to show

Average
(γ−1,λ−1)∈Θ−1(λ1,λ́1)

exp (2n ‖A∗‖) = 1 + o (1)

where ‖A∗‖ depends on the values of λ1, λ́1 and (γ−1, λ−1). We dropped the indices λ1, λ́1

and (γ−1, λ−1) from A to simplify the notations.

Let Em = {1, 2, . . . , r} / {1,m}. Let nλEm be the number of columns of λEm with

column sum at least 2k − 2 for which two rows can not freely take value 0 or 1 in this

column. Then we have pλEm = dp/2e − nλEm . Without loss of generality we assume that

k ≥ 3. Since nλEm · (2k − 2) ≤ dp/2e · k, the total number of 1’s in the upper triangular

matrix by the construction of the parameter set, we thus have nλEm ≤ dp/2e ·
3
4 , which

immediately implies pλEm = dp/2e − nλEm ≥ dp/2e
1
4 ≥ p/8. Thus we have

P
(
‖A∗‖ ≥ 2t · εn,p · kε2n,p

)
≤ P

(
‖A∗‖1 ≥ 2t · εn,p · kε2n,p

)
≤

∑
m

Average
λEm

(
k
t

)(pλEm
k−t

)(pλEm
k

) ≤ p
(

k2

p/8− k

)t
from Equation (49), which immediately implies

Average
(γ−1,λ−1)∈Θ−1(λ1,λ́1)

exp (2n ‖A∗‖)

≤ exp

(
4n · 2 (β − 1)

β
· εn,p · kε2n,p

)
+

∫ ∞
2(β−1)
β

exp
(
2n · 2t · εn,p · kε2n,p

)
p

(
k2

p/8− k

)t
dt

= exp

(
8 (β − 1)

β
nkε3n,p

)
+

∫ ∞
2(β−1)
β

exp

[
log p+ t

(
4nkε3n,p − log

k2

p/8− k

)]
dt

= 1 + o (1) ,

where the last step is an immediate consequence of the following two equations,

nkε3n,p = o (1)
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and

(1 + o (1)) 2 log p ≤ t log
p/8− 1− k

k2
, for t ≥ 2 (β − 1)

β

which follow from k2 = O (n) = O
(
p1/β

)
from Equation (25) and the condition p > c1n

β

for some β > 1.
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