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We congratulate Professors Duchi, Jordan and Wainwright on their path-breaking work
in statistical decision theory and privacy. Their extension of classical information-theoretic
lower bounds of Le Cam, Fano, and Assouad to local differential privacy can potentially
lead to a systematic study of various lower bounds under all kinds of privacy constraints.
Their successful treatments of some interesting problems in the paper shed light on possibly
a unified theory for a general statistical framework.

Computer Science and Statistics. The discipline of computer science has achieved
remarkable progress recently and has exerted continuous and increasing influence on statis-
tics. In Rise of the Machines [Wasserman, 2014], Professor Larry Wasserman writes,

“There are many statistical topics that are dominated by ML and mostly ig-
nored by statistics. This is a shame because statistics has much to offer in all
these areas. Examples include semi-supervised inference, computational topol-
ogy, online learning, sequential game theory, hashing, active learning, deep
learning, differential privacy, random projections and reproducing kernel Hilbert
spaces.”

Some of the aforementioned topics have deep roots in statistics. They have been studied by
statisticians for years and popularized in machine learning. The main topic of this paper,
local differential privacy, will likely be among these topics. It was proposed in Warner
[1965] for survey sampling, but it is becoming increasingly important in the big data era.
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Decision Theory. The optimality study under a privacy constraint can be seen as a
special case of constrained minimax analysis. The minimax theory lies at the heart of
decision theory, which studies the difficulty and fundamental limits of various statistical
tasks. The classical minimax analysis is often criticized for being both over-pessimistic
and over-optimistic. It is pessimistic because it quantifies the performance of procedures
by the least favorable case; on the other hand, it is optimistic because all procedures are
considered, even those that are not feasible in practice. In spite of the existence of rich
and abundant philosophical discussions and literature on the former pessimism of minimax
theory, the latter optimism receives little attention and few investigations. But in practice
procedures are often restricted for various reasons including privacy, computation, and
communication.

For most statistical problems, we have observations X generated from some underlying
model parameterized by θ from a parameter space Θ. The task is to estimate the unknown
parameter θ from the data. The evaluation is carried out through some loss function `(·, ·),
and the statistical hardness of the problem is measured by

inf
θ̂

sup
θ∈Θ

E`(θ̂(X), θ). (1)

This is the standard minimax formulation. Due to constraints over θ̂, it is entirely possible
that the minimax risk can never be attained in practice.

In the constrained minimax analysis, the estimator θ̂ is restricted to satisfy certain
properties. It can be formulated in a way like Equation (1) as follows

inf
θ̂∈S

sup
θ∈Θ

E`(θ̂(X), θ), (2)

where the space S may include only algorithms under certain constraints such as: 1)
privacy; 2) polynomial-time; 3) convex; or 4) computational resources (for example, storage
constraint) [Zhu and Lafferty, 2017]. In some special cases, the space S may be restricted
so that θ̂ = θ̃ ◦Q where Q is a mapping from X to Y and θ̃ is an estimator on Y . In other
words, it can be represented in the following diagram:

θ → X
Q−→ Y

θ̃−→ θ̂.

Equation (2) then becomes

inf
Q∈Q

inf
θ̃

sup
θ∈Θ

E`(θ̃(Q(X)), θ), (3)
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where the space Q may contain all mappings from X to Y that 1) preserve the privacy
as considered in this paper or 2) meet certain communication requirements for distributed
computation [Zhang et al., 2013].

Equations (2) and (3) are generalizations of the classical minimaxity. They provide
statistically meaningful ways for studying constrained tasks. It would be very interesting,
although possibly extremely challenging, to have a systematic study of constrained minimax
theory, at least for some important spaces S and Q.

Privacy. In this era of big data, privacy is becoming very important. Statisticians and
data scientists ought to extract knowledge or insights from data, and hope that little
personal identity or sensitive information is unveiled. There is a trade-off between statistical
accuracy and privacy. The authors of this paper investigated this interplay under the α-
differentially local privacy. New technical tools were developed in the paper. For example,
the authors obtained the private versions of Le Cam’s two-point hypothesis testing, Fano’s
lemma, and Assouad’s method which are the cornerstones of establishing minimax lower
bound. They also obtained sharp α-private minimax rates under various settings and
proposed some mechanisms to attain them. Again we congratulate the authors on those
exciting achievements, which open the door to many avenues of research ahead.

• Centralized Privacy. The private channel Q considered in this paper essentially op-
erates on each data point of X = (x1, x2, . . . , xn) individually. Since for each data
point the mapping is α-differentially privacy-preserving, the channel Q satisfies α-
differential privacy globally. It is more popular and less restrictive to quantify privacy
globally. In most literature (e.g., Dwork and Roth [2014]), α-differential privacy is
defined in a centralized sense,

sup
A

Q(Q(X) ∈ A|X)

Q(Q(X ′) ∈ A|X ′)
≤ exp(α),∀X,X ′ s.t. H(X,X ′) = 1, (4)

where H(·, ·) measures how many data points differ in two sets. It will be interesting
to see if the conclusions in this paper will be changed when the definition of privacy
is shifted from local to its centralized counterpart. For example, the authors point
out that the effect of local α-differential privacy is to reduce the effective sample size
from n to α2n under several scenarios. But does the same reduction hold true if the
centralized differential privacy is considered instead? Similar questions can be raised
for other privacy constraints such as (α, δ)-differential privacy introduced in Dwork
et al. [2006].
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• General Settings. The authors obtained sharp private minimax rates for various sta-
tistical tasks, including mean/median estimation, logistic regression, nonparametric
density estimation, etc. Though only the simplest cases were investigated, this pa-
per successfully illustrates the effect of privacy constraint on the minimax rates and
the potential difficulties in the theoretical analysis. It is of great value and interest
to go beyond these basic cases to see how privacy-preserving minimax rates behave
under more sophisticated and complex settings. For instance, the authors showed
that for d-dimensional bounded mean estimation, the α-private minimax rate is pro-
portional to the dimensionality d, which is different to the classical one. The same
phenomenon was observed for high-dimensional parameter estimation with sparsity
s = 1. A follow-up question is whether the existence of this extra d factor is universal.
If so, it will be fascinating to have a unified theory depending only on complexity
and dimensionality for a general class of statistical models including high-dimensional
linear regression for arbitrary sparsity s. To achieve this, we will likely need a very
sophisticated extension of private versions of lower bounds presented in this paper.
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