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1 Introduction

The main goal of the asymptotic equivalence theory is to approximate general statistical

models by simple ones. If a complex model is asymptotically equivalent to a simple model,

then all asymptotically optimal procedures can be carried over from the simple model to

the complex one for bounded loss functions and the study of the complex model is then

essentially simplified. Early work on asymptotic equivalence theory was focused on the

parametric models and the equivalence is local. See Le Cam (1986).

There have been important developments in the asymptotic equivalence theory for

nonparametric models in the last decade or so. In particular, global asymptotic equiva-

lence theory has been developed for nonparametric regression in Brown and Low (1996)

and Brown, Cai, Low and Zhang (2002), nonparametric density estimation models in

Nussbaum (1996) and Brown, Carter, Low and Zhang (2004), generalized linear models

in Grama and Nussbaum (1998), nonparametric autoregression in Milstein and Nussbaum

(1998), diffusion models in Delattre and Hoffmann (2002) and Genon-Catalot, Laredo and

Nussbaum (2002), GARCH model in Wang (2002) and Brown, Wang and Zhao (2003),

and spectral density estimation in Golubev, Nussbaum and Zhou (2005).

So far all the asymptotic equivalence results developed in the literature are only for

bounded loss functions. However, for many statistical applications, asymptotic equiva-

lence under bounded losses is not sufficient because many commonly used loss functions

in statistical inference such as squared error loss are unbounded. As commented by Iain

Johnstone (2002) on the asymptotic equivalence results, “Some cautions are in order when

interpreting these results. ....... Meaningful error measures ...... may not translate into,

say, squared error loss in the Gaussian sequence model.”

In this paper we develop asymptotic equivalence results for robust nonparametric

regression with an unknown symmetric error distribution for unbounded loss functions

which include for example the commonly used squared error and integrated squared error

losses. Consider the nonparametric regression model

Yi = f(
i

n
) + ξi, i = 1, . . . , n (1)

where the errors ξi are independent and identically distributed with some density h. The

error density h is assumed to be symmetric with median 0, but otherwise unknown.

Note that for some heavy-tailed distributions such as Cauchy distribution the mean does

not even exist. We thus do not assume the existence of the mean here. One is often

interested in robustly estimating the regression function f or some functionals of f . These

problems have been well studied in the case of Gaussian errors. In the present paper we

introduce a unified approach to turn the general nonparametric regression model (1) into
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a standard Gaussian regression model and then in principle any procedure for Gaussian

nonparametric regression can be applied. More specifically, with properly chosen T and

m, we propose to divide the observations Yi into T bins of size m and then take the median

Xj of the observations in the jth bin for j = 1, ..., T . The asymptotic equivalence results

developed in Section 2 show that under mild regularity conditions, for a wide collection

of error distributions the experiment of observing the medians {Xj : j = 1, ..., T} is in

fact asymptotically equivalent to the standard Gaussian nonparametric regression model

Yi = f(
i

T
) +

1
2h(0)

√
m

zi, zi
iid∼ N(0, 1), i = 1, . . . , T (2)

for a large class of unbounded losses. Detailed arguments are given in Section 2.

We develop the asymptotic equivalence results for the general regression model (1)

by first extending the classical formulation of asymptotic equivalence in Le Cam (1964)

to accommodate unbounded losses. The asymptotic equivalence result has significant

practical implications. It implies that all statistical procedures for any asymptotic decision

problem in the setting of the Gaussian nonparametric regression can be carried over to

solve problems in the general nonparametric regression model (1) for a class of unbounded

loss functions. In other words, all the Gaussian nonparametric regression procedures can

be robustified in a unified way. We illustrate the applications of the general principles in

two important nonparametric inference problems under the model (1): robust estimation

of the regression function f under integrated squared error loss and the estimation of the

quadratic functional Q(f) =
∫

f2 under squared error.

As we demonstrate in Sections 3 and 4 the key step in the asymptotic equivalence

theory, binning and taking the medians, can be used to construct simple and easily imple-

mentable procedures for estimating the regression function f and the quadratic functional∫
f2. After obtaining the medians of the binned data, the general model (1) with an un-

known symmetric error distribution is turned into a familiar Gaussian regression model,

and then a Gaussian nonparametric regression procedure can be applied. In Section 3 we

choose to employ a blockwise James-Stein wavelet estimator, BlockJS, for the Gaussian

regression problem because of its desirable theoretical and numerical properties. See Cai

(1999). The robust wavelet regression procedure has two main steps: 1. Binning and

taking median of the bins; 2. Applying the BlockJS procedure to the medians. The pro-

cedure is shown to achieve four objectives simultaneously: robustness, global adaptivity,

spatial adaptivity, and computational efficiency. Theoretical results in Section 3.2 show

that the estimator achieves optimal global adaptation for a wide range of Besov balls as

well as a large collection of error distributions. In addition, it attains the local adaptive

minimax rate for estimating functions at a point. Figure 1 compares a direct wavelet
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estimate with our robust estimate in the case of Cauchy noise. The example illustrates

the fact that direct application of a wavelet regression procedure designed for Gaussian

noise may not work at all when the noise is in fact heavy-tailed. On the other hand, our

robust procedure performs well even in Cauchy noise.

Spikes with Cauchy Noise

0.0 0.2 0.4 0.6 0.8 1.0

-150
-100

-50
0

50

0.0 0.2 0.4 0.6 0.8 1.0

-150
-100

-50
0

50

Direct Wavelet Estimate

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

Robust Estimate

Figure 1: Left panel: Spikes signal with Cauchy noise; Middle panel: An estimate obtained by

applying directly a wavelet procedure to the original noisy signal; Right panel: A robust estimate

by apply a wavelet block thresholding procedure to the medians of the binned data. Sample size

is 4096 and bin size is 8.

In Section 4 we construct a robust procedure for estimating the quadratic functional

Q(f) =
∫

f2 following the same general principles. Other problems such as construction of

confidence sets and nonparametric hypothesis testing can be handled in a similar fashion.

Key technical tools used in our development are an improved moderate deviation result

for the median statistic and a better quantile coupling inequality. Median coupling has

been considered in Brown, Cai and Zhou (2008). For the asymptotic equivalence results

given in Section 2 and the proofs of the theoretical results in Section 3 we need a more

refined moderate deviation result for the median and an improved coupling inequality than

those given in Brown, Cai and Zhou (2008). These improvements play a crucial role in this

paper for establishing the asymptotic equivalence as well as robust and adaptive estimation

results. The results may be of independent interest for other statistical applications.

The paper is organized as follows. Section 2 develops an asymptotic equivalence the-

ory for unbounded loss functions. To illustrate the general principles of the asymptotic

equivalence theory, we then consider robust estimation of the regression function f un-

der integrated squared error in Section 3 and estimation of the quadratic functional
∫

f2
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under squared error in Section 4. The two estimators are easily implementable and are

shown to enjoy desirable robustness and adaptivity properties. In Section 5 we derive a

moderate deviation result for the medians and a quantile coupling inequality. The proofs

are contained in Section 6.

2 Asymptotic equivalence

This section develops an asymptotic equivalence theory for unbounded loss functions. The

results reduce the general nonparametric regression model (1) to a standard Gaussian

regression model.

The Gaussian nonparametric regression has been well studied and it often serves as a

prototypical model for more general nonparametric function estimation settings. A large

body of literature has been developed for minimax and adaptive estimation in the Gaussian

case. These results include optimal convergence rates and optimal constants. See, e.g.,

Pinsker (1980), Korostelev (1993), Donoho, Johnstone, Kerkyacharian, and Picard (1995),

Johnstone (2002), Tsybakov(2004), Cai and Low (2005, 2006b) and references therein for

various estimation problems under various loss functions. The asymptotic equivalence

results established in this section can be used to robustify these procedures in a unified

way to treat the general nonparametric regression model (1).

We begin with a brief review of the classical formulation of asymptotic equivalence

and then generalize the classical formulation to accommodate unbounded losses.

2.1 Classical asymptotic equivalence theory

Lucien Le Cam (1986) developed a general theory for asymptotic decision problems. At the

core of this theory is the concept of a distance between statistical models (or experiments),

called Le Cam’s deficiency distance. The goal is to approximate general statistical models

by simple ones. If a complex model is close to a simple model in Le Cam’s distance, then

there is a mapping of solutions to decision theoretic problems from one model to the other

for all bounded loss functions. Therefore the study of the complex model can be reduced

to the one for the simple model.

A family of probability measures E = {Pθ : θ ∈ Θ} defined on the same σ-field of a

sample space Ω is called a statistical model (or experiment). Le Cam (1964) defined a

distance ∆(E, F ) between E and another model F = {Qθ : θ ∈ Θ} with the same param-

eter set Θ by the means of “randomizations”. Suppose one would like to approximate E

by a simpler model F . An observation x in E can be mapped into the sample space of F

by generating an “observation” y according to a Markov kernel Kx, which is a probability
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measure on the sample space of F . Suppose x is sampled from Pθ. Write KPθ for the

distribution of y with KPθ (A) =
∫

Kx (A) dPθ for a measurable set A. The deficiency

δ of E with respect to F is defined as the smallest possible value of the total variation

distance between KPθ and Qθ among all possible choices of K, i.e.,

δ (E, F ) = inf
K

sup
ϑ∈Θ

|KPϑ −Qϑ|TV .

See Le Cam (1986, page 3) for further details. The deficiency δ of E with respect to

F can be explained in terms of risk comparison. If δ (E, F ) ≤ ε for some ε > 0, it is

easy to see that for every procedure τ in F there exists a procedure ξ in E such that

R(θ; ξ) ≤ R(θ; τ) + 2ε for every θ ∈ Θ and any loss function with values in the unit

interval. The converse is also true. Symmetrically one may consider the deficiency of F

with respect to E as well. The Le Cam’s deficiency distance between the models E and

F is then defined as

∆ (E, F ) = max (δ (E, F ) , δ (F,E)) . (3)

For bounded loss functions, if ∆(E,F ) is small, then to every statistical procedure for

E there is a corresponding procedure for F with almost the same risk function and vice

versa. Two sequences of experiments En and Fn are called asymptotically equivalent,

if ∆ (En, Fn) → 0 as n → ∞. The significance of asymptotic equivalence is that all

asymptotically optimal statistical procedures can be carried over from one experiment to

the other for bounded loss functions.

2.2 Extension of the classical asymptotic equivalence formulation

For many statistical applications, asymptotic equivalence under bounded losses is not suffi-

cient because many commonly used loss functions are unbounded. Let En = {Pθ,n : θ ∈ Θ}
and Fn = {Qθ,n : θ ∈ Θ} be two asymptotically equivalent models in Le Cam’s sense. Sup-

pose that the model Fn is simpler and well studied and a sequence of estimators θ̂n satisfy

EQθ,n
nrd

(
θ̂n, θ

)
→ c as n →∞,

where d is a distance between θ̂ and θ, and r, c > 0 are constants. This implies that

θ can be estimated by θ̂n under the distance d with a rate n−r. Examples include

EQθ,n
n

(
θ̂ − θ

)2
→ c in many parametric estimation problems, and EQf,n

nr
∫

(f̂−f)2dµ →
c, where f is an unknown function and 0 < r < 1, in many nonparametric estimation

problems. The asymptotic equivalence between En and Fn in the classical sense does not

imply that there is an estimator θ̂∗ in En such that

EPθ,n
nrd

(
θ̂∗, θ

)
→ c.
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In this setting the loss function is actually L(ϑ, θ) = nrd (ϑ, θ) which grows as n increases,

and is usually unbounded.

In this section we introduce a new asymptotic equivalence formulation to handle un-

bounded losses. Let Λ be a set of procedures, and Γ be a set of loss functions. We define

the deficiency distance ∆ (E, F ; Γ, Λ) as follows.

Definition 1 Define δ (E, F ; Γ,Λ) ≡ inf{ε ≥ 0 : for every procedure τ ∈ Λ in F there

exists a procedure ξ ∈ Λ in E such that R(θ; ξ) ≤ R(θ; τ)+2ε for every θ ∈ Θ for any loss

function L ∈ Γ}. Then the deficiency distance between models E and F for the loss class

Γ and procedure class Λ is defined as ∆(E, F ; Γ, Λ) = max{δ(E, F ; Γ, Λ), δ(F,E; Γ, Λ)}.

In other words, if the deficiency ∆(E,F ; Γ, Λ) is small, then to every statistical proce-

dure for one experiment there is a corresponding procedure for another experiment with

almost the same risk function for losses L ∈ Γ and procedures in Λ.

Definition 2 Two sequences of experiments En and Fn are called asymptotically equiva-

lent with respect to the set of procedures Λn and set of loss functions Γn if ∆(En, Fn; Γn, Λn) →
0 as n →∞.

If En and Fn are asymptotically equivalent, then all asymptotically optimal statistical

procedures in Λn can be carried over from one experiment to the other for loss functions

L ∈ Γn with essentially the same risk. The definitions here generalize the classical asymp-

totic equivalence formulation, which corresponds to the special case with Γ being the set

of loss functions with values in the unit interval.

For most statistical applications the loss function is bounded by a certain power of

n. We now give a sufficient condition for the asymptotic equivalence under such losses.

Suppose that we estimate f or a functional of f under a loss L. Let pf,n and qf,n be the

density functions respectively for En and Fn. Note that in the classical formulation of

asymptotic equivalence for bounded losses, the deficiency of En with respect to Fn goes

to zero if there is a Markov kernel K such that

sup
f
|KPf,n −Qf,n|TV → 0 (4)

For unbounded losses the condition (4) is no longer sufficient to guarantee that the de-

ficiency goes to zero. Let p∗f,n and qf,n be the density functions of KPf,n and Qf,n

respectively. Let ϕ (f) be an estimand, which can be f or a functional of f . Suppose that

in Fn there is an estimator ϕ̂ (f)q of ϕ (f) such that
∫

L(ϕ̂(f)q, ϕ(f))qf,n → c.
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We would like to derive sufficient conditions under which there is an estimator ϕ̂ (f)p in

En such that ∫
L(ϕ̂(f)p, ϕ(f))pf,n → c.

Note that if ϕ̂(f)p is constructed by mapping over ϕ̂(f)q via a Markov kernel T , then

EL(ϕ̂(f)p, ϕ(f)) =
∫

L(ϕ̂(f)q, ϕ(f))p∗f,n ≤
∫

L(ϕ̂(f)q, ϕ(f))qf,n+
∫

L(ϕ̂(f)q, ϕ(f))|p∗f,n−qf,n|

Let Aεn =
{
|1− p∗f,n/qf,n| < εn

}
for some εn → 0, and write

∫
L(ϕ̂(f)q, ϕ(f))|p∗f,n − qf,n| =

∫
L(ϕ̂(f)q, ϕ(f))|p∗f,n − qf,n| [I(A) + I(Ac)]

≤ εn

∫
L(ϕ̂(f)q, ϕ(f))qf,n +

∫
L(ϕ̂(f)q, ϕ(f))qf,nI(Ac

n).

If Qf,n(Ac
n) decays exponentially fast uniformly over F and L is bounded by a polynomial

of n, this formula implies that
∫

L(ϕ̂ (f)q, ϕ (f))|p∗f,n − qf,n| = o(1).

Assumption (A0): For each estimand ϕ(f), each estimator ϕ̂(f) ∈ Λn and each L ∈ Γn,

there is a constant M > 0, independent of the loss function and the procedure, such that

L(ϕ̂(f), ϕ(f)) ≤ MnM .

The following result summarizes the above discussion and gives a sufficient condition

for the asymptotic equivalence for the set of procedures Λn and set of loss functions Γn.

Proposition 1 Let En = {Pθ,n : θ ∈ Θ} and Fn = {Qθ,n : θ ∈ Θ} be two models. Suppose

there is a Markov kernel K such that KPθ,n and Qθ,n are defined on the same σ-field of

a sample space. Let p∗f,n and qf,n be the density functions of KPf,n and Qf,n w.r.t. a

dominating measure such that for a sequence εn → 0

sup
f

Qf,n(|1− p∗f,n/qf,n| ≥ εn) ≤ CDn−D

for all D > 0, then δ(En, Fn; Γn, Λn) → 0 as n →∞ under the Assumption (A0).

Examples of loss functions include

L(f̂n, f) = n2α/(2α+1)

∫
(f̂n − f)2 and L(f̂n, f) = n2α/(2α+1)

∫
(
√

f̂n −
√

f)2

for estimating f and L(f̂n, f) = n2α/(2α+1)(f̂n(t0)−f(t0))2 for estimating f at a fixed point

t0 where α is the smoothness of f , as long as we require f̂n to be bounded by a power

of n. If the maximum of f̂n or f̂n(t0) grows faster than a polynomial of n, we commonly

obtain a better estimate by truncation, e.g., defining a new estimate min(f̂n, n2).
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2.3 Asymptotic equivalence for robust estimation under unbounded

losses

We now return to the nonparametric regression model (1) and denote the model by En,

En : Yi = f(i/n) + ξi, i = 1, . . . , n.

An asymptotic equivalence theory for nonparametric regression with a known error dis-

tribution has been developed in Grama and Nussbaum (2002), but the Markov kernel

(randomization) there was not given explicitly, and so it is not implementable. In this

section we propose an explicit and easily implementable procedure to reduce the nonpara-

metric regression with an unknown error distribution to a Gaussian regression. We begin

by dividing the interval [0, 1] into T equal-length subintervals. Without loss of generality

we shall assume that n is divisible by T , and let m = n/T , the number of observations in

each bin. We then take the median Xj of the observations in each bin, i.e.,

Xj = median {Yi, (j − 1) m + 1 ≤ i < jm} ,

and make statistical inferences based on the median statistics {Xj}. Let Fn be the ex-

periment of observing {Xj , 1 ≤ j ≤ T}. In this section we shall show that Fn is in fact

asymptotically equivalent to the following Gaussian experiment

Gn : X∗∗
j = f (j/T ) +

1
2h(0)

√
m

Zj , Zj
i.i.d.∼ N(0, 1), 1 ≤ j ≤ T

under mild regularity conditions. The asymptotic equivalence is established in two steps.

Suppose the function f is smooth. Then f is locally approximately constant. We

define a new experiment to approximate En as follows

E∗
n : Y ∗

i = f∗ (i/n) + ξi, 1 ≤ i ≤ n,

where f∗ (i/n) = f
( diT/ne

T

)
. For each of the T subintervals, there are m observations

centered around the same mean.

For the experiment E∗
n we bin the observations Y ∗

i and then take the medians in

exactly the same way and let X∗
j be the median of the Y ∗

i ’s in the j-th subinterval. If E∗
n

approximates En well, the statistical properties X∗
j are then similar to Xj . Let ηj be the

median of corresponding errors ξi in the j-th bin. Note that the median of X∗
j has a very

simple form,

F ∗
n : X∗

j = f (j/T ) + ηj , 1 ≤ j ≤ T .

Theorem 6 in Section 5 shows that ηj can be well approximated by a normal variable with

mean 0 and variance 1
4mh2(0)

, which suggests that F ∗
n is close to the experiment Gn.
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We formalize the above heuristics in the following theorems. We first introduce some

conditions. We shall choose T = n2/3/ log n and assume that f is in a Hölder ball,

f ∈ F = {f : |f(y)− f(x)| ≤ M |x− y|d}, d > 3/4. (5)

Assumption (A1): Let ξ be a random variable with density function h. Define ra (ξ) =

log h(ξ−a)
h(ξ) and µ (a) = Er (ξ). Assume that

µ (a) ≤ Ca2 (6)

E exp [t (ra (ξ)− µ (a))] ≤ exp
(
Ct2a2

)
(7)

for 0 ≤ |a| < ε and 0 ≤ |ta| < ε for some ε > 0. Equation (7) is roughly equivalent to

Var (ra (ξ)) ≤ Ca2. Assumption (A1) is satisfied by many distributions including Cauchy

and Gaussian.

The following asymptotic equivalence result implies that any procedure based on Xj

has exactly the same asymptotic risk as a similar procedure by just replacing Xj by X∗
j .

Theorem 1 Under Assumptions (A0) and (A1) and the Hölder condition (5), the two

experiments En and E∗
n are asymptotically equivalent with respect to the set of procedures

Λn and set of loss functions Γn.

The following asymptotic equivalence result implies that asymptotically there is no

need to distinguish X∗
j ’s from the Gaussian random variables X∗∗

j ’s. We need the following

assumptions on the density function h (x) of ξ.

Assumption (A2):
∫ 0
−∞ h(x) = 1

2 , h (0) > 0, and |h (x)− h (0)| ≤ Cx2 in an open

neighborhood of 0.

The last condition |h (x)− h (0)| ≤ Cx2 is basically equivalent to h′(0) = 0. The

assumption (A2) is satisfied when h is symmetric and h′′ exists in a neighborhood of 0.

Theorem 2 Under Assumptions A(0) and (A2), the two experiments F ∗
n and Gn are

asymptotically equivalent with respect to the set of procedures Λn and set of loss functions

Γn.

These theorems imply under assumptions (A1) and (A2) and the Hölder condition (5),

the experiment Fn is asymptotically equivalent to Gn with respect to the set of procedures

Λn and set of loss functions Γn. So any statistical procedure δ in Gn can be carried over

to the En (by treating Xj as if it were X∗∗
j ) in the sense that the new procedure has the

same asymptotic risk as δ for all loss functions bounded by a certain power of n.
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2.4 Discussion

The asymptotic equivalence theory provides deep insight and useful guidance for the con-

struction of practical procedures in a broad range of statistical inference problems under

the nonparametric regression model (1) with an unknown symmetric error distribution.

Interesting problems include robust and adaptive estimation of the regression function, es-

timation of linear or quadratic functionals, construction of confidence sets, nonparametric

hypothesis testing, etc. There is a large body of literature on these nonparametric prob-

lems in the case of Gaussian errors. With the asymptotic equivalence theory developed in

this section, many of these procedures and results can be extended and robustified to deal

with the case of an unknown symmetric error distribution. For example, the SureShrink

procedure of Donoho and Johnstone (1995), the empirical Bayes procedures of Johnstone

and Silverman (2005) and Zhang (2005), and SureBlock in Cai and Zhou (2008a) can be

carried over from the Gaussian regression to the general regression. Theoretical properties

such as rates of convergence remain the same under the regression model (1) with suitable

regularity conditions.

To illustrate the general ideas, we consider in the next two sections two important

nonparametric problems under the model (1): adaptive estimation of the regression func-

tion f and robust estimation of the quadratic functional Q(f) =
∫

f2. These examples

show that for a given statistical problem it is easy to turn the case of nonparametric

regression with general symmetric errors into the one with Gaussian noise and construct

highly robust and adaptive procedures. Other robust inference problems can be handled

in a similar fashion.

3 Robust wavelet regression

We consider in this section robust estimation of the regression function f under the

model (1). Many estimation procedures have been developed in the literature for case

where the errors ξi are assumed to be i.i.d. Gaussian. However, these procedures are not

readily applicable when the noise distribution is unknown. In fact direct application of the

procedures designed for the Gaussian case can fail badly if the noise is in fact heavy-tailed.

In this section we construct a robust procedure by following the general principles of

the asymptotic equivalence theory. The estimator is robust, adaptive, and easily imple-

mentable. In particular, its performance is not sensitive to the error distribution.
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3.1 Wavelet procedure for robust nonparametric regression

We begin with basic notation and definitions and then give a detailed description of our

robust wavelet regression procedure.

Let {φ, ψ} be a pair of father and mother wavelets. The functions φ and ψ are assumed

to be compactly supported and
∫

φ = 1. Dilation and translation of φ and ψ generate an

orthonormal wavelet basis. For simplicity in exposition, we work with periodized wavelet

bases on [0, 1]. Let

φp
j,k(t) =

∞∑

l=−∞
φj,k(t− l), ψp

j,k(t) =
∞∑

l=−∞
ψj,k(t− l), for t ∈ [0, 1]

where φj,k(t) = 2j/2φ(2jt − k) and ψj,k(t) = 2j/2ψ(2jt − k). The collection {φp
j0,k, k =

1, . . . , 2j0 ; ψp
j,k, j ≥ j0 ≥ 0, k = 1, ..., 2j} is then an orthonormal basis of L2[0, 1], provided

the primary resolution level j0 is large enough to ensure that the support of the scaling

functions and wavelets at level j0 is not the whole of [0, 1]. The superscript “p” will

be suppressed from the notation for convenience. An orthonormal wavelet basis has an

associated orthogonal Discrete Wavelet Transform (DWT) which transforms sampled data

into the wavelet coefficients. See Daubechies (1992) and Strang (1992) for further details

on wavelets and discrete wavelet transform. A square-integrable function f on [0, 1] can

be expanded into a wavelet series:

f(t) =
2j0∑

k=1

θ̃j0,kφj0,k(t) +
∞∑

j=j0

2j∑

k=1

θj,kψj,k(t) (8)

where θ̃j,k = 〈f, φj,k〉, θj,k = 〈f, ψj,k〉 are the wavelet coefficients of f .

We now describe the robust regression procedure in detail. Let the sample {Yi, i =

1, . . . , n} be given as in (1). Set J =
⌊
log2

n
log1+b n

⌋
for some b > 0 and let T = 2J .

We first group the observations Yi consecutively into T equi-length bins and then take

the median of each bin. Denote the medians by X = (X1, . . . , XT ). Apply the discrete

wavelet transform to the binned medians X and let U = T−
1
2 WX be the empirical wavelet

coefficients, where W is the discrete wavelet transformation matrix. Write

U = (ỹj0,1, · · · , ỹj0,2j0 , yj0,1, · · · , yj0,2j0 , · · · , yJ−1,1, · · · , yJ−1,2J−1)′. (9)

Here ỹj0,k are the gross structure terms at the lowest resolution level, and yj,k (j =

j0, · · · , J − 1, k = 1, · · · , 2j) are empirical wavelet coefficients at level j which represent

fine structure at scale 2j . Set

σn =
1

2h(0)
√

n
. (10)
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Then the empirical wavelet coefficients can be written as

yj,k = θj,k + εj,k + σnzj,k + ξj,k, (11)

where θj,k are the true wavelet coefficients of f , εj,k are “small” deterministic approxi-

mation errors, zj,k are i.i.d. N(0, 1), and ξj,k are some “small” stochastic errors. The

asymptotic equivalence theory given in Section 2 indicates that both εj,k and ξj,k are

“negligible” and the calculations in Section 6 will show this is indeed the case. If these

negligible errors are ignored then we have

yj,k ≈ θj,k + σnzj,k with zj,k
iid∼ N(0, 1) (12)

which is the idealized Gaussian sequence model.

The BlockJS procedure introduced in Cai (1999) for Gaussian nonparametric regres-

sion is then applied to yj,k as if they are exactly distributed as in (12). More specifi-

cally, at each resolution level j, the empirical wavelet coefficients yj,k are grouped into

nonoverlapping blocks of length L. Let Bi
j = {(j, k) : (i − 1)L + 1 ≤ k ≤ iL} and let

S2
j,i ≡

∑
(j,k)∈Bi

j
y2

j,k. Let σ̂2
n be an estimator of σ2

n (see equation (16) for an estimator).

Set J∗ =
⌊
log2

T
log1+b n

⌋
. A modified James-Stein shrinkage rule is then applied to each

block Bi
j with j ≤ J∗, i.e.,

θ̂j,k =

(
1− λ∗Lσ̂2

n

S2
j,i

)

+

yj,k for (j, k) ∈ Bi
j , (13)

where λ∗ = 4.50524 is a constant satisfying λ∗− log λ∗ = 3. For the gross structure terms

at the lowest resolution level j0, we set ˆ̃
θj0,k = ỹj0,k. The estimate of f at the sample

points { i
T : i = 1, · · · , T} is obtained by applying the inverse discrete wavelet transform

(IDWT) to the denoised wavelet coefficients. That is, {f( i
T ) : i = 1, · · · , T} is estimated

by f̂ = {f̂( i
T ) : i = 1, · · · , T} with f̂ = T

1
2 W−1 · θ̂. The whole function f is estimated by

f̂n(t) =
2j0∑

k=1

ˆ̃
θj0,kφj0,k(t) +

J∗−1∑

j=j0

2j∑

k=1

θ̂j,kψj,k(t). (14)

Remark 1 An estimator of h−2 (0) can be given by

ĥ−2 (0) =
8m

T

∑
(X2k−1 −X2k)

2 . (15)

and the variance σ2
n is then estimated by

σ̂2
n =

1

4ĥ2(0)n
=

2
T 2

∑
(X2k−1 −X2k)

2 . (16)

It is shown in Section 6 that the estimator σ̂2
n is an accurate estimate of σ2

n.
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The robust estimator f̂n constructed above is easy to implement. Figure 2 below

illustrate the main steps of the procedure. As a comparison, we also plotted the estimate

obtained by applying directly the BlockJS procedure to the original noisy signal. It can be

seen clearly that this wavelet procedure does not perform well in the case of heavy-tailed

noise. Other standard wavelet procedures have similar performance qualitatively. On the

other hand, the BlockJS procedure performs very well on the medians of the binned data.

Spikes with t_2 Noise

0.0 0.2 0.4 0.6 0.8 1.0

-10
-5

0
5

10
15

Medians of the Binned Data
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Figure 2: Top left panel: Noisy Spikes signal with sample size n = 4096 where the noise has t2

distribution; Top right panel: The medians of the binned data with the bin size m = 8; Middle left

panel: The discrete wavelet coefficients of the medians; Middle right panel: Blockwise thresholded

wavelet coefficients of the medians; Bottom left panel: The robust estimate of the Spikes signal

(dotted line is the true signal); Bottom right panel: The estimate obtained by applying directly

the BlockJS procedure to the original noisy signal.
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3.2 Adaptivity and Robustness of the Procedure

The robust regression procedure presented in Section 3.1 enjoys a high degree of adaptivity

and robustness. We consider the theoretical properties of the procedure over the Besov

spaces. For a given r-regular mother wavelet ψ with r > α and a fixed primary resolution

level j0, the Besov sequence norm ‖ · ‖bα
p,q

of the wavelet coefficients of a function f is

defined by

‖f‖bα
p,q

= ‖ξ
j0
‖p +




∞∑

j=j0

(2js‖θj‖p)q




1
q

(17)

where ξ
j0

is the vector of the father wavelet coefficients at the primary resolution level j0,

θj is the vector of the wavelet coefficients at level j, and s = α + 1
2 − 1

p > 0. Note that

the Besov function norm of index (α, p, q) of a function f is equivalent to the sequence

norm (17) of the wavelet coefficients of the function. See Meyer (1992), Triebel (1983)

and DeVore and Popov (1988) for further details on Besov spaces. We define

Bα
p,q (M) =

{
f ; ‖f‖bα

p,q
≤ M

}
. (18)

In the case of Gaussian noise the minimax rate of convergence for estimating f over the

Besov body Bα
p,q(M) is n−2α/(1+2α). See Donoho and Johnstone (1998).

We shall consider the following collection of error distributions. For 0 < ε1 < 1, εi > 0,

i = 2, 3, 4, let

Hε1,ε2 =
{

h :
∫ 0

−∞
h(x) =

1
2
, ε1 ≤ h (0) ≤ 1

ε1
, |h (x)− h (0)| ≤ x2

ε1
for all |x| < ε2

}
(19)

and define H = H(ε1, ε2, ε3, ε4) by

H = {h ∈ Hε1,ε2 :
∫
|x|ε3h(x)dx < ε4, h(x) = h(−x), |h(3)(x)| ≤ ε4 for |x| ≤ ε3}. (20)

The assumption
∫ |x|ε3h(x)dx < ε4 guarantees that the moments of the median of the

binned data are well approximated by those of the normal random variable. Note that this

assumption is satisfied by a large collection of distributions including Cauchy distribution.

The following theorem shows that our estimator achieves optimal global adaptation

for a wide range of Besov balls Bα
p,q (M) defined in (18) and uniformly over the family of

error distributions given in (20).

Theorem 3 Suppose the wavelet ψ is r-regular. Then the estimator f̂n defined in (14)

satisfies, for p ≥ 2, α ≤ r and 2α2

1+2α > 1
p

sup
h∈H

sup
f∈Bα

p,q(M)
E‖f̂n − f‖2

2 ≤ Cn−
2α

1+2α ,
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and for 1 ≤ p < 2, α ≤ r and 2α2

1+2α > 1
p ,

sup
h∈H

sup
f∈Bα

p,q(M)
E‖f̂n − f‖2

2 ≤ Cn−
2α

1+2α (log n)
2−p

p(1+2α) .

In addition to global adaptivity, the estimator also enjoys a high degree of local spatial

adaptivity. For a fixed point t0 ∈ (0, 1) and 0 < α ≤ 1, define the local Hölder class

Λα(M, t0, δ) by

Λα(M, t0, δ) = {f : |f(t)− f(t0)| ≤ M |t− t0|α, for t ∈ (t0 − δ, t0 + δ)}.

If α > 1, then

Λα(M, t0, δ) = {f : |f (bαc)(t)− f (bαc)(t0)| ≤ M |t− t0|α′ for t ∈ (t0 − δ, t0 + δ)}

where bαc is the largest integer less than α and α′ = α− bαc.
In Gaussian nonparametric regression setting, it is well known that the optimal rate of

convergence for estimating f(t0) over Λα(M, t0, δ) with α completely known is n−2α/(1+2α).

On the other hand, when α is unknown, Lepski (1990) and Brown and Low (1996) showed

that the local adaptive minimax rate over the Hölder class Λα(M, t0, δ) is (log n/n)2α/(1+2α).

So one has to pay at least a logarithmic factor for adaptation.

Theorem 4 below shows that our estimator achieves optimal local adaptation with the

minimal cost uniformly over the family of noise distributions defined in (20).

Theorem 4 Suppose the wavelet ψ is r-regular with r ≥ α > 0. Let t0 ∈ (0, 1) be fixed.

Then the estimator f̂n defined in (14) satisfies

sup
h∈H

sup
f∈Λα(M,t0,δ)

E(f̂n(t0)− f(t0))2 ≤ C · ( log n

n
)

2α
1+2α . (21)

Remark 2 Note that in the general asymptotic equivalence theory given in Section 2

the bin size was chosen to be n1/3 log n. However, for specific estimation problems such

as robust estimation of f discussed in this section, the bin size can be chosen differently.

Here we choose a small bin size log1+b n. There is a significant advantage in choosing such

a small bin size in this problem. Note that the smoothness assumptions for α in Theorems

3 and 4 are different from those in Theorems 3 and 4 in Brown, Cai and Zhou (2008). For

example, in Theorem 4 in Brown, Cai and Zhou (2008) it was assumed α > 1/6, but now

we need only α > 0 due to the choice of the small bin size.
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4 Robust estimation of the quadratic functional
∫

f 2

An important nonparametric estimation problem is that of estimating the quadratic func-

tional Q(f) =
∫

f2. This problem is interesting in its own right and closely related to the

construction of confidence balls and nonparametric hypothesis testing in nonparametric

function estimation. See for example Li (1989), Dümbgen (1998), Spokoiny (1998), Gen-

ovese and Wasserman (2005), and Cai and Low (2006a). In addition, as shown in Bickel

and Ritov (1988), Donoho and Nussbaum (1990) and Fan (1991), this problem connects

the nonparametric and semiparametric literatures.

This problem has been well studied in the Gaussian noise setting. See, for example,

Donoho and Nussbaum (1990), Fan (1991). Efromovich and Low (1996), Spokoiny (1999),

Laurent and Massart (2000), Klemelä (2002) and Cai and Low (2005 and 2006b). In this

section we shall consider robust estimation of the quadratic functional Q(f) under the

regression model (1) with an unknown symmetric error distribution. We shall follow the

same notation used in Section 3. Note that the orthonormality of the wavelet basis implies

the isometry between the L2 function norm and the `2 wavelet sequence norm which yields

Q(f) =
∫

f2 =
2j0∑

k=1

θ̃2
j0,k +

∞∑

j=j0

2j∑

k=1

θ2
j,k.

The problem of estimating Q(f) is then translated into estimating the squared coefficients.

We consider adaptively estimating Q(f) over Besov balls Bα
p,q(M) with α > 1

p + 1
2 . We

shall show that it is in fact possible to find a simple procedure which is asymptotically rate

optimal simultaneously over a large collection of unknown symmetric error distributions.

In this sense, the procedure is robust.

As in Section 3 we group the observations Yi into T bins of size log1+b(n) for some

b > 0 and then take the median of each bin. Let X = (X1, ..., XT ) denote the binned

medians and let U = T−
1
2 WX be the empirical wavelet coefficients, where W is the

discrete wavelet transformation matrix. Write U as in (9). Then the empirical wavelet

coefficients can be approximately decomposed as in (12):

ỹj0,k ≈ θ̃j0,k + σnz̃j0,k and yj,k ≈ θj,k + σnzj,k (22)

where σn = 1/(2h (0)
√

n) and z̃j0,k and zj,k are i.i.d. standard normal variables.

The quadratic functional Q(f) can then be estimated as if we have exactly the idealized

sequence model (22). More specifically, let Jq = blog2

√
nc and set

Q̂ =
2j0∑

k=1

(ỹ2
j0,k − σ̂2

n) +
Jq∑

j=j0

2j∑

k=1

(y2
j,k − σ̂2

n). (23)
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The following theorem shows that this estimator is robust and rate-optimal for a large

collection of symmetric error distributions and a wide range of Besov classes simultane-

ously.

Theorem 5 For all Besov balls Bα
p,q(M) with α > 1

p + 1
2 , the estimator Q̂ given in (23)

satisfies

sup
f∈Bα

p,q(M)
Ef (Q̂−Q(f))2 ≤ M2

h2(0)
n−1(1 + o(1)). (24)

Remark 3 We should note that there is a slight tradeoff between efficiency and robust-

ness. When the error distribution is known to be Gaussian, it is possible to construct

a simple procedure which is efficient, asymptotically attaining the exact minimax risk

4M2n−1. See for example, Cai and Low (2005). In the Gaussian case, the upper bound in

(24) is 2πM2n−1 which is slightly larger than 4M2n−1. On the other hand, our procedure

is robust over a large collection of unknown symmetric error distributions.

The examples of adaptive and robust estimation of the regression function and the

quadratic functional given in the last and this sections illustrate the practical use of the

general principles in the asymptotic equivalence theory given in Section 2. It is easy to see

that other nonparametric inference problems such as the construction of confidence sets

and nonparametric hypothesis testing under the general nonparametric regression model

(1) can be handled in a similar way. Hence our approach can be viewed as a general

method for robust nonparametric inference.

5 Technical tools: Moderate deviation and quantile cou-

pling for median

Quantile coupling is an important technical tool in probability and statistics. For example,

the celebrated KMT coupling results given in Komlós, Major and Tusnády (1975) plays

a key role in the Hungarian construction in the asymptotic equivalence theory. See, e.g.,

Nussbaum (1996). Standard coupling inequalities are mostly focused on the coupling of

the mean of i.i.d. random variables with a normal variable. Brown, Cai and Zhou (2008)

studied the coupling of a median statistic with a normal variable. For the asymptotic

equivalence theory given in Section 2 and the proofs of the theoretical results in Section

3 we need a more refined moderate deviation result for the median and an improved

coupling inequality than those given in Brown, Cai and Zhou (2008). This improvement

plays a crucial role in this paper. It is the main tool for reducing the problem of robust

regression with unknown symmetric noise to a well studied and relatively simple problem
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of Gaussian regression. The result here may be of independent interest because of the

fundamental role played by the median in statistics.

Let X be a random variable with distribution G, and Y with a continuous distribution

F . Define

X̃ = G−1 (F (Y )) , (25)

where G−1 (x) = inf {u : G (u) ≥ x}, then L
(
X̃

)
= L (X). Note that X̃ and Y are now

defined on the same probability space. This makes it possible to give a pointwise bound

between X̃ and Y . For example, one can couple Binomial(m, 1/2) and N(m/2,m/4)

distributions. Let X = 2 (W −m/2) /
√

m with W ∼Binomial(m, 1/2) and Y ∼ N(0, 1),

and let X̃ (Y ) be defined as in equation (25). Komlós, Major and Tusnády (1975) showed

that for some constant C > 0 and ε > 0, when |X̃| ≤ ε
√

m,

|X̃ − Y | ≤ C√
m

+
C√
m
|X̃|2. (26)

Let ξ1, . . . , ξm be i.i.d. random variables with density function h. Denote the sample

median by ξmed. The classical theory shows that the limiting distribution of 2h(0)
√

mξmed

is N(0, 1). We will construct a new random variable ξ̃med by using quantile coupling in

(25) such that L(ξ̃med) = L (ξmed) and show that ξ̃med can be well approximated by a

normal random variable as in equation (26). Denote the distribution and density function

the sample median ξmed by G and g respectively. We obtain an improved approximation

of the density g by a normal density which leads to a better moderate deviation result

for the distribution of sample median and consequently improve the classical KMT bound

from the rate 1/
√

m to 1/m. A general theory for improving the classical quantile coupling

bound was given in Zhou (2006).

Theorem 6 Let Z ∼ N(0, 1) and let ξ1, . . . , ξm be i.i.d. with density function h where

m = 2k + 1 for some integer k ≥ 1. Let Assumption (A2) hold. Then for |x| ≤ ε

g (x) =

√
8kf (0)√

2π
exp

(−8kh2 (0) x2/2 + O
(
kx4 + k−1

))
, (27)

and for 0 < x < ε

G (−x) = Φ (−x) exp
(
O

(
kx4 + k−1

))
, and G (x) = Φ (x) exp

(
O

(
kx4 + k−1

))
(28)

where G (x) = 1 − G (x), and Φ(x) = 1 − Φ(x). Consequently for every m there is a

mapping ξ̃med (Z) : R 7→ R such that L
(
ξ̃med (Z)

)
= L (ξmed) and

|2h(0)
√

mξ̃med − Z| ≤ C

m
+

C

m
|2h(0)

√
mξ̃med|3, when

∣∣∣ξ̃med

∣∣∣ ≤ ε (29)
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and

|2h(0)
√

mξ̃med − Z| ≤ C

m

(
1 + |Z|3

)
, when |Z| ≤ ε

√
m (30)

where C, ε > 0 depend on h but not on m.

Remark 4 In Brown, Cai and Zhou (2008) the density g of the sample median was

approximated by a normal density as

g (x) =

√
8kh (0)√

2π
exp

(
−8kh2 (0)x2/2 + O

(
k |x|3 + |x|+ k−1

))
, for |x| ≤ ε.

Since ξmed = Op (1/
√

m) , the approximation error O
(
k |x|3 + |x|+ k−1

)
is at the level of

1/
√

m. In comparison, the approximation error O
(
kx4 + k−1

)
in equation (27) is at the

level of 1/m. This improvement is necessary for establishing (36) in the proof of Theorem

2, and leads to an improved quantile coupling bound (30) over the bound obtained in

Brown, Cai and Zhou (2008)

|2h(0)
√

mξ̃med − Z| ≤ C√
m

+
C√
m

Z2, when
∣∣∣ξ̃med

∣∣∣ ≤ ε.

Since Z is at a constant level, we improve the bound from a classical rate 1/
√

m to 1/m.

Although the result is only given to m odd, it can be easily extended to the even case

as discussed in Remark 1 of Brown, Cai and Zhou (2008). The coupling result given in

Theorem 6 in fact holds uniformly for the whole family of h ∈ Hε1,ε2 .

Theorem 7 Let ξ1, . . . , ξm be i.i.d. with density h ∈ Hε1,ε2 in equation (19). For ev-

ery m = 2k + 1 with integer k ≥ 1, there is a mapping ξ̃med (Z) : R 7→ R such that

L
(
ξ̃med (Z)

)
= L (ξmed) and for two constants Cε1,ε2, εε1,ε2 > 0 depending only on ε1

and ε2

|2h(0)
√

mξ̃med − Z| ≤ Cε1,ε2

m
+

Cε1,ε2

m
|2h(0)

√
mξ̃med|3, when

∣∣∣ξ̃med

∣∣∣ ≤ εε1,ε2 (31)

and

|2h(0)
√

mξ̃med − Z| ≤ Cε1,ε2

m
+

Cε1,ε2

m
|Z|3 , when |Z| ≤ εε1,ε2

√
m

uniformly over all h ∈ Hε1,ε2.

6 Proofs

We shall prove the main results in the order of Theorems 6 and 7, Theorems 1 and 2,

Theorems 3, and then Theorem 5. Theorems 6 and 7 provide important technical tools

for the proof of the rest of the theorems.

In this section C denotes a positive constant not depending on n that may vary from

place to place and we set d ≡ min
(
α− 1

p , 1
)
.
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6.1 Proof of Theorems 6 And 7

We only prove (27) and (28). it follows from Zhou (2006) that the moderate deviation

bound (28) implies the coupling bounds (29) and (30). Let H (x) be the distribution

function of ξ1. The density of the median ξ(k+1) is

g (x) =
(2k + 1)!

(k!)2
Hk (x) (1−H (x))k h (x) .

Stirling formula, j! =
√

2πjj+1/2 exp (−j + εj) with εj = O (1/j), gives

g (x) =
(2k + 1)!
4k (k!)2

[4H (x) (1−H (x))]k h (x)

=
2
√

2k + 1
e
√

2π

(
2k + 1

2k

)2k+1

[4H (x) (1−H (x))]k h (x) exp
(

O

(
1
k

))
.

It is easy to see
∣∣∣
√

2k + 1/
√

2k − 1
∣∣∣ ≤ k−1, and

(
2k + 1

2k

)2k+1

= exp
(
− (2k + 1) log

(
1− 1

2k + 1

))
= exp

(
1 + O

(
1
k

))
.

Then we have, when 0 < H (x) < 1,

g (x) =

√
8k√
2π

[4H (x) (1−H (x))]k h (x) exp
(

O

(
1
k

))
. (32)

From the assumption in the theorem, Taylor expansion gives

4H (x) (1−H (x)) = 1− 4 (H (x)−H (0))2

= 1− 4
[∫ x

0
(h (t)− h (0)) dt + h (0) x

]2

= 1− 4
(
h (0)x + O

(
|x|3

))2

for 0 ≤ |x| ≤ ε, i.e., log (4H (x) (1−H (x))) = −4h2 (0)x2 + O
(
x4

)
when |x| ≤ 2ε for

some ε > 0. Here ε is chosen sufficiently small so that h (x) > 0 for |x| ≤ 2ε. Assumption

(A2) also implies h(x)
h(0) = 1 + O

(
x2

)
= exp

(
O

(
x2

))
for |x| ≤ 2ε. Thus for |x| ≤ 2ε

g (x) =

√
8kh (0)√

2π
exp

(−8kh2 (0)x2/2 + O
(
kx4 + x2 + k−1

))

=

√
8kh (0)√

2π
exp

(−8kh2 (0)x2/2 + O
(
kx4 + k−1

))
.

Now we approximate the distribution function of ξmed by a normal distribution. With-

out loss of generality we assume h (0) = 1. We write

g (x) =

√
8k√
2π

exp
(−8kx2/2 + O

(
kx4 + k−1

))
, for |x| ≤ 2ε.
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Now we use this approximation of density functions to give the desired approximation of

distribution functions. Specifically we shall show

G (x) =
∫ x

−∞
g (t) dt ≤ Φ

(√
8kx

)
exp

(
C

(
kx4 + k−1

))
(33)

and

G (x) ≥ Φ
(√

8kx
)

exp
(−C

(
kx4 + k−1

))
(34)

for all −ε ≤ x ≤ 0 and some C > 0. The proof for 0 ≤ x ≤ ε is similar. We now prove

the inequality (33). Note that
(
Φ

(√
8kx

)
exp

(
C

(
kx4 + k−1

)))
´ (35)

=
√

8kϕ
(√

8kx
)

exp
(
C

(
kx4 + k−1

))
+ Φ

(√
8kx

)
4kCx3 exp

(
C

(
kx4 + k−1

))
.

From the Mill’s ratio inequality we have Φ
(√

8kx
) (
−
√

8kx
)

< ϕ
(√

8kx
)

and hence

Φ
(√

8kx
) (

4Ckx3
)
exp

(
C

(
kx4 + k−1

)) ≥
√

8kϕ
(√

8kx
)(

−C

2
x2

)
exp

(
C

(
kx4 + k−1

))
.

This and (35) yield

(
Φ

(√
8kx

)
exp

(
C

(
kx4 + k−1

)))
´ ≥

√
8kϕ

(√
8kx

) (
1− C

2
x2

)
exp

(
C

(
kx4 + k−1

))

≥
√

8kϕ
(√

8kx
)

exp
(−Cx2

)
exp

(
C

(
kx4 + k−1

))

≥
√

8kϕ
(√

8kx
)

exp
(
C

(
kx4 + k−1

)
/4

)
.

Here in the second inequality we apply 1 − t/2 ≥ exp (−t) when 0 < t < 1/2. Thus we

have
(
Φ

(√
8kx

)
exp

(
C

(
kx4 + k−1

)))
´≥

√
8kϕ

(√
8kx

)
exp

(
C

(
kx4 + k−1

))

for C sufficiently large and for −2ε ≤ x ≤ 0. Then
∫ x

−2ε
g (t) dt ≤

∫ x

−2ε

(
Φ

(√
8kt

)
exp

(
C

(
kx4 + k−1

)))
´

=


 Φ

(√
8kx

)
exp

(
C

(
kx4 + k−1

))

−Φ
(√

8k · (2ε)
)

exp
(
C

(
k (2ε)4 + k−1

))



≤ Φ
(√

8kx
)

exp
(
C

(
kx4 + k−1

))
.

22



In (32) we see

∫ −2ε

−∞
g (t) dt =

∫ −2ε

−∞

(2k + 1)!
(k!)2

Hk (t) (1−H (t))k h (t) dt =
∫ H(−2ε)

0

(2k + 1)!
(k!)2

uk (1− u)k du

= o
(
k−1

) ∫ H(−ε)

H(−3ε/2)

(2k + 1)!
(k!)2

uk (1− u)k du ≤ o
(
k−1

) ∫ H(x)

H(−2ε)

(2k + 1)!
(k!)2

uk (1− u)k du

= o
(
k−1

) ∫ x

−2ε
g (t) dt

where the third equality is from the fact that uk
1 (1− u1)

k = o
(
k−1

)
uk

2 (1− u2)
k uniformly

for u1 ∈ [0,H (−2ε)] and u2 ∈ [H (−3ε/2) ,H (−ε)]. Thus we have

G (x) ≤ Φ
(√

8kx
)

exp
(
Ckx4 + Ck−1

)
.

which is Equation (33). Equation (34) can be established in a similar way.

Remark: Note that in the proof of Theorem 6 it can be seen easily that constants C

and ε in equation (29) depends only on the ranges of h(0) and the bound of Lipschitz

constants of h at a fixed open neighborhood of 0. Theorem 7 then follows from the proof

of Theorem 6 together with this observation.

6.2 Proof of Theorems 1 And 2

Proof of Theorem 1: Let εn be a sequence approaching to 0 slowly, for example εn =

1/ log log n. Let pf,n be the joint density of Yís and p∗f,n be the joint density of Y ∗
i ś. And

let Pf,n be the joint distribution of Yís and Pf∗,n be the joint distribution of Y ∗
i ś. We

want to show that

max {Pf,n (|1− pf∗,n/pf,n| ≥ εn) , Pf∗,n (|1− pf,n/pf∗,n| ≥ εn)}

decays exponentially fast uniformly over the function space.

Note that Pf,n (|1− pf∗,n/pf,n| ≥ εn) = P0,n (|1− pf∗−f,n/p0,n| ≥ εn). It suffices to

show that P0,n (|log (pf∗−f,n/p0,n)| ≥ εn) decays exponentially fast. Write

log (pf∗−f,n/p0,n) =
n∑

i=1

log
h (ξi − ai)

h (ξi)

with ai = f∗ (i/n)−f (i/n), where ξi has density h (x). Under Assumption (A1), we have

Erai (ξi) ≤ Ca2
i and E exp [t (rai (ξi)− µ (ai))] ≤ exp

(
Ct2a2

i

)
which imply

P0,n

(
exp

[
t

n∑

i=1

rai (ξi)− µ (ai)

]
≥ exp (tεn)

)
≤ exp

(
Ct2

n∑

i=1

a2
i − tεn

)
.
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Since
n∑

i=1

a2
i ≤ C1n ·

(
n4/3

log2 n

)−d

= C1n
1−4d/3 log2d n,

which goes to zero for d > 3/4, by setting t = n(4d/3−1)/2 the Markov inequality implies

that P0,n (|log (pf∗−f,n/p0,n)| ≥ εn) decays exponentially fast.

Proof of Theorem 2: Let gf,n be the joint density of X∗
j ’s and qf,n be the joint density of

X∗∗
j ’s. And let G0,n be the joint distribution of ηj ’s and Q0,n be the joint distribution of

Zj ’s. Theorem 6 yields

g (x) =
√

4mh (0)√
2π

exp
(−4mh2 (0)x2/2 + O

(
mx4 + m−1

))

for |x| ≤ m−1/3. Since G0,n

(|ηj | > m−1/3
)

and Q0,n

(|Zj | > m−1/3
)

decay exponentially

fast, it suffices to study

T∑

i=1

log
g (Zj)

φσm (Zj)
I

(
|Zj | ≤ m−1/3

)
.

Let

l (Zj) = log
g (Zj)

φσm (Zj)
I

(
|Zj | ≤ m−1/3

)

with Zj normally distributed with density φσm (x). It can be easily shown that

El (Zj) ≤ CQ0,n

(
1− g (Zj)

φσm (Zj)

)2

≤ C1m
−2

and

V ar (l (Zj)) ≤ Cm−2.

Since |Zj | ≤ Cm−1/3, then |l (Zj)| ≤ Cm−1/3. Taylor expansion gives

E exp [t (l (Zj)− El (Zj))] ≤ exp
(
Ct2m−2

)

for t = log3/2 n, then similar to the Proof of Theorems 1 we have

Qf,n (|log (gf,n/qf,n)| ≥ εn) ≤ exp
(
Ct2Tm−2 − tεn

)
. (36)

Since Tm−2 = 1/ log3 n → 0, it decays faster than any polynomial of n.
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6.3 Proof of Theorems 3 and 4

In the proofs of Theorems 3, 4 and 5, we shall replace σ̂2
n by σ2

n. We assume that h(0)

is known and equal to 1 without loss of generality, since it can be shown easily that the

estimator ĥ(0) given in (15) satisfies

P
{∣∣∣ĥ−2 (0)− h−2 (0)

∣∣∣ > n−δ
}
≤ cln

−l (37)

for some δ > 0 and all constants l ≥ 1. Note that E m
T/2

∑
(X2k−1 −X2k)

2 = 1
4h−2 (0) +

O
(√

mT−d
)
, and it is easy to show

E

∣∣∣∣
8m

T

∑
(X2k−1 −X2k)

2 − h−2 (0)
∣∣∣∣
l

≤ Cl

(√
mT−d

)l

where
√

mT−d = n−δ with δ > 0 in our assumption. Then equation (37) holds by

Chebyshev inequality. It is very important to see that the asymptotic risk properties

of our estimators for f in (13) and Q(f) in (23) do not change when replacing σ2
n by

σ2
n(1 + O(n−δ)), thus in our analysis we may just assume that h(0) is known without loss

of generality.

For simplicity we shall assume that n is divisible by T in the proof. The coupling

inequality and the fact that a Besov ball Bα
p,q(M) can be embedded into a Hölder ball

with smoothness d = min
(
α− 1

p , 1
)

> 0 (see Meyer (1992)) enable us to precisely control

of the errors. Proposition 2 gives the bounds for both the deterministic and stochastic

errors.

Proposition 2 Let Xj be given as in our procedure and let f ∈ Bα
p,q(M). Then Xj can

be written as √
mXj =

√
mf

(
j

T

)
+

1
2
Zj + εj + ζj (38)

where

(i). Zj
i.i.d.∼ N

(
0, 1

h2(0)

)
;

(ii). εj are constants satisfying |εj | ≤ C
√

mT−d and so 1
n

∑T
i=1 ε2j ≤ CT−2d;

(iii). ζj are independent and “stochastically small” random variables satisfying with Eζj =

0, and can be written as

ζj = ζj1 + ζj2 + ζj3

with

|ζj1| ≤ C
√

mT−d

Eζj2 = 0 and |ζ2j | ≤ C

m

(
1 + |Zj |3

)

P (ζj3 = 0) ≥ 1− C exp (−εm) and E |ζj3|D exists
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for some ε > 0 and C > 0, and all D > 0.

Remark 5 Equation (38) is different from Proposition 1 in Brown, Cai and Zhou (2008),

where there is an additional bias term
√

mbm. Lemma 5 in Brown, Cai and Zhou (2008)

showed that the bias bm can be estimated with a rate max
{
T−2d,m−4

}
. Therefore in

that paper we need to choose the bin size m = n1/4 such that m−4 = o
(
n−2α/(2α+1)

)
is

negligible relative to the minimax risk. In the present paper we can choose m = log1+b n

because there is no bias term and as a result the condition on the smoothness is relaxed.

Proof of Proposition 2: Let ηj = median({ξi : (j − 1)m + 1 ≤ i ≤ jm}). We define

Zj = 1
h(0)Φ

−1 (G (ηj)) where G is the distribution of ηj . It follows from Theorem 6 that
√

4mηj is well approximated by Zj whose distribution is N
(
0, 1

h2(0)

)
. Set

εj =
√

mEXj −
√

mf(
j

T
) = E

{√
mXj −

√
mf(

j

T
)−√mηj

}
.

This is the deterministic component of the approximation error due to binning. It is easy

to see that

min
(j−1)m+1≤i≤jm

[
f(

i

n
)− f(

j

T
)
]
≤ Xj − ηj − f(

j

T
) ≤ max

(j−1)m+1≤i≤jm

[
f(

i

n
)−f(

j

T
)
]

. (39)

Since f is in a Hölder ball with smoothness d = min(α− 1
p , 1), then equation (39) implies

|εj | ≤
√

mE|Xj − f(
j

T
)− ηj | ≤

√
m max

(j−1)m+1≤i≤jm
|f(

i

n
)− f(

j

T
)| ≤ C

√
mT−d. (40)

Set

ζj =
√

mXj −
√

mf(
j

T
)−√mbm − εj − 1

2
Zj .

Then Eζj = 0 and
√

mXj =
√

mf (j/T ) + εj + 1
2Zj + ζj .

The random error ζj is the sum of three terms,

ζ1j =
√

mXj −
√

mf (j/T )−√mηj − εj + E

(√
mηj − 1

2
Zj

) {|Zj | ≤ ε
√

m
}

ζ2j =
(√

mηj − 1
2
Zj

){|Zj | ≤ ε
√

m
}−E

(√
mηj − 1

2
Zj

){|Zj | ≤ ε
√

m
}

ζ3j =
(√

mηj − 1
2
Zj

){|Zj | > ε
√

m
}

.

Note that

E

(√
mηj − 1

2
Zj

){|Zj | ≤ ε
√

m
}

= E

(√
mηj − 1

2
Zj

){|Zj | > ε
√

m
} ≤ C exp (−εm/2) .
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From equation (39) we have|ζ1j | ≤ C
√

mT−d < a/2. A bound for the approximation error

ζ2j is given in equation (30),

|ζ2j | ≤ C

m

(
1 + |Zj |3

)
(41)

We now consider the wavelet transform of the medians of the binned data. From

Proposition 2 we may write

1√
T

Xi =
f( i

T )√
T

+
εi√
n

+
Zi

2
√

n
+

ζi√
n

.

Let (yj,k) = T−
1
2 W ·X be the discrete wavelet transform of the binned data. Then one

may write

yj,k = θ′j,k + εj,k +
1

2
√

n
zj,k + ξj,k (42)

where θ′j,k are the discrete wavelet transform of (f
(

i
T

)
)1≤i≤T , zj,k are the transform of the

Zi’s and so are i.i.d. N(0, 1) and εj,k and ξj,k are respectively the transforms of ( εi√
n
) and

( ζi√
n
). The following proposition gives the risk bounds of the block thresholding estimator

in a single block. These risk bounds are similar to results for the Gaussian case given

in Cai (1999). But in the current setting the error terms εj,k and ξj,k make the problem

more complicated.

Proposition 3 Let yj,k be given as in (42) and let the block thresholding estimator θ̂j,k

be defined as in (13). Then

(i). for some constant C > 0

E
∑

(j,k)∈Bi
j

(θ̂j,k − θ′j,k)
2 ≤ min{4

∑

(j,k)∈Bi
j

(θ′j,k)
2, 8λ∗Ln−1}+ 6

∑

(j,k)∈Bi
j

ε2j,k + CLn−2;

(43)

(ii). for any 0 < τ < 1, there exists a constant Cτ > 0 depending on τ only such that for

all (j, k) ∈ Bi
j

E(θ̂j,k − θ′j,k)
2 ≤ Cτ ·min

{
max

(j,k)∈Bi
j

{(θ′j,k + εj,k)2}, Ln−1

}
+ n−2+τ . (44)

(iii) For j ≤ J∗ and εn > 1/ log n, P (
√

n |ξj,k| ≥ εn) ≤ C exp (−εnm).

Proof of Proposition 3: We only give the proof for (i). From Proposition 2, we have

|εj | ≤ C
√

mT−d and εj,k =
∑

i
εi√
n

∫
φJ,iψj,k. Hence

|εj,k| ≤ sup
x

∑

i

| εi√
n

φJ,i(x)| ·
∫
|ψj,k(x)|dx ≤ CT−d2−

j
2 . (45)
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This, as well as Proposition 2, yields that

∑

j

∑

k

ε2j,k =
1
n

∑

i

ε2i ≤ CT−2d. (46)

It follows from Lemma 1 that

E
∑

(j,k)∈Bi
j

(θ̂j,k − θ′j,k)
2 ≤ 2E

∑

(j,k)∈Bi
j

[θ̂j,k − (θ′j,k + εj,k)]2 + 2
∑

(j,k)∈Bi
j

ε2j,k

≤ 2 min





∑

(j,k)∈Bi
j

(θ′j,k + εj,k)2, 4λ∗Ln−1





+ 2
∑

(j,k)∈Bi
j

ε2j,k

+ 8E
∑

(j,k)∈Bi
j

(
1

2
√

n
zj,k + ξj,k

)2

I




∑

(j,k)∈Bi
j

(
1

2
√

n
zj,k + ξj,k)2 >

λ∗L
4n




≤ min





4
∑

(j,k)∈Bi
j

(θ′j,k)
2, 8λ∗Ln−1





+ 6
∑

(j,k)∈Bi
j

ε2j,k

+ 2n−1E
∑

(j,k)∈Bi
j

(zj,k + 2
√

nξj,k)2I




∑

(j,k)∈Bi
j

(zj,k + 2
√

nξj,k)2 > λ∗L


 .

It can be shown that

D = E
∑

(j,k)∈Bi
j

(zj,k + 2
√

nξj,k)2I




∑

(j,k)∈Bi
j

(zj,k + 2
√

nξj,k)2 > λ∗L


 ≤ CLn−1.

Note that

∑

(j,k)∈Bi
j

(zj,k + 2
√

nξj,k)2 ≤




√√√√
∑

(j,k)∈Bi
j

z2
j,k +

√√√√
∑

(j,k)∈Bi
j

(2
√

nξj,k)2




2

Let εn = 1/ log log n

P




∑

(j,k)∈Bi
j

(2
√

nξj,k)2 ≥ εnL


 ≤ LP

(
2
√

nξj,k ≥
√

εn

) ≤ CDn−D for all D > 0
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and

E
∑

(j,k)∈Bi
j

z2
j,k





∑

(j,k)∈Bi
j

z2
j,k >

(√
λ∗ −√εn

)2
L





≤ CLn−1

P





∑

(j,k)∈Bi
j

z2
j,k >

(√
λ∗ −√εn

)2
L





≤ Cn−1

then

D ≤ E
∑

(j,k)∈Bi
j

(zj,k + 2
√

nξj,k)2





∑

(j,k)∈Bi
j

z2
j,k >

(√
λ∗ −√εn

)2
L





+ CLn−1

≤ CE




∑

(j,k)∈Bi
j

z2
j,k + εnL








∑

(j,k)∈Bi
j

z2
j,k >

(√
λ∗ −√εn

)2
L





+ C1Ln−1

≤ C2Ln−1.

Then

E
∑

(j,k)∈Bi
j

(θ̂j,k − θ′j,k)
2 ≤ min





4
∑

(j,k)∈Bi
j

(θ′j,k)
2, 8λ∗Ln−1





+ 6
∑

(j,k)∈Bi
j

ε2j,k + CLn−1

for some constant C > 0.

The third part follows from Lemma 3 in Cai and Wang (2008) which gives a concen-

tration inequality for wavelet coefficients at a given resolution.

For reasons of space we omit the proof of Proposition 3 here. See Cai and Zhou (2008)

for a complete proof. We also need the following lemmas for the proof of Theorems 3 and

4. The proof of these lemmas is relatively straightforward and is thus omitted.

Lemma 1 Suppose yi = θi + zi, i = 1, ..., L, where θi are constants and zi are random

variables. Let S2 =
∑L

i=1 y2
i and let θ̂i = (1− λL

S2 )+yi. Then

E‖θ̂ − θ‖2
2 ≤ ‖θ‖2

2 ∧ 4λL + 4E
[‖z‖2

2I(‖z‖2
2 > λL)

]
. (47)

Lemma 2 Let X ∼ χ2
L and λ > 1. Then

P (X ≥ λL) ≤ e−
L
2
(λ−log λ−1) and EXI(X ≥ λL) ≤ λLe−

L
2
(λ−log λ−1). (48)
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Lemma 3 Let T = 2J and let fJ(x) =
∑T

k=1
1√
T

f( k
T )φJ,k(x). Then

sup
f∈Bα

p,q(M)
‖fJ − f‖2

2 ≤ CT−2d where d = min (α− 1/p, 1).

Let {θ′j,k} be the discrete wavelet transform of {f( i
T ), 1 ≤ i ≤ T} and let {θj,k} be the true

wavelet coefficients of f . Then |θ′j,k−θj,k| ≤ CT−d2−j/2 and consequently
∑J−1

j=j0

∑
k(θ

′
j,k−

θj,k)2 ≤ CT−2d.

6.3.1 Global Adaptation: Proof of Theorem 3

Decompose E‖f̂n − f‖2
2 into three terms as follows,

E‖ĝn − g‖2
2 =

∑

k

E(ˆ̃θj0,k − θ̃j,k)2 +
J∗−1∑

j=j0

∑

k

E(θ̂j,k − θj,k)2 +
∞∑

j=J∗

∑

k

θ2
j,k

≡ S1 + S2 + S3. (49)

It is easy to see that the first term S1 and the third term S3 are small.

S1 = 2j0n−1ε2 = o(n−2α/(1+2α)). (50)

Note that for x ∈ IRm and 0 < p1 ≤ p2 ≤ ∞,

‖x‖p2 ≤ ‖x‖p1 ≤ m
1

p1
− 1

p2 ‖x‖p2 . (51)

Since f ∈ Bα
p,q(M), so 2js(

∑2j

k=1 |θj,k|p)1/p ≤ M . Now (51) yields that

S3 =
∞∑

j=J∗

∑

k

θ2
j,k ≤ C2−2J∗(α∧(α+ 1

2
− 1

p
))
. (52)

Proposition 3, Lemma 3 and Equation (46) yield that

S2 ≤ 2
J∗−1∑

j=j0

∑

k

E(θ̂j,k − θ′j,k)
2 + 2

J∗−1∑

j=j0

∑

k

(θ′j,k − θj,k)2

≤
J∗−1∑

j=j0

2j/L∑

i=1

min





8
∑

(j,k)∈Bi
j

θ2
j,k, 8λ∗Ln−1





+ 6
J∗−1∑

j=j0

∑

k

ε2j,k + Cn−1 + 10
J∗−1∑

j=j0

∑

k

(θ′j,k − θj,k)2

≤
J∗−1∑

j=j0

2j/L∑

i=1

min





8
∑

(j,k)∈Bi
j

θ2
j,k, 8λ∗Ln−1





+ Cn−1 + CT−2d. (53)
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We now divide into two cases. First consider the case p ≥ 2. Let J1 = [ 1
1+2α log2 n]. So,

2J1 ≈ n1/(1+2α). Then (53) and (51) yield

S2 ≤ 8λ∗
J1−1∑

j=j0

2j/L∑

i=1

Ln−1 + 8
J∗−1∑

j=J1

∑

k

θ2
j,k + Cn−1 + CT−2d ≤ Cn−2α/(1+2α).

By combining this with (50) and (52), we have E‖f̂n − f‖2
2 ≤ Cn−2α/(1+2α) for p ≥ 2.

Now let us consider the case p < 2. First we state the following lemma without proof.

Lemma 4 Let 0 < p < 1 and S = {x ∈ IRk :
∑k

i=1 xp
i ≤ B, xi ≥ 0, i = 1, · · · , k}. Then

for A > 0, supx∈S

∑k
i=1(xi ∧A) ≤ B ·A1−p.

Let J2 be an integer satisfying 2J2 ³ n1/(1+2α)(log n)(2−p)/p(1+2α). Note that

2j/L∑

i=1




∑

(j,k)∈Bi
j

θ2
j,k




p
2

≤
2j∑

k=1

(θ2
j,k)

p
2 ≤ M2−jsp.

It then follows from Lemma 4 that

J∗−1∑

j=J2

2j/L∑

i=1

min





8
∑

(j,k)∈Bi
j

θ2
j,k, 8λ∗Ln−1




≤ Cn−

2α
1+2α (log n)

2−p
p(1+2α) . (54)

On the other hand,

J2−1∑

j=j0

2j/L∑

i=1

min{8
∑

(j,k)∈Bi
j

θ2
j,k, 8λ∗Ln−1} ≤

J2−1∑

j=j0

∑

b

8λ∗Ln−1 ≤ Cn−
2α

1+2α (log n)
2−p

p(1+2α) .

(55)

We finish the proof for the case p < 2 by putting (50), (52), (54) and (55) together,

E‖f̂n − f‖2
2 ≤ Cn−

2α
1+2α (log n)

2−p
p(1+2α) .

6.3.2 Local Adaptation: Proof of Theorem 4

For simplicity, we give the proof for Hölder classes Λα(M) instead of local Hölder classes

Λα(M, t0, δ). Note that for all f ∈ Λα(M), |θj,k| = |〈f, ψj,k〉| ≤ C2−j(1/2+α) for some

constant C > 0 not depending on f . Note also that for any random variables Xi, i =
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1, · · · , n, E(
∑n

i=1 Xi)2 ≤ (
∑n

i=1(EX2
i )1/2)2. It then follows that

E(f̂n(t0)− f(t0))2 = E




2j0∑

k=1

(ˆ̃θj0,k − θ̃j0,k)φj0,k(t0) +
∞∑

j=j0

2j∑

k=1

(θ̂j,k − θj,k)ψj,k(t0)




2

≤

+

2j0∑

k=1

(E(ˆ̃θj0,k − θ̃j0,k)2φ2
j0,k(t0))

1
2

+
J∗−1∑

j=j0

2j∑

k=1

(E(θ̂j,k − θj,k)2ψ2
j,k(t0))

1
2 +

∞∑

j=J

2j∑

k=1

|θj,kψj,k(t0)|



2

≡ (Q1 + Q2 + Q3)2.

Since the wavelet ψ is compactly supported, so there are at most N basis functions ψj,k at

each resolution level j that are nonvanishing at t0, where N is the length of the support

of ψ. Denote K(t0, j) = {k : ψj,k(t0) 6= 0}. Then |K(t0, j)| ≤ N. It is easy to see that

both Q12 and Q3 are small:

Q1 =
2j0∑

k=1

(E(ˆ̃θj0,k − θ̃j0,k)2)
1
2 |φj0,k(t0)| = O(n−1), (56)

Q3 =
∞∑

j=J

2j∑

k=1

|θj,k||ψj,k(t0)| ≤
∞∑

j=J

N‖ψ‖∞2
j
2 C2−j( 1

2
+α) ≤ CT−α. (57)

We now consider the third term Q2. Applying the bound (44) in Proposition 3 with

τ < 1/(1 + 2α) together with Lemma 3 and the bound for εj,k given in (45), we have

Q2 ≤
J∗−1∑

j=j0

∑

k∈K(t0, j)

2
j
2 ‖ψ‖∞(E(θ̂j,k − θj,k)2)

1
2

≤ C

J∗−1∑

j=j0

2
j
2 [min(2−j(1+2α) + T−2(α∧1)2−j , Ln−1) + n−2+τ ]

1
2

≤ C(
log n

n
)

α
1+2α . (58)

Combining Equations (56)-(58), we have E(f̂n(t0)− f(t0))2 ≤ C(log n/n)2α/(1+2α).

6.4 Proof of Theorem 5

Recall that

Q̂ =
2j0∑

k=1

(ỹ2
j0,k − σ̂2

n) +
Jq∑

j=j0

2j∑

k=1

(y2
j,k − σ̂2

n)

32



and note that the empirical wavelet coefficients can be written as

yj,k = θj,k + εj,k + σnzj,k + ξj,k.

Since
(∑

j>J1
θ2
j,k

)2
≤ C

[
2−2J1(α−1/p)

]2
= o

(
1
n

)
, as in Cai and Low (2005) it is easy to

show that

Ef





2j0∑

k=1

[(
θ̃j0,k + σnz̃j0,k

)2
− σ2

n

]
+

Jq∑

j=j0

2j∑

k=1

(
[
(θj,k + σnzj,k)

2 − σ2
n

]
−Q (f)





2

≤ 4σ2
nM2 (1 + o (1)) .

The theorem then follows easily from the facts below

2j0∑

k=1

ε̃2j,k +
Jq∑

j=j0

2j∑

k=1

ε2j,k ≤ CT−2(α−1/p) = o

(
1
n

)

E




2j0∑

k=1

ξ2
j,k +

Jq∑

j=j0

2j∑

k=1

ξ2
j,k




2

≤ C
1

m2n
= o

(
1
n

)

E
[√

n
(
σ̂2

n − σ2
n

)]2 = o

(
1
n

)
.
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