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Canonical correlation analysis is a widely used multivariate statis-
tical technique for exploring the relation between two sets of variables.
This paper considers the problem of estimating the leading canonical
correlation directions in high dimensional settings. Recently, under
the assumption that the leading canonical correlation directions are
sparse, various procedures have been proposed for many high dimen-
sional applications involving massive data sets. However, there has
been few theoretical justification available in the literature. In this
paper, we establish rate-optimal non-asymptotic minimax estimation
with respect to an appropriate loss function for a wide range of model
spaces. Two interesting phenomena are observed. First, the minimax
rates are not affected by the presence of nuisance parameters, namely
the covariance matrices of the two sets of random variables, though
they need to be estimated in the canonical correlation analysis prob-
lem. Second, we allow the presence of the residual canonical corre-
lation directions. However, they do not influence the minimax rates
under a mild condition on eigengap. A generalized sin-theta theorem
and an empirical process bound for Gaussian quadratic forms un-
der rank constraint are used to establish the minimax upper bounds,
which may be of independent interest.

1. Introduction. Canonical correlation analysis (CCA) [17] is one of
the most classical and important tools in multivariate statistics [3, 24]. It
has been widely used in various fields to explore the relation between two
sets of variables measured on the same sample.

On the population level, given two random vectors X ∈ Rp and Y ∈ Rm,
CCA first seeks two vectors u1 ∈ Rp and v1 ∈ Rm such that the corre-
lation between the projected variables u�1X and v�1Y is maximized. More
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2 GAO, MA, REN AND ZHOU

specifically, (u1, v1) is the solution to the following optimization problem,

max
u∈Rp,v∈Rm

Cov(u�X, v�Y ), subject to Var(u�X) = Var(v�Y ) = 1,(1)

which is uniquely determined up to a simultaneous sign change when there
is a positive eigengap. Inductively, once (ui, vi) is found, one can further
obtain (ui+1, vi+1) by solving the above optimization problem repeatedly
subject to the extra constraint that

Cov(u�X,u�jX) = Cov(v�Y, v�jY ) = 0, for j = 1, . . . , i.

Throughout the paper, we call the (ui, vi)’s canonical correlation directions.

It was shown by Hotelling [17] that the (Σ1/2
x ui,Σ

1/2
y vi)’s are the successive

singular vector pairs of

Σ−1/2
x ΣxyΣ

−1/2
y ,(2)

where Σx = Cov(X),Σy = Cov(Y ) and Σxy = Cov(X,Y ). When one is
only given a random sample {(Xi, Yi) : i = 1, . . . , n} of size n, classical
CCA estimates the canonical correlation directions by performing singular
value decomposition (SVD) on the sample counterpart of (2) first and then
premultiply the singular vectors by the inverse of square roots of the sample
covariance matrices. For fixed dimensions p and m, the estimators are well-
behaved when the sample size is large [2].

However, in contemporary datasets, we typically face the situation where
the ambient dimension in which we observe data is very high while the sam-
ple size is small. The dimensions p andm can be much larger than the sample
size n. For example, in cancer genomic studies, X and Y can be gene expres-
sion and DNAmethylation measurements respectively, where the dimensions
p and m can be as large as tens of thousands while the sample size n is typi-
cally no larger than several hundreds [25]. When applied to datasets of such
nature, classical CCA faces at least three key challenges. First, the canonical
correlation directions obtained through classical CCA procedures involve all
the variables measured on each subject, and hence are difficult to interpret.
Second, due to the amount of noise that increases dramatically as the ambi-
ent dimension grows, it is typically impossible to consistently estimate even
the leading canonical correlation directions without any additional struc-
tural assumption. Third, successive canonical correlation directions should
be orthogonal with respect to the population covariance matrices which are
notoriously hard to estimate in high dimensional settings. Indeed, it is not
possible to obtain substantially better estimator than the sample covariance
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SPARSE CCA 3

matrix [23] which usually behaves poorly [18]. So the estimation of such
nuisance parameters further complicates the problem of high dimensional
CCA.

Motivated by genomics, neuroimaging and other applications, there have
been growing interests in imposing sparsity assumptions on the leading
canonical correlation directions. See, for example, [36, 37, 26, 16, 21, 33,
4, 34] for some recent methodological developments and applications. By
seeking sparse canonical correlation directions, the estimated (ui, vi) vectors
only involve a small number of variables and hence are easier to interpret.

Despite these recent methodological advances, theoretical understanding
about the sparse CCA problem is lacking. It is unclear whether the sparse
CCA algorithms proposed in the literature have consistency or certain rates
of convergence if the population canonical correlation directions are indeed
sparse. To the best of our limited knowledge, the only theoretical work avail-
able in the literature is [12]. In this paper, the authors gave a characterization
for the sparse CCA problem and considered an idealistic single canonical pair
model where Σxy, the covariance between X and Y , was assumed to have a
rank one structure. They reparametrize Σxy as follows,

Σxy = Σxλuv
�Σy,(3)

where λ ∈ (0, 1) and u�Σxu = v�Σyv = 1. It can be shown that (u, v) is
the solution to (1), so that they are the leading canonical correlation direc-
tions. Under this model, Chen et al. [12] studied the minimax lower bound
for estimating the individual vectors u and v, and proposed an iterative
thresholding approach for estimating u and v, partially motivated by [22].
However, their results depend on how well the nuisance parameters Σx and
Σy can be estimated, which, to our surprise, turns out to be unnecessary as
shown in this paper.

1.1. Main contributions. The main objective of the current paper is
to understand the fundamental limits of the sparse CCA problem from a
decision-theoretic point of view. Such an investigation is not only interest-
ing in its own right, but will also inform the development and evaluation of
practical methodologies in the future. The model considered in this work is
very general. As shown in [12], Σxy can be reparametrized as follows,

Σxy = Σx(UΛV �)Σy, with U �ΣxU = V �ΣyV = Ir̄,(4)

where r̄ = min(p,m), Λ = diag(λ1, . . . , λr̄) and 1 > λ1 ≥ · · · ≥ λr̄ ≥ 0. Then
the successive columns of U and V are the leading canonical correlation
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4 GAO, MA, REN AND ZHOU

directions. Therefore, (4) is the most general model for covariance structure,
and sparse CCA actually means the leading columns of U and V are sparse.

We can split UΛV � as

(5) UΛV � = U1Λ1V
�
1 + U2Λ2V

�
2 ,

where Λ1 = diag(λ1, . . . , λr),Λ2 = diag(λr+1, . . . , λr̄), U1 ∈ Rp×r, V1 ∈
Rm×r, U2 ∈ Rp×r2 and V2 ∈ Rm×r2 for r2 = r̄ − r. In what follows, we
call (U1, V1) the leading and (U2, V2) the residual canonical correlation di-
rections. Since our primary interest lies in U1 and V1, both the covariance
matrices Σx and Σy and the residual canonical correlation directions U2 and
V2 are nuisance parameters in our problem. This model is more general than
(3) considered in [12]. It captures the situation in real practice where one is
interested in recovering the first few sparse canonical correlation directions
while there might be additional directions in the population structure.

To measure the performance of a procedure, we propose to estimate the
matrix U1V �

1 under the following loss function

L(U1V
�
1 ,

�U1V �
1) = �U1V

�
1 − �U1V �

1�
2
F.(6)

We choose this loss function for several reasons. First, even when the λi’s are
all distinct, U1 and V1 are only determined up to a simultaneous sign change
of their columns. In contrast, the matrix U1V �

1 is uniquely defined as long as
λr > λr+1. Second, (6) is stronger than the squared projection error loss. For
any matrix A, let PA stand for the projection matrix onto its column space.
If the spectra of Σx and Σy are both bounded away from zero and infinity,
then, in view of Wedin’s sin-theta theorem [35], any upper bound on the loss
function (6) leads to an upper bound on the loss functions �PU1 − �PU1�2F and

�PV1 − �PV1�2F for estimating the column subspaces of U1 and V1, which have
been used in the related problem of sparse principal component analysis
[9, 32]. Third, this loss function comes up naturally as the key component
in the Kullback-Leibler divergence calculation for a special class of normal
distributions where Σx = Ip, Σy = Im and λr+1 = · · · = λr̄ = 0 in (4).

We use weak-lq balls to quantify sparsity. Let �(U1)j∗� denote the �2 norm
of the j-th row of U1, and let �(U1)(1)∗� ≥ · · · ≥ �(U1)(p)∗� be the ordered
row norms. One way to characterize the sparsity in U1 (and V1) is to look
at its weak-�q radius for some q ∈ [0, 2),

�U1�q,w = max
j∈[p]

j�(U1)(j)∗�q(7)

under the tradition that 0q = 0. For instance, in the case of exact spar-
sity, i.e., q = 0, �U1�0,w counts the number of nonzero rows in U1. When
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SPARSE CCA 5

q ∈ (0, 2), (7) quantifies the decay of the ordered row norms of U1, which
is a form of approximate sparsity. Then, we define the parameter space
Fq(su, sv, p,m, r, λ;κ,M), as the collection of all covariance matrices

Σ =

�
Σx Σxy

Σyx Σy

�

with the CCA structure (4) and (5), which satisfies

1. U1 ∈ Rp×r and V1 ∈ Rm×r satisfying �U1�q,w ≤ su and �V1�q,w ≤ sv;

2.
��Σl

x

��
op

∨
��Σl

y

��
op

≤ M for l = ±1;

3. 1 > κλ ≥ λ1 ≥ ... ≥ λr ≥ λ > 0.

Throughout the paper, we assume κλ ≤ 1 − c0 for some absolute constant
c0 ∈ (0, 1). The key parameters su, sv, p,m, r and λ are allowed to depend on
the sample size n, while κ,M > 1 are treated as absolute constants. Com-
pared with the single canonical pair model (3) in [12], where rank(Σxy) = 1,
in this paper, the rank of Σxy can be as high as p or m, r is allowed to grow,
and we do not need structural assumptions on Σx and Σy such as sparsity.

Suppose we observe i.i.d. pairs (X1, Y1), . . . (Xn, Yn) ∼ Np+m(0,Σ). For
two sequences {an} and {bn} of positive numbers, we write an � bn if for
some absolute constant C > 1, 1/C ≤ an/bn ≤ C for all n. By the minimax
lower and upper bound results in Section 2, under mild conditions, we obtain
the following tight non-asymptotic minimax rates for estimating the leading
canonical directions when q = 0:

(8)

inf
�U1V �

1

sup
Σ∈F0(su,sv ,p,m,r,λ)

EΣ�U1V
�
1 − �U1V �

1�
2
F

� 1

nλ2

�
r(su + sv) + su log

ep

su
+ sv log

em

sv

�
,

In Section 2, we give a precise statement of this result and tight minimax
rates for the case of approximate sparsity, i.e., q ∈ (0, 2).

The result (8) provides a precise characterization of the statistical fun-
damental limit of the sparse CCA problem. It is worth noting that the
conditions required for (8) do not involve any additional assumptions on the
nuisance parameters Σx,Σy, U2 and V2. Therefore, we are able to establish
the remarkable fact that the fundamental limit of the sparse CCA problem is
not affected by those nuisance parameters. This optimality result can serve
as an important guideline to evaluate procedures proposed in the literature.

To obtain minimax upper bounds, we propose an estimator by optimizing
canonical correlation under sparsity constraints. A key element in analyzing
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6 GAO, MA, REN AND ZHOU

the risk behavior of the estimator is a generalized sin-theta theorem. See
Theorem 4 in Section 4.1. The theorem is of interest in its own right and can
be useful in other problems where matrix perturbation analysis is needed.
It is worth noting that the proposed procedure does not require sample
splitting, which was needed in [9]. We bypass sample splitting by establishing
a new empirical process bound for the supreme of Gaussian quadratic forms
with rank constraint. See Lemma 8 in Section 4.1. The estimator is shown
to be minimax rate optimal by establishing matching minimax lower bounds
based on a local metric entropy approach [20, 7, 38, 9].

1.2. Connection to and difference from sparse PCA. The current paper
is related to the problem of sparse principal component analysis (PCA),
which has received a lot of recent attention in the literature. Most literature
on sparse PCA considers the spiked covariance model [30, 18] where one
observes an n× p data matrix, each row of which is independently sampled
from a normal distribution Np(0,Σ0) with

Σ0 = V ΛV � + σ2Ip.(9)

Here V ∈ Rp×r has orthonormal column vectors which are assumed to be
sparse and Λ = diag(λ1, . . . , λr) with λ1 ≥ · · · ≥ λr > 0. Since the first r
eigenvalues of Σ0 are {λi+σ2}ri=1 and the rest are all σ2, the λi’s are referred
as “spikes” and hence the name of the model. Johnstone and Lu [19] pro-
posed a diagonal thresholding estimator of the sparse principal eigenvector
which is provably consistent when r = 1 in (9). For fixed r, Birnbaum et al.
[8] derived minimax rate optimal estimators for individual sparse princi-
pal eigenvectors, and Ma [22] proposed to directly estimate sparse principal
subspaces, i.e., the span of V , and constructed an iterative thresholding al-
gorithm for this purpose which is shown to achieve near optimal rate of
convergence adaptively. Cai et al. [9] studied minimax rates and adaptive
estimation for sparse principal subspaces with little constraint on r. See also
[32] for the case of a more general model. In addition, variable selection,
rank detection, computational complexity and posterior contraction rates
of sparse PCA have been studied. See, for instance, [1, 10, 5, 14] and the
references therein.

Compared with sparse PCA, the sparse CCA problem studied in the cur-
rent paper is different and arguably more challenging in three important
ways.

• In sparse PCA, the sparse vectors of interest, i.e., the columns of V in
(9) are normalized with respect to the identity matrix. In contrast, in
sparse CCA, the sparse vectors of interest, i.e., the columns of U and V
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SPARSE CCA 7

are normalized with respect to Σx and Σy respectively, which are not
only unknown but also hard to estimate in high dimensional settings.
The necessity of normalization with respect to nuisance parameters
adds on to the difficulty of the sparse CCA problem.

• In sparse PCA, especially in the spiked covariance model, there is a
clean separation between “signal” and “noise”: the signal is in the
spiked part and the rest are noise. However, in the parameter space
considered in this paper, we allow the presence of residual canonical
correlations U2Λ2V �

2 , which is motivated by the situation statisticians
face in practice. It is highly non-trivial to show that the presence
of the residual canonical correlations does not influence the minimax
estimation rates.

• The covariance structures in sparse PCA and sparse CCA have both
sparsity and low-rank structures. However, there is a subtle difference
between the two. In sparse PCA, the sparsity and orthogonality of V
in (9) are coherent. This means that the columns of V are sparse and
orthogonal to each other simultaneously. Such convenience is absent in

the sparse CCA problem. It is implied from (4) that Σ1/2
x U1 and Σ1/2

y V1

have orthogonal columns, while it is the columns of U1 and V1 that are
sparse. The orthogonal columns and the sparse columns are different.
The consequence is that in order to estimate the sparse matrices U1

and V1, we must appeal to the orthogonality in the non-sparse matrices

Σ1/2
x U1 and Σ1/2

y V1.

1.3. Organization of the paper. The rest of the paper is organized as
follows. Section 2 presents the main results of the paper, including upper
bounds in Section 2.1 and lower bounds in Section 2.2. All the proofs are
gathered in Section 3, with some auxiliary results and technical lemmas
proved in Section 4 and the appendix.

1.4. Notation. For any matrix A = (aij), the i-th row of A is denoted
by Ai∗ and the j-th column by A∗j . For a positive integer p, [p] denotes
the index set {1, 2, ..., p}. For any set I, |I| denotes its cardinality and Ic

its complement. For two subsets I and J of indices, we write AIJ for the
|I| × |J | submatrices formed by aij with (i, j) ∈ I × J . When I or J is the
whole set, we abbreviate it with an ∗, and so if A ∈ Rp×k, then AI∗ = AI[k]

and A∗J = A[p]J . For any square matrix A = (aij), denote its trace by
Tr(A) =

�
i aii. Moreover, let O(p, k) denote the set of all p×k orthonormal

matrices and O(k) = O(k, k). For any matrix A ∈ Rp×k, σi(A) stands for its
i-th largest singular value. The Frobenius norm and the operator norm of
A are defined as �A�F =

�
Tr(A�A) and �A�op = σ1(A), respectively. The
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8 GAO, MA, REN AND ZHOU

support of A is defined as supp(A) = {i ∈ [n] : �Ai∗� > 0}. The trace inner
product of two matrices A,B ∈ Rp×k is defined as �A,B� = Tr(A�B). For any
number a, we use �a� to denote the smallest integer that is no smaller than
a. For any two numbers a and b, let a∨ b = max(a, b) and a∧ b = min(a, b).
For any event E, we use 1{E} to denote its indicator function. We use PΣ to
denote the probability distribution of Np+m(0,Σ) and EΣ for the associated
expectation.

2. Main Results. In this section, we state the main results of the pa-
per. In Section 2.1, we introduce a method to estimate the leading canonical
correlation directions. Minimax upper bounds are obtained. Section 2.2 gives
minimax lower bounds which match the upper bounds up to a constant fac-
tor. We abbreviate the parameter space Fq(su, sv, p,m, r, λ;κ,M) as Fq.

2.1. Upper bounds. The main idea of the estimator proposed in this pa-
per is to maximize the canonical correlations under sparsity constraints.
Note that the SVD approach of the classical CCA [17] can be written in the
following optimization form,

(10) max
(A,B)

Tr(A��ΣxyB) s.t. A��ΣxA = B��ΣyB = Ir.

We generalize (10) to the high-dimensional setting by adding sparsity con-
straints.

Since the leading canonical correlation directions (U1, V1) are weak lq
sparse, we introduce effective sparsity for q ∈ [0, 2), which plays a key role
in defining the procedure. Define

xuq = max

�
0 ≤ x ≤ p : x ≤ su

�
nλ2

r + log(ep/x)

�q/2
�
,(11)

xvq = max

�
0 ≤ x ≤ m : x ≤ sv

�
nλ2

r + log(em/x)

�q/2
�
.(12)

The effective sparsity of U1 and V1 are defined as

(13) kuq =
�
xuq

�
, kvq =

�
xvq

�
.

For j ≥ kuq , it can be shown that

||(U1)(j)∗|| ≤
�
r + log(ep/kuq )

nλ2

�1/2

,

imsart-aos ver. 2011/05/20 file: SCCA_paper.tex date: May 6, 2014



SPARSE CCA 9

for which the signal is not strong enough to be recovered from the data. It
holds similarly for V1.

For n i.i.d. observations (Xi, Yi), i ∈ [n], we compute the sample covari-
ance matrix

�Σ =

�
�Σx

�Σxy
�Σyx

�Σy

�
.

The estimator (�U1, �V1) for (U1, V1), the leading r canonical correlation di-
rections, is defined as a solution to the following optimization problem,

(14)
max
(A,B)

Tr(A��ΣxyB)

s.t. A��ΣxA = B��ΣyB = Ir and �A�0,w = kuq , �B�0,w = kvq .

When q = 0 we have kuq = su and kvq = sv. Then, the program (14) is just
a slight generalization of the classical approach of [17] with additional l0
constraints �A�0,w = su and �B�0,w = sv.

Set

(15) �2n =
1

nλ2

�
r(kuq + kvq ) + kuq log

ep

kuq
+ kvq log

em

kvq

�
,

which is the minimax rate to be shown later.

Theorem 1. Under the assumption that

�2n ≤ c,(16)

λr+1 ≤ cλ,(17)

for some sufficiently small constant c ∈ (0, 1). For any constant C � > 0,
there exists a constant C > 0 only depending on M, q, κ and C �, such that

for any Σ ∈ Fq,

��U1
�V �
1 − U1V

�
1�2F ≤ C�2n,

with PΣ-probability at least 1− exp(−C �(kuq + log(ep/kuq )))− exp(−C �(kvq +
log(em/kvq ))).

Remark 1. It will be shown in Section 2.2 that the assumption (16) is
necessary for consistent estimation. The assumption (17) implies λr+1 ≤ cλr

for c ∈ (0, 1), such that the eigengap is lower bounded as λr − λr+1 ≥
(1− c)λr > 0.
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10 GAO, MA, REN AND ZHOU

Remark 2. The upper bound �2n has two parts. The first part 1
nλ2

�
r(kuq+

kvq )
�
is caused by low rank structure, and the second part 1

nλ2

�
kuq log(ep/k

u
q )+

kvq log(em/kvq )
�
is caused by sparsity. If r ≤ log(ep/kuq ) ∧ log(em/kvq ), the

second part dominates, while the first part dominates if r ≥ log(ep/kuq ) ∨
log(em/kvq ).

To obtain the convergence rate in expectation, we propose a modified
estimator. The modification is inspired by the fact that U1V �

1 are bounded
in Frobenius norm, because

(18) �U1V
�
1�F ≤ �Σ−1/2

x �op�Σ1/2
x U1�F�Σ1/2

y V1�op�Σ−1/2
y �op ≤ M

√
r.

Define �U1V �
1 to be the truncated version of �U1

�V �
1 as

�U1V �
1 = �U1

�V �
1 1{��U1 �V �

1�F≤2M
√
r}.

The modification can be viewed as an improvement, because whenever ��U1
�V �
1�F >

2M
√
r, we have

��U1
�V �
1 − U1V

�
1�F ≥ ��U1

�V �
1�F − �U1V

�
1�F ≥ M

√
r ≥

��0− U1V
�
1

��
F
.

Then it is better to estimate U1V �
1 by 0.

Theorem 2. Suppose (16) and (17) hold. In addition, assume that

exp(C1(k
u
q + log(ep/kuq ))) > nλ2,(19)

exp(C1(k
v
q + log(em/kvq ))) > nλ2,(20)

for some C1 > 0, then there exists C2 > 0 only depending on M, q, κ and

C1, such that

sup
Σ∈Fq

EΣ��U1V �
1 − U1V

�
1�2F ≤ C2�

2
n.

Remark 3. The assumptions (19) and (20) imply the tail probability
in Theorem 1 is sufficiently small. Once there exists a small constant δ > 0,
such that

p ∨ ek
u
q ≥ nδ and m ∨ ek

v
q ≥ nδ

hold, then (19) and (20) also hold with some C1 > 0. Notice that p > nδ

is commonly assumed in high-dimensional statistics to have convergence
results in expectation. The assumption here is weaker than that.
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2.2. Lower bounds. Theorem 1 and Theorem 2 show that the procedure
proposed in (14) attains the rate �2n. In this section, we show that this rate is
optimal among all estimators. More specifically, we show that the following
minimax lower bounds hold for q ∈ [0, 2).

Theorem 3. Assume that 1 ≤ r ≤ kuq ∧kvq
2 , and that

(21) nλ2 ≥ C0

�
r + log

ep

kuq
∨ log

em

kvq

�

for some sufficiently large constant C0. Then there exists a constant c > 0
depending only on q and an absolute constant c0 such that the minimax risk

for estimating U1V �
1 satisfies

inf
(�U1,�V1)

sup
Σ∈Fq

EΣ��U1
�V �
1 − U1V

�
1�2F ≥ c�2n ∧ c0.

Remark 4. The assumption (21) is necessary for consistent estimation.

3. Proof of Main Results.

3.1. Proof of upper bounds. In this part, we prove Theorems 1 and 2.

3.1.1. Outline of proof and preliminaries. To prove both Theorems 1 and
2, we go through the following three steps:

1. We decompose the value of the loss function into multiple terms which
result from different sources;

2. We derive individual high probability bound for each term in the de-
composition;

3. We assemble the individual bounds to obtain the desired upper bounds
on the loss and the risk functions.

In the rest of this subsection, we carry out these three steps in order. To
facilitate the presentation, we introduce below several important quantities
to be used in the proof.

Recall the effective sparsity (kuq , k
v
q ) defined in (13). Let Su be the index

set of the rows of U1 with the kuq largest l2 norms. In case U1 has no more
than kuq nonzero rows, we include in Su the smallest indices of the zero rows
in U1 such that |Su| = kuq . We also define Sv analogously. In what follows,
we refer to them as the effective support sets.

We define (U∗
1 , V

∗
1 ) as a solution to

(22)
max
(A,B)

Tr(A�ΣxyB)

s.t. A�ΣxA = B�ΣyB = Ir and supp(A) ⊂ Su, supp(B) ⊂ Sv.
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12 GAO, MA, REN AND ZHOU

In what follows, we refer to them as the sparse approximations to U1 and
V1. By definition, when q = 0, U∗

1 (V
∗
1 )

� = U1V �
1 .

In addition, we define the oracle estimator (�U∗
1 , �V ∗

1 ) as a solution to

(23)
max
(A,B)

Tr(A��ΣxyB)

s.t. A��ΣxA = B��ΣyB = Ir and supp(A) = Su, supp(B) = Sv.

In case the program (22) (or (23)) has multiple global optimizers, we define
(U∗

1 , V
∗
1 ) (or (�U∗

1 , �V ∗
1 )) by picking an arbitrary one.

We note that

(U∗
1 )Sc

u∗ = (�U∗
1 )Sc

u∗ = 0, (V ∗
1 )Sc

v∗ = (�V ∗
1 )Sc

v∗ = 0.

By definition, the matrices (U∗
1 , V

∗
1 ) are normalized with respect to Σx and

Σy, and (�U∗
1 , �V ∗

1 ) are normalized with respect to �Σx and �Σy.
Last but not least, let

�Su = supp(�U1), �Sv = supp(�V1).(24)

By the definition of (�U1, �V1) in (14), we have |�Su| = kuq and |�Sv| = kvq with
probability one. Remember the minimax rate �2n defined in (15).

3.1.2. Loss decomposition. In the first step, we decompose the loss func-
tion into five terms as follows.

Lemma 1. Assume
1
n(k

u
q log(ep/k

u
q )+kvq log(em/kvq )) < c for sufficiently

small c > 0. For any constant C � > 0, there exists a constant C > 0 only

depending on M and C �, such that

��U1
�V �
1 − U1V

�
1�2F

≤ 3�U∗
1 (V

∗
1 )

� − U1V
�
1�2F(25)

+3��U∗
1 (�V ∗

1 )
� − U∗

1 (V
∗
1 )

��2F(26)

−6C

λr

�
ΣxU2Λ2V

�
2Σy, �U∗

1 (�V ∗
1 )

� − �U1
�V �
1

�
(27)

+
6C

λr

�
Σxy − �Σxy, �U∗

1 (�V ∗
1 )

� − �U1
�V �
1

�
(28)

+
6C

λr

�
�Σx

�U∗
1Λ1

�V ∗
1
��Σy − ΣxU1Λ1V

�
1Σy, �U∗

1 (�V ∗
1 )

� − �U1
�V �
1

�
,(29)

with probability at least 1−exp(−C �kuq log(ep/k
u
q ))−exp(−C �kvq log(em/kvq )).
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Proof. See Section 4.2.

In particular, Lemma 1 decomposes the total loss into the sum of the
sparse approximation error in (25), the oracle loss in (26) which is present
even if we have the oracle knowledge of the effective support sets Su and Sv,
the bias term in (27) caused by the presence of the residual term U2Λ2V �

2

in the CCA structure (4), and the two excess loss terms in (28) and (29)
resulting from the uncertainty about the effective support sets. When q = 0,
the sparse approximation error term (25) vanishes.

3.1.3. Bounds for individual terms. We now state the bounds for the
individual terms obtained in Lemma 1 as five separate lemmas. The proofs
of these lemmas are deferred to subsections 4.3 – 4.7.

Lemma 2 (Sparse approximation). Suppose (16) and (17) hold. There

exists a constant C > 0 only depending on M,κ, q, such that

�U∗
1 (V

∗
1 )

� − U1V
�
1�2F ≤ Cq

2− q
�2n,(30)

�U∗
1Λ1(V

∗
1 )

� − U1Λ1V
�
1�2F ≤ Cq

2− q
λ2�2n.(31)

Lemma 3 (Oracle loss). Suppose
1

nλ2

�
kuq+kvq+log(ep/kuq )+log(em/kvq )

�
<

c and that (17) holds for some sufficiently small c > 0. For any constant

C � > 0, there exists a constant C > 0 only depending on M, q, κ and C �,
such that

(32) ��U∗
1 (�V ∗

1 )
� − U∗

1 (V
∗
1 )

��2F ≤ Cr

nλ2

�
kuq + kvq + log

� ep
kuq

�
+ log

�em
kvq

��
,

with probability at least 1 − exp(−C �(kuq + log(ep/kuq ))) − exp(−C �(kvq +
log(em/kvq ))). Moreover, if (16) also holds, then with the same probability

(33) ��U∗
1Λ1(�V ∗

1 )
� − U∗

1Λ1(V
∗
1 )

��2F ≤ Cλ2�2n.

Since r ≤ kuq ∧ kvq , (32) is bounded above by C�2n. The error bounds in
Lemma 3 are due to the estimation error of true covariance matrices by
sample covariance matrices on the subset Su × Sv.

Lemma 4 (Bias). Suppose
1
n(k

u
q log(ep/k

u
q ) + kvq log(em/kvq )) < C1 for

some constant C1 > 0. For any constant C � > 0, there exists a constant
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14 GAO, MA, REN AND ZHOU

C > 0 only depending on M,κ,C1 and C �, such that

���
�
ΣxU2Λ2V

�
2Σy, �U∗

1 (�V ∗
1 )

� − �U1
�V �
1

����

≤ Cλr+1

�
��U∗

1 (�V ∗
1 )

� − U1V
�
1�2F + �U1V

�
1 − �U1

�V �
1�2F

�
,

with probability at least 1−exp(−C �kuq log(ep/k
u
q ))−exp(−C �kvq log(em/kvq )).

The bias is Lemma 4 is 0 when U2Λ2V �
2 is 0.

Lemma 5 (Excess loss 1). Suppose (16) holds. For any constant C � > 0,
there exists a constant C > 0 only depending on M and C �, such that

���
�
Σxy − �Σxy, �U∗

1 (�V ∗
1 )

� − �U1
�V �
1

���� ≤ Cλ�n��U1
�V �
1 − �U∗

1 (�V ∗
1 )

��F,

with probability at least 1−exp(−C �(r(kuq+kvq )+kuq log(ep/k
u
q )+kvq log(em/kvq ))).

Lemma 6 (Excess loss 2). Suppose (16) and (17) hold. For any constant

C � > 0, there exists a constant C > 0 only depending on M,κ, q and C �,
such that
���
�
�Σx

�U∗
1Λ1(�V ∗

1 )
��Σy − ΣxU1Λ1V

�
1Σy, �U∗

1 (�V ∗
1 )

� − �U1
�V �
1

���� ≤ Cλ�n��U∗
1 (�V ∗

1 )
� − �U1

�V �
1�F,

with probability at least 1 − exp(−C �(kuq + log(ep/kuq ))) − exp(−C �(kvq +
log(em/kvq ))).

3.1.4. Proof of Theorem 1. For notational convenience, let

R = ��U1
�V �
1−U1V

�
1�F, θ = �U∗

1 (V
∗
1 )

�−U1V
�
1�F, δ = ��U∗

1 (�V ∗
1 )

�−U∗
1 (V

∗
1 )

��F.

Consider the event such that the conclusions of Lemmas 1 – 6 hold, which
occurs with probability at least 1−exp(−C �(kuq+log(ep/kuq )))−exp(−C �(kvq+
log(em/kvq ))) according to the union bound. On this event, Lemma 2 and
Lemma 3 imply that

θ2 ≤ C�2n and δ2 ≤ C�2n.

Moreover, Lemma 4 implies
����
1

λr

�
ΣxU2Λ2V

�
2Σy, �U∗

1 (�V ∗
1 )

� − �U1
�V �
1

����� ≤
Cλr+1

λ

�
R2 + θ2 + δ2

�
,

Lemma 5 implies
����
1

λr

�
Σxy − �Σxy, �U∗

1 (�V ∗
1 )

� − �U1
�V �
1

����� ≤ C�n(R+ θ + δ),
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and Lemma 6 implies
����
1

λr

�
�Σx

�U∗
1Λ1(�V ∗

1 )
��Σy − ΣxU1Λ1V

�
1Σy, U

∗
1 (�V ∗

1 )
� − �U1

�V �
1

����� ≤ C�n(R+ θ + δ).

Together with Lemma 1, the above bounds lead to

R2 ≤ C(θ2 + δ2) +
Cλr+1

λ
(R2 + θ2 + δ2) + C�n(R+ θ + δ)

≤ Cλr+1

λ
R2 + C�nR+ C�2n.

Under assumption (17), we have 1
2R

2 ≤ C�nR+ C�2n, implying

R2 ≤ C�2n,

for some C > 0. We complete the proof by noting that the conditions of
Lemmas 1 – 6 are satisfied under assumptions (16) and (17).

3.1.5. Proof of Theorem 2. Recall the definition of �n in (15), and let C1

be the constant in (19) and (20). The result of Theorem 1 implies that we
can choose an arbitrarily large constant C � such that C � > C1. Given C �,
there exists a constant C, by which we can bound the risk as follows

EΣ��U1V �
1 − U1V

�
1�2F

≤ EΣ

�
��U1V �

1 − U1V
�
1�2F1���U1V �

1−U1V �
1�2F≤C�2n

�
�

+ EΣ

�
��U1V �

1 − U1V
�
1�2F1���U1V �

1−U1V �
1�2F>C�2n

�
�

≤ C�2n + EΣ

��
2��U1V �

1�
2
F + 2�U1V

�
1�2F

�
1���U1V �

1−U1V �
1�2F>C�2n

�
�

(34)

≤ C�2n + 6M2r PΣ

�
��U1

�V �
1 − U1V

�
1�2F > C�2n

�
(35)

≤ C2�
2
n.(36)

Here, the inequality (34) is due to the triangle inequality and the fact that
�
��U1V �

1 − U1V
�
1�2F > C�2n

�
⊂

�
��U1

�V �
1 − U1V

�
1�2F > C�2n

�
.

In fact, if ��U1
�V �
1 −U1V �

1�2F ≤ C�2n, then ��U1
�V �
1�2F ≤ C�2n +M2r ≤ 2M2r. By

our definition of the estimatior, this means �U1V �
1 = �U1

�V �
1 , which further im-

plies ��U1V �
1 −U1V �

1�2F ≤ C�2n. The inequality (35) follows from our definition

of estimator �U1V �
1 and (18). The last inequality follows from the conclusion

of Theorem 1 and the assumptions (19) and (20). This completes the proof.
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16 GAO, MA, REN AND ZHOU

3.2. Proof of lower bounds. In this part, we prove Theorem 3. We divide
the proof into two parts. In the first part, we establish the desired lower
bounds for the exact sparse case q = 0 in Section 3.2.1. In the second
part, we extend the arguments to the approximate space case q ∈ (0, 2) in
Section 3.2.2. Without loss of generality, we assume r ≤ (p− kuq +1)∧ (m−
kvq + 1).

Throughout the proof, we focus on the special case where U2 = 0 and
V2 = 0 in (5). Thus, we omit the subscript 1 in U1,Λ1 and V1 in the rest of
the proof.

3.2.1. The case of q = 0. We first present a lemma on the Kullback-
Leibler divergence between data distributions generated by a special kind of
covariance matrices. The lemma also partially explains why (6) is a natural
loss function to consider. Its proof is deferred to the appendix.

Lemma 7. For i = 1, 2, let Σ(i) =

�
Ip λU(i)V

�
(i)

λV(i)U
�
(i) Im

�
with λ ∈ (0, 1),

U(i) ∈ O(p, r) and V(i) ∈ O(m, r). Let P(i) denote the distribution of a

random i.i.d. sample of size n from the Np+m(0,Σ(i)) distribution. Then

D(P(1)||P(2)) =
nλ2

2(1− λ2)
�U(1)V

�
(1) − U(2)V

�
(2)�

2
F.

The main tool for our proof is Fano’s lemma, which is based on multiple
hypothesis testing argument. The following version of Fano’s lemma is from
[39, Lemma 3].

Proposition 1. Let (Θ, ρ) be a metric space and {Pθ : θ ∈ Θ} a col-

lection of probability measures. For any totally bounded T ⊂ Θ, denote by

M(T, ρ, �) the �-packing number of T with respect to ρ, i.e., the maximal

number of points in T whose pairwise minimum distance in ρ is at least �.
Define the Kullback-Leibler diameter of T by

(37) dKL(T ) � sup
θ,θ�∈T

D(Pθ ||Pθ�).

Then

(38) inf
θ̂
sup
θ∈Θ

Eθ[ρ
2(θ̂(X), θ)] ≥ sup

T⊂Θ
sup
�>0

�2

4

�
1− dKL(T ) + log 2

logM(T, ρ, �)

�
.

Proof of Theorem 3 (Case q = 0). Note that in this case, ku0 = su
and kv0 = sv.
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1◦ We establish first the term involving r(su + sv). To this end, let U0 =�
Ir
0

�
∈ O(p, r) and V0 =

�
Ir
0

�
∈ O(m, r). For some �0 ∈ (0,

�
r ∧ (su − r)]

to be specified later, let

B(�0) = {U ∈ O(p, r) : supp(U) ⊂ [su], �U − U0�F ≤ �0} .

and

T0 =

�
Σ =

�
Ip λUV �

0

λV0U � Im

�
: U ∈ B(�0)

�
.

It is straightforward to verify that T0 ⊂ F0. By Lemma 7,

(39)

dKL(T0) = sup
U(i)∈B(�0)

nλ2

2(1− λ2)
�U(1)V

�
0 − U(2)V

�
0�2F

= sup
U(i)∈B(�0)

nλ2

2(1− λ2)
�U(1) − U(2)�2F =

2nλ2�20
1− λ2

.

Here, the second equality is due to the definition of V0 and the third due to
the definition of B(�0).

We now establish a lower bound for the packing number of T0. For some
α ∈ (0, 1) to be specified later, let {�U(1), . . . , �U(N)} ⊂ O(p, r) be a maximal

set such that supp(�Ui) ⊂ [su], and for any i �= j ∈ [N ],

��U(i)
�U �
(i) − U0U

�
0�F ≤ �0, ��U(i)

�U �
(i) − �U(j)

�U �
(j)�F ≥

√
2α�0.(40)

Then by [9, Lemma 1], for some absolute constant C > 1,

N ≥
�

1

Cα

�r(su−r)

.

For each �U(i), define

U(i) = �U(i)O(i), for O(i) = argmin
O∈O(r)

��U(i)O − U0�F.(41)

Then for any i ∈ [N ], by definition, U(i) ∈ O(p, r), supp(U(i)) ⊂ [su], and

U(i)U
�
(i) =

�U(i)
�U �
(i). In addition, [28, Theorem II.4.11] implies

�U(i) − U0�F ≤ ��U(i)
�U �
(i) − U0U

�
0�F ≤ �0,
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18 GAO, MA, REN AND ZHOU

and so U(i) ∈ B(�0). On the other hand, note that ��U(i)
�U �
(i) − �U(j)

�U �
(j)�F ≤

√
2��U(i) − �U(j)�F, and hence for i �= j ∈ [N ],

�U(i) − U(j)�F ≥ 1√
2
�U(i)U

�
(i) − U(j)U

�
(j)�F =

1√
2
��U(i)

�U �
(i) − �U(j)

�U �
(j)�F ≥ α�0.

Let ρ(Σ(1),Σ(2)) = �U(1)V
�
0 −U(2)V

�
0�F = �U(1)−U(2)�F. Then the foregoing

argument implies that for � = α�0,

(42) logM(T0, ρ, �) ≥ r(su − r) log
1

Cα
.

Setting � = c0[
�

(r ∧ (su − r)) ∧
�

1−λ2

nλ2 r(su − r)] for a sufficiently small

absolute constant c0 and also setting α > 0 to be a sufficiently small absolute
constant, we obtain a lower bound of order

r ∧ (su − r) ∧ 1− λ2

nλ2
r(su − r)

by applying Proposition 1 with (39) and (42). By symmetry, we also have
the above lower bound with r(su − r) replaced by r(sv − r). Noting that λ
is bounded away from 1 and that r ≤ 1

2(su ∧ sv), we obtain the lower bound
of order

r(su + sv)

nλ2
∧ r.

2◦ We turn to establishing the desired lower bound involving su log
ep
su

+
sv log

em
sv

, which can be obtained from the rank-one argument spelled out in
[12]. Without loss of generality, we may assume su ≤ p

2 and sv ≤ m
2 . To be

rigorous, consider the following subset of the parameter space:

T1 =

�
Σ =

�
Ip λUV �

0

λV0U � Im

�
:U =

�
Ir−1 0
0 ur

�
,

ur ∈ Sp−r+1, |supp(ur)| ≤ su − r + 1

�
.

Restricting on the set T1, the minimax risk for estimating UV � is the same as
the minimax risk for estimating ur under the squared error loss �ur − �ur�2F.
LetX = [X1 X2] withX1 ∈ Rn×(r−1) andX2 ∈ Rn×(p−r+1), and Y = [Y1 Y2]
with Y1 ∈ Rn×(r−1) and Y2 ∈ Rn×(m−r+1). Then it is further equivalent to
estimating u1 under squared error loss based on the observation (X2, Y2),
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because (X2, Y2) is a sufficient statistic for ur. Applying the argument in
[12, Appendix G], we obtain the lower bound of order

1

nλ2

�
su log

ep

su

�
∧ 1.

By symmetry, the same lower bound holds if we replace p and su by m and
sv. This completes the proof.

3.2.2. The case of q ∈ (0, 2).

Proof of Theorem 3 (Case q ∈ (0, 2)). 1◦ As in the case of q = 0, we
first establish a lower bound of order

r(kuq + kvq )

nλ2
∧ r.

Following the lines in the proof of [9, Theorem 2], we can find a collection
of {�U(1), . . . , �U(N)} ⊂ O(p, r) such that (40) holds for

�0 =

�
r ∧ (kuq − r) ∧ 1− λ2

2nλ2
rkuq ,

that ��U(i)�q,w ≤ su, and that for some absolute constant C, N ≥
�

1
Cα

�rkuq /2.
For each i ∈ [N ], set U(i) = �U(i)O(i), which is defined in (41). Then that

O(i) ∈ O(r) and [9, Eq.(110)] implies that �U(i)�q,w = ��U(i)�q,w ≤ su. The
rest of the argument then follows that in Section 3.2.1.

2◦ Next, we establish a lower bound of order

1

nλ2

�
kuq log

ep

kuq
+ kvq log

em

kvq

�
∧ 1.

To this end, we apply the same reduction argument as in Section 3.2.1, and
the argument in [12, Appendix G] leads to the desired claim.

4. Proof of Auxiliary Results. In this section, we prove Lemmas 1
– 6 used in the proof of Theorem 1 and 2. Throughout the section, without
further notice, �2n is defined as in (15).

4.1. A generalized sin-theta theorem and Gaussian quadratic form with

rank constraint. We first introduce two key results used in the proof of
Lemmas 1 – 6 that might be of independent interest.

The first result is a generalized sin-theta theorem. For the definition of
unitarily invariant norms, we refer the readers to [6, 28]. In particular, both
Frobenius norm � · �F and operator norm � · �op are unitarily invariant.
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Theorem 4. Consider matrices X,Y ∈ Rp×m. Let the SVD of X and

Y be

X = A1D1B
�
1 +A2D2B

�
2, Y = �A1

�D1
�B�
1 + �A2

�D2
�B�
2,

with D1 = diag(d1, ..., dr) and �D1 = diag(�d1, ..., �dr). Suppose there is a posi-

tive constant δ ∈ (0, dr] such that � �D2�op ≤ dr − δ. Let � · � be any unitarily

invariant norm, and � = �A�
1(X − Y )� ∨ �(X − Y )B1�. Then, we have

�A1D1B
�
1 − �A1

�D1
�B�
1� ≤

�√
2(d1 + �d1)

δ
+ 1

�
�.(43)

If further there is an absolute constant κ̄ ≥ 1 such that d1 ∨ �d1 ≤ κ̄dr, then
there is a constant C > 0 only depending on κ̄, such that

(44) �A1B
�
1 − �A1

�B�
1� ≤ C�

δ
.

Remark 5. In addition, when X and Y are positive semi-definite, Al =
Bl, �Al = �Bl for l = 1, 2, we recover the classical Davis–Kahan sin-theta
theorem [13] �A1A�

1 − �A1
�A�
1� ≤ C�/δ up to a constant multiplier.

The second result is an empirical process type bound for Gaussian quadratic
forms with rank constraint.

Lemma 8. Let {Zi}1≤i≤n be i.i.d. observations from N(0, Id). Then,

there exist some C,C � > 0, such that for any t > 0,

P
�

sup
{K:�K�F≤1,rank(K)≤r}

�����

�
1

n

n�

i=1

ZiZ
�
i − Id,K

������ > t

�
≤ exp(C �rd−Cn(t2∧t)).

4.2. Proof of Lemma 1. Recall the definition of (Su, Sv) and (�Su, �Sv) in
Section 3.1.1. From here on, let

Tu = Su ∪ �Su and Tv = Sv ∪ �Sv.(45)

The proof of Lemma 1 depends on the following two technical results. For
their proofs, see the appendix.

Lemma 9. For matrices A,B,E, F and a diagonal matrix D = (dl)1≤l≤r

with d1 ≥ d2 ≥ ... ≥ dr > 0 and A�A = B�B = E�E = F �F = Ir, we have

dr
2
�AB� − EF ��2F ≤

�
ADB�, AB� − EF �� ≤ d1

2
�AB� − EF ��2F.
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Lemma 10. Under the assumption of Lemma 1, for any constant C � > 0,
there exists a constant C > 0 only depending on M and C �, such that for

any matrix A supported on the Tu × Tv, we have

C−1�A�2F ≤ ��Σ1/2
x A�Σ1/2

y �2F ≤ C�A�2F,

with probability at least 1−exp(−C �kuq log(ep/k
u
q ))−exp(−C �kvq log(em/kvq )).

Proof of Lemma 1. First of all, the triangle inequality and Jensen’s
inequality together lead to

(46)
��U1

�V �
1 − U1V

�
1�2F

≤ 3
�
��U∗

1
�V ∗�
1 − U∗

1V
∗�
1 �2F + ��U1

�V �
1 − �U∗

1
�V ∗�
1 �2F + �U∗

1V
∗�
1 − U1V

�
1�2F

�
.

Now, it remains to bound ��U1
�V �
1 − �U∗

1
�V ∗�
1 �2F. To this end, we have

��U∗
1
�V ∗�
1 − �U1

�V �
1�2F

≤ C��Σ1/2
x (�U∗

1
�V ∗�
1 − �U1

�V �
1)�Σ1/2

y �2F(47)

≤ 2C

λr

�
�Σ1/2
x

�U∗
1Λ1

�V ∗�
1
�Σ1/2
y , �Σ1/2

x (�U∗
1
�V ∗�
1 − �U1

�V �
1)�Σ1/2

y

�
(48)

=
2C

λr

�
�Σx

�U∗
1Λ1

�V ∗�
1
�Σy, �U∗

1
�V ∗�
1 − �U1

�V �
1

�

=
2C

λr

�
�Σx

�U∗
1Λ1

�V ∗�
1
�Σy − �Σxy, �U∗

1
�V ∗�
1 − �U1

�V �
1

�

+
2C

λr

�
�Σxy, �U∗

1
�V ∗�
1 − �U1

�V �
1

�

≤ 2C

λr

�
�Σx

�U∗
1Λ1

�V ∗�
1
�Σy − �Σxy, �U∗

1
�V ∗�
1 − �U1

�V �
1

�
(49)

=
2C

λr

�
�Σx

�U∗
1Λ1

�V ∗�
1
�Σy − ΣxU1Λ1V

�
1Σy, �U∗

1
�V ∗�
1 − �U1

�V �
1

�
(50)

− 2C

λr

�
ΣxU2Λ2V

�
2Σy, �U∗

1
�V ∗�
1 − �U1

�V �
1

�

+
2C

λr

�
Σxy − �Σxy, �U∗

1
�V ∗�
1 − �U1

�V �
1

�
.

Here, (47) is implied by Lemma 10 and (48) is implied by Lemma 9. To
see (49), we note (�U1, �V1) is the solution to (14), and so Tr(�U �

1
�Σxy

�V1) ≥
Tr((�U∗

1 )
��Σxy

�V ∗
1 ), or equivalently�

�Σxy, �U∗
1
�V ∗�
1 − �U1

�V �
1

�
≤ 0.

The equality (50) comes from the CCA structure (4) and (5). Combining
(46)-(50) and rearranging the terms, we obtain the desired result.
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4.3. Proof of Lemma 2. The major difficulty in proving the lemma lies
in the presence of the residual structure U2Λ2V �

2 in (5) and the possible
nondiagonality of covariance matrices Σx and Σy. To overcome the difficulty,

we introduce intermediate matrices (�U1, �V1) defined as follows. First, we
write the SVD of (ΣxSuSu)

1/2U1Su∗Λ1(V1Sv∗)
�(ΣySvSv)

1/2 as

(51) (ΣxSuSu)
1/2U1Su∗Λ1(V1Sv∗)

�(ΣySvSv)
1/2 = P �Λ1Q

�,

and let �USu
1 = (ΣxSuSu)

−1/2P and �V Sv
1 = (ΣySvSv)

−1/2Q. Finally, we define
�U1 ∈ Rp×r and �V1 ∈ Rm×r by setting

(�U1)Su∗ = �USu
1 , (�U1)Sc

u∗ = 0, (�V1)Sv∗ = �V Sv
1 , (�V1)Sc

v∗ = 0.(52)

By definition, we have U1Su∗Λ1(V1Su∗)
� = �U1Su∗�Λ(�V1Su∗)

�. Last but not least,
we define
(53)
Ξ = P �Λ1Q

�+(I−PP �)(ΣxSuSu)
−1/2ΣxSu∗U2Λ2V

�
2Σy∗Sv(ΣySvSv)

−1/2(I−QQ�).

We now summarize the key properties of the �U1, �V1 and �Λ1 matrices in the
following two lemmas, the proofs of which are deferred to the appendix.

Lemma 11. Let P,Q and Ξ be defined in (51) and (53). Then we have:

1. The column vectors of P and Q are the r leading left and right singular

vectors of Ξ;
2. The first and the r-th singular values �λ1 and �λr of Ξ satisfy 1.1κλ ≥

�λ1 ≥ �λr ≥ 0.9λ, and the (r + 1)-th singular value �λr+1 ≤ cλ for some

sufficiently small constant c > 0.

3. The column vectors of Σ1/2
x �U1 and Σ1/2

y �V1 are the r leading left and

right singular vectors of Σ1/2
x �U1

�Λ1
�V �
1Σ

1/2
y .

Lemma 12. For some constant C > 0,

��U �
1ΣxU2�2F ≤ C�U1Sc

u∗�
2
F and ��V �

1ΣyV2�2F ≤ C�V1Sc
v∗�

2
F.

In what follows, we prove claims (30) and (31) in order.

Proof of (30). By triangle inequality,

(54) �U∗
1V

∗�
1 − U1V

�
1�F ≤ �U∗

1V
∗�
1 − �U1

�V �
1�F + ��U1

�V �
1 − U1V

�
1�F.

It is sufficient to bound each of the two terms on the right side.
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1◦ Bound for ��U1
�V �
1 − U1V �

1�F. Since the smallest eigenvalues of Σx and
Σy are bounded from below by some absolute positive constant,

��U1
�V �
1 − U1V

�
1�F ≤ C�Σ1/2

x (�U1
�V �
1 − U1V

�
1)Σ

1/2
y �F.

By Lemma 11, Σ1/2
x �U1 and Σ1/2

y �V1 collect the r leading left and right singular

vectors of Σ1/2
x �U1

�Λ1
�V �
1Σ

1/2
y , and by (4), Σ1/2

x U1 and Σ1/2
y V1 collect the r

leading left and right singular vectors of Σ1/2
x U1Λ1V �

1Σ
1/2
y . Thus, Theorem 4

implies

�Σ1/2
x (�U1

�V �
1 − U1V

�
1)Σ

1/2
y �F ≤ C

λ
�Σ1/2

x (�U1
�Λ1

�V �
1 − U1Λ1V

�
1)Σ

1/2
y �F.

The right side of the above inequality is bounded as

��U1
�Λ1

�V �
1 − U1Λ1V

�
1�F(55)

≤ ��U1Su∗�Λ1(�V1Sv∗)
� − U1Su∗Λ1(V1Sv∗)

��F + �U1Sc
u∗Λ1(V1Sv∗)

��F
+�U1Su∗Λ1(V1Sc

v∗)
��F + �U1Sc

u∗Λ1(V1Sc
v∗)

��F
≤ Cλ(�U1Sc

u∗�F + �V1Sc
v∗�F).

Here, the last inequality is due to (51) and (52). For the last term, a similar
argument to that used in Lemma 7 of [9] leads to

(56)
�U1Sc

u∗�
2
F ≤ Cq

2− q
kuq (su/k

u
q )

2/q ≤ Cq

2− q
�2n,

�V1Sc
v∗�

2
F ≤ Cq

2− q
kvq (sv/k

v
q )

2/q ≤ Cq

2− q
�2n,

where the last inequalities in both displays are due to (11) – (13). Therefore,
we obtain

(57) ��U1
�V �
1 − U1V

�
1�2F ≤ Cq

2− q
�2n.

2◦ Bound for �U∗
1V

∗�
1 − �U1

�V �
1�F. Let λ∗

r+1 denote the (r + 1)-th singular

value of (ΣxSuSu)
−1/2ΣxySuSv(ΣySvSv)

−1/2. Then we have

�U∗
1V

∗�
1 − �U1

�V �
1�F

= �U∗
1Su∗(V

∗
1Sv∗)

� − �U1Su∗(�V1Sv∗)
��F

≤ C�(ΣxSuSu)
1/2[U∗

1Su∗(V
∗
1Sv∗)

� − �U1Su∗(�V1Sv∗)
�](ΣySvSv)

1/2�F

≤ C�(ΣxSuSu)
−1/2ΣxySuSv(ΣySvSv)

−1/2 − Ξ�F
�λr − λ∗

r+1

.(58)
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Here, the first equality holds since both U∗
1V

∗�
1 and �U1

�V �
1 are supported on

the Su × Sv submatrix. Noting that by the discussion before (22), (52) and
Lemma 11, ((ΣxSuSu)

1/2U∗
1Su∗, (ΣySvSv)

1/2V ∗
1Sv∗) and ((ΣxSuSu)

1/2 �U1Su∗, (ΣySvSv)
1/2 �V1Sv∗)

collect the leading left and right singular vectors of (ΣxSuSu)
−1/2ΣxySuSv(ΣySvSv)

−1/2

and Ξ respectively, we obtain the last inequality by applying (44) in Theo-
rem 4. In what follows, we derive upper bound for the numerator and lower
bound for the denominator in (58) in order.

Upper bound for �(ΣxSuSu)
−1/2ΣxySuSv(ΣySvSv)

−1/2 − Ξ�F . First, we de-
compose ΣxySuSv as

ΣxySuSv = ΣxSu∗(U1Λ1V
�
1 + U2Λ2V

�
2)Σy∗Sv

= ΣxSuSuU1Su∗Λ1V
�
1Sv∗ΣySvSv +ΣxSuSuU1Su∗Λ1V

�
1Sc

v∗ΣySc
vSv(59)

+ ΣxSuSc
u
U1Sc

u∗Λ1V
�
1Σy∗Sv +ΣxSu∗U2Λ2V

�
2Σy∗Sv .

Then (59), (53) and (51) jointly imply that

�(ΣxSuSu)
−1/2ΣxySuSv(ΣySvSv)

−1/2 − Ξ�F
≤ �(ΣxSuSu)

−1/2ΣxSuSc
u
U1Sc

u∗Λ1V
�
1Σy∗Sv(ΣySvSv)

−1/2�F
+ �(ΣxSuSu)

1/2U1Su∗Λ1V
�
1Sc

v∗ΣySc
vSv(ΣySvSv)

−1/2�F
+ �PP �(ΣxSuSu)

−1/2ΣxSu∗U2Λ2V
�
2Σy∗Sv(ΣySvSv)

−1/2(I −QQ�)�F
+ �(ΣxSuSu)

−1/2ΣxSu∗U2Λ2V
�
2Σy∗Sv(ΣySvSv)

−1/2QQ��F
≤ Cλ(�U1Sc

u∗�F + �V1Sc
v∗�F)

+ Cλr+1(�P �(ΣxSuSu)
−1/2ΣxSu∗U2�F + �Q�(ΣySvSv)

−1/2ΣySv∗V2�F)
= Cλ(�U1Sc

u∗�F + �V1Sc
v∗�F) + Cλr+1(��U �

1ΣxU2�F + ��V �
1ΣyV2�F).

Here, the last equality is due to the definition (52). The last display, together
with (56) and Lemma 12, leads to

(60) �(ΣxSuSu)
−1/2ΣxySuSv(ΣySvSv)

−1/2 − Ξ�2F ≤ Cq

2− q
λ2�2n.

Lower bound for �λr−λ∗
r+1. The bound (60), together withWeyl’s inequality

[15, p.449] and Hoffman-Wielant inequality [29, p.63] implies

(61)

|λ∗
r+1 − �λr+1| ∨ �Λ∗

1 − �Λ1�F

≤ �(ΣxSuSu)
−1/2ΣxySuSv(ΣySvSv)

−1/2 − Ξ�F ≤ C

�
q

2− q
λ�n ≤ 0.1λ.
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Together with Lemma 11, it further implies

(62) �λr − λ∗
r+1 ≥ �λr − �λr+1 − |�λr+1 − λ∗

r+1| ≥ 0.7λ.

Combining (58), (60) and (62), we obtain

(63) ��U1
�V �
1 − U∗

1V
∗�
1 �2F ≤ Cq

2− q
�2n.

The proof of (30) is completed by combining (54), (57) and (63).

Proof of (31). Note that

�U∗
1Λ1V

∗�
1 − U1Λ1V

�
1�F

≤ �U∗
1Λ1V

∗�
1 − �U1

�Λ1
�V �
1�F + ��U1

�Λ1
�V �
1 − U1Λ1V

�
1�F

≤ �U∗
1Λ

∗
1V

∗�
1 − �U1

�Λ1
�V �
1�F + ��U1

�Λ1
�V �
1 − U1Λ1V

�
1�F

+ C�Λ∗
1 − �Λ1�F + C��Λ1 − Λ1�F

≤ �U∗
1Λ

∗
1V

∗�
1 − �U1

�Λ1
�V �
1�F + C ���U1

�Λ1
�V �
1 − U1Λ1V

�
1�F + C�Λ∗

1 − �Λ1�F.

Here the last inequality is due to

��Λ1 − Λ1�F ≤ �Σ1/2
x (�U1

�Λ1
�V �
1 − U1Λ1V

�
1)Σ

1/2
y �F,(64)

a consequence of Lemma 11 and Hoffman-Wielandt inequality [29, p.63].
We now control each of the three terms on the rightmost hand side of the

second last display. First, the bound we derived for (55), up to a constant
multiplier, ��U1

�Λ1
�V �
1 −U1Λ1V �

1�F is upper bounded by the righthand side of

(31). Next, the bound for �Λ∗
1 − �Λ1�F has been shown in (61). Last but not

least, applying (43) in Theorem 4, we obtain

�U∗
1Λ

∗
1V

∗�
1 − �U1

�Λ1
�V �
1�F

≤ C(�λ1 + λ∗
1)

�λr − λ∗
r+1

�
�
ΣxSuSu

�−1/2
ΣxySuSv

�
ΣySvSv

�−1/2 − Ξ�F ≤ C

�
q

2− q
λ�n ,

where the last inequality is due to (60), (61), (62) and Lemma 11. The proof
is completed by assembling the bounds for the three terms.

4.4. Proof of Lemma 3. The proof relies on the following lemma, which
is a simple consequence of Propositions D.1 and D.2 in [22].
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Lemma 13. Assume
1
n(k

u
q + kvq + log(ep/kuq ) + log(em/kvq )) < C1 for

some constant C1 > 0. Consider deterministic sets Bu ⊂ [p] and Bv ⊂ [m]
with |Bu| = Cukuq and |Bv| = Cvkvq for any constants Cu, Cv > 0. For any

constant C � > 0, there exists C > 0 only depending on M,C1, Cu, Cv and

C �, such that,

��ΣxBuBu − ΣxBuBu�2op ≤ C

n
(kuq + log(ep/kuq )),

��ΣyBvBv − ΣyBvBv�2op ≤ C

n
(kvq + log(em/kvq )),

��ΣxyBuBv − ΣxyBuBv�2op ≤ C

n
(kvq + kuq + log(ep/kuq ) + log(em/kvq )),

with probability at least 1 − exp(−C �(kuq + log(ep/kuq ))) − exp(−C �(kvq +
log(em/kvq ))).

By Lemma 13 and Lemma 2.2 in [27] (see also Lemma 16 in appendix), we
obtain the following concentration inequalities for square-roots of covariance
matrices:

�(�ΣxSuSu)
1/2 − (ΣxSuSu)

1/2�2op ≤ C

n
(kuq + log(ep/kuq )),(65)

�(�ΣySvSv)
1/2 − (ΣySvSv)

1/2�2op ≤ C

n
(kvq + log(em/kvq )),(66)

with probability at least 1 − exp(−C �(kuq + log(ep/kuq ))) − exp(−C �(kvq +
log(em/kvq ))). Furthermore, under the condition of Lemma 3, there exists
some constant C1 > 0 such that with the same probability,

(67) ��Σi
xSuSu

�op ∨ ��Σi
ySvSv

�op ≤ C1, i = ±1.

In what follows, we prove claims (32) and (33) in order.

Proof of (32). Since both �U∗
1
�V ∗�
1 and U∗

1V
∗�
1 are supported on the Su×

Sv submatrix, we have

��U∗
1
�V ∗�
1 − U∗

1V
∗�
1 �F = ��U∗

1Su∗(
�V ∗
1Sv∗)

� − U∗
1Su∗(V

∗
1Sv∗)

��F
≤ C�(ΣxSuSu)

1/2[�U∗
1Su∗(

�V ∗
1Sv∗)

� − U∗
1Su∗(V

∗
1Sv∗)

�](ΣySvSv)
1/2�F.

By the triangle inequality, up to a constant multiplier, the rightmost hand
side of the last display is further upper bounded by the sum of the following
two terms:

(68)
�(ΣxSuSu)

1/2 �U∗
1Su∗(

�V ∗
1Sv∗)

�(ΣySvSv)
1/2

− (�ΣxSuSu)
1/2 �U∗

1Su∗(
�V ∗
1Sv∗)

�(�ΣySvSv)
1/2�F,
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and

(69)
�(�ΣxSuSu)

1/2 �U∗
1Su∗(

�V ∗
1Sv∗)

�(�ΣySvSv)
1/2

− (ΣxSuSu)
1/2U∗

1Su∗(V
∗
1Sv∗)

�(ΣySvSv)
1/2�F.

In what follows, we show that up to constant multipliers, both (68) and (69)
are upper bounded by the rate in (32).

1◦ Bound for (68). By the triangle inequality,

(68) ≤ �[(ΣxSuSu)
1/2 − (�ΣxSuSu)

1/2]�U∗
1Su∗(

�V ∗
1Sv∗)

�(ΣySvSv)
1/2�F

+ �(�ΣxSuSu)
1/2 �U∗

1Su∗(
�V ∗
1Sv∗)

�[(ΣySvSv)
1/2 − (�ΣySvSv)

1/2]�F
≤ ��U∗

1Su∗(
�V ∗
1Sv∗)

�(ΣySvSv)
1/2�F�(ΣxSuSu)

1/2 − (�ΣxSuSu)
1/2�op

+ �(�ΣxSuSu)
1/2 �U∗

1Su∗(
�V ∗
1Sv∗)

��F�(ΣySvSv)
1/2 − (�ΣySvSv)

1/2�op.

To further bound the rightmost side of the last display, we note that with
high probability

��U∗
1Su∗(

�V ∗
1Sv∗)

�(ΣySvSv)
1/2�F ≤ �(�ΣxSuSu)

1/2 �U∗
1Su∗�F�(�ΣxSuSu)

−1/2�op
× �(�ΣySvSv)

−1/2�op�(ΣySvSv)
1/2�op

≤ C
√
r.

Together with (65), this implies that with high probability,

��U∗
1Su∗(

�V ∗
1Sv∗)

�(ΣySvSv)
1/2�F�(ΣxSuSu)

1/2 − (�ΣxSuSu)
1/2�op

≤ C

�
r

n

�
kuq + kvq + log

ep

kuq
+ log

em

kvq

�
.

By a similar argument, �(�ΣxSuSu)
1/2 �U∗

1Su∗(
�V ∗
1Sv∗)

��F�(ΣySvSv)
1/2−(�ΣySvSv)

1/2�op
satisfies the same upper bound. Thus, (68) is upper bounded by the rate in
(32) with the desired probability by noting that λ ≤ 1.

2◦ Bound for (69). By definition, (�ΣxSuSu)
1/2 �U∗

1Su∗ and (�ΣySvSv)
1/2 �V ∗

1Sv∗
collect the r leading left and right singular vectors of (�ΣxSuSu)

−1/2�ΣxySuSv(�ΣySvSv)
−1/2,

and (ΣxSuSu)
1/2U∗

1Su∗ and (ΣySvSv)
1/2V ∗

1Sv∗ collect the r leading left and

right singular vectors of (ΣxSuSu)
−1/2ΣxySuSv(ΣySvSv)

−1/2. To apply Theo-
rem 4, let λ∗

r denote the r-th singular value of (ΣxSuSu)
−1/2ΣxySuSv(ΣySvSv)

−1/2

and �λ∗
r+1 the (r + 1)-th singular value of (�ΣxSuSu)

−1/2�ΣxySuSv(�ΣySvSv)
−1/2.

For

∆ = (�ΣxSuSu)
−1/2�ΣxySuSv(�ΣySvSv)

−1/2

− (ΣxSuSu)
−1/2ΣxySuSv(ΣySvSv)

−1/2,
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Theorem 4 implies

(70) (69) ≤ C�∆�F
λr − �λ∗

r+1

≤ C
√
r�∆�op

λr − �λ∗
r+1

.

In what follows, we upper bound �∆�op and lower bound (λr − �λ∗
r+1) re-

spectively.
To control �∆�op, observe that ∆ =

�3
i=1∆i, where

∆1 = (�ΣxSuSu)
−1/2(ΣxySuSv − �ΣxySuSv)(ΣySvSv)

−1/2,

∆2 = (�ΣxSuSu)
−1/2((�ΣxSuSu)

1/2 − (ΣxSuSu)
1/2)(ΣxSuSu)

−1/2ΣxySuSv(ΣySvSv)
−1/2,

∆3 = (�ΣxSuSu)
−1/2�ΣxySuSv(�ΣySvSv)

−1/2((�ΣySvSv)
1/2 − (ΣySvSv)

1/2)(ΣySvSv)
−1/2.

By Lemma 13 and the bounds (65) – (67), we obtain

�∆�op ≤
3�

i=1

�∆i�op ≤
�

C

n
(kvq + kuq + log(ep/kuq ) + log(em/kvq ))(71)

with the desired probability.
Turning to λ∗

r − �λ∗
r+1, on the event such that (71) holds, the condition of

the lemma further implies that the rightmost side is upper bounded by λ/4.
Thus, Weyl’s inequality [15, p.449] leads to

|�λ∗
r+1 − λ∗

r+1| ∨ |�λ∗
r − λ∗

r | ≤ �∆�op ≤ λ

4
.

Together with the results on the λ∗
l ’s in (61) and Lemma 11, the last display

leads to

(72) λ∗
r − �λ∗

r+1 ≥ 0.8λ− 0.1λ− |λ∗
r+1 − �λ∗

r+1| ≥ 0.4λ.

We obtain the desired bound hence complete the proof of (32) by assembling
(70) – (72).

Proof of (33). Now we provide a bound for ��U∗
1Λ1

�V ∗�
1 − U∗

1Λ1V ∗�
1 �F.

Following the lines of the proof of (32), up to a constant multiplier, this
quantity can be upper bounded by the sum of the following two terms:

(73)
�(�ΣxSuSu)

1/2 �U∗
1Su∗Λ1(�V ∗

1Sv∗)
�(�ΣySvSv)

1/2

− (ΣxSuSu)
1/2 �U∗

1Su∗Λ1(�V ∗
1Sv∗)

�(ΣySvSv)
1/2�F,
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and

(74)
�(�ΣxSuSu)

1/2 �U∗
1Su∗Λ1(�V ∗

1Sv∗)
�(�ΣySvSv)

1/2

− (ΣxSuSu)
1/2U∗

1Su∗Λ1(V
∗
1Sv∗)

�(ΣySvSv)
1/2�F.

Using arguments similar to those for bounding (68), the term (73) can be
upper bounded by using (65) and (66). Namely, we have

(73) ≤ Cλ

�
r

n
(kuq + log(ep/kuq ) + kvq + log(em/kvq )),

with probability at least 1 − exp(−C �(kuq + log(ep/kuq ))) − exp(−C �(kvq +
log(em/kvq ))). The only difference from the bound of (68) is the extra factor
λ due to the presence of Λ1.

We now turn to (74). Using the triangle inequality, it can be bounded by
the sum of the following three terms:

(75)
�(�ΣxSuSu)

1/2 �U∗
1Su∗

�Λ∗
1(�V ∗

1Sv∗)
�(�ΣySvSv)

1/2

− (ΣxSuSu)
1/2U∗

1Su∗Λ
∗
1(V

∗
1Sv∗)

�(ΣySvSv)
1/2�F,

�(�ΣxSuSu)
1/2 �U∗

1Su∗(
�Λ∗
1 − Λ1)(�V ∗

1Sv∗)
�(�ΣySvSv)

1/2�F,(76)

�(ΣxSuSu)
1/2U∗

1Su∗(Λ
∗
1 − Λ1)(V

∗
1Sv∗)

�(ΣySvSv)
1/2�F.(77)

In the rest of the proof, we derive upper bounds for these three terms in
order.

By (43) of Theorem 4, we can bound (75) by

C
√
r(λ∗

1 + �λ∗
1)

λ∗
r − �λ∗

r+1

�∆�op ≤
�

Cr

n
(kvq + kuq + log(ep/kuq ) + log(em/kvq )).

By Weyl’s inequality [15, p.449], we can bound (76) by

C
√
r��Λ∗

1−Λ∗
1�op ≤ C

√
r�∆�op ≤

�
Cr

n
(kvq + kuq + log(ep/kuq ) + log(em/kvq )).

Finally, by (61) and the bound for (64) (which is from (55) and (56)), we
can bound (77) by

C ��Λ∗
1 − Λ1�F ≤ C ��Λ∗

1 − �Λ1�F + C ���Λ1 − Λ1�F ≤ C

�
q

2− q
λ�n.

The last three displays joint give the bound for (74). Together with the
bound for (73), it leads to the desired upper bound for (33).
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4.5. Proof of Lemma 4. In this proof, we need the following technical
result, which is a direct consequence of Lemma 13 by applying union bound.
Remember the notations Tu and Tv defined in (45).

Lemma 14. Assume
1
n(k

u
q log(ep/k

u
q ) + kvq log(em/kvq )) < C1 for some

constant C1 > 0. For any constant C � > 0, there exists some constant C > 0
only depending on M,C1 and C �, such that

��ΣxTuTu − ΣxTuTu�2op ≤ C

n
(kuq log(ep/k

u
q )),

��ΣyTvTv − ΣyTvTv�2op ≤ C

n
(kvq log(em/kvq )),

with probability at least 1−exp(−C �kuq log(ep/k
u
q ))−exp(−C �kvq log(em/kvq )).

In addition, we need the following result.

Lemma 15 (Stewart and Sun [28], Theorem II.4.11). For any matrices

A,B with A�A = B�B = I, we have

inf
W

�A−BW�F ≤ �AA� −BB��F.

We first bound
�
ΣxU2Λ2V �

2Σy, �U1
�V �
1

�
. By the definition of trace product,

we have
�
ΣxU2Λ2V

�
2Σy, �U1

�V �
1

�
=

�
Λ2V

�
2Σy

�V �
1 , U

�
2Σx

�U1

�

≤ �Λ2V
�
2Σy

�V �
1�F�U �

2Σx
�U1�F

≤ λr+1�V �
2Σy

�V �
1�F�U �

2Σx
�U1�F.

Define the SVD of matrices U1 and �U1 to be

U1 = ΘRH �, �U1 = �Θ �R �H �.

For any matrix W , we have

��U �
1ΣxU2�F = �(�U1 − U1HR−1W �R �H �)�ΣxU2�F

≤ C��U1 − U1HR−1W �R �H ��F
≤ C� �R�op��Θ−ΘW�F,

where � �R�op ≤ ��U1�op ≤ �(�ΣxTuTu)
−1/2�op�(�ΣxTuTu)

1/2 �U1Tu∗�op ≤ C with
probability at least 1− exp(−C �kuq log(ep/k

u
q ))− exp(−C �kvq log(em/kvq )) by

Lemma 14. Hence, by Lemma 15, we have

(78) ��U �
1ΣxU2�F ≤ C inf

W
��Θ−ΘW�F ≤ C��Θ�Θ� −ΘΘ��F.
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We note that both �Θ�Θ� and ΘΘ� are the projection matrices of the left
singular spaces of �U1

�V �
1 and U1V �

1 respectively and the eigen-gap is at con-
stant level since the r-th singular value of U1V �

1 is bounded below by some

constant and the (r + 1)-th singular value of �U1
�V �
1 is zero. Then a direct

consequence of Wedin’s sin-theta theorem [35] gives

(79) ��Θ�Θ� −ΘΘ��F ≤ C��U1
�V �
1 − U1V

�
1�F.

Combining (78) and (79), we have ��U �
1ΣxU2�F ≤ C1��U1

�V �
1 − U1V �

1�F. The
same argument also implies �V �

2Σy
�V �
1�F ≤ C1��U1

�V �
1 − U1V �

1�F. Therefore,
���
�
ΣxU2Λ2V

�
2Σy, �U1

�V �
1

���� ≤ C2λr+1��U1
�V �
1 − U1V

�
1�2F.

Using the similar argument, we also obtain
���
�
ΣxU2Λ2V

�
2Σy, �U∗

1 (�V ∗
1 )

�
���� ≤ C2λr+1��U∗

1 (�V ∗
1 )

� − U1V
�
1�2F.

By triangle inequality, we complete the proof.

4.6. Proof of Lemma 5. Define

W =

�
0 �U∗

1
�V ∗�
1 − �U1

�V �
1

(�U∗
1
�V ∗�
1 − �U1

�V �
1)

� 0

�
.

Then simple algebra leads to

(80)
�
Σxy − �Σxy, �U∗

1
�V ∗�
1 − �U1

�V �
1

�
=

1

2

�
Σ− �Σ,W

�
.

In the rest of the proof, we bound �Σ− �Σ,W � by using Lemma 8.
Notice that the matrix �U∗

1
�V ∗�
1 − �U1

�V �
1 has nonzero rows with indices in

Tu = Su ∪ �Su and nonzero columns with indices in Tv = Sv ∪ �Sv. Hence, the
enlarged matrix W has nonzero rows and columns with indices in T × T ,
where

T = Tu ∪ (Tv + p)

with Tv + p = {j + p : j ∈ Tv}. The cardinality of T is |T | = |Tu| + |Tv| ≤
2(kuq + kvq ). Thus, we can rewrite (80) as

�
Σxy − �Σxy, �U∗

1
�V ∗�
1 − �U1

�V �
1

�
=

1

2

�
Σ− �Σ,W

�

=
1

2

�
ΣTT − �ΣTT ,WTT

�

=
1

2

�
I|T | − Σ−1/2

TT
�ΣTTΣ

−1/2
TT ,Σ1/2

TTWTTΣ
1/2
TT

�

=
1

2
�Σ1/2

TTWTTΣ
1/2
TT �F

�
I|T | − Σ−1/2

TT
�ΣTTΣ

−1/2
TT ,KT

�
,
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where KT =
Σ1/2

TT WTTΣ1/2
TT

�Σ1/2
TT WTTΣ1/2

TT �F
. Note that

1

2
�Σ1/2

TTWTTΣ
1/2
TT �F ≤ C�WTT �F = C�W�F =

√
2C��U∗

1
�V ∗�
1 − �U1

�V �
1�F.

To obtain the desired bound, it suffices to show that

(81)
���
�
I|T | − Σ−1/2

TT
�ΣTTΣ

−1/2
TT ,KT

����

is upper bounded by Cλ�n with high probability.
To this end, we note that Tu = Su ∪ �Su has at most

� p
kuq

�
different possi-

ble configurations since Su is deterministic and �Su is a random set of size
kuq . For the same reason, Tv has at most

�m
kvq

�
different possible configura-

tions. Therefore, the subset T has at most N =
� p
kuq

��m
kvq

�
different possible

configurations, which can be listed as T1, T2, ..., TN . Let

KTj =
Σ1/2
TjTj

WTjTjΣ
1/2
TjTj

�Σ1/2
TjTj

WTjTjΣ
1/2
TjTj

�F

for all j ∈ [N ]. Since each WTjTj is of rank at most 2r, so are the KTj ’s.
Therefore,

|(81)| ≤ max
1≤j≤N

���
�
I|Tj | − Σ−1/2

TjTj
�ΣTjTjΣ

−1/2
TjTj

,KTj

����

≤ max
1≤j≤N

sup
�K�F≤1,rank(K)≤2r

���
�
I|Tj | − Σ−1/2

TjTj
�ΣTjTjΣ

−1/2
TjTj

,K
���� .

Then the union bound leads to

PΣ(|(81)| > t)

≤
N�

j=1

P
�

sup
�K�F≤1,rank(K)≤2r

���
�
I|Tj | − Σ−1/2

TjTj
�ΣTjTjΣ

−1/2
TjTj

,K
���� > t

�

≤
N�

j=1

exp(C �r|Tj | − Cn(t ∧ t2))(82)

≤
�

p

kuq

��
m

kvq

�
exp(C1r(k

u
q + kvq )− Cn(t ∧ t2))

≤ exp

�
C1r(k

u
q + kvq ) + kuq log

ep

kuq
+ kvq log

em

kvq
− Cn(t ∧ t2)

�

where the inequality (82) is due to Lemma 8. We complete the proof by
choosing t2 = C2λ2�2n in the last display for some sufficiently large constant
C2 > 0, which, by condition (16), is bounded.
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4.7. Proof of Lemma 6. First, we apply a telescoping expansion to the
quantity of interest as

�
�Σx

�U∗
1Λ1

�V ∗�
1
�Σy − ΣxU1Λ1V

�
1Σy, �U∗

1
�V ∗�
1 − �U1

�V �
1

�

=
�
Σx

�U∗
1Λ1

�V ∗�
1 Σy − ΣxU

∗
1Λ1V

∗�
1 Σy, �U∗

1
�V ∗�
1 − �U1

�V �
1

�
(83)

+
�
ΣxU

∗
1Λ1V

∗�
1 Σy − ΣxU1Λ1V

�
1Σy, �U∗

1
�V ∗�
1 − �U1

�V �
1

�
(84)

+
�
�Σx

�U∗
1Λ1

�V ∗�
1
�Σy − Σx

�U∗
1Λ1

�V ∗�
1 Σy, �U∗

1
�V ∗�
1 − �U1

�V �
1

�
.(85)

In what follows, we bound each of the terms in (83) – (85) in order.

1◦ Bound for (83). Applying (33) in Lemma 3, we obtain that with prob-
ability at least 1− exp(−C �(kuq +log(ep/kuq )))− exp(−C �(kvq +log(em/kvq ))),

|(83)| ≤ C��U∗
1Λ1

�V ∗�
1 − U∗

1Λ1V
∗�
1 �F��U∗

1
�V ∗�
1 − �U1

�V �
1�F

≤ C

�
q

2− q
λ�n��U∗

1
�V ∗�
1 − �U1

�V �
1�F.

2◦ Bound for (84). Applying (31) in Lemma 2, we obtain

|(84)| ≤ C�U∗
1Λ1V

∗�
1 − U1Λ1V

�
1�F��U∗

1
�V ∗�
1 − �U1

�V �
1�F

≤ C

�
q

2− q
λ�n��U∗

1
�V ∗�
1 − �U1

�V �
1�F.

3◦ Bound for (85). We turn to bound (85) based on a strategy similar to
that used in proving Lemma 5. First, we write it in a form for which we
could apply Lemma 8. Recall the random sets Tu and Tv defined in (45).
Then for

HTu
x = (ΣxTuTu)

1/2(�U∗
1Tu∗(

�V ∗
1Tv∗)

� − �U1Tu∗(�V1Tv∗)
�)

× �ΣyTvTv
�V ∗
1Tv∗Λ1(�U∗

1Tu∗)
�(ΣxTuTu)

1/2,

HTv
y = (ΣyTvTv)

1/2 �V ∗
1Tv∗Λ1(�U∗

1Tu∗)
�

× ΣxTuTu(�U∗
1Tu∗(

�V ∗
1Tv∗)

� − �U1Tu∗(�V1Tv∗)
�)(ΣyTvTv)

1/2,
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and H
Tu

x = HTu
x /�HTu

x �F, H
Tv

y = HTv
y /�HTv

y �F, we have

|(85)|

=
���
�
�Σx − Σx, (�U∗

1
�V ∗�
1 − �U1

�V1
�)�Σy

�V ∗
1 Λ1

�U∗
1
�
�

+
�
�Σy − Σy, �V ∗

1 Λ1
�U∗
1
�Σx(�U∗

1
�V ∗�
1 − �U1

�V1
�)
����

≤
���
�
�ΣxTuTu − ΣxTuTu , (�U∗

1Tu∗(
�V ∗
1Tv∗)

� − �U1Tu∗(�V1Tv∗)
�)�ΣyTvTv

�V ∗
1Tv∗Λ1(�U∗

1Tu∗)
�
����

+
���
�
�ΣyTvTv − ΣyTvTv , �V ∗

1Tv∗Λ1(�U∗
1Tu∗)

�ΣxTuTu(�U∗
1Tu∗(

�V ∗
1Tv∗)

� − �U1Tu∗(�V1Tv∗)
�)
����

= �HTu
x �F

���
�
(ΣxTuTu)

−1/2�ΣxTuTu(ΣxTuTu)
−1/2 − I|Tu|, H

Tu

x

����

+�HTv
y �F

���
�
(ΣyTvTv)

−1/2�ΣyTvTv(ΣyTvTv)
−1/2 − I|Tv |, H

Tv

y

���� .

We now bound each term on the rightmost hand side. Applying Lemma
8 with union bound and then following a similar analysis to that leading to
(81) but with T replaced by Tu and Tv, we obtain that
(86)
���
�
(ΣxTuTu)

−1/2�ΣxTuTu(ΣxTuTu)
−1/2 − I|Tu|, H

Tu

x

���� ≤ C

�
kuq
n

�
r + log

ep

kuq

�
,

���
�
(ΣyTvTv)

−1/2�ΣyTvTv(ΣyTvTv)
−1/2 − I|Tv |, H

Tv

y

���� ≤ C

�
kvq
n

�
r + log

em

kvq

�

with probability at least 1−exp(−C �kuq (r+log(ep/kuq ))) and 1−exp(−C �kvq (r+
log(em/kvq ))) respectively.

To bound �HTu
x �F and �HTv

y �F, we note that it follows from Lemma

14 that all eigenvalues of �ΣxTuTu and �ΣyTvTv are bounded from below and
above by some universal positive constants with probability at least 1 −
exp(−C �kuq log(ep/k

u
q ))−exp(−C �kvq log(em/kvq )) under assumption (16). Thus,

with the same probability we have

�HTu
x �F ≤ Cλ��U∗

1
�V ∗�
1 − �U1

�V1
��F��Σ1/2

yTvTv
�V ∗
1Tv∗�op

��Σ1/2
yTvTv

�op��Σ1/2
xTuTu

�U∗
1Tu∗�op��Σ

−1/2
xTuTu

�op
≤ C1λ��U∗

1
�V ∗�
1 − �U1

�V1
��F,(87)

and

�HTv
y �F ≤ Cλ��U∗

1
�V ∗�
1 − �U1

�V1
��F��Σ1/2

yTvTv
�V ∗
1Tv∗�op

��Σ−1/2
yTvTv

�op��Σ1/2
xTuTu

�U∗
1Tu∗�op��Σ

−1/2
xTuTu

�op
≤ C1λ��U∗

1
�V ∗�
1 − �U1

�V1
��F.(88)
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Combining (86), (87) and (88), we obtain

|(85)| ≤ Cλ2�n��U∗
1
�V ∗�
1 − �U1

�V1
��F,

with probability at least 1−exp(−C �kuq log(ep/k
u
q ))−exp(−C �kvq log(em/kvq )).

Noting that λ < 1, this completes the proof.
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