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APPENDIX A: PROOFS OF TECHNICAL RESULTS

In this appendix, we prove Theorem 4 and Lemmas 7 – 12 in order.

A.1. Proof of Theorem 4. We first need a lemma for perturbation
bound of square root matrices.

Lemma 16. Let A,B be positive semi-definite matrices, and then for any

unitarily invariant norm �·�,

�A1/2 −B1/2� ≤ 1

σmin(A1/2) + σmin(B1/2)
�A−B�.

Proof. The proof essentially follows the idea of [27]. Let D = B−A and
X = B1/2 −A1/2. Then we have for every sufficient large q > 0,

X = E2XE1 + F,

where

E1 = (qI +A1/2)−1(qI −A1/2),

E2 = (qI +B1/2)−1(qI −A1/2),

F = 2q(qI +B1/2)−1D(qI +A1/2)−1.

Take the desired norm on both sides, we have

�X� ≤ �E2XE1�+ �F� ≤ �E1�op�E2�op�X�+ �F�.

Here, the first inequality is due the triangle inequality and the second is
due to [6, Prop. IV.2.4]. By the proof of Lemma 2.1 in [27], �Ei�op < 1 for
i = 1, 2 when q is sufficiently large, and hence

�X� ≤ �F�
1− �E1�op�E2�op

.

Sending q → ∞ in the last display leads to the desired bound.
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We prove (43) and (44) respectively.

Proof of (43).

�A1D1B
�
1 − �A1

�D1
�B�
1�

= �A1A
�
1XB1B

�
1 − �A1

�A�
1Y �B1

�B�
1�

≤ �A1A1X(B1B
�
1 − �B1

�B�
1)�+ �A1A

�
1(X − Y ) �B1

�B�
1�

+�(A1A
�
1 − �A1

�A1)Y �B1
�B�
1�

≤ (d1 + �d1)
√
2�

δ
+ �,

where the last inequality is by Wedin’s sin-theta theorem [35].

Proof of (44). Without loss of generality, we assume p ≥ m, and hence
the columns of B1 and B2 span Rm. We first have the decomposition

�A1
�B�
1 −A1B

�
1 = (I −A1A

�
1) �A1

�B�
1(89)

−A1D
−1
1 B�

1( �B�
1
�D1

�A�
1 −B1D1A

�
1) �A1

�B�
1(90)

+A1D
−1
1 B�

1( �B1
�D1

�B�
1 −B1D1B

�
1).(91)

We bound each of the three terms above. By Wedin’s sin-theta theorem [35],
the first term (89) can be bounded by

�(I −A1A
�
1) �A1

�B�
1� = �( �A1

�A�
1 −A1A

�
1) �A1

�B�
1�

≤ � �A1
�A�
1 −A1A

�
1� ≤

√
2�

δ
.

Next, we use (43) to bound (90) by

d−1
r � �B�

1
�D1

�A�
1 −B1D1A

�
1� ≤ d1 + �d1

dr

√
2�

δ
+

�

dr
.

Lastly, (91) is bounded by

d−1
r � �B1

�D1
�B�
1 −B1D1B

�
1�

≤ d−1
r � �B1

�D1
�B�
1 + d1 �B2

�B�
2 −B1D1B

�
1 − d1B2B

�
2�

+
d1
dr

� �B2
�B�
2 −B2B

�
2�

≤ d−2
r � �B1

�D2
1
�B�
1 + d21 �B2

�B�
2 −B1D

2
1B

�
1 − d21B2B

�
2�

+
d1
dr

� �B2
�B�
2 −B2B

�
2�

≤ d−2
r � �B1

�D2
1
�B�
1 −B1D

2
1B

�
1�+

�
d1
dr

+
d21
d2r

�
� �B2

�B�
2 −B2B

�
2�,(92)
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where we have used Lemma 16 in the second inequality above. The second
term of (92) is

�
d1
dr

+
d21
d2r

�
� �B2

�B�
2 −B2B

�
2� =

�
d1
dr

+
d21
d2r

�
� �B1

�B�
1 −B1B

�
1� ≤

�
d1
dr

+
d21
d2r

� √
2�

δ
,

by Wedin’s sin-theta theorem [35]. The first term of (92) is bounded by

d−2
r �B1D1A

�
1(A1D1B

�
1 − �A�

1
�D1

�B�
1) + (B1D1A

�
1 − �B1

�D1
�A�
1) �A1

�D1
�B�
1�

≤ d1 + �d1
d2r

�A1D1B
�
1 − �A�

1
�D1

�B�
1� ≤ d1 + �d1

d2r

�
(d1 + �d1)

√
2�

δ
+ �

�
,

by (43). Combining the bounds above, we have

� �A1
�B�
1 −A1B

�
1�

≤
�
1 +

d1 + �d1
dr

+
(d1 + �d1)2

d2r
+

d1
dr

+
d21
d2r

� √
2�

δ
+

1 + d−1
r (d1 + �d1)
dr

�

≤ C�

δ
,

under the assumption that d1 ∨ �d1 ≤ κ̄dr.

A.2. Proof of Lemma 7. Note that for i = 1, 2,

Σ(i) = I +
λ

2

�
U(i)

V(i)

� �
U �
(i) V �

(i)

�
− λ

2

�
U(i)

−V(i)

� �
U �
(i) −V �

(i)

�
.

Thus, Σ(i) has two eigenvalues 1± λ, both of multiplicity r and the rest are
all ones. This, in particular, implies that

detΣ(1) = detΣ(2).(93)

Now the KL divergence is

D(P(1)||P(2)) =
n

2

�
Tr(Σ−1

(2)Σ(1))− (p+m)− log det(Σ−1
(2)Σ(1))

�

=
n

2

�
Tr(Σ−1

(2)Σ(1))− (p+m)
�

=
n

2

�
Tr(Σ−1

(2)(Σ(1) − Σ(2)))
�
.(94)

Here, the second equality is due to (93).
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Note that Σ(1)−Σ(2) =

�
0 U(1)V

�
(1) − U(2)V

�
(2)

V(1)U
�
(1) − V(2)U

�
(2) 0

�
and that

the block inversion formula implies

Σ−1
(2) =

�
Ip +

λ2

1−λ2U(2)U
�
(2) − λ

1−λ2U(2)V
�
(2)

− λ
1−λ2V(2)U

�
(2) Im + λ2

1−λ2V(2)V
�
(2).

�

Plugging these expressions into (94), we obtain

D(P(1)||P(2)) =
nλ2

2(1− λ2)
(Tr(U(2)V

�
(2)(V(2)U

�
(2) − V(1)U

�
(1)))

+ Tr(V(2)U
�
(2)(U(2)V

�
(2) − U(1)V

�
(1))))

=
nλ2

2(1− λ2)
2Tr

�
Ir − V �

(1)V(2)U
�
(2)U(1)

�

=
nλ2

2(1− λ2)
�U(1)V

�
(1) − U(2)V

�
(2)�

2
F.

This completes the proof.

A.3. Proof of Lemma 8. Before stating the proof, we need the fol-
lowing Bernstein’s inequality of Gaussian quadratic form.

Lemma 17. Let {Zi}1≤i≤n be i.i.d. observations from N(0, Id), and K
be a fixed matrix satisfying �K�F ≤ 1. Then, there exists some C > 0, such
that

P
������

�
1

n

n�

i=1

ZiZ
�
i − Id,K

������ > t

�
≤ exp(−Cn(t2 ∧ t)),

for any t > 0.

Proof. It is sufficient to consider symmetric K because
�
1

n

n�

i=1

ZiZ
�
i − Id,K

�
=

�
1

n

n�

i=1

ZiZ
�
i − Id,

1

2
(K +K �)

�
.

Let K has spectral decomposition K =
�d

l=1 ηlqlq
�
l. Since K has unit Frobe-

nius norm, we have
�d

l=1 η
2
l = 1. Then we have

�
1

n

n�

i=1

ZiZ
�
i − Id,K

�
=

�
1

n

n�

i=1

ZiZ
�
i − Id,

d�

l=1

ηlqlq
�
l

�

=
1

n

n�

i=1

d�

l=1

ηl(|q�lZi|2 − 1).
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Notice |q�lZi|2 − 1 is centered sub-exponential random variable for each i
and l. Moreover, they are independent across i and l because {ql}dl=1 is
an orthonormal basis. Applying Bernstein’s inequality for sub-exponential
variables [31, Prop. 5.16], the proof is complete.

Now we are ready to state the main proof.

Proof of Lemma 8. Define the class

K (r) =
�
K ∈ Rd×d : ||K||F ≤ 1, rank(K) ≤ r

�
.

The strategy is to find an accurate covering number for K (r) such that
we can apply an �-net argument. Suppose we can find a subset K�(r) =
{K1,K2, ...,KN} ⊂ K(r) with finite cardinality N = N (�) such that for
any K ∈ K(r), there exists Kj ∈ K�(r) such that ||Kj − K||F ≤ �. Define
S = 1

n

�n
i=1 ZiZT

i − I, and then for any fixed matrix K ⊂ K (r), we have
that

|�S,K�| ≤ |�S,Kj�|+ �K −Kj�F
����

�
S,

K −Kj

�K −Kj�F

�����

≤ |�S,Kj�|+ � sup
H∈K(2r)

|�S,H�|

≤ max
j

|�S,Kj�|+ 2� sup
H∈K(r)

|�S,H�| ,

where we have used the fact that the rank of K−Kj

�K−Kj�F is not more than 2r and

for any such H ∈ K (2r), it can be written as the sum of two matrices with
rank not more than r. Therefore, taking sup on both sides, we have that
supK∈K(r) |�S,K�| ≤ (1− 2�)−1maxj |�S,Kj�|. Picking � = 1/4, by union
bound and Lemma 17, we have

P
�

sup
K∈K(r)

�����

�
1

n

n�

i=1

ZiZ
T
i − I,K

������ > t

�

≤
N(1/4)�

j=1

P
������

�
1

n

n�

i=1

ZiZ
T
i − I,Kj

������ >
t

2

�

≤ exp(logN (1/4)− Cn(t ∧ t2)).

Now it is sufficient for us to find the covering number, i.e. to show that
logN(1/4) is bounded by C �rd to complete our proof. We write the SVD
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of any K ⊂ K(r) as K = PΛQ�. Note that both PΛ and QΛ belong to the
follwoing class

B =
�
B ∈ Rd×r : ∃U ∈ Rd×rand D diagonal s.t. U �U = I, B = UD, ||D||F ≤ 1

�
.

It is obvious that B ⊂
�
B ∈ Rd×r : ||B||F ≤ 1

�
, the d × r dimensional unit

ball. Hence the well-known covering number of unit ball implies that for
small �/2 > 0, we can find a subset B�/2 = {B1, B2, ..., BL} ⊂ B with

cardinality L (�/2) ≤ (C�)−C0rd such that infj ||B−Bj ||F ≤ �/2. We denote
each Bj = UjDj , then we claim the subset K�(r) can be defined as follows

K�(r) =
�
Kij = UiDiU

�
j : i, j ≤ L (�/2)

�
.

As a consequence, we obtain that N(�) ≤ L2 (�/2) ≤ (C�)−2C0rd and hence
logN (1/4) ≤ C �rd. We prove our claim now. First, it is clear that any
Kij ∈ K�(r) and we have ||Kij ||F ≤ 1 and rank(Kij) ≤ r. Second, for any
K = PΛQ� ⊂ K(r), we can find Bj = UjDj such that �QΛ − Bj�F ≤ �/2
and further can find Bi = UiDi such that �PDj − Bi�F ≤ �/2. Hence we
have

�K −Kij�F = �PΛQ� − UiDiU
�
j�F

≤ �PΛQ� − PB�
j�F + �PDjU

�
j − UiDiU

�
j�F

= �QΛ−Bj�F + �PDj −Bi�F ≤ �.

Therefore the proof is complete. We remark that a similar covering argument
is also obtained by Candes and Plan [11, Lemma 3.1]. The proof we provide
above is different from theirs, because we avoid the concepts of Grassmann
manifold through very elementary calculation.

A.4. Proof of Lemma 9. Expanding the Frobenius norm, we have

��AB� − EF ���2
F
= 2Tr(I −A�EF �B).

On the other hand, we have

�
ADB�, AB� − EF �� = Tr(D −DA�EF �B) =

r�

l=1

dl(I −A�EF �B)ll.

It is clear that (I −A�EF �B)ll ≥ 0, and thus the result follows.
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A.5. Proof of Lemma 10. The proof depends on two facts. The first
one is deterministic

(95) ��Σ1/2
x A�Σ1/2

y �2F = ��Σ1/2
xTuTu

ATuTv
�Σ1/2
yTvTv

�2F.

The second one is that with probability at least 1−exp(−C �kuq log(ep/k
u
q ))−

exp(−C �kvq log(em/kvq )), we have
(96)

��Σ1/2
xTuTu

−Σ1/2
xTuTu

�op∨��Σ1/2
yTvTv

−Σ1/2
yTvTv

�op ≤ C

n
(kuq log(ep/k

u
q )+kvq log(em/kvq )).

The two facts will be derived at the end of the proof.
The assumption that 1n(k

u
q log(ep/k

u
q )+kvq log(em/kvq )) is sufficiently small

and the fact (96) immediately imply that there exists some constant C > 0
such that

��Σ1/2
xTuTu

�op, ��Σ−1/2
xTuTu

�op, ��Σ1/2
yTvTv

�op, ��Σ−1/2
yTvTv

�op ∈ [1/C,C],

since the spectra of Σ1/2
yTvTv

and Σ1/2
xTuTu

are bounded below and above by
universal constants. This consequence together with the fact (95) further
shows the desired result. Namely,

�A�2F ≤ ��Σ−1/2
xTuTu

�2op��Σ
−1/2
yTvTv

�2op��Σ
1/2
xTuTu

ATuTv
�Σ1/2
yTvTv

�2F ≤ C4��Σ1/2
x A�Σ1/2

y �2F,

��Σ1/2
x A�Σ1/2

y �2F ≤ ��Σ1/2
xTuTu

�2op��Σ
1/2
yTvTv

�2op�ATuTv�2F ≤ C4�A�2F.

Now we only need to prove the two facts (95) and (96). The fact (96) is
a simple consequence of Lemma 13 and Lemma 16. To see (95), we expand
the Frobenius norm by trace product,

��Σ1/2
x A�Σ1/2

y �2F = Tr
�
�Σ1/2
y A��ΣxA�Σ1/2

y

�

= Tr
�
(ATuTv)

��ΣxTuTuATuTv
�ΣyTvTv

�
= ��Σ1/2

xTuTu
ATuTv

�Σ1/2
yTvTv

�2F.

A.6. Proofs of Lemma 11 and Lemma 12.

Proof of Lemma 11. The last claim is proved by the following obser-
vation.

�U �
1Σx

�U1 = (�U1Su∗)
�ΣxSuSu

�U1Su∗ = Ir, �V �
1Σy

�V1 = (�V1Sv∗)
�ΣySvSv

�V1Sv∗ = Ir.

To show the first two claims, we need to prove that all the singular values
of (ΣxSuSu)

1/2U1Su∗ and (ΣySvSv)
1/2V1Su∗ are close to 1. Indeed, if all singu-

lar values are between 0.9 and 1.1, then the range of spectrum of P �Λ1Q� will
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be in the interval [0.9λr, 1.1λ1] according to (51). Therefore our assumptions
on λ1 and λr imply 1.1κλ ≥ �λ1 ≥ �λr ≥ 0.9λ. The second term of Ξ in (53)
is orthogonal to the first term P �Λ1Q� and clearly its largest singular value
can be bounded by Cλr+1, which is less than cλ by our assumption on λr+1.
Therefore we finish the proof of the first two claims.

Now we bound the singular values of (ΣxSuSu)
1/2U1Su∗ and (ΣySvSv)

1/2V1Su∗.
Note

Ir = U �
1ΣxU1 = (U1Su∗)

�ΣxSuSuU1Su∗ + (U1Su∗)
�ΣxSuSc

u
U1Sc

u∗

+(U1Sc
u∗)

�ΣxSc
uSuU1Su∗ + (U1Sc

u∗)
�ΣxSc

uS
c
u
U1Sc

u∗.

Therefore we have

�(U1Su∗)
�ΣxSuSuU1Su∗ − Ir�2F ≤ C�U1Sc

u∗�
2
F ≤ Cq

2− q
kuq (su/k

u
q )

2/q ≤ 0.01,

where the last two inequalities follow from (56) and (16). Hence we have
shown that all singular values of (ΣxSuSu)

1/2U1Su∗ are bewteen 0.9 and 1.1.
Similar analysis implies that the same result holds for (ΣySvSv)

1/2V1Su∗.

Proof of Lemma 12. First of all, note that �(U1Su∗)
�ΣxSu∗U2�2F ≤ C�U1Sc

u∗�
2
F

by the following equality,

0 = U �
1ΣxU2 = (U1Su∗)

�ΣxSu∗U2 + (U1Sc
u∗)

�ΣxSc
u∗U2.

Moreover, the fact that all singular values of (ΣxSuSu)
1/2U1Su∗ are between

0.9 and 1.1, which is shown in Lemma 11, implies that there exists W ∈
Rr×r with �W�op ≤ 1.2, such that P = (ΣxSuSu)

1/2U1Su∗W . Therefore,

�P �(ΣxSuSu)
−1/2ΣxSu∗U2�2F = �W �(U1Su∗)

�ΣxSu∗U2�2F
≤ �(U1Su∗)

�ΣxSu∗U2�2F�W�2op ≤ C�U1Sc
u∗�

2
F.

Similar analysis shows the result for Q�(ΣySvSv)
−1/2ΣySv∗V2. Hence the proof

is complete.
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