SUPPLEMENT TO "MINIMAX ESTIMATION IN SPARSE CANONICAL CORRELATION ANALYSIS"

BY Chao Gao¹, Zongming Ma², Zhao Ren¹ and Harrison H. Zhou¹

¹Yale University and ²University of Pennsylvania

APPENDIX A: PROOFS OF TECHNICAL RESULTS

In this appendix, we prove Theorem 4 and Lemmas 7 - 12 in order.

A.1. Proof of Theorem 4. We first need a lemma for perturbation bound of square root matrices.

LEMMA 16. Let A, B be positive semi-definite matrices, and then for any unitarily invariant norm $\|\cdot\|$,

$$||A^{1/2} - B^{1/2}|| \le \frac{1}{\sigma_{\min}(A^{1/2}) + \sigma_{\min}(B^{1/2})} ||A - B||.$$

PROOF. The proof essentially follows the idea of [27]. Let D = B - A and $X = B^{1/2} - A^{1/2}$. Then we have for every sufficient large q > 0,

$$X = E_2 X E_1 + F,$$

where

$$E_1 = (qI + A^{1/2})^{-1}(qI - A^{1/2}),$$

$$E_2 = (qI + B^{1/2})^{-1}(qI - A^{1/2}),$$

$$F = 2q(qI + B^{1/2})^{-1}D(qI + A^{1/2})^{-1}.$$

Take the desired norm on both sides, we have

$$||X|| \le ||E_2XE_1|| + ||F|| \le ||E_1||_{\text{op}}||E_2||_{\text{op}}||X|| + ||F||.$$

Here, the first inequality is due the triangle inequality and the second is due to [6, Prop. IV.2.4]. By the proof of Lemma 2.1 in [27], $||E_i||_{op} < 1$ for i = 1, 2 when q is sufficiently large, and hence

$$||X|| \le \frac{||F||}{1 - ||E_1||_{\text{op}} ||E_2||_{\text{op}}}.$$

Sending $q \to \infty$ in the last display leads to the desired bound.

We prove (43) and (44) respectively.

Proof of (43).

$$||A_{1}D_{1}B'_{1} - \widehat{A}_{1}\widehat{D}_{1}\widehat{B}'_{1}||$$

$$= ||A_{1}A'_{1}XB_{1}B'_{1} - \widehat{A}_{1}\widehat{A}'_{1}Y\widehat{B}_{1}\widehat{B}'_{1}||$$

$$\leq ||A_{1}A_{1}X(B_{1}B'_{1} - \widehat{B}_{1}\widehat{B}'_{1})|| + ||A_{1}A'_{1}(X - Y)\widehat{B}_{1}\widehat{B}'_{1}||$$

$$+ ||(A_{1}A'_{1} - \widehat{A}_{1}\widehat{A}_{1})Y\widehat{B}_{1}\widehat{B}'_{1}||$$

$$\leq (d_{1} + \widehat{d}_{1})\frac{\sqrt{2}\epsilon}{\delta} + \epsilon,$$

where the last inequality is by Wedin's sin-theta theorem [35].

PROOF OF (44). Without loss of generality, we assume $p \geq m$, and hence the columns of B_1 and B_2 span \mathbb{R}^m . We first have the decomposition

(89)
$$\widehat{A}_1 \widehat{B}'_1 - A_1 B'_1 = (I - A_1 A'_1) \widehat{A}_1 \widehat{B}'_1$$

$$-A_1 D_1^{-1} B_1' (\widehat{B}_1' \widehat{D}_1 \widehat{A}_1' - B_1 D_1 A_1') \widehat{A}_1 \widehat{B}_1'$$

$$+A_1D_1^{-1}B_1'(\widehat{B}_1\widehat{D}_1\widehat{B}_1'-B_1D_1B_1').$$

We bound each of the three terms above. By Wedin's sin-theta theorem [35], the first term (89) can be bounded by

$$\begin{aligned} \|(I - A_1 A_1') \widehat{A}_1 \widehat{B}_1'\| &= \|(\widehat{A}_1 \widehat{A}_1' - A_1 A_1') \widehat{A}_1 \widehat{B}_1'\| \\ &\leq \|\widehat{A}_1 \widehat{A}_1' - A_1 A_1'\| \leq \frac{\sqrt{2}\epsilon}{\delta}. \end{aligned}$$

Next, we use (43) to bound (90) by

$$d_r^{-1} \|\widehat{B}_1' \widehat{D}_1 \widehat{A}_1' - B_1 D_1 A_1' \| \le \frac{d_1 + \widehat{d}_1}{d_r} \frac{\sqrt{2}\epsilon}{\delta} + \frac{\epsilon}{d_r}.$$

Lastly, (91) is bounded by

$$d_{r}^{-1} \| \widehat{B}_{1} \widehat{D}_{1} \widehat{B}'_{1} - B_{1} D_{1} B'_{1} \|$$

$$\leq d_{r}^{-1} \| \widehat{B}_{1} \widehat{D}_{1} \widehat{B}'_{1} + d_{1} \widehat{B}_{2} \widehat{B}'_{2} - B_{1} D_{1} B'_{1} - d_{1} B_{2} B'_{2} \|$$

$$+ \frac{d_{1}}{d_{r}} \| \widehat{B}_{2} \widehat{B}'_{2} - B_{2} B'_{2} \|$$

$$\leq d_{r}^{-2} \| \widehat{B}_{1} \widehat{D}_{1}^{2} \widehat{B}'_{1} + d_{1}^{2} \widehat{B}_{2} \widehat{B}'_{2} - B_{1} D_{1}^{2} B'_{1} - d_{1}^{2} B_{2} B'_{2} \|$$

$$+ \frac{d_{1}}{d_{r}} \| \widehat{B}_{2} \widehat{B}'_{2} - B_{2} B'_{2} \|$$

$$(92) \qquad \leq \quad d_r^{-2} \|\widehat{B}_1 \widehat{D}_1^2 \widehat{B}_1' - B_1 D_1^2 B_1' \| + \left(\frac{d_1}{d_r} + \frac{d_1^2}{d_r^2}\right) \|\widehat{B}_2 \widehat{B}_2' - B_2 B_2' \|,$$

imsart-aos ver. 2011/05/20 file: SCCA_paper.tex date: May 6, 2014

where we have used Lemma 16 in the second inequality above. The second term of (92) is

$$\left(\frac{d_1}{d_r} + \frac{d_1^2}{d_r^2}\right) \|\widehat{B}_2 \widehat{B}_2' - B_2 B_2'\| = \left(\frac{d_1}{d_r} + \frac{d_1^2}{d_r^2}\right) \|\widehat{B}_1 \widehat{B}_1' - B_1 B_1'\| \le \left(\frac{d_1}{d_r} + \frac{d_1^2}{d_r^2}\right) \frac{\sqrt{2}\epsilon}{\delta},$$

by Wedin's sin-theta theorem [35]. The first term of (92) is bounded by

$$d_r^{-2} \|B_1 D_1 A_1' (A_1 D_1 B_1' - \widehat{A}_1' \widehat{D}_1 \widehat{B}_1') + (B_1 D_1 A_1' - \widehat{B}_1 \widehat{D}_1 \widehat{A}_1') \widehat{A}_1 \widehat{D}_1 \widehat{B}_1' \|$$

$$\leq \frac{d_1 + \widehat{d}_1}{d_r^2} \|A_1 D_1 B_1' - \widehat{A}_1' \widehat{D}_1 \widehat{B}_1' \| \leq \frac{d_1 + \widehat{d}_1}{d_r^2} \left((d_1 + \widehat{d}_1) \frac{\sqrt{2}\epsilon}{\delta} + \epsilon \right),$$

by (43). Combining the bounds above, we have

$$\|\widehat{A}_{1}\widehat{B}'_{1} - A_{1}B'_{1}\|$$

$$\leq \left(1 + \frac{d_{1} + \widehat{d}_{1}}{d_{r}} + \frac{(d_{1} + \widehat{d}_{1})^{2}}{d_{r}^{2}} + \frac{d_{1}}{d_{r}} + \frac{d_{1}^{2}}{d_{r}^{2}}\right) \frac{\sqrt{2}\epsilon}{\delta} + \frac{1 + d_{r}^{-1}(d_{1} + \widehat{d}_{1})}{d_{r}}\epsilon$$

$$\leq \frac{C\epsilon}{\delta},$$

under the assumption that $d_1 \vee \hat{d}_1 \leq \bar{\kappa} d_r$.

A.2. Proof of Lemma 7. Note that for i = 1, 2,

$$\Sigma_{(i)} = I + \frac{\lambda}{2} \begin{bmatrix} U_{(i)} \\ V_{(i)} \end{bmatrix} \begin{bmatrix} U'_{(i)} & V'_{(i)} \end{bmatrix} - \frac{\lambda}{2} \begin{bmatrix} U_{(i)} \\ -V_{(i)} \end{bmatrix} \begin{bmatrix} U'_{(i)} & -V'_{(i)} \end{bmatrix}.$$

Thus, $\Sigma_{(i)}$ has two eigenvalues $1 \pm \lambda$, both of multiplicity r and the rest are all ones. This, in particular, implies that

(93)
$$\det \Sigma_{(1)} = \det \Sigma_{(2)}.$$

Now the KL divergence is

$$D(P_{(1)}||P_{(2)}) = \frac{n}{2} \left[\text{Tr}(\Sigma_{(2)}^{-1}\Sigma_{(1)}) - (p+m) - \log \det(\Sigma_{(2)}^{-1}\Sigma_{(1)}) \right]$$

$$= \frac{n}{2} \left[\text{Tr}(\Sigma_{(2)}^{-1}\Sigma_{(1)}) - (p+m) \right]$$

$$= \frac{n}{2} \left[\text{Tr}(\Sigma_{(2)}^{-1}(\Sigma_{(1)} - \Sigma_{(2)})) \right].$$

Here, the second equality is due to (93).

Note that
$$\Sigma_{(1)} - \Sigma_{(2)} = \begin{bmatrix} 0 & U_{(1)}V'_{(1)} - U_{(2)}V'_{(2)} \\ V_{(1)}U'_{(1)} - V_{(2)}U'_{(2)} & 0 \end{bmatrix}$$
 and that the block inversion formula implies

$$\Sigma_{(2)}^{-1} = \begin{bmatrix} I_p + \frac{\lambda^2}{1-\lambda^2} U_{(2)} U'_{(2)} & -\frac{\lambda}{1-\lambda^2} U_{(2)} V'_{(2)} \\ -\frac{\lambda}{1-\lambda^2} V_{(2)} U'_{(2)} & I_m + \frac{\lambda^2}{1-\lambda^2} V_{(2)} V'_{(2)}. \end{bmatrix}$$

Plugging these expressions into (94), we obtain

$$\begin{split} D(P_{(1)}||P_{(2)}) &= \frac{n\lambda^2}{2(1-\lambda^2)} (\operatorname{Tr}(U_{(2)}V_{(2)}'(V_{(2)}U_{(2)}' - V_{(1)}U_{(1)}')) \\ &+ \operatorname{Tr}(V_{(2)}U_{(2)}'(U_{(2)}V_{(2)}' - U_{(1)}V_{(1)}'))) \\ &= \frac{n\lambda^2}{2(1-\lambda^2)} 2\operatorname{Tr}\left(I_r - V_{(1)}'V_{(2)}U_{(2)}'U_{(1)}\right) \\ &= \frac{n\lambda^2}{2(1-\lambda^2)} \|U_{(1)}V_{(1)}' - U_{(2)}V_{(2)}'\|_{\operatorname{F}}^2. \end{split}$$

This completes the proof.

A.3. Proof of Lemma 8. Before stating the proof, we need the following Bernstein's inequality of Gaussian quadratic form.

LEMMA 17. Let $\{Z_i\}_{1\leq i\leq n}$ be i.i.d. observations from $N(0,I_d)$, and K be a fixed matrix satisfying $||K||_F \leq 1$. Then, there exists some C > 0, such that

$$\mathbb{P}\left(\left|\left\langle \frac{1}{n}\sum_{i=1}^{n}Z_{i}Z_{i}'-I_{d},K\right\rangle \right|>t\right)\leq \exp(-Cn(t^{2}\wedge t)),$$

for any t > 0.

Proof. It is sufficient to consider symmetric K because

$$\left\langle \frac{1}{n} \sum_{i=1}^{n} Z_i Z_i' - I_d, K \right\rangle = \left\langle \frac{1}{n} \sum_{i=1}^{n} Z_i Z_i' - I_d, \frac{1}{2} (K + K') \right\rangle.$$

Let K has spectral decomposition $K = \sum_{l=1}^{d} \eta_l q_l q'_l$. Since K has unit Frobenius norm, we have $\sum_{l=1}^{d} \eta_l^2 = 1$. Then we have

$$\left\langle \frac{1}{n} \sum_{i=1}^{n} Z_i Z_i' - I_d, K \right\rangle = \left\langle \frac{1}{n} \sum_{i=1}^{n} Z_i Z_i' - I_d, \sum_{l=1}^{d} \eta_l q_l q_l' \right\rangle$$
$$= \frac{1}{n} \sum_{i=1}^{n} \sum_{l=1}^{d} \eta_l (|q_l' Z_i|^2 - 1).$$

imsart-aos ver. 2011/05/20 file: SCCA_paper.tex date: May 6, 2014

Notice $|q'_l Z_i|^2 - 1$ is centered sub-exponential random variable for each i and l. Moreover, they are independent across i and l because $\{q_l\}_{l=1}^d$ is an orthonormal basis. Applying Bernstein's inequality for sub-exponential variables [31, Prop. 5.16], the proof is complete.

Now we are ready to state the main proof.

PROOF OF LEMMA 8. Define the class

$$\mathcal{K}\left(r\right) = \left\{K \in \mathbb{R}^{d \times d} : ||K||_F \leq 1, \operatorname{rank}(K) \leq r\right\}.$$

The strategy is to find an accurate covering number for $\mathcal{K}(r)$ such that we can apply an ϵ -net argument. Suppose we can find a subset $\mathcal{K}_{\epsilon}(r) = \{K_1, K_2, ..., K_N\} \subset \mathcal{K}(r)$ with finite cardinality $N = N(\epsilon)$ such that for any $K \in \mathcal{K}(r)$, there exists $K_j \in \mathcal{K}_{\epsilon}(r)$ such that $||K_j - K||_F \leq \epsilon$. Define $S = \frac{1}{n} \sum_{i=1}^n Z_i Z_i^T - I$, and then for any fixed matrix $K \subset \mathcal{K}(r)$, we have that

$$\begin{aligned} |\langle S, K \rangle| &\leq |\langle S, K_j \rangle| + \|K - K_j\|_{F} \left| \left\langle S, \frac{K - K_j}{\|K - K_j\|_{F}} \right\rangle \right| \\ &\leq |\langle S, K_j \rangle| + \epsilon \sup_{H \in \mathcal{K}(2r)} |\langle S, H \rangle| \\ &\leq \max_{j} |\langle S, K_j \rangle| + 2\epsilon \sup_{H \in \mathcal{K}(r)} |\langle S, H \rangle| \,, \end{aligned}$$

where we have used the fact that the rank of $\frac{K-K_j}{\|K-K_j\|_F}$ is not more than 2r and for any such $H \in \mathcal{K}(2r)$, it can be written as the sum of two matrices with rank not more than r. Therefore, taking sup on both sides, we have that $\sup_{K \in \mathcal{K}(r)} |\langle S, K \rangle| \leq (1-2\epsilon)^{-1} \max_j |\langle S, K_j \rangle|$. Picking $\epsilon = 1/4$, by union bound and Lemma 17, we have

$$\mathbb{P}\left\{\sup_{K\in\mathcal{K}(r)}\left|\left\langle\frac{1}{n}\sum_{i=1}^{n}Z_{i}Z_{i}^{T}-I,K\right\rangle\right|>t\right\}$$

$$\leq \sum_{j=1}^{N(1/4)}\mathbb{P}\left\{\left|\left\langle\frac{1}{n}\sum_{i=1}^{n}Z_{i}Z_{i}^{T}-I,K_{j}\right\rangle\right|>\frac{t}{2}\right\}$$

$$\leq \exp(\log N\left(1/4\right)-Cn(t\wedge t^{2})).$$

Now it is sufficient for us to find the covering number, i.e. to show that $\log N(1/4)$ is bounded by C'rd to complete our proof. We write the SVD

of any $K \subset \mathcal{K}(r)$ as $K = P\Lambda Q'$. Note that both $P\Lambda$ and $Q\Lambda$ belong to the following class

$$\mathcal{B} = \left\{ B \in \mathbb{R}^{d \times r} : \exists U \in \mathbb{R}^{d \times r} \text{and } D \text{ diagonal s.t. } U'U = I, B = UD, ||D||_F \leq 1 \right\}.$$

It is obvious that $\mathcal{B} \subset \{B \in \mathbb{R}^{d \times r} : ||B||_F \leq 1\}$, the $d \times r$ dimensional unit ball. Hence the well-known covering number of unit ball implies that for small $\epsilon/2 > 0$, we can find a subset $\mathcal{B}_{\epsilon/2} = \{B_1, B_2, ..., B_L\} \subset \mathcal{B}$ with cardinality $L(\epsilon/2) \leq (C\epsilon)^{-C_0rd}$ such that $\inf_j ||B - B_j||_F \leq \epsilon/2$. We denote each $B_j = U_j D_j$, then we claim the subset $\mathcal{K}_{\epsilon}(r)$ can be defined as follows

$$\mathcal{K}_{\epsilon}(r) = \left\{ K_{ij} = U_i D_i U'_j : i, j \le L(\epsilon/2) \right\}.$$

As a consequence, we obtain that $N(\epsilon) \leq L^2 (\epsilon/2) \leq (C\epsilon)^{-2C_0rd}$ and hence $\log N(1/4) \leq C'rd$. We prove our claim now. First, it is clear that any $K_{ij} \in \mathcal{K}_{\epsilon}(r)$ and we have $||K_{ij}||_F \leq 1$ and $\operatorname{rank}(K_{ij}) \leq r$. Second, for any $K = P\Lambda Q' \subset \mathcal{K}(r)$, we can find $B_j = U_j D_j$ such that $||Q\Lambda - B_j||_F \leq \epsilon/2$ and further can find $B_i = U_i D_i$ such that $||PD_j - B_i||_F \leq \epsilon/2$. Hence we have

$$||K - K_{ij}||_{F} = ||P\Lambda Q' - U_{i}D_{i}U'_{j}||_{F}$$

$$\leq ||P\Lambda Q' - PB'_{j}||_{F} + ||PD_{j}U'_{j} - U_{i}D_{i}U'_{j}||_{F}$$

$$= ||Q\Lambda - B_{j}||_{F} + ||PD_{j} - B_{i}||_{F} \leq \epsilon.$$

Therefore the proof is complete. We remark that a similar covering argument is also obtained by Candes and Plan [11, Lemma 3.1]. The proof we provide above is different from theirs, because we avoid the concepts of Grassmann manifold through very elementary calculation.

A.4. Proof of Lemma 9. Expanding the Frobenius norm, we have

$$\left\|AB' - EF'\right\|_{\mathrm{F}}^2 = 2\operatorname{Tr}(I - A'EF'B).$$

On the other hand, we have

$$\left\langle ADB',AB'-EF'\right\rangle = \mathrm{Tr}(D-DA'EF'B) = \sum_{l=1}^r d_l(I-A'EF'B)_{ll}.$$

It is clear that $(I - A'EF'B)_{ll} \ge 0$, and thus the result follows.

A.5. Proof of Lemma 10. The proof depends on two facts. The first one is deterministic

(95)
$$\|\widehat{\Sigma}_{x}^{1/2} A \widehat{\Sigma}_{y}^{1/2}\|_{F}^{2} = \|\widehat{\Sigma}_{xT_{u}T_{u}}^{1/2} A_{T_{u}T_{v}} \widehat{\Sigma}_{yT_{v}T_{v}}^{1/2}\|_{F}^{2}.$$

The second one is that with probability at least $1 - \exp(-C'k_q^u \log(ep/k_q^u)) - \exp(-C'k_q^v \log(em/k_q^v))$, we have (96)

$$\|\widehat{\Sigma}_{xT_uT_u}^{1/2} - \Sigma_{xT_uT_u}^{1/2}\|_{\text{op}} \vee \|\widehat{\Sigma}_{yT_vT_v}^{1/2} - \Sigma_{yT_vT_v}^{1/2}\|_{\text{op}} \leq \frac{C}{n} (k_q^u \log(ep/k_q^u) + k_q^v \log(em/k_q^v)).$$

The two facts will be derived at the end of the proof.

The assumption that $\frac{1}{n}(k_q^u \log(ep/k_q^u) + k_q^v \log(em/k_q^v))$ is sufficiently small and the fact (96) immediately imply that there exists some constant C > 0 such that

$$\|\widehat{\Sigma}_{xT_uT_u}^{1/2}\|_{\text{op}}, \|\widehat{\Sigma}_{xT_uT_u}^{-1/2}\|_{\text{op}}, \|\widehat{\Sigma}_{yT_vT_v}^{1/2}\|_{\text{op}}, \|\widehat{\Sigma}_{yT_vT_v}^{-1/2}\|_{\text{op}} \in [1/C, C],$$

since the spectra of $\Sigma_{yT_vT_v}^{1/2}$ and $\Sigma_{xT_uT_u}^{1/2}$ are bounded below and above by universal constants. This consequence together with the fact (95) further shows the desired result. Namely,

$$||A||_{\mathcal{F}}^{2} \leq ||\widehat{\Sigma}_{xT_{u}T_{u}}^{-1/2}||_{\text{op}}^{2}||\widehat{\Sigma}_{yT_{v}T_{v}}^{-1/2}||_{\text{op}}^{2}||\widehat{\Sigma}_{xT_{u}T_{u}}^{1/2}A_{T_{u}T_{v}}\widehat{\Sigma}_{yT_{v}T_{v}}^{1/2}||_{\mathcal{F}}^{2} \leq C^{4}||\widehat{\Sigma}_{x}^{1/2}A\widehat{\Sigma}_{y}^{1/2}||_{\mathcal{F}}^{2},$$

$$\|\widehat{\Sigma}_{x}^{1/2} A \widehat{\Sigma}_{y}^{1/2}\|_{F}^{2} \leq \|\widehat{\Sigma}_{xT_{v}T_{v}}^{1/2}\|_{op}^{2}\|\widehat{\Sigma}_{yT_{v}T_{v}}^{1/2}\|_{op}^{2}\|A_{T_{u}T_{v}}\|_{F}^{2} \leq C^{4}\|A\|_{F}^{2}.$$

Now we only need to prove the two facts (95) and (96). The fact (96) is a simple consequence of Lemma 13 and Lemma 16. To see (95), we expand the Frobenius norm by trace product,

$$\begin{split} \|\widehat{\Sigma}_{x}^{1/2} A \widehat{\Sigma}_{y}^{1/2}\|_{\mathrm{F}}^{2} &= \operatorname{Tr}\left(\widehat{\Sigma}_{y}^{1/2} A' \widehat{\Sigma}_{x} A \widehat{\Sigma}_{y}^{1/2}\right) \\ &= \operatorname{Tr}\left((A_{T_{u}T_{v}})' \widehat{\Sigma}_{xT_{u}T_{u}} A_{T_{u}T_{v}} \widehat{\Sigma}_{yT_{v}T_{v}}\right) = \|\widehat{\Sigma}_{xT_{u}T_{u}}^{1/2} A_{T_{u}T_{v}} \widehat{\Sigma}_{yT_{v}T_{v}}^{1/2}\|_{\mathrm{F}}^{2}. \end{split}$$

A.6. Proofs of Lemma 11 and Lemma 12.

PROOF OF LEMMA 11. The last claim is proved by the following observation.

$$\widetilde{U}_1'\Sigma_x\widetilde{U}_1=(\widetilde{U}_{1S_u*})'\Sigma_{xS_uS_u}\widetilde{U}_{1S_u*}=I_r,\ \widetilde{V}_1'\Sigma_y\widetilde{V}_1=(\widetilde{V}_{1S_v*})'\Sigma_{yS_vS_v}\widetilde{V}_{1S_v*}=I_r.$$

To show the first two claims, we need to prove that all the singular values of $(\Sigma_{xS_uS_u})^{1/2}U_{1S_u*}$ and $(\Sigma_{yS_vS_v})^{1/2}V_{1S_u*}$ are close to 1. Indeed, if all singular values are between 0.9 and 1.1, then the range of spectrum of $P\widetilde{\Lambda}_1Q'$ will

be in the interval $[0.9\lambda_r, 1.1\lambda_1]$ according to (51). Therefore our assumptions on λ_1 and λ_r imply $1.1\kappa\lambda \geq \widetilde{\lambda}_1 \geq \widetilde{\lambda}_r \geq 0.9\lambda$. The second term of Ξ in (53) is orthogonal to the first term $P\widetilde{\Lambda}_1Q'$ and clearly its largest singular value can be bounded by $C\lambda_{r+1}$, which is less than $c\lambda$ by our assumption on λ_{r+1} . Therefore we finish the proof of the first two claims.

Now we bound the singular values of $(\Sigma_{xS_uS_u})^{1/2}U_{1S_u*}$ and $(\Sigma_{yS_vS_v})^{1/2}V_{1S_u*}$. Note

$$I_r = U_1' \Sigma_x U_1 = (U_{1S_u*})' \Sigma_{xS_uS_u} U_{1S_u*} + (U_{1S_u*})' \Sigma_{xS_uS_u^c} U_{1S_u^c*} + (U_{1S_u^c*})' \Sigma_{xS_u^cS_u} U_{1S_u*} + (U_{1S_u^c*})' \Sigma_{xS_u^cS_u} U_{1S_u^c*}.$$

Therefore we have

$$\|(U_{1S_u*})'\Sigma_{xS_uS_u}U_{1S_u*} - I_r\|_F^2 \le C\|U_{1S_u^c*}\|_F^2 \le \frac{Cq}{2-q}k_q^u(s_u/k_q^u)^{2/q} \le 0.01,$$

where the last two inequalities follow from (56) and (16). Hence we have shown that all singular values of $(\Sigma_{xS_uS_u})^{1/2}U_{1S_u*}$ are bewteen 0.9 and 1.1. Similar analysis implies that the same result holds for $(\Sigma_{yS_uS_u})^{1/2}V_{1S_u*}$.

PROOF OF LEMMA 12. First of all, note that $\|(U_{1S_u*})'\Sigma_{xS_u*}U_2\|_F^2 \leq C\|U_{1S_u^c*}\|_F^2$ by the following equality,

$$0 = U_1' \Sigma_x U_2 = (U_{1S_u *})' \Sigma_{xS_u *} U_2 + (U_{1S_u *})' \Sigma_{xS_u *} U_2.$$

Moreover, the fact that all singular values of $(\Sigma_{xS_uS_u})^{1/2}U_{1S_u*}$ are between 0.9 and 1.1, which is shown in Lemma 11, implies that there exists $W \in \mathbb{R}^{r \times r}$ with $\|W\|_{\text{op}} \leq 1.2$, such that $P = (\Sigma_{xS_uS_u})^{1/2}U_{1S_u*}W$. Therefore,

$$||P'(\Sigma_{xS_uS_u})^{-1/2}\Sigma_{xS_u*}U_2||_{\mathcal{F}}^2 = ||W'(U_{1S_u*})'\Sigma_{xS_u*}U_2||_{\mathcal{F}}^2$$

$$\leq ||(U_{1S_u*})'\Sigma_{xS_u*}U_2||_{\mathcal{F}}^2 ||W||_{\text{op}}^2 \leq C||U_{1S_u^c*}||_{\mathcal{F}}^2.$$

Similar analysis shows the result for $Q'(\Sigma_{yS_vS_v})^{-1/2}\Sigma_{yS_v*}V_2$. Hence the proof is complete.

Department of Statistics

YALE UNIVERSITY NEW HAVEN, CT 06511. E-MAIL: chao.gao@yale.edu

E-mail: zhao.ren@yale.edu E-mail: huibin.zhou@yale.edu

URL: http://www.stat.yale.edu/~hz68

DEPARTMENT OF STATISTICS
THE WHARTON SCHOOL
UNIVERSITY OF PENNSYLVANIA
PHILADELPHIA, PA 19104.

E-MAIL: zongming@wharton.upenn.edu

URL: http://www-stat.wharton.upenn.edu/~zongming