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Abstract

A relationship between the large deviation and quantile coupling is studied. We

apply this relationship to the coupling of the sum of n i.i.d. symmetric random

variables with a normal random variable, improving the classical quantile coupling

inequalities (the key part in the celebrated KMT constructions) with a rate 1=
p
n

for random variables with continuous distributions, or the same rate modulo con-

stants for the general case. Applications to the asymptotic equivalence theory and

nonparametric function estimation are discussed.
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1 Introduction

The KMT/Hungarian construction in Komlós, Major, and Tusnády (1975) is considered

one of the most important statistics and probability results of the last forty years. It has

been widely applied in many areas of statistics and probability (cf. Shorack and Wellner

(1986)). The quantile coupling of the sum of i.i.d. Bernoulli(1=2) with a normal random

variable lies at the heart of KMT/Hungarian construction for empirical process. In this

paper, we study the coupling of the sum of n i.i.d. symmetric random variables with a

normal random variable, and improve the classical quantile coupling bounds with a rate

1=
p
n for random variables whose distributions are absolutely continuous with respect to a

Lebesgue measure, or the same rate modulo constants for the general case. This paper can

be regarded as a generalization of Carter and Pollard (2004), which studied the coupling

of Binomial(n; 1=2) and a normal random variable and improved the classical quantile

coupling bounds (called Tusnády�s Lemma) with a rate 1=
p
n modulo constants.

The KMT construction played a key role in the progress of the asymptotic equivalence

theory in the last decade. Nussbaum (1996), a breakthrough of asymptotic equivalence

theory, established the asymptotic equivalence of density estimation and Gaussian white

noise under a Hölder smoothness condition. A major step toward the proof of this equiva-

lence result is the functional KMT construction for empirical process by Koltchinskii (1994),

where lying at the heart of the construction is Tusnády�s Lemma. The impact of this result

is that an asymptotically optimal result in one of these nonparametric models automati-

cally yields an analogous results in the other model. Starting from Donoho and Johnstone

(1995), Besov smoothness constraint became a standard assumption in the nonparamet-

ric estimation. Recently, Brown, Carter, Low and Zhang (2004) extended the result of

Nussbaum (1996) under a sharp Besov smoothness constraint via the improved Tusnády�s

inequality by Carter and Pollard (2004). This asymptotic equivalence result is considered

an important progress in this area. It is might be worthwhile to mention that the classical

Tusnády�s inequality may not be su¢ cient to establish asymptotic equivalence under the

conditions stated in the paper of Brown, carter, Low and Zhang (2004). General quantile

coupling inequalities (see Sakhanenko (1984) and Komlós, Major, and Tusnády (1975))

led to an extension of asymptotic equivalence theory in Nussbaum (1996) to general non-

parametric estimation models (see Grama and Nussbaum (1998, 2002a, 2002b)). Among

those models an important one is the spectral density estimation model. In Zhou (2004) or

Golubev, Nussbaum and Zhou (2005), we applied a sharp quantile coupling bound between

a Beta and a normal random variable (a special case of general results in this paper) to

establish the asymptotic equivalence of the spectral density estimation and Gaussian white
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noise under a Besov smoothness constraint.

One possibly interesting application of our result is coupling a median statistic with

a normal random variable. We obtain a sharp quantile coupling inequality which also

improves the classical quantile coupling bounds with a rate 1=
p
n under certain smoothness

conditions for the distribution function (see section 5). It includes the Cauchy distribution

as a special case. This coupling result may be of independent interest because of the

fundamental role of median in statistics.

The paper is organized as follows. In section 2, we list basic results for the quantile

coupling of the sum of n i.i.d. symmetric random variable. In section 3, we give a general

assumption to obtain a quantile coupling inequality with an improved rate 1=
p
n, which

immediately implies a sharp quantile coupling result for the sum of n i.i.d. symmetric

random variable with continuous distribution. Section 4 gives a general assumption to

obtain a quantile coupling inequality with an improved rate modulo constants. Some

applications of the coupling results are discussed in section 5.

2 Basic Results

The quantile coupling of the sum of i.i.d. Bernoulli(1=2) (or Binomial(n; 1=2)) with a

normal random variable is a key step in KMT/Hungarian coupling of the empirical distri-

bution with a Brownian bridge in Komlós, Major, and Tusnády (1975). The tight quantile

coupling bound for Binomial(n; 1=2) in Tusnády (1977) is formulated as follows: there is

a random variable X distributed Binomial(n; 1=2) and a Y = n=2 +
p
nZ=2 distributed

N(n=2; n=4) such that

jX � Y j � C + C jXj
2

n
; when jXj � "

p
n

for some C; " > 0. See Massart (2004) for possible explicit values of C and ", although we

don�t need them in establishing asymptotic equivalence results. The proof of this bound

was �rst sketched in Komlós, Major, and Tusnády (1975) and detailed in several papers,

e.g., Mason and van Zwet (1987), Bretagnolle and Massart (1989), Dudley (2000), Major

(2000), Mason (2001), Lawler and Trujillo Ferreras (2005), etc.

Carter and Pollard (2004) improved that classical quantile bounds for Binomial(n; 1=2)

with a rate 1=
p
n modulo constants. More speci�cally, they showed that for the cou-

pling between an X distributed Binomial(n; 1=2) and a Y = n=2 +
p
nZ=2 distributed
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N(n=2; n=4),

jX � Y j � C + C jXj
3

n2
; when jXj � "

p
n

for some C; " > 0.

The coupling bounds for general random variables and the detailed proofs can be found

in Sakhanenko (1984, 1996). In this section, we extend the result of Carter and Pollard

(2004) to general symmetric random variables, i.e., sharpens the bound in Sakhanenko

(1984, 1996) (or Komlós, Major, and Tusnády (1975)) for the sum of symmetric random

variables.

The following proposition is the classical quantile coupling result (cf. Lemma 2 in

Sakhanenko (1996) or Lemma 1 in Komlós, Major, and Tusnády (1975)).

Proposition 1 Let X1, X2, . . . , Xn be i.i.d. random variables such that EX1 = 0, EX2
1 =

1, E exp ft jX1jg <1 for some t > 0. Let Sn = 1p
n

Pn
i=1Xi, and Z be a standard normal

random variable. Then for every n, there is a random variable eSn with L�eSn� = L (Sn)
such that ��� eSn � Z��� � Cp

n
+
Cp
n

��� eSn���2
for
��� eSn��� � "pn, where C1; " > 0 do not depend on n.
In many practical situations, the random variables are symmetric. We have an improve-

ment on the classical quantile coupling result with a rate 1=
p
n for random variables with

continuous distributions.

Theorem 1 In addition to the assumptions in Proposition 1 suppose that EX3
1 = 0 and

the characteristic function v (t) satis�es lim supjtj!1 jv (t)j < 1. Then for every n, there is
a random variable eSn with L�eSn� = L (Sn) such that��� eSn � Z��� � C

n
+
C

n

��� eSn���3
for
��� eSn��� � "pn, where C; " > 0 do not depend on n.
If the absolutely continuous component of the random variable X1 is nonzero, the

assumption lim supjtj!1 jv (t)j < 1 in Theorem 1 is satis�ed.

Without that assumption for the characteristic function v (t), we have an improvement

on the classical quantile coupling bound with a rate 1=
p
n modulo constants.
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Theorem 2 In addition to the assumptions in Proposition 1 suppose that EX3
1 = 0. Then

for every n, there is a random variable eSn with L�eSn� = L (Sn) such that��� eSn � Z��� � Cp
n
+
C

n

��� eSn���3
for
��� eSn��� � "pn, where C; " > 0 do not depend on n.
The assumptions of Theorem 2 are satis�ed for X1 =Bernoulli(1=2)� 1=2. Theorem 2

is then a natural extension of Carter and Pollard (2004).

3 Quantile Coupling for Continuous case

In this section, we give a general assumption to obtain a quantile coupling inequality with an

improved rate. We then apply this inequality to the sum of independent random variables

with vanishing third moment to obtain Theorem 1 which includes the coupling of the sum

of symmetric random variables as a special case.

A basic inequality for Mill�s ratio will be needed to derive the quantile coupling inequal-

ity.

Lemma 1 For x > 0, we have

' (x)
_

� (x)
> min

�
x;

2p
2�

�
� 1

2

�
x+

2p
2�

�
.

The following theorem gives the relationship between the existence of a certain type of

large deviation result and a sharp quantile coupling inequality. That type of large deviation

is often called �Petrov expansion�. Actually, the expansion we use in this paper is even

more �precise� than that of Petrov (see Remark 2). Maybe it is better to call it Saulis

expansion (see page 249 in Petrov (1975)). Theorem 1 is just an immediate consequence

of the following theorem and Proposition 2.

In this paper, we use a notation O (x), which means a value between �Cx and Cx for
some C > 0.

Theorem 3 Let Z be a standard normal random variable. Let Sn be a random variable

with a distribution function G (x) = P (Sn � x). Assume that there is a positive " such

that for all n,

P (Sn < �x) = � (�x) exp
�
O
�
n�1x4 + n�1

��
;

1� P (Sn < x) = � (x) exp
�
O
�
n�1x4 + n�1

��
;
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where G (x) = 1 � G (x), and � (x) = 1 � � (x), and O (n�1x4 + n�1) is uniform on the

interval x 2 [0; "
p
n]. And the expansion above holds when �<� is replaced by � ��. Then

for every n, there is a random variable eSn with L�eSn� = L (Sn) such that��� eSn � Z��� � C1
n
+
C1
n

��� eSn���3 (1)

for
��� eSn��� � "1pn, where C1; "1 > 0 do not depend on n.

Remark 1 The de�nition of distribution function here is di¤erent from that in Petrov

(1975), or Major (2000), or Mason (2001), etc. They de�ne G (x) = P (Sn < x). But we
use the more standard de�nition G (x) = P (Sn � x).

Remark 2 Let
a (n; x) = n�1=2x3 + n�1=2x+ n�1=2.

The Petrov expansion is replacing O (n�1x4 + n�1) in the Theorem by O (a (n; x)) (see

Theorem 1 in Chapter VIII of Petrov (1975), or Theorem A in Komlós, Major, and Tusnády

(1975)). But the corresponding coupling inequality will be��� eSn � Z��� � C1p
n
+
C1p
n

��� eSn���2
(see Sakhanenko (1984, 1996)). The deviation term O (n�1x4 + n�1) improves O (a (n; x))

with a rate 1=
p
n for x in a constant level, so is the corresponding quantile coupling in-

equality.

The following is a detailed proof of Theorem 3. It is a modi�cation of the proof for the

classical case, which was sketched in Komlós, Major, and Tusnády (1975).

Proof: De�ne eSn = G�1� (Z) (2)

where

G�1 (x) = inf fu;G (u) � xg ;

such that L
�eSn� = L (Sn). Without loss of generality, we assume that 0 � eSn � "

p
n,

because the derivation for �"
p
n � eSn � 0 is similar. The equation (1) is equivalent to

�C1
1

n

�
1 +

��� eSn���3� � eSn � Z � C1 1
n

�
1 +

��� eSn���3�
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i.e.,

�

�eSn � C1 1
n

�
1 +

��� eSn���3�� � � (Z) � ��eSn + C1 1
n

�
1 +

��� eSn���3�� .
De�ne G

�eSn�� = P (Sn < x). From the de�nition of eSn in (2) we have G�eSn�� �
� (Z) � G

�eSn�, then we need only to show
�

�eSn � C1 1
n

�
1 +

��� eSn���3��
� G

�eSn�� � G�eSn� � ��eSn + C1 1
n

�
1 +

��� eSn���3�� .
i.e.

log

 
1� �

�
x� C1 1n (1 + x

3)
�

1� � (x)

!

� log
1�G (x�)
1� � (x) � log 1�G (x)

1� � (x)

� log

 
1� �

�
x+ C1

1
n
(1 + x3)

�
1� � (x)

!

when 0 � x � "
p
n. From the assumption in the theorem, we know

max

�����log 1�G (x)1� � (x)

���� ; ����log 1�G (x�)1� � (x)

����� � C �n�1x4 + n�1�
for some C > 0. Thus it is enough to show there is C1 > 0 such that

log

 
1� �

�
x� C1 1n (1 + x

3)
�

1� � (x)

!
� C

�
n�1x4 + n�1

�
(3)

� log

 
1� �

�
x+ C1

1
n
(1 + x3)

�
1� � (x)

!

We only show the �rst part of the inequality above due to the symmetry of the equation.

It is easy to see that the �rst part of the equation above is satis�ed under the condition

x� C1 12n
�
1 + jxj3

�
� 0 (we will see later the value of C1 can be speci�ed as 18

p
2�C). It

implies x � C1=n � 1 for n su¢ ciently large under an assumption that C1"2 � 1, which

holds choosing su¢ ciently small ". Then for 0 � x � C1=n � 1 and n su¢ ciently large, we
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have

log

 
1� �

�
x� C1 1n (1 + x

3)
�

1� � (x)

!
� log

 
1� �

�
x� C1 1n (1 + x

3)
�

1� � (0)

!

= log

�
1 +

�
1� 2�

�
x� C1

1

n

�
1 + x3

����
� 1

2
� �

�
x� C1

1

n

�
1 + x3

��
,

where the last inequality follows from the fact log (1 + y) � y=2 for 0 � y � 1. Write
1

2
� �

�
x� C1

1

n

�
1 + x3

��
= �

�
C1
1

n

�
1 + x3

�
� x
�
� � (0) .

Since
��C1 1n (1 + x3)�� � 2 and ' (x) � 1

9
p
2�
for 0 � x � 2, the intermediate value theorem

implies

�

�
C1
1

n

�
1 + x3

�
� x
�
� � (0) � 1

9
p
2�

�
C1
1

n

�
1 + x3

�
� x
�

� 1

9
p
2�
� C1
2n

�
1 + x3

�
� C1

18
p
2�

�
n�1x4 + n�1

�
which is more than C (n�1x4 + n�1) when C1 � 18

p
2�C. Thus the equation (3) is estab-

lished in the case of x� C1 12n
�
1 + jxj3

�
� 0.

Now we consider the case x�C1 12n
�
1 + jxj3

�
� 0. The intermediate value theorem tells

us there is a number � between x and x� C1
4n
(1 + x3) such that

log

 
1� �

�
x� C1 1n (1 + x

3)
�

1� � (x)

!

� log

 
1� �

�
x� C1

4n
(1 + x3)

�
1� � (x)

!

=
C1
4

1

n

�
1 + x3

� ' (�)

1� � (�) .

From the lemma (1), we have

log

 
1� �

�
x� C1

4n
(1 + x3)

�
1� � (x)

!

� C1
4n

�
1 + x3

�
� 1
2

�
x� C1

4n

�
1 + x3

�
+

2p
2�

�
� C1

4

1

n

�
1 + x3

�
� 1
2

�
x

2
+

2p
2�

�
� C

n
x4 +

C

n
.
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when C1 � 16C.
Putting all together, we establish (3) and prove the theorem.

In some applications, it is more convenient to use the following corollary. The bound

involves only the normal random variable. In Zhou (2004), we used the coupling of Beta

distribution with a normal to establish asymptotic equivalence of Gaussian variance regres-

sion and Gaussian white noise with a drift, and we found that it was much easier to use

the following bound in moments calculations.

Corollary 1 Under the assumption of Theorem 3, for every n there is a random variableeSn with L�eSn� = L (Sn) such that��� eSn � Z��� � C

n

�
1 + jZj3

�
; when jZj � "

p
n

for some C; " > 0.

Proof: Obviously the inequality (1) still holds, when
��� eSn��� � "1pn for 0 < "1 � ". Let�s

choose "1 small enough such that C"21 < 1=2. When
��� eSn��� � "1pn, we have��� eSn � Z��� � C

n
+
1

2

��� eSn��� ,
from (1), which implies ��� eSn���� jZj � C

n
+
1

2

��� eSn���
by the triangle inequality, i.e., ��� eSn��� � 2C

n
+ 2 jZj , (4)

so we have ��� eSn � Z��� � C

n
+
C

n

�
2C

n
+ 2 jZj

�3
� C1
n

�
1 + jZj3

�
for some C1 > 0.

When eSn = "1pn > 0 for any "1 with 0 < "1 � ", we know Z � 0 from the de�nition

of quantile coupling, and from (4) we have

Z � "1
p
n� 2C

n
.

In the de�nition of quantile coupling, we see that eSn is an increasing function of Z. So
we have eSn � "1n, when Z � "1

p
n � 2C

n
. Similarly we may show eSn � �"1n, when

Z � �"1
p
n+ 2C

n
. Thus we have��� eSn��� � "1pn, when jZj � "1n� 2Cp

n
. (5)
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Let "2 = "1=2. We have "2
p
n < "1

p
n� 2C

n
for n >

�
2C
"2

�2=3
, then we know

�
jZj � "2

p
n
	
�
�
jZj � "1

p
n� 2C

n

�
�
n���eSn��� � "1pno

from (5), so we have

��� eSn � Z��� � C

n

�
1 + jZj3

�
; when jZj � "2

p
n and n >

�
2C

"2

�2=3
.

Thus we have ��� eSn � Z��� � C

n

�
1 + jZj3

�
; when jZj � "2

p
n.

An application of Theorem 3 and Corollary 1 is the coupling of the sum of independent

random variables with a normal random variable. Assume that those random variables have

�nite exponential moment and vanishing third moment (e.g. symmetric random variable).

The following is the Saulis expansion (See page 249 in Petrov (1975), or page 188 in Saulis

and Statulevicius (1991)), which gives a sharp approximation to the tail probability of the

sum of those random variables. The proof of the this result can also be derived based on

similar arguments in Section 8.2 in Petrov (1975).

Proposition 2 Let X1; X2; . . . , Xn be i.i.d. random variables for which

EX1 = 0; EX2
1 = 1; EX

3
1 = 0;

E exp (a jX1j) < 1 for some a > 0;

and

lim sup
jtj!1

expE (itX1) < 1:

De�ne eSn = 1p
n

Pn
i=1Xi. Then their exists positive constants C and � such that

P
�eSn < �x� = �(�x) exp

�
Cn�1x4 + Cn�1

�
1� P (Sn < x) = � (�x) exp

�
�Cn�1x4 � Cn�1

�
in the interval 0 � x � �.

Note that the expansion above holds for Yi = �Xi. This implies the expansion above

holds when �<� is replaced by � ��. This proposition and Theorem 3 immediately imply

the following corollary and Theorem 1.
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Corollary 2 Under the assumption in Proposition 2, for every n, there is a random vari-

able eSn with L�eSn� = L�eSn� such that��� eSn � Z��� � min�C
n
+
C

n

��� eSn���3 ; C
n
+
C

n
jZj3

�
for
��� eSn��� � "pn or jZj � "pn , where C; " > 0 do not depend on n.

4 Quantile Coupling for General Case

In this section, we give a general assumption to obtain a quantile coupling inequality with

an improved rate modulo constants. One application of the result is sharpening classical

quantile coupling inequality with a rate modulo constants for the sum of independent

symmetric random variables. So this result is a generalization of Carter and Pollard (2004),

where they considered coupling for Binomial(n; 1=2).

The following theorem and Lemma 2 imply Theorem 2.

Theorem 4 Let Z be a standard normal random variable. Let eSn be a random variable

with a distribution function G (x). Assume that there is a positive " such that for all n,

P (Sn < �x) = � (�x) exp
�
O
�
n�1x4 + n�1=2

��
;

1� P (Sn < x) = � (x) exp
�
O
�
n�1x4 + n�1=2

��
;

where G (x) = 1�G (x), and � (x) = 1� � (x), and O
�
n�1x4 + n�1=2

�
is uniform on the

interval x 2 [0; "
p
n] with " > 0. And the expansion above holds when �<� is replaced by

� ��. Then for every n, there is a random variable eSn with L�eSn� = L (Sn) such that��� eSn � Z��� � C1p
n
+
C1
n

��� eSn���3
for
��� eSn��� � "1pn, where C1; "1 > 0 do not depend on n.
The proof of Theorem 4 is similar to that of Theorem 3, so we skip the proof.

Similar to the proof of Corollary 1, we have

Corollary 3 Under the assumption of Theorem 4, for every n there is a random variableeSn with L�eSn� = L (Sn) such that��� eSn � Z��� � Cp
n
+
C

n
jZj3 ; when jZj � "

p
n

where C; " > 0 do not depend on n.
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An application of Theorem 4 and Corollary 3 is the coupling of the sum of independent

random variables with a normal random variable. Assume that those random variables have

�nite exponential moment and vanishing third moment (e.g. symmetric random variable).

An approximation to the tail probability of the sum of those random variables is given in

the following lemma. The proof of the approximation is based on similar arguments in

Section 8.2 in Petrov (1975). It is an extension of Theorem 1 in Carter and Pollard (2004).

Lemma 2 Let X1; X2; . . . , Xn be i.i.d. random variables for which

EX1 = 0; EX2
1 = 1; EX

3
1 = 0;

E exp (a jX1j) < 1 for some a > 0:

Then their exists positive constants " such that

P (Sn < �x) = � (�x) exp
�
O
�
n�1x4 + n�1=2

��
(6)

1� P (Sn < x) = � (x) exp
�
O
�
n�1x4 + n�1=2

��
(7)

in the interval 0 � x � ", where

Sn =
1p
n

nX
i=1

Xi,

and the expansion above holds when �<� is replaced by � ��.

Proof: From Theorem 2 of Section 8.2 in Petrov (1975), we know

P (Sn < �x) = � (�x) exp
�
Cn�1x4 + C (x+ 1)n�1=2

�
(Our notation is di¤erent from that of Petrov. Our x here is their z = x=

p
n). Under the

assumption of EX3
1 = 0, we can replace the terms 1 +O (z) of equations (2.37) and (2.38)

in Section 8.2 in Petrov (1975) by 1+O (z2). In the same section, from equation (2.35) we

can replace the term 1 + O (z) of equation (2.40) by 1 + C=
p
n. We keep everything else

in the proof Theorem 2 of Section 8.2 in Petrov (1975). Then we establish the following

approximation of the tail probability

P (Sn < �x) = � (�x) exp
�
Cn�1x4 + C

�
x2=n+ n�1=2

��
Note that x2=n � 1

2
(n�1x4 + n�1) � 1

2

�
n�1x4 + n�1=2

�
. Then we obtain equation (6). The

argument for equation (7) is similar.

The expansion holds if replacing Xi by �Xi. This implies the expansion above holds

when �<� is replaced by � ��.
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Remark 3 In Lemma 2, we assume that those random variables are identically distributed,
but it can be extended to non-identically case similar to Theorem 2 of Section 8.2 in Petrov

(1975).

Theorem 4 and Lemma 2 imply the following corollary (or basically Theorem 2). It

extends Theorem 2 of Carter and Pollard (2004).

Corollary 4 Under the assumption in Lemma 2, for every n, there is a random variableeSn with L�eSn� = L (Sn) such that��� eSn � Z��� � min� Cp
n
+
C

n

��� eSn���3 ; Cp
n
+
C

n
jZj3

�
for
��� eSn��� � "pn or jZj � "pn , where C; " > 0 do not depend on n.

5 Some Examples

In this section, we discuss some applications of results in previous sections to asymptotic

equivalence theory and nonparametric function estimation.

Example 1: Asymptotic equivalence of density estimation and Gaussian white noise:

En : y(1); :::; y(n); i.i.d. with density f on [0; 1]

Fn : dyt = f
1=2 (t) dt+

1

2
n�1=2dWt

The asymptotic equivalence result above was established in Brown, Low, Carter and Zhang

( 2004) under a Besov smoothness constraint. The key idea of that paper is applying the

classical KMT construction. We then need a coupling for Binomial random variable and a

normal random variable. Let X1; X2; . . . , Xn be i.i.d. Bernoulli(1=2). Then Corollary 4

tells us for every n there is a random variable eSn with L�eSn� = L�eSn� such that��� eSn � Z��� � min� Cp
n
+
C

n

��� eSn���3 ; Cp
n
+
C

n
jZj3

�
for
��� eSn��� � "pn or jZj � "pn , where C; " > 0 do not depend on n (see also Carter and

Pollard (2004)). This result was used in the KMT construction to establish the asymptotic

equivalence under the Besov smoothness condition, compact in Besov balls of B1=22;2 and

B
1=2
4;4 . If one applies the classical Tusnády�s inequality, a stronger smoothness condition

would be needed to establish the asymptotic equivalence.
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Example 2: Asymptotic equivalence of spectral density estimation and Gaussian white
noise:

En : y(1); :::; y(n); a stationary centered Gaussian sequence with spectral density f

Fn : dyt = log f (t) dt+ 2�
1=2n�1=2dWt

where f has support on [��; �]. This asymptotic equivalence between Gaussian spectral
density, Gaussian variance regression and Gaussian white noise in Golubev, Nussbaum and

Zhou( 2005) under a Besov smoothness constraint. In that paper, we used a dyadic KMT-

type construction, but di¤erent from the classical KMT construction. In the KMT paper,

they used a complicate conditional quantile coupling for higher resolutions. It is easy to

observe that L(XjX+Y ) = L((X+Y )Bn) for two independent and identically distributed
random variablesX and Y with law �2n, then we can avoid the conditional quantile coupling

by considering the coupling for a Beta random variable. The following coupling inequality

is then used. Let Z be a standard normal random variable. For every n, there is a mapping

Tn : R 7! R such that the random variable Bn = Tn(Z) has the Beta (n=2; n=2) law and����n (1=2�Bn)� n1=22 Z

���� � min� Cp
n
+
C

n2
jnBn � n=2j3 ;

C

n
+
C

n
jZj3

�
for jnBn � n=2j � "n, where C; " > 0 do not depend on n (cf. Zhou (2004)).
Example 3: Quantile coupling of Median statistics. Let X1; X2; : : : ; Xn i.i.d. with

density f (x). For simplicity, let n = 2k + 1 with some integer k � 1, and assume that

f (0) > 0, f�(0) = 0, and f 2 C3.

Let Z be a standard normal random variable. For every n, there is a mapping Tn : R 7! R

such that the random variable Xmed = Tn(Z) has density f (x) and���p4nf (0)Xmed � Z
��� � C 1

n

�
1 + jZj3

�
; when jZj � "

p
n

where C; " > 0 do not depend on n. Details and more general discussions will be presented

in Brown, Cai and Zhou (working paper). In this paper, we apply this quantile coupling

bound to nonparametric location model with Cauchy noise and consider wavelet regression.

Donoho and Yu (2000) considered a similar problem, but minimax property is unclear for

their procedure. In wavelet regression setting, Hall and Patil (1996) studied nonparametric

location models and achieved the optimal minimax rate, but under an assumption of the

existence of �nite forth moment. We don�t need any moment condition, and the noise can

be general and unknown, but achieve optimal minimax rate of convergence. Without the

14



assumption of f�(0) = 0 or f 2 C3, we may still obtain coupling bounds, but may not as
be tight as the bound above. The tightness of the upper bound a¤ects the the underlying

smoothness condition we need in deriving asymptotic properties.
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