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Summary. Sparse Canonical Correlation Analysis (CCA) has received considerable atten-

tion in high-dimensional data analysis to study the relationship between two sets of ran-

dom variables. However, there has been remarkably little theoretical statistical foundation

on sparse CCA in high-dimensional settings despite active methodological and applied re-

search activities. In this paper, we introduce an elementary sufficient and necessary charac-

terization such that the solution of CCA is indeed sparse, propose a computationally efficient

procedure, called CAPIT, to estimate the canonical directions, and show that the procedure is

rate-optimal under various assumptions on nuisance parameters. The procedure is applied

to a breast cancer dataset from The Cancer Genome Atlas project. We identify methyla-

tion probes that are associated with genes, which have been previously characterized as

prognosis signatures of the metastasis of breast cancer.
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1. Introduction

Last decades witness the delivery of an incredible amount of information through the de-

velopment of high-throughput technologies. Researchers now routinely collect a catalog of

different measurements from the same group of samples. It is of great importance to eluci-

date the phenomenon in the complex system by inspecting the relationship between two or

even more sets of measurements. Canonical correlation analysis is a popular tool to study
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the relationship between two sets of variables. It has been successfully applied to a wide

range of disciplines, including psychology and agriculture, and more recently, information

retrieving (Hardoon et al., 2004), brain-computer interface (Bin et al., 2009), neuroimaging

(Avants et al., 2010), genomics (Witten and Tibshirani, 2009) and organizational research

(Bagozzi, 2011).

In this paper, we study canonical correlation analysis (CCA) in the high-dimensional

setting. The CCA in the classical setting, a celebrated technique proposed by Hotelling

(1936), is to find the linear combinations of two sets of random variables with maximal

correlation. Given two centered random vectorsX ∈ Rp1 and Y ∈ Rp2 with joint covariance

matrix

Σ =

Σ1 Σ12

Σ21 Σ2

 , (1)

the population version of CCA solves

(θ, η) = arg max
(a,b)

{
aTΣ12b : aTΣ1a = 1, bTΣ2b = 1

}
. (2)

The optimization problem (2) can be solved by applying singular value decomposition

(SVD) on the matrix Σ
−1/2
1 Σ12Σ

−1/2
2 . In practice, Hotelling (1936) proposed to replace

Σ
−1/2
1 Σ12Σ

−1/2
2 by the sample version Σ̂

−1/2
1 Σ̂12Σ̂

−1/2
2 . This leads to consistent estimation

of the canonical directions (θ, η) when the dimensions p1 and p2 are fixed and sample size

n increases. However, in the high-dimensional setting, when the dimensions p1 and p2

are large compared with sample size n, this SVD approach may not work. In fact, when

the dimensions exceed the sample size, SVD cannot be applied because the inverse of the

sample covariance does not exist.

The difficulty motivates people to impose structural assumptions on the canonical di-

rections in the CCA problem. For example, sparsity has been assumed on the canonical

directions (Wiesel et al., 2008; Witten et al., 2009; Parkhomenko et al., 2009; Hardoon

and Shawe-Taylor, 2011; Lê Cao et al., 2009; Waaijenborg and Zwinderman, 2009; Avants

et al., 2010). The sparsity assumption implies that most of the correlation between two

random vectors can be explained by only a small set of features or coordinates, which

effectively reduces the dimensionality and at the same time improves the interpretability

in many applications. However, to our best knowledge, there is no full characterization

of the probabilistic CCA model that the canonical directions are indeed sparse. As a re-

sult, there has been remarkably little theoretical study on sparse CCA in high-dimensional

settings despite recent active developments in methodology. This motivates us to find a

sufficient and necessary condition on the covariance structure (1) such that the solution
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of CCA is sparse. We show in Section 2 that (θ1, η1) is the solution of (2) if and only if

(1) satisfies

Σ12 = Σ1

(
r∑
i=1

λiθiη
T
i

)
Σ2, (3)

where λi decreases λ1 > λ2 ≥ . . . ≥ λr > 0, r = rank (Σ12), and {(θi, ηi)} are orthonormal

w.r.t. metric Σ1 and Σ2 respectively. i.e. θTi Σ1θj = I{i = j} and ηTi Σ2ηj = I{i = j}.

With this characterization, the canonical directions are sparse if and only if θ1 and η1

in (3) are sparse. Hence, sparsity assumption can be made explicit in this probabilistic

model.

Motivated by the characterization (3), we propose a method called CAPIT, standing for

Canonical correlation Analysis via Precision adjusted Iterative Thresholding, to estimate

the sparse canonical directions. Our basic idea is simple. First, we obtain a good estimator

of the precision matrices (Σ−1
1 ,Σ−1

2 ). Then, we transform the data by the estimated

precision matrices to adjust the influence of the nuisance covariance (Σ1,Σ2). Finally, we

apply iterative thresholding on the transformed data. The method is fast to implement in

the sense that it achieves the optimal statistical accuracy in only finite steps of iterations.

Rates of convergence for the proposed estimating procedure are obtained under various

sparsity assumptions on canonical directions and covariance assumptions on (Σ1,Σ2). In

Section 4.2 we establish the minimax lower bound for the sparse CCA problem. The rates

of convergence match the minimax lower bound as long as the estimation of nuisance

parameters (Σ1,Σ2) is not dominating in estimation of the canonical directions. To the

best of our knowledge, this is the first theoretically guaranteed method proposed in the

sparse CCA literature.

We point out that the sparse CCA methods proposed in the literature may have both

computational and statistical drawbacks. On the computational side, regularized versions

of (2) such as Waaijenborg and Zwinderman (2009) and Wiesel et al. (2008) are proposed

in the literature based on heuristics to avoid the non-convex nature of (2), but there is

no theoretical guarantee whether these algorithms would lead to consistent estimators.

On the statistical side, methods proposed in the literature do not explicitly take into

account of the influence of the nuisance parameters. For example, Witten et al. (2009)

and Parkhomenko et al. (2009) implicitly or explicitly use diagonal matrix or even identity

matrix to approximate the unknown precision matrices (Σ−1
1 ,Σ−1

2 ). Such approximation

could be valid when the covariance matrices (Σ1,Σ2) are nearly diagonal, otherwise there

is no theoretical guarantee of consistency of the procedures. We illustrate this fact by a

numerical example. We draw data from a multivariate Gaussian distribution and then
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Fig. 1. Visualization of the simulation results of estimating (θ, η) for a replicate from Scenario II

in Section 5.2 when p = 200 and n = 500. The {1, 2, ..., 200}-th coordinates represent θ and the

{201, 202, ..., 400}-th coordinates represent η.

apply the proposed method and the Penalized Matrix Decomposition method by Witten

et al. (2009). We show the results in Figure 1. By taking into account of the structure of

the nuisance parameters, the CAPIT accurately recovers the sparse canonical directions,

while the PMD is not consistent. In this simulation study, we consider sparse precision

matrices and sparse canonical directions, where the sparse assumption of precision matrices

has a sparse graphical interpretation of X and Y when the distribution is Gaussian. See

Section 5.2 for more details.

A closely related problem is the principal component analysis (PCA) (Hotelling, 1933).

In high-dimensional setting, sparse PCA is studied in Johnstone and Lu (2009), Ma (2013)

and Cai et al. (2012). However, the PCA and CCA problems are fundamentally different.

With the characterization of covariance structure in (3), such difference becomes clear.

We illustrate the simplest rank-one case. Assuming the correlation rank r in (3) is one,

the covariance structure is reduced to

Σ12 = λΣ1θη
TΣ2. (4)

We refer to (4) as the Single Correlation Pair (SCP) model. In the PCA literature, the

corresponding rank-one model is called the single-spike model. Its covariance structure

can be written as

Σ = λθθT + I, (5)

where θ is the principal direction of the random variable. A comparison of (4) and (5)

reveals that estimation of the CCA is more involved than that of the PCA because of the
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presence of the nuisance parameters (Σ1,Σ2), and the difficulty of estimating covariance

matrices and precision matrices is known in high-dimensional statistics (Cai and Zhou,

2012; Ren et al., 2013). In the sparse PCA setting, the absence of nuisance parameter in

(5) leads to algorithms directly applied on the sample covariance matrix Σ̂, and the cor-

responding theoretical analysis is more tractable. In contrast, in the sparse CCA setting,

not only do we need to adapt to the underlying sparsity of (θ, η), but we also need to

adapt to the unknown covariance structure (Σ1,Σ2). We are going to show in Section 4

how various structures of (Σ1,Σ2) influence the convergence rate of the proposed method.

In addition, we demonstrate the CAPIT method by a real data example. We apply the

proposed method to the data arising in the field of cancer genomics where methylation and

gene expression are profiled for the same group of breast cancer patients. The method ex-

plicitly takes into account the sparse graphical model structure among genes. Interestingly,

we identify methylation probes that are associated with genes that are previously charac-

terized as prognosis signatures of the metastasis of breast cancer. This example suggests

the proposed method provides a reasonable framework for exploratory and interpretive

analysis of multiple datasets in high-dimensional settings.

The contributions in the paper are two-fold. First, we characterize the sparse CCA

problem by proposing the probabilistic model and establish the minimax lower bound

under certain sparsity class. Second, we propose the CAPIT method to adapt to both

sparsity of the canonical direction and the nuisance structure. The CAPIT procedure is

computationally efficient and attains optimal rate of convergence under various conditions.

The paper is organized as follows. We first provide a full characterization of the sparse

CCA model in Section 2. The CAPIT method and its associated algorithms are presented

in Section 3. Section 4 is devoted to a theoretical analysis of our method. This section

also presents the minimax lower bound. Section 5 and Section 6 investigate the numerical

performance of our procedure by simulation studies and a real data example. The proof

of the main theorem, Theorem 4.1, is gathered in Section 7. The proofs of all technical

lemmas and Theorem 4.2 are gathered in Appendix.

1.1. Notations

For a matrix A = (aij), we use ||A|| to denote its largest singular value and call it the

spectral norm of A. The Frobenius norm is defined as ||A|| =
√∑

ij a
2
ij . The matrix l1

norm is defined as ||A||l1 = maxj
∑

i |aij |. The norm || · ||, when applied to a vector, is

understood as the usual Euclidean l2 norm. For any two real numbers a and b, we use
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notations a∨b = max(a, b) and a∧b = min(a, b). Other notations will be introduced along

with the text.

2. The Sparse CCA Model

Let X ∈ Rp1 and Y ∈ Rp2 be two centered multivariate random vectors with dimension p1

and p2 respectively. Write the covariance matrix of (XT , Y T )T as follows,

Cov

X
Y

 =

Σ1 Σ12

Σ21 Σ2

 ,

where Σ1 is the covariance matrix of X with Σ1 = EXXT , Σ2 is the covariance matrix

of Y with Σ2 = EY Y T , and Σ21 = ΣT
12 the covariance structure between X and Y with

Σ12 = ΣT
21 = EXY T . The canonical directions θ ∈ Rp1 and η ∈ Rp2 are solutions of

max
a∈Rp1 ,b∈Rp2

aTΣ12b√
aTΣ1a

√
bTΣ2b

. (6)

where we assume Σ1 and Σ2 are invertible and Σ12 is nonzero such that the maximization

problem is not degenerate. Notice when (θ, η) is the solution of (6), (σ1θ, σ2η) is also the

solution with arbitrary scalars (σ1, σ2) satisfying σ1σ2 > 0. To achieve identifiability up

to a sign, (6) can be reformulated into the following optimization problem.

maximize aTΣ12b, subject to aTΣ1a = 1 and bTΣ2b = 1. (7)

Proposition 2.1. When Σ12 is of rank 1, the solution (up to sign jointly) of Equation

(7) is (θ, η) if and only if the covariance structure between X and Y can be written as

Σ12 = λΣ1θη
TΣ2,

where 0 < λ ≤ 1, θTΣ1θ = 1 and ηTΣ2η = 1. In other words, the correlation between aTX

and bTY are maximized by corr(θTX, ηTY ), and λ is the canonical correlation between X

and Y .

The Proposition above is just an elementary consequence of SVD after transforming

the parameters θ and η into Σ
1/2
1 θ and Σ

1/2
2 η respectively. For the reasons of space, the

proof is omitted. For general Σ12 with rank r ≥ 1, it’s a routine extension to see that the

unique (up to sign jointly) solution of Equation (7) is (θ1, η1) if and only if the covariance

structure between X and Y can be written as

Σ12 = Σ1

(
r∑
i=1

λiθiη
T
i

)
Σ2,
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where λi decreases λ1 > λ2 ≥ . . . ≥ λr > 0, {θi} and {ηi} are orthonormal w.r.t. metric

Σ1 and Σ2 respectively. i.e. θTi Σ1θj = I{i = j} and ηTi Σ2ηj = I{i = j}.

Inspired by (7), we propose a probabilistic model of (X,Y ), so that the canonical

directions (θ, η) are explicitly modeled in the joint distribution of (X,Y ).

The Single Canonical Pair ModelX
Y

 ∼ N
0

0

 ,

 Σ1 λΣ1θη
TΣ2

λΣ2ηθ
TΣ1 Σ2

 , (8)

with Σ1 � 0, Σ2 � 0, θTΣ1θ = 1, ηTΣ2η = 1 and 0 < λ ≤ 1.

Just as the single-spike model in PCA (Tipping and Bishop, 1999; Johnstone and Lu,

2009), the model (8) explicitly models (λ, θ, η) in the form of the joint distribution of

(X,Y ). Besides, it can be generalized to multiple canonical-pair structure as in the multi-

spike model (Birnbaum et al., 2012). On the other hand, it is fundamentally different from

the single-spike model, because (Σ1,Σ2) are typically unknown, so that estimating (θ, η)

is much harder than estimating the spike in PCA. Even when both Σ1 and Σ2 are identity

and Σ12 = λθηT , it cannot be reduced into the form of spike model. Bach and Jordan

(2005) also proposed a statistical model for studying CCA in a probabilistic setting. Under

their model, the data has a latent variable representation. It can be shown that the model

we propose is equivalent to theirs in the sense that both can be written into the form of

the other. The difference is that we explicitly model the canonical directions (θ, η) in the

covariance structure for sparse CCA.

3. Methodology

In this section, we introduce the CAPIT algorithm to estimate the sparse canonical di-

rection pair (θ, η) in the single canonical pair model in details. We start with the main

part of the methodology in Section 3.1, an iterative thresholding algorithm, requiring an

initializer and consistent estimators of precision matrices (nuisance parameters). Then in

Section 3.2 we introduce a coordinate thresholding algorithm to provide a consistent ini-

tializer. Finally, in Section 3.3 rate-optimal estimators of precision matrices are reviewed

over various settings.

The procedure is motivated by the power method, a standard technique to compute

the leading eigenvector of a given symmetric matrix S (Golub and Van Loan, 1996). Let S

be a p× p symmetric matrix. We compute its leading eigenvector. Starting with a vector
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v(0) non-orthogonal to the leading eigenvector, the power method generates a sequence

of vectors v(i), i = 1, 2, . . . , by alternating the multiplication step w(i) = Sv(i−1) and

the normalization step v(i) = w(i)/
∥∥w(i)

∥∥ until convergence. The limit of the sequence,

denoted by v(∞), is the leading eigenvector. The power method can be generalized to

compute the leading singular vectors of any p1 × p2 dimensional rectangular matrix M .

Suppose the SVD of a rank d matrix M is M = UDV T , where D is the d dimensional

diagonal matrix with singular values on the diagonal. Suppose we are given an initial

pair
(
u(0), v(0)

)
, non-orthogonal to the leading singular vectors. To compute the leading

singular vectors, power method alternates the following steps until
(
u(0), v(0)

)
converges

to
(
u(∞), v(∞)

)
, which are the left and right leading singular vectors.

(a) Right Multiplication: w
(i)
l = Mv(i−1),

(b) Left Normalization: u(i) = w
(i)
l /

∥∥∥w(i)
l

∥∥∥ ,
(c) Left Multiplication: w

(i)
r = u(i)M,

(d) Right Normalization: v(i) = w
(i)
r /

∥∥∥w(i)
r

∥∥∥ .
Our goal is to estimate the canonical direction pair (θ, η). The power method above

motivates us to find a matrix Â close to λθηT of which (θ/ ‖θ‖ , η/ ‖η‖) is the leading pair

of singular vectors. Note that the covariance structure is Σ12 = λΣ1θη
TΣ2. Suppose we

know the marginal covariance structures of X and Y , i.e. Ω1 = Σ−1
1 and Ω2 = Σ−1

2 are

given, it is very natural to consider Ω1Σ̂12Ω2 as the target matrix, where Σ̂12 is the sample

cross-covariance between X and Y . Unfortunately, the covariance structures Ω1 and Ω2 are

unknown as nuisance parameters, but a rate-optimal estimator of Ωj (j = 1, 2) usually can

be obtained under various assumptions on the covariance or precision structures of X and

Y in many high-dimensional settings. In literature, some commonly used structures are

sparse precision matrix, sparse covariance matrix, bandable covariance matrix and Toeplitz

covariance matrix structures. Later we will discuss the estimators of the precision matrices

and their influences to the final estimation error of canonical direction pair (θ, η).

We consider the idea of data splitting. Suppose we have 2n i.i.d. copies (Xi, Yi)1≤i≤2n.

We use the first half to compute the sample covariance Σ̂12 = 1
n

∑n
i=1XiY

T
i , and use

the second half to estimate the precision matrices by Ω̂1 and Ω̂2. Hence the matrix

Â = Ω̂1Σ̂12Ω̂2 is available to us. The reason for data splitting is that we can write the

matrix Â in an alternative form. That is,

Â =
1

n

n∑
i=1

X̃iỸ
T
i ,
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where X̃i = Ω̂1Xi and Ỹi = Ω̂2Yi for all i = 1, ..., n. Conditioning on (Xn+1, Yn+1), ..., (X2n, Y2n),

the transformed data (X̃i, Ỹi)1≤i≤n are still independently identically distributed. This

feature allows us to explore some useful concentration results in the matrix Â to prove

theoretical results. Conditioning on the second half of data, the expectation of Â is λαβT ,

where α = Ω̂1Σ1θ and β = Ω̂2Σ2η. Therefore, the method we develop is targeted at (α, β)

instead of (θ, η). However, as long as the estimators (Ω̂1, Ω̂2) are accurate in the sense

that

||α− θ|| ∨ ||β − η|| = ||(Ω̂1Σ1 − I)θ|| ∨ ||(Ω̂2Σ2 − I)η||

is small, the final rate of convergence is also small.

If we naively apply the power method above to Â = Ω̂1Σ̂12Ω̂2 in high-dimensional set-

ting, the estimation variance accumulated across all p1 and p2 coordinates of left and right

singular vectors goes very large and it is possible that we can never obtain a consistent

estimator of the space spanned by the singular vectors. Johnstone and Lu (2009) proved

that when p/n9 0, the leading eigenspace estimated directly from the sample covariance

matrix can be nearly orthogonal to the truth under the PCA setting in which Â is the

sample covariance matrix with dimension p1 = p2 = p. Under the sparsity assumption of

(θ, η), a natural way of reducing the estimation variance is to only estimate those coordi-

nates with large values in θ and η respectively and simply estimate the rest coordinates by

zero. Although bias is caused by this thresholding idea, in the end the variance reduction

dominates the biased inflation and this trade-off minimizes the estimation error to the

optimal rate. The idea of combining the power method and the iterative thresholding

procedure leads to the algorithm in the next section which was also proposed by Yang

et al. (2013) for a general data matrix Â without a theoretical analysis.

3.1. Iterative Thresholding

We incorporate the thresholding idea into ordinary power method above for SVD by adding

a thresholding step after each right and left multiplication steps before normalization. The

thresholding step kills those coordinates with small magnitude to zero and keep or shrink

the rest coordinates through a thresholding function T (a, t) in which a is a vector and t is

the thresholding level. In our theoretical analysis, we assume that T (a, t) =
(
akI{|ak| ≥

t}
)

is the hard-thresholding function, but any function serves the same purpose in theory

as long as it satisfies (i) |T (a, t)k − ak| ≤ t and (ii) T (a, t)k = 0 whenever |ak| < t.

Therefore the thresholding function can be hard-thresholding, soft-thresholding or SCAD
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(Fan and Li, 2001). The algorithm is summarized below.

Algorithm 1: CAPIT: Iterative Thresholding

Input: Sample covariance matrices Σ̂12;

Estimators of precision matrix Ω̂1, Ω̂2;

Initialization pair α(0), β(0);

Thresholding level γ1, γ2.

Output: Canonical direction estimator α(∞), β(∞).

Set Â = Ω̂1Σ̂12Ω̂2;

repeat

Right Multiplication: wl,(i) = Âβ(i−1);

Left Thresholding: w
l,(i)
th = T

(
wl,(i), γ1

)
;

Left Normalization: α(i) = w
l,(i)
th /

∥∥∥wl,(i)th

∥∥∥;

Left Multiplication: wr,(i) = α(i)Â;

Right Thresholding: w
r,(i)
th = T

(
wr,(i), γ2

)
;

Right Normalization: β(i) = w
r,(i)
th /

∥∥∥wr,(i)th

∥∥∥;

until Convergence of α(i) and β(i);

Remark 3.1. In Algorithm 1, we don’t provide specific stopping rule such as that the

difference between successive iterations is small enough. For the single canonical pair

model, we are able to show in Section 4 that the convergence is achieved in just one step.

The intuition is simple: when A is of exact rank one, we can simply obtain the left singular

vector via right multiplying A by any vector non-orthogonal to the right singular vector.

Although in the current setting Â is not a rank one matrix, the effect caused from the

second singular value in nature does not change the statistical performance of our final

estimator.

Remark 3.2. The thresholding level (γ1, γ2) are user-specified. Theoretically, they

should be set at the level O
(√

log(p1∨p2)
n

)
. In Section 7.2, we present a fully data-driven

(γ1, γ2) along with the proof.

Remark 3.3. The estimator (α(∞), β(∞)) does not directly estimate (θ, η) because the

former are unit vectors while the later satisfies θTΣ1θ = ηTΣ2η = 1. We are going to

prove they are almost in the same direction by considering the loss function | sin∠(a, b)|2

in Johnstone and Lu (2009). Details are presented in Section 4.

Remark 3.4. The estimators of precision matrices Ω̂1 and Ω̂2 depend on the second

half of the data and the estimator Σ̂12 depends on the first half of the data. In practice,
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after we apply Algorithm 1, we will swap the two parts of the data and use the first half

to get Σ̂12 and the second half to obtain Ω̂1, Ω̂2. Then, Algorithm 1 is run again on the

new estimators. The final estimator can be calculated through averaging the two. More

generally, we can do sample splitting many times and take an average as Bagging, which

is often used to improve the stability and accuracy of machine learning algorithms.

3.2. Initialization by Coordinate Thresholding

In Algorithm 1, we need to provide an initializer
(
α(0), β(0)

)
as input. We generate a

sensible initialization in this section which is similar to the “diagonal thresholding” sparse

PCA method proposed by Johnstone and Lu (2009). Specifically, we apply a thresholding

step to pick index sets B1 and B2 of the coordinates of θ and η respectively. Those index

sets can be thought as strong signals. Then a standard SVD is applied on the submatrix

of Â with rows and columns indexed by B1 and B2. The dimension of this submatrix

is relatively low such that the SVD on it is fairly accurate. The leading pair of singular

vectors is of dimension |B1| and |B2|, where |·| denotes the cardinality. In the end, we zero-

pad the leading pair of singular vectors into dimension p1 and p2 respectively to provide

our initializer
(
α(0), β(0)

)
. The algorithm is summarized in Algorithm 2.

Algorithm 2: CAPIT: Initialization by Coordinate Thresholding

Input: Sample covariance matrices Σ̂12;

Estimators of precision matrix Ω̂1, Ω̂2;

Thresholding level tij .

Output: Initializer α(0) and β(0).

Set Â = Ω̂1Σ̂12Ω̂2 ;

1 Coordinate selection: pick the index sets B1 and B2 of the coordinates of θ and η

respectively as follows,

B1 =

{
i,maxj |âij | /tij ≥

√
log p1
n

}
, B2 =

{
j,maxi |âij | /tij ≥

√
log p2
n

}
;

2 Reduced SVD: compute the leading pair of singular vectors
(
α(0),B1 , β(0),B2

)
on the

submatrix ÂB1,B2
;

3 Zero-Padding procedure: construct the initializer
(
α(0), β(0)

)
by zero-padding(

α(0),B1 , β(0),B2
)

on index sets Bc
1 and Bc

2 respectively,

α
(0)
B1

= α(0),B1 , α
(0)
Bc1

= 0, β
(0)
B2

= β(0),B2 , β
(0)
Bc2

= 0.

The thresholding level tij in Algorithm 2 is a user specified constant and allowed to

be adaptive to each location (i, j). The theoretical data-driven constant for each tij is

provided in Section 7.2. It is clear the initializer is not unique since if
(
α(0), β(0)

)
serves
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as the output,
(
−α(0),−β(0)

)
is also a solution of Algorithm 2. However either pair works

as an initializer and provides the same result because in the end we estimate the space

spanned by leading pair of singular vectors.

3.3. Precision Estimation

Algorithms 1 and 2 require precision estimators Ω̂1 and Ω̂2 to start with. As we mentioned,

we apply the second half of the data to estimate the precision matrix Ω̂1 and Ω̂2. In this

section, we discuss four commonly assumed covariance structures of X itself and provide

corresponding estimators. We apply the same procedure to Y .

3.3.1. Sparse Precision Matrices

Precision matrix is closely connected to the undirected graphical model which is a powerful

tool to model the relationships among a large number of random variables in a complex

system. It is well known that recovering the structure of an undirected Gaussian graph is

equivalent to recovering the support of the precision matrix. In this setting, it is natural to

impose sparse graph structure among variables in X by assuming sparse precision matrices

Ω1. Many algorithms targeting on estimating sparse precision matrix were proposed in

literature. See, e.g. Meinshausen and Bühlmann (2006), Friedman et al. (2008), Cai et al.

(2011) and Ren et al. (2013). In the current paper, we apply the CLIME method to

estimate Ω1. For details of the algorithm, we refer to Cai et al. (2011).

3.3.2. Bandable Covariance Matrices

Motivated by applications in time series, where there is a natural “order” on the variables,

the bandable class of covariance matrices was proposed by Bickel and Levina (2008a). In

this setting, we assume that σij decay to zero at certain rate as |i− j| goes away from

the diagonal. Usually regularizing the sample covariance matrix by banding or tapering

procedures were applied in literature. We apply the tapering method proposed in Cai

et al. (2010). Let ω = (ωm)0≤m≤p−1 be a weight sequence with ωm given by

ωm =


1, when m ≤ k/2

2− 2m
k , when k/2 < m ≤ k

0, Otherwise

, (9)

where k is the bandwidth. The tapering estimator Σ̂1 of the covariance matrix of X is

given by Σ̂1 = (σ̂samij ω|i−j|), where σ̂samij is the (i, j)-th entry of the sample covariance
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matrix. The bandwidth k is chosen through cross-validation in practice. An alternative

adaptive method was proposed by Cai and Yuan (2012). In the end, our estimator is

Ω̂1 = Σ̂−1
1 .

3.3.3. Toeplitz Covariance Matrices

Toeplitz matrix is the symmetric matrix that the entries are constant along the off-

diagonals which are parallel to the main diagonal. Class of Toeplitz covariance matrices

arises naturally in the analysis of stationary stochastic processes. If X is a stationary

process with autocovariance sequence (αm) ≡ (α0, α1, · · · , αp−1, · · · ) , then the covariance

matrix Σ1 = (σij)p1×p1 has a Toeplitz structure σij = α|i−j|. In this setting, it is natural

to assume certain rate of decay of the autocovariance sequence. We apply the following

tapering method proposed in Cai et al. (2013). Define σ̃m = 1
p−m

∑
s−t=m σ̂

sam
st , the aver-

age of sample covariance along each off-diagonal. Then the tapering estimator Σ̂1 = (σ̂st)

with bandwidth k is defined as σ̂st = ω|s−t|σ̃|s−t|, where ω = (ωm)0≤m≤p−1 is defined in

Equation (9). In practice, we pick bandwidth k using cross-validation. The final estimator

of Ω1 is then defined as Ω̂1 = Σ̂−1
1 .

3.3.4. Sparse Covariance Matrices

In many applications, there is no natural order on the variables like we assumed in bandable

and Toeplitz covariance matrices. In this setting, permutation-invariant estimators are

favored and general sparsity assumption is usually imposed on the whole covariance matrix,

i.e. most of entries in each row/column of covariance matrix are zero or negligible. We

apply a hard thresholding procedure proposed in Bickel and Levina (2008b) under this

assumption. Again, let σ̂samij be the (i, j)-th entry of the sample covariance matrix of X.

The thresholding estimator Σ̂1 = (σ̂st) is given by σ̂ij = σ̂samij I

(
|σ̂samij | ≥ γ

√
log p
n

)
for

some constant γ which is chosen through cross-validation. In the end, our estimator is

Ω̂1 = Σ̂−1
1 .

4. Statistical Properties and Optimality

In this section, we present the statistical properties and optimality of our proposed esti-

mator. We first present the convergence rates of our procedure, and then we provide a

minimax lower bound for a wide range of parameter spaces. In the end, we can see when

estimating the nuisance parameters is not harder than estimating canonical direction pair,
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the rates of convergence match the minimax lower bounds. Hence we obtain the minimax

rates of convergence for a range of sparse parameter spaces.

4.1. Convergence Rates

Notice that our model is fully determined by the parameter (Σ1,Σ2, λ, θ, η), among which

we are interested in estimating (θ, η). To achieve statistical consistency, we need some

assumptions on the interesting part (θ, η) and nuisance part (Σ1,Σ2, λ).

Assumption A - Sparsity Condition on (θ, η):

We assume θ and η are in the weak lq ball, with 0 ≤ q ≤ 2. i.e.∣∣θ(k)

∣∣q ≤ s1k
−1,

∣∣η(k)

∣∣q ≤ s2k
−1,

where θ(k) is the k-th largest coordinate by magnitude. Let p = p1 ∨ p2 and s = s1 ∨ s2.

The sparsity levels s1 and s2 satisfy the following condition,

s = o

((
n

log p

) 1

2
− q

4

)
. (10)

Remark 4.1. In general, we can allow θ to be in the weak lq1 ball and η to be in the

weak lq2 ball with q1 6= q2. In that case, we require si = o
(

(n/ log p)
1

2
− qi

4

)
for i = 1, 2.

There is no fundamental difference in the analysis and procedures. For simplicity, in the

paper we only consider q1 = q2.

Assumption B - General Conditions on (Σ1,Σ2, λ):

(a) We assume there exist constants w and W , such that

0 < w ≤ λmin(Σi) ≤ λmax(Σi) ≤W <∞,

for i = 1, 2.

(b) In order that the signals do not vanish, we assume the canonical correlation is

bounded below by a positive constant Cλ, i.e. 0 < Cλ ≤ λ ≤ 1.

(c) Moreover, we require that estimators (Ω̂1, Ω̂2) are consistent in the sense that

ξΩ = ||Ω̂1Σ1 − I|| ∨ ||Ω̂2Σ2 − I|| = o(1), (11)

with probability at least 1−O(p−2).

Loss Function

For two vectors a, b, a natural way to measure the discrepancy of their directions is the

sin of the angle | sin∠(a, b)|, see Johnstone and Lu (2009). We consider the loss function
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L(a, b)2 = 2| sin∠(a, b)|2. It is easy to calculate that

L(a, b) =

∥∥∥∥ aaT||a||2 − bbT

||b||2

∥∥∥∥
F

.

The convergence rate of the CAPIT procedure is presented in the following theorem.

Theorem 4.1. Assume the Assumptions A and B above hold. Let (α(k), β(k)) be the

sequence from Algorithm 1, with the initializer (α(0), β(0)) calculated by Algorithm 2. The

thresholding levels are

tij , γ1 = c1

√
log p

n
, γ2 = c2

√
log p

n
,

for sufficiently large constants (tij , c1, c2). Then with probability at least 1 − O(p−2), we

have

L(α(k), θ)2 ∨ L(β(k), η)2 ≤ C
(
s
( log p

n

)1−q/2
+ ||(Ω̂1Σ1 − I)θ||2 ∨ ||(Ω̂2Σ2 − I)η||2

)
,

for all k = 1, 2, ...,K with K = O(1) and some constant C > 0.

Remark 4.2. Notice the thresholding levels depend on some unknown constants (tij , c1, c2).

This is for the simplicity of presentation. A more involved fully data-driven choice of

thresholding levels are presented in Section 7.2 along with the proof.

The upper bound in Theorem 4.1 implies that the estimation of nuissance parameters Ω̂i

affect the estimation canonical directions in terms of ||(Ω̂1Σ1− I)θ||2 and ||(Ω̂2Σ2− I)η||2.

In Section 3.3, we discussed four different settings in which certain structure assumptions

are imposed on the nuance parameters Ω1 and Ω2. In the literature, optimal rates of

convergence in estimating Ωi under spectral norm have been established and can be applied

here in each of the four settings, noting that ||(Ω̂1Σ1 − I)θ||2 ≤ ||(Ω̂1 − Ω1)||2 ‖Σ1θ‖2 ≤

W ||(Ω̂1−Ω1)||2. Due to the limited space, we only discuss one setting in which we assume

sparse precision matrix structure on Ωi.

Besides the first general condition in Assumption B, we assume each row/column of Ωi

is in a weak lq0 ball with 0 ≤ q0 ≤ 1. i.e. Ωi ∈ Gq0 (s0, pi) for i = 1, 2, where

Gq0 (s0, p) =

{
Ω = (ωij)p×p : max

j

∣∣ωj(k)

∣∣q0 ≤ s0k
−1for all k

}
,

and the matrix l1 norm of Ωi is bounded by some constant ‖Ωi‖l1 ≤ w−1. The notation

ωj(k) means the k-th largest coordinate of j-th row of Ω in magnitude. Recall that p =

p1 ∨ p2. Under the assumptions that s2
0 = O

(
(n/ log p)1−q0

)
, Theorem 2 in Cai et al.
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(2011) implies that CLIME estimator with an appropriate tuning parameter attaining the

following rate of convergence ||(Ω̂1Σ1 − I)θ||2 with probability at least 1−O
(
p−2
)
,

||(Ω̂1Σ1 − I)θ||2 ≤W ||(Ω̂1 − Ω1)||2 ≤ Cs2
0

(
log p

n

)1−q0
.

Therefore we obtain the following corollary.

Corollary 4.1. Assume the Assumptions A and B holds, Ωi ∈ Gq0 (s0, pi) i = 1, 2,

‖Ωi‖l1 ≤ w
−1 and s2

0 = O
(

(n/ log p)1−q0
)

. Let (α(k), β(k)) be the sequence from Algorithm

1, with the initializer (α(0), β(0)) calculated by Algorithm 2 and Ω̂i obtained by applying

CLIME procedure in Cai et al. (2011). The thresholding levels are the same as those in

Theorem 4.1. Then with probability at least 1−O(p−2), we have

L(α(k), θ)2 ∨ L(β(k), η)2 ≤ C
(
s
( log p

n

)1−q/2
+ s2

0

( log p

n

)1−q0
)
,

for all k = 1, 2, ...,K with K = O(1) and some constant C > 0.

Remark 4.3. It can be seen from the analysis that similar upper bounds hold in Corol-

lary 4.1 with probability 1−O(p−h) by picking different thresholding constants in Algorithms

1, 2 and CLIME procedure for any h > 0. Assuming that n = o(ph), the boundedness of

loss function implies that Corollary 4.1 is valid in the risk sense.

4.2. Minimax Lower Bound

In this section, we establish a minimax lower bound in a simpler setting in which we know

the covariance matrices Σ1 and Σ2. We assume Σi = Ipi×pi for i = 1, 2 for simplicity.

Otherwise, we can transfer the data accordingly and make Σi = Ipi×pi . The purpose of

establishing this minimax lower bound is to measure the difficulty of estimation problems

in sparse CCA model. In view of the upper bound given in Theorem 4.1 by the iterative

thresholding procedure Algorithms 1 and 2, this lower bound is minimax rate optimal un-

der conditions that estimating nuisance precision matrices is not harder than estimating

the canonical direction pair. Consequently, assuming some general structures on the nu-

ance parameters Σ1 and Σ2, we establish the minimax rates of convergence for estimating

the canonical directions.

Before proceeding to the precise statements, we introduce the parameter space of

(θ, η, λ) in this simpler setting. Define

Fp1,p2q (s1, s2, Cλ) =


N (0,Σ) : Σ is specified in (8) , λ ∈ (Cλ, 1)

Σi = Ipi×pi , i = 1, 2,

|θ|q(k) ≤ s1k
−1, |η|q(k) ≤ s2k

−1,for all k.

 . (12)
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In the sparsity class (12), the covariance matrices Σi = Ipi×pi for i = 1, 2 are known and

unit vectors θ, η are in the weak lq ball, with 0 ≤ q ≤ 2. We allow the dimensions of two

random vectors p1 and p2 to be very different and only require that log p1 and log p2 are

comparable with each other,

log p1 � log p2. (13)

Remember s = s1 ∨ s2 and p = p1 ∨ p2.

Theorem 4.2. For any q ∈ [0, 2] , we assume that si

(
n

log pi

)q/2
= o(pi) for i = 1, 2

and (13) holds. Moreover, we also assume s
(

log p
n

)1− q
2 ≤ c0, for some constant c0 > 0.

Then we have

inf
(θ̂,η̂)

sup
P∈F

EP
(
L2(θ̂, θ) ∨ L2(η̂, η)

)
≥ Cs

(
log p

n

)1−q/2
,

where F = Fp1,p2q (s1, s2, Cλ) and C is a constant only depending on q and Cλ.

Theorem 4.2 implies the minimaxity for the sparse CCA problem when the covariance

matrices Σ1 and Σ2 are unknown. The lower bound directly follows from Theorem 4.2 and

the upper bound follows from Theorem 4.1. Define the parameter space

Fp1,p2q,q0 (s0, s1, s2, Cλ, w,W ) =


N (0,Σ) : Σ is specified in (8) , λ ∈ (Cλ, 1),

Σ−1
i ∈ Gq0 (s0, pi) ,W

−1 ≤ λmin(Σ−1
i ),

∥∥Σ−1
i

∥∥
l1
≤ w−1,

|θ|(k) ≤ s1k
−1, |η|(k) ≤ s2k

−1for all k.

 .

Since Fp1,p2q (s1, s2, Cλ) ⊂ Fp1,p2q,q0 (s0, s1, s2, Cλ, w,W ), the lower bound for the smaller

space holds for the larger one. Combining the Corollary 4.1 and the minimax lower bound

in Theorem 4.2, we obtain that the minimax rate of convergence of estimating canonical

directions over parameter spaces Fp1,p2q,q0 (s0, s1, s2, Cλ, w,W ).

Corollary 4.2. Under the assumptions in Corollary 4.1 and Theorem 4.2 and assume

n = o(ph) for some h > 0, we have

inf
(θ̂,η̂)

sup
P∈F

EP

(
L(θ̂, θ)2 ∨ L(η̂, η)2

)
� s

(
log p

n

)1−q/2

,

for F = Fp1,p2q,q0 (s0, s1, s2, Cλ, w,W ), provided that s2
0

(
log p
n

)1−q0

≤ Cs

(
log p
n

)1−q/2

for

some constant C > 0.

5. Simulation Studies

We present simulation results of our proposed method in this section. In the first scenario,

we assume the covariance structure is sparse, and in the second scenario, we assume the
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precision structure is sparse. Comments on both scenarios are addressed at the end of the

section.

5.1. Scenario I: Sparse Covariance Matrix

In the first scenario, we consider covariance matrices Σ1 and Σ2 are sparse. More specifi-

cally, the covariance matrix Σ1 = Σ2 = (σij)1≤i,j≤p takes the form

σij = ρ|i−j| with ρ = 0.3.

The canonical pair (θ, η) is generated by normalizing a vector taking the same value at

the coordinates (1, 6, 11, 16, 21) and zero elsewhere such that θTΣ1θ = 1 and ηTΣ2η = 1.

The canonical correlation λ is taken as 0.9. We generate the 2n× p data matrices X and

Y jointly from (8). As described in the methodology section, we split the data into two

halves. In the first step, we estimate the precision matrices Ω1 and Ω2 using the first

half of the data. Note that this covariance matrix has a Toeplitz structure. We estimate

the covariance matrix under three different assumptions: 1) we assume that the Toeplitz

structure is known and estimate Σ̂1 and Σ̂2 by the method proposed in Cai et al. (2013)

(denoted as CAPIT+Toep); 2) we assume that it is known that covariance σij decay as

they move away from the diagonal and estimate Σ̂1 and Σ̂2 by the tapering procedure

proposed in Cai et al. (2010) (denoted as CAPIT+Tap); 3) we assume only the sparse

structure is known and estimate Σ̂1 and Σ̂2 by hard thresholding (Bickel and Levina,

2008b) (denoted as CAPIT+Thresh). In the end the estimators Ω̂i is given by Ω̂i = Σ̂−1
i

for i = 1, 2.

To select the tuning parameters for different procedures, we further split the first part

of the data into a 2 : 1 training set and tuning set. We select the tuning parameters

by minimizing the distance of estimated covariance from the training set and sample

covariance matrix of the tuning set in term of the Frobenius norm. More specifically, the

tuning parameters k1 in the Toeplitz method and k2 in the Tapering method are selected

through a screening on numbers in the interval of (1, p). The tuning parameter λ in the

Thresholding method is selected through a screening on 50 numbers in the interval of

[0.01, 0.5].

After obtaining estimator Ω̂1 and Ω̂2, we perform Algorithms 1 and 2 by using Σ̂12

estimated from the second half of the data. The thresholding parameters γ1 and γ2 are

set to be 2.5
√

log p
n for the Tapering and Thresholding methods, while the thresholding

parameter tij is set to be 2.5 for all (i, j). For the Toeplitz method, the thresholding

parameters γ1 = γ2 = 2
√

log p
n while parameter tij = 2 for all (i, j). The resulted estimator
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Table 1. Scenario I: Sparse covariance matrix. Estimation errors for (θ, η) as measured by L(θ̂, θ) ∨

L(η̂, η) based on the median of 100 replications. Numbers in parentheses are the simulation median

absolute deviations.

p1 = p2 n CAPIT+Toep CAPIT+Tap CAPIT+Thresh PMD SVD

200 750 0.11(0.03) 0.12(0.06) 0.11(0.03) 0.16(0.03) 0.32(0.01)

300 750 0.11(0.03) 0.13(0.07) 0.11(0.03) 0.36(0.02) 0.44(0.01)

200 1000 0.1(0.02) 0.1(0.05) 0.09(0.03) 0.14(0.02) 0.27(0.01)

500 1000 0.09(0.03) 0.09(0.04) 0.1(0.02) 0.11(0.03) 0.53(0.02)

is denoted as (θ̂[1], η̂[1]).

Then we swap the data, repeat the above procedures and obtain (θ̂[2], η̂[2]). The final

estimator (θ̂, η̂) is the average of (θ̂[1], η̂[1]) and (θ̂[2], η̂[2]).

We compare our method with penalized matrix decomposition proposed by Witten

et al. (2009) (denoted as PMD) and the vanilla singular vector decomposition method for

CCA (denoted as SVD). For PMD, we use the R function implemented by the authors

(Witten et al., 2013), which performs sparse CCA by l1-penalized matrix decomposition

and selects the tuning parameters using a permutation scheme.

We evaluate the performance of different methods by the loss function L(θ̂, θ)∨L(η̂, η).

The results from 100 independent replicates are summarized in Table 1.

5.2. Scenario II: Sparse Precision Matrix

In the second scenario, we consider that the precision matrices Ω1 and Ω2 are sparse. In

particular, Ω1 = Ω2 = (ωij)1≤i,j≤p take the form:

ωij =



1 if i = j

0.5 if |i− j| = 1

0.4 if |i− j| = 2

0 otherwise.

The canonical pair (θ, η) is the same as described in Scenario I. We generate the 2n × p

data matrices X and Y jointly from (8).

As described in the methodology section, we split the data into two halves. In the

first step, we estimate the precision matrices by the CLIME proposed in Cai et al. (2011)

(denoted as CAPIT+CLIME). The tuning parameter λ is selected by maximizing the log-

likelihood function. In the second step, we perform Algorithms 1 and 2 with Σ̂12 estimated
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Table 2. Scenario II: Sparse precision matrix. Estimation errors for

(η, θ) as measured by L(θ̂, θ) ∨ L(η̂, η) based on the median of 100

replications. Numbers in parentheses are the simulation median

absolute deviations.

p1 = p2 n CAPIT+CLIME PMD SVD

200 500 0.41(0.35) 1.41(0) 0.52(0.03)

200 750 0.2(0.05) 1.19(0.33) 0.39(0.02)

500 750 0.21(0.12) 1.41(0) 0.84(0.03)

from the second half. The thresholding parameter γ1 and γ2 are set to be 1.5
√

log p
n and

tij is set to be 1.5. The resulted estimator is denoted as (θ̂[1], η̂[1]). Then we swap the

data, repeat the above procedures and obtain (θ̂[2], η̂[2]). The final estimator (θ̂, η̂) is the

average of (θ̂[1], η̂[1]) and (θ̂[2], η̂[2]).

For comparison, we also apply PMD and SVD in this case. The results from 100

independent replicates are summarized in Table 2. A visualization of the estimation from

a replicate in from the case n = 500, p = 200 under Scenario II is shown in Figure 1.

5.3. Discussion on the Simulation Results

The above results (Table 1 and Table 2) show that our method outperforms the PMD

method proposed by Witten et al. (2009) and the vanilla SVD method (Hotelling, 1936).

It is not surprising that the SVD method does not perform better than our method because

of the sparse assumption in the signals. We focus our discussion on the comparison of our

method and the PMD method.

The PMD method is defined by the solution of the following optimization problem

(θ̂PMD, η̂PMD) = arg max
(u,v)

{
uT Σ̂12v : ||u|| ≤ 1, ||v|| ≤ 1, ||u||1 ≤ c1, ||v||1 ≤ c2

}
.

As noted by Witten et al. (2009), the PMD method approximates the covariance Σ1 and

Σ2 by the identity matrices Ip1×p1 and Ip2×p2 . If we ignore the l1 regularization, the

population version of PMD is to maximize uTΣ12v subject to ||u|| ∨ ||v|| ≤ 1, which

gives the maximizer in the direction of (Σ1θ,Σ2η) instead of (θ, η). When the covariance

matrices Σ1 and Σ2 are sufficiently sparse, (Σ1θ,Σ2η) and (θ, η) are close. This explains

that in Scenario I, the PMD method performs well. However, in Scenario II, we assume

the precision matrices Ω1 and Ω2 are sparse. In this case, the corresponding Σ1 and Σ2

are not necessarily sparse, implying that (Σ1θ,Σ2η) could be far away from (θ, η). The

PMD method is not consistent in this case, as is illustrated in Figure 1. In contrast, our



Sparse CCA 21

method takes advantage of the sparsity of Ω1 and Ω2, and accurately recovers the canonical

directions.

6. Real Data Analysis

DNA methylation plays an essential role in the transcriptional regulation (VanderKraats

et al., 2013). In tumor, DNA methylation patterns are frequently altered. However, how

these alterations contribute to the tumorigenesis and how they affect gene expression and

patient survival remain poorly characterized. Thus it is of great interest to investigate the

relationship between methylation and gene expression and their interplay with survival

status of cancer patients. We applied the proposed method to a breast cancer dataset

from The Cancer Genome Atlas project (TCGA, 2012). This dataset consists both DNA

methylation and gene expression data for 193 breast cancer patients. The DNA methy-

lation was measured from Illumina Human methylation 450 BeadChip, which contains

482,431 CpG sites that cover 96% of the genome-wide CpG islands. Since no batch effect

has either been reported from previous studies or been observed from our analysis, we do

not further process the data. For methylation data, there are two popular metrics used

to measure methylation levels, β-value and M-value statistics. β-value is defined as the

proportion of methylated probes at a CpG site. M-value is defined as the log 2 ratio of the

intensities of methylated probe versus un-methylated probe, which is reported as approxi-

mately homoscedastic in a previous study Du et al. (2010). We choose to use M-value for

methylation data in our analysis.

To investigate the relationship of methylation and gene expression and their interplay

with clinical outcomes, we follow the supervised sparse CCA procedure suggested in Witten

and Tibshirani (2009). More specifically, we first select methylation probes and genes

that are marginally associated with the disease free status by performing a screening

on methylation and gene expression data, respectively. There are 135 genes and 4907

methylation probes marginally associated with disease free status with a P-value less than

0.01. We further reduce the number of methylation probes to 3206 by selecting the ones

with sample variance greater than 0.5. Compared to the sample size, the number of

methylation probes is still too large. To control the dimension of input data, we apply our

methods to 135 genes with the methylation probes on each chromosome separately. Since it

is widely believed that genes operate in biological pathways, the graph for gene expression

data is expected to be sparse. We apply the proposed procedure under the sparse precision

matrix setting (Section 3.3.1). As we have discussed in the simulation studies, the canonical
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Fig. 2. Left: Visualization of the genomic coordinates of detected methylation probes. Genes

that represented by more than one probes are highlighted by square symbols. Right: Canonical

correlations of disease associated genes and methylation probes on eight chromosomes in the

training set and the test set.

correlation structure under the sparse precision matrix setting cannot be estimated by the

current methods in the literature, such as PMD.

For the purpose of interpretation, the tuning parameters are selected such that a sparse

representation of (θ̂, η̂) is obtained while the canonical correlation is high. More specifically,

we require the number of non-zero genes or probes is less than 10 for each chromosome.

We split the data into two halves as a test set and a training set. Then we applied

the proposed procedure on the training set. To remove false discoveries, we required

the canonical correlation on the test set is greater than 0.5. In total, there are eight

chromosomes that have methylation probes satisfying the above criteria (shown in Figure

2). In Table 3, we list genes and methylation probes on each chromosome that form the

support of detected canonical directions. A further examination of the genomic coordinates

of detected methylation probes reveal the physical closeness of some probes. Some detected

probes correspond to the same gene. LPIN1 on chromosome 2, RXRA on chromosome 9,

DIP2C on chromosome 10, AACS on chromosome 12, and NFATC1 on chromosome 18 are

represented by more than one methylation probes (shown in Figure 2). Moreover, 16 of

the 25 genes listed in Table 3 are detected more than once as candidate genes associated

with methylation probes. ORC6L, RRM2, RAB6B are independently detected from four
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Table 3. Sparse CCA results for methylation sites and gene expression that are associated with disease free

status for TCGA breast cancer data. In the analysis, methylation and gene expression data are assumed

to have sparse precision matrix structure. Sparse CCA were performed on the same set of genes with

methylation probes on different chromosomes. Chromosomes with canonical correlation greater than 0.5 on

both the training and test set are listed with the number of probes associated with disease free status and

the probes form the support of canonical directions.
Number of Genes

Chromosome probes Methylation probes

RRM2, ILF2, ORC6L, SUSD3, SHCBP1

2 269 cg04799980, cg08022717, cg10142874, cg13052887, cg16297938, cg24011073, cg26364080, cg27060355

SLC26A9, C15orf52, NPM2, DNAH11, RAB6B, LIN28, STC2

4 143 cg04812351, cg14505741, cg15566751, cg15763121, cg17232991

RGS6, ORC6L, PTPRH, GPX2, QSOX2, NPM2, SCG3, RAB6B, L1CAM, STC2, REG1A

9 89 cg01729066, cg02127980, cg03693099, cg13413384, cg13486627, cg13847987, cg14004457, cg14443041, cg21123355

RRM2, SLC26A9, ORC6L, PTPRH, DNAH11, SCG3, LIN28, UMODL1, C11orf9

10 116 cg00827318, cg01162610, cg01520297, cg03182620, cg14522790, cg14999931, cg19302462

QSOX2, SCG3

12 175 cg00417147, cg13074795, cg21881338

C15orf52, NPM2, DNAH11, SELE, RAB6B

15 92 cg11465404, cg18581777, cg21735516

ILF2, SPRR2D, ADCY4, RAB6B, C11orf9, REG1A, SHCBP1

18 37 cg07740306, cg15531009, cg18935516, cg19363889

ORC6L, NPM2, GPR56

19 162 cg06392698, cg06555246

Table 4. Detected methylation probes and their corresponding genes on chromosome 9.
Probe Gene Function ηi

cg01729066 MIR600 microRNA regulating estrogen factors 0.282

cg14004457 MIR455 microRNA regulating estrogen factors 0.347

cg02127980, cg13413384 RXRA retinoic X receptors 0.269, 0.242

cg03693099 CEL fat catalyzation and vitamin absorption 0.286

cg13486627 RG9MTD3 RNA (guanine-9-) methyltransferase -0.479

cg13847987 ABL1 a protein tyrosine kinase functioned in cell differentiation and stress response 0.334

cg21123355 VAV2 a member of the VAV guanine nucleotide exchange factor family of oncogenes 0.312

cg14443041 Intergenic region 0.384
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chromosomes. All these genes have been proposed as prognosis signature for the metastasis

of breast cancer (Weigelt et al., 2005; Ma et al., 2003; van’t Veer et al., 2002). Our results

suggest the interplay of their expression with detected methylation sites. We list the

functional annotation of probes detected on Chromosome 9 in Table 4 †.

In this analysis, we assume there is one pair of canonical directions between methylation

and gene expression. We note that when the underlying canonical correlation structure is

low-rank, the pair of canonical directions obtained from the proposed method lie in the

subspace of true canonical directions. The extracted canonical directions can still be used

to identify sets of methylate sites that are correlated with gene expression.

7. Proof of Main Theorem

We provide the proof of Theorem 4.1 in this section, which is based on the construction of

an oracle sequence. The proof is similar in nature to that in Ma (2013) which focuses on the

sparse PCA setting. Specifically, we are going to first define the strong signal sets, and then

define an oracle sequence (α(k),ora, β(k),ora) produced by Algorithms 1 and 2 only operating

on the strong signal sets. We then show the desired rate of convergence for this oracle

sequence. In the end, a probabilistic argument shows that with the help of thresholding,

the oracle sequence is identical to the data-driven sequence with high probability. In the

following proof, we condition on the second half of the data (Xn+1, Yn+1), ..., (X2n, Y2n)

and the event {||Ω̂1Σ1 − I|| ∨ ||Ω̂2Σ2 − I|| = o(1)}. The “with probability” argument is

understood to be with conditional probability unless otherwise specified. We keep using

the notations p = p1 ∨ p2 and s = s1 ∨ s2.

7.1. Construction of the Oracle Sequence

We first define the strong signal set by

H1 =

{
k : |αk| ≥ δ1

√
log p1

n

}
, H2 =

{
k : |βk| ≥ δ2

√
log p2

n

}
. (14)

We denote their complement in {1, 2, ..., p1} and {1, 2, ..., p2} by L1 and L2 respectively.

Then we define the oracle version of Â by taking those coordinates with strong signals.

That is,

Âora =

ÂH1H2
0

0 0

 .

† The corresponding canonical vector on genes RGS6, ORC6L, PTPRH, GPX2, QSOX2, NPM2, SCG3, RAB6B,

L1CAM, STC2, REG1A is (−0.252,−0.27,−0.286,−0.244,−0.35,−0.282,−0.256,−0.367,−0.256, 0.357,−0.358).
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We construct the oracle initializer (α(0),ora, β(0),ora) based on an oracle version of Algorithm

2 with the sets B1 and B2 replaced by Bora
1 = B1 ∩H1 and Bora

2 = B2 ∩H2. It is clear

that α
(0),ora
L1

= 0 and β
(0),ora
L2

= 0. Feeding the oracle initializer (α(0),ora, β(0),ora) and the

matrix Âora into Algorithm 1, we get the oracle sequence (α(k),ora, β(k),ora).

7.2. Data-Driven Thresholding

Algorithms 1 and 2 contain thresholding levels γ1, γ2 and tij . These tuning parameters can

be specified by users. However, our theory is based on fully data-driven tuning parameters

depending on the matrix Ω̂1 = (ω̂1,ij) and Ω̂2 = (ω̂2,ij). In particular, we use

tij =
20
√

2

9

(√
||Ω̂1||ω̂2,jj +

√
||Ω̂2||ω̂1,ii +

√
ω̂1,iiω̂2,jj +

√
8||Ω̂1||||Ω̂2||/3

)
,

and

γ1 =
(

0.17 min
i,j

tij ||Ω̂2||1/2 + 2.1||Ω̂2||1/2||Ω̂1||1/2 + 7.5||Ω̂2||
)√ log p

n
,

γ2 =
(

0.17 min
i,j

tij ||Ω̂1||1/2 + 2.1||Ω̂1||1/2||Ω̂2||1/2 + 7.5||Ω̂1||
)√ log p

n
.

The constants (δ1, δ2) in (14) are set as δ1 = δ2 = 0.08w1/2 mini,j tij . Such choice of

thresholding levels are used in both the estimating sequence (α(k), β(k)) and the oracle

sequence (α(k),ora, β(k),ora).

7.3. Outline of Proof

The proof of Theorem 4.1 can be divided into the following three steps.

(a) Show that Âora is a good approximation of A = λαβT in the sense that their first

pairs of singular vectors are close. Namely, let (α̂ora, β̂ora) be the first pair of singular

vectors of Âora. We are going to bound L(α̂ora, α) and L(β̂ora, β).

(b) Show that the oracle sequence (α(k),ora, β(k),ora) converges to (α̂ora, β̂ora) after finite

steps of iterations.

(c) Show that the estimating sequence (α(k), β(k)) and the oracle sequence (α(k),ora, β(k),ora)

are identical with high probability up to the necessary number of steps for conver-

gence. Here, we need to first show that the oracle initializer (α(0),ora, β(0),ora) is

identical to the actual (α(0), β(0)). Then we are going to show the thresholding step

in Algorithm 1 kills all the small coordinates so that the oracle sequence is identical

to the estimating sequence under iteration.
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7.4. Preparatory Lemmas

In this part, we present lemmas corresponding to the three steps in the outline of proof.

The first lemma corresponds to Step 1.

Lemma 7.1. Under Assumptions A and B, we have

L(α̂ora, α)2 ∨ L(β̂ora, β)2 ≤ C

(
s
( log p

n

)1−q/2
+ ||θ − α|2| ∨ ||η − β||2

)
,

with probability at least 1−O(p−2) for some constant C > 0.

Let (l̂1, l̂2) be the first and second singular values of Âora. Then we have the following

results, corresponding to Step 2.

Lemma 7.2. Under Assumptions A and B, we have

L(α(1),ora, α̂ora)2 ≤ 4

∣∣∣∣∣ l̂2l̂1
∣∣∣∣∣
2

+
32γ2

1 |H1|
|l̂1|2

,

L(β(1),ora, β̂ora)2 ≤ 4

∣∣∣∣∣ l̂2l̂1
∣∣∣∣∣
2

+
32γ2

2 |H2|
|l̂1|2

,

for k = 1, and

L(α(k),ora, α̂ora)2 ≤ max

(
4

∣∣∣∣∣ l̂2l̂1
∣∣∣∣∣
2

64γ2
2 |H2|
|l̂1|2

+
64γ2

1 |H1|
|l̂1|2

,
(

32

∣∣∣∣∣ l̂2l̂1
∣∣∣∣∣
4 )[k/2]

)
,

L(β(k),ora, β̂ora)2 ≤ max

(
4

∣∣∣∣∣ l̂2l̂1
∣∣∣∣∣
2

64γ2
1 |H1|
|l̂1|2

+
64γ2

2 |H2|
|l̂1|2

,
(

32

∣∣∣∣∣ l̂2l̂1
∣∣∣∣∣
4 )[k/2]

)
,

for all k ≥ 2 with probability at least 1−O(p−2).

The quantities |l̂1|, |l̂2/l̂1|, |H1| and |H2| are determined by the following lemma.

Lemma 7.3. With probability at least 1−O(p−2),

|l̂2|2 ≤ C

(
s
( log p

n

)1−q/2
+ ||θ − α||2 ∨ ||η − β||2

)
,

|l̂1|−2 ≤ C.

Moreover,

|H1| ≤ C

(
s1

( log p1

n

)−q/2
+
( log p1

n

)−1
||θ − α||2

)
,

|H2| ≤ C

(
s2

( log p2

n

)−q/2
+
( log p2

n

)−1
||η − β||2

)
,

for some constant C > 0.
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Finally, we show that the oracle sequence and the actual sequence are identical with

high probability, corresponding to Step 3. For the initializer, we have the following lemma.

Lemma 7.4. Under Assumptions A and B, we have Bora
1 = B1 and Bora

2 = B2 with

probability at least 1−O(p−2). Thus, (α(0),ora, β(0),ora) = (α(0), β(0)).

We proceed to analyze the sequence for k ≥ 1 using mathematical induction. By

iteration in Algorithm 1, we have

α(k),ora =
T (Âoraβ(k−1),ora, γ1)

||T (Âoraβ(k−1),ora, γ1)||
, β(k),ora =

T (Âora,Tα(k−1),ora, γ2)

||T (Âora,Tα(k−1),ora, γ2)||
.

Suppose we have (α(k−1),ora, β(k−1),ora) = (α(k−1), β(k−1)). Then as long as

T (Âoraβ(k−1),ora, γ1) = T (Âβ(k−1),ora, γ1) (15)

T (Âora,Tα(k−1),ora, γ2) = T (ÂTα(k−1),ora, γ2), (16)

we have (α(k),ora, β(k),ora) = (α(k), β(k)). Hence, it is sufficient to prove (15) and (16).

Then, the result follows from mathematical induction. Without loss of generality, we

analyze (15) as follows. Since β
(0),ora
L2

= 0, we may assume β
(k−1),ora
L2

= 0 at the k-th step.

The vectors Âoraβ(k−1),ora and Âβ(k−1),ora are respectively

Âoraβ(k−1),ora =

ÂH1H2
0

0 0

β(k−1),ora
H2

0

 =

ÂH1H2
β

(k−1),ora
H2

0

 ,

Âβ(k−1),ora =

ÂH1H2
ÂH1L2

ÂL1H2
ÂL1L2

β(k−1),ora
H2

0

 =

ÂH1H2
β

(k−1),ora
H2

ÂL1H2
β

(k−1),ora
H2

 .

Hence, as long as ||ÂL1H2
β

(k−1),ora
H2

||∞ ≤ γ1, (15) holds. Similarly, as long as ||ÂTH1L2
α

(k−1),ora
H1

||∞ ≤

γ2, (16) holds. This is guaranteed by the following lemma.

Lemma 7.5. For any sequence of unit vectors (a(k), b(k)) ∈ R|H1| × R|H2|, with k =

1, 2, ...,K for some K = O(1). We assume that they only depend on ÂH1H2
. Then, under

the current choice of (γ1, γ2), we have

||ÂL1H2
b(k)||∞ ≤ γ1, ||ÂTH1L2

a(k)||∞ ≤ γ2,

for all k = 1, ...,K with probability at least 1−O(p−2).

7.5. Proof of Theorem 4.1

Proof (Proof of Theorem 4.1). In the following proof, C denotes a generic con-

stant which may vary from line to line. Without loss of generality, we prove convergence of
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α(k). By Lemma 7.4 and Lemma 7.5, α(k) = α(k),ora for all k = 1, 2, ...,K with probability

1−O(p−2). Hence, it is sufficient to prove convergence of α(k),ora. Lemma 7.2 implies that

for k = 2, 3, ...,K,

L(α(k),ora, α̂ora)2 ≤ max

(
4

∣∣∣∣∣ l̂2l̂1
∣∣∣∣∣
2

64γ2
2 |H2|
|l̂1|2

+
64γ2

1 |H1|
|l̂1|2

,
(

32

∣∣∣∣∣ l̂2l̂1
∣∣∣∣∣
4 )[k/2]

)

≤ max

(
4

∣∣∣∣∣ l̂2l̂1
∣∣∣∣∣
2

64γ2
2 |H2|
|l̂1|2

+
64γ2

1 |H1|
|l̂1|2

, 32

∣∣∣∣∣ l̂2l̂1
∣∣∣∣∣
4)

According to Lemma 7.3, we have

32

∣∣∣∣∣ l̂2l̂1
∣∣∣∣∣
4

≤ C

(
s
( log p

n

)1−q/2
+ ||θ − α||2 ∨ ||β − η||2

)2

.

We also have

4

∣∣∣∣∣ l̂2l̂1
∣∣∣∣∣
2

64γ2
2 |H2|
|l̂1|2

+
64γ2

1 |H1|
|l̂1|2

≤ C
(
γ2

2 |H2|+ γ2
1 |H1|

)
≤ C

log p

n

(
s
( log p

n

)−q/2
+
( log p

n

)−1
||θ − α||2

)

≤ C

(
s
( log p

n

)1−q/2
+ ||θ − α||2

)
.

Hence, the desired bound holds for k = 2, 3, ...,K. For k = 1, by Lemma 7.2, we have

L(α(1),ora, α̂ora)2 ≤ 4

∣∣∣∣∣ l̂2l̂1
∣∣∣∣∣
2

+
32γ2

1 |H1|
|l̂1|2

≤ C

(
s
( log p

n

)1−q/2
+ ||θ − α||2

)
.

Therefore, we have proved the bound of L(α(k),ora, αora)2 for all k = 1, 2, ...,K. Combining

this result and Lemma 7.1, we have

L(α(k),ora, α)2 ≤ C

(
s
( log p

n

)1−q/2
+ ||θ − α||2 ∨ ||β − η||2

)
,

for k = 1, 2, ...,K. The final bound follows from the triangle inequality applied to the

equation above and the fact that

L(α, θ) ≤ C
(
||α− θ|| ∧ ||α+ θ||

)
≤ C||α− θ||.

The same analysis applies for L(β(k),ora, η)2. Thus, the result is obtained conditioning on

(Xn+1, Yn+1), ..., (X2n, Y2n).

Since we assume ξΩ = o(1) with probability at least 1− O(p−2), the unconditional result

also holds.
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Appendix

A. Technical Lemmas

We define the high-signal and low-signal set of (θ, η) by

H ′1 =

{
k : |θk| ≥

1

2
δ1

√
log p1

n

}
, H ′2 =

{
k : |ηk| ≥

1

2
δ2

√
log p2

n

}
,

and L′1 = {1, ..., p1} −H ′1 and L′2 = {1, ..., p2} −H ′2.

Lemma A.1. We have

|H ′1| ≤ (δ1/2)−qs1

(
log p1

n

)−q/2
, |H ′2| ≤ (δ2/2)−qs2

(
log p2

n

)−q/2
,

|H1| ≤ (δ1/2)−qs1

(
log p1

n

)−q/2
+ (δ1/2)−2

(
log p1

n

)−1

||θ − α||2,

|H2| ≤ (δ2/2)−qs2

(
log p2

n

)−q/2
+ (δ2/2)−2

(
log p2

n

)−1

||η − β||2,

|L1 − L′1| = |H ′1 −H1| ≤ 2(δ1/2)−qs1

(
log p1

n

)−q/2
+ (δ1/2)−2

(
log p1

n

)−1

||θ − α||2,

|L2 − L′2| = |H ′2 −H2| ≤ 2(δ2/2)−qs2

(
log p2

n

)−q/2
+ (δ2/2)−2

(
log p2

n

)−1

||η − β||2.

For the transformed data {(X̃i, Ỹi)}ni=1, it has a latent variable representation

X̃i =
√
λαZi +X ′i, Ỹi =

√
λβZi + Y ′i ,

where Zi, X
′
i, Y

′
i are independent, Zi ∼ N(0, 1) and X ′i and Y ′i are Gaussian vectors.

Lemma A.2. The latent representation above exists in the sense that Cov(X ′) ≥ 0 and

Cov(Y ′) ≥ 0. Moreover, we have

||Cov(X ′)|| ≤
(
1 + o(1)

)
||Ω̂1||, and ||Cov(Y ′)|| ≤

(
1 + o(1)

)
||Ω̂2||.

Lemma A.3 (Johnstone (2001)). Given Z1, ..., Zn i.i.d. N(0, 1). For each t ∈ (0, 1/2),

P

(∣∣∣∣∣ 1n
n∑
i=1

Z2
i − 1

∣∣∣∣∣ > t

)
≤ 2 exp

(
− 3nt2

16

)
.

Lemma A.4. Let X ′H1
be an n× |H1| matrix with X ′i,H1

being the i-th row and Y ′H2
be

an n× |H2| matrix with Y ′i,H2
being the i-th row. We have for any t > 0,

P

(
||X ′TH1

X ′H1
|| > 1.01||Ω̂1||

(
n+ 2

(√
n|H1|+ nt

)
+
(√
|H1|+

√
nt
)2)) ≤ 2e−nt

2/2,
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P

(
||Y ′TH2

Y ′H2
|| > 1.01||Ω̂2||

(
n+ 2

(√
n|H2|+ nt

)
+
(√
|H2|+

√
nt
)2)) ≤ 2e−nt

2/2,

P

(
||X ′TH1

Y ′H2
|| > 1.03||Ω̂1||1/2||Ω̂2||1/2

(√
|H1|n+

√
|H2|n+t

√
n
))
≤
(
|H1|∧|H2|

)
e−3n/64+e−t

2/2.

Lemma A.5. We have for any t > 0,

P

(∥∥∥∥∥
n∑
i=1

ZiX
′
i,H1

∥∥∥∥∥ > 1.03||Ω̂1||1/2
(

(t+ 1)
√
n+

√
|H1|n

))
≤ e−3n/64 + e−t

2/2,

P

(∥∥∥∥∥
n∑
i=1

ZiY
′
i,H2

∥∥∥∥∥ > 1.03||Ω̂2||1/2
(

(t+ 1)
√
n+

√
|H2|n

))
≤ e−3n/64 + e−t

2/2,

P

(∥∥∥∥∥
n∑
i=1

ZiX
′
i,L1

∥∥∥∥∥
∞

> 1.03||Ω̂1||1/2(t+ 2)
√
n

)
≤ |L1|

(
e−3n/64 + e−t

2/2
)
,

P

(∥∥∥∥∥
n∑
i=1

ZiY
′
i,L2

∥∥∥∥∥
∞

> 1.03||Ω̂2||1/2(t+ 2)
√
n

)
≤ |L2|

(
e−3n/64 + e−t

2/2
)
.

Lemma A.6. We have

||ÂH1H2
−AH1H2

|| ≤ C

(
s1/2

(
log p

n

)1/2−q/4

+ ||α− θ|| ∨ ||β − η||

)
,

max
i=1,2

|l̂i − li| ≤ C

(
s1/2

(
log p

n

)1/2−q/4

+ ||α− θ|| ∨ ||β − η||

)
,

l1 ≥ C−1,

l2 = 0

for some constant C > 0 with probability at least 1−O(p−2). The quantities l̂i and li are

the i-th singular values of ÂH1H2
and AH1H2

respectively.

B. Analysis of the Initializer

We show that the Algorithm 2 actually returns a consistent estimator of leading pair of

singular vectors
(
α(0), β(0)

)
, which serves as a good candidate for the power method in

Algorithm 1. To be specific, with high probability, the initialization procedure correctly

kills all low signal coordinates to zeros, i.e. α
(0)
L1

= 0 and β
(0)
L2

= 0, by the thresholding step.

On the other hand, although Algorithm 2 cannot always correctly pick all strong signal

coordinates, it does pick those much stronger ones such that
(
α(0), β(0)

)
is still consistent

up to a sign. The properties are summarized below.

Lemma B.1. With probability 1− Cp−2, we have that,
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(a) Bi ⊂ Hi, i = 1, 2;

(b)
∣∣∣l̂i − l̂Bi ∣∣∣ → 0 for i = 1, 2. where l̂i and l̂Bi are the ith singular value of ÂH1H2

and

ÂB1B2
;

(c) α(0) and β(0) are consistent, i.e., L
(
α(0), α̂ora

)
→ 0 and L

(
β(0), β̂ora

)
→ 0.

The procedure is to select those strong signal coordinates of α and β and is similar to

the “diagonal thresholding” sparse PCA method proposed by Johnstone and Lu (2009).

However, unlike the PCA setting, we cannot get the information of each coordinate through

its corresponding diagonal entry of the sample covariance matrix. Instead, we measure

the strength of coordinates in terms of the maximum entry among its corresponding row

or column of the sample covariance matrix and still can capture all coordinates of α and

β above the level of
(

log p
n

)1/4
. The sparsity assumption in Equation (10) is needed to

guarantee the consistency of the initial estimator
(
α(0), β(0)

)
.

The proof is developed in the following. In the first part, we prove the three results in

Lemma B.1 along with stating some useful propositions. We then prove those propositions

in the second part.

B.1. Proof of Lemma B.1

Proof (Proof of Result 1). We start with showing the first result Bi ⊂ Hi. In

fact we show that the index set Biscreens out all weak signal coordinates as well as cap-

tures all coordinates with much stronger signal coordinates
√

log p
n s

1

2−q , compared with

the thresholding
√

log p
n of Hi. By the sparsity assumption (10), clearly Bialso captures

all coordinates with much stronger signal
(

log p
n

)1/4
. To be specific, we show that with

probability 1− Cp−2, we have

B−i ⊂ Bi ⊂ Hi, (17)

where the index set of those stronger signal coordinates are defined as follows,

B−1 =

{
i, |αi| > φ

√
log p

n
s

1

2−q
2

}
, B−2 =

{
i, |βi| > φ

√
log p

n
s

1

2−q
1

}
.

The constant φ is determined in the analysis. φ = 2 maxi,j tijC
−1
λ

(√
W

0.6

(
2W 1/2

) −q
2−q
)1/2

.

Recall that Â = 1
n

∑
i X̃iỸ

T
i with conditional mean EÂ = A = λαβT = (aij)p1×p2 . The

result (17) can be shown in two steps. During the first step we show that with probability

1 − Cp−2, the index set Bi satisfies B−−i ⊂ Bi ⊂ B++
i , where for simplicity we pick

κ− = 0.09, κ+ = 2 and

B++
1 =

{
i : max

j

|aij |
tij

> κ−

√
1

n
log p

}
, B−−1 =

{
i : max

j

|aij |
tij

> κ+

√
1

n
log p

}
,
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B++
2 =

{
j : max

i

|aij |
tij

> κ−

√
1

n
log p

}
, B−−2 =

{
j : max

i

|aij |
tij

> κ+

√
1

n
log p

}
.

For the second step, we show that B++
i ⊂ Hi and B−−i ⊂ B−i with probability 1− Cp−2.

We present these two results in the following two propositions.

Proposition B.1. With probability 1−Cp−2, we have B−−i ⊂ Bi ⊂ B++
i for i = 1, 2.

Proposition B.2. With probability 1−Cp−2, we have B++
i ⊂ Hi and B−−i ⊂ B−i for

i = 1, 2.

Thus, the proof is complete.

Before proving Result 2 and Result 3, we need the following proposition.

Proposition B.3. Define

e2
B = max


∑

i∈(B−1 )
c

α2
i ,

∑
i∈(B−2 )

c

β2
i

 . (18)

Then we have for some constants C1, C2 > 0,

e2
B ≤ C1

(
log p

n

)1−q/2 (
s2

1 ∨ s2
2

)
+ C2ξ

2
Ω. (19)

Moreover, under our assumptions (10) and (11), we obtain eB = o(1) with probability

1− Cp−2.

Now we restrict our attention on the event on which the result (17) holds, which is

valid with high probability 1− Cp−2. Define index set Di = Hi\Bi and

ÂB1B2

H1H2
=

 ÂB1B2
0

0 0


|H1|×|H2|

.

Proof (Proof of Result 2). We show the second result
∣∣∣l̂i − l̂Bi ∣∣∣ → 0 for i = 1, 2.

Note that l̂Bi is the ith singular value of ÂB1B2
and hence is also the ith singular value of

ÂB1B2

H1H2
. Applying Weyl’s theorem, we obtain that∣∣∣l̂i − l̂Bi ∣∣∣ ≤ ∥∥∥ÂH1H2

− ÂB1B2

H1H2

∥∥∥ ≤ ∥∥∥ÂD1B2

∥∥∥+
∥∥∥ÂB1D2

∥∥∥+
∥∥∥ÂD1D2

∥∥∥ . (20)

To bound
∥∥∥ÂD1B2

∥∥∥ , we apply the latent variable representation in Lemma A.2 and obtain

that ÂD1B2
=
∑4

j=1Gj , where

G1 =
λZTZ

n
αD1

βTB2
, G2 =

1

n
X ′TD1

Y ′B2
, G3 =

√
λαD1

ZTY ′B2

n
,G4 =

√
λX ′TD1

ZβTB2

n
.
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Now we bound Gj separately as follows. According to Lemma A.3, Proposition B.3 and

the fact ‖βB2
‖ ≤ ‖β‖ ≤

∥∥∥Ω̂2Σ2

∥∥∥ ‖η‖ = (1 + o(1)) ‖η‖, we obtain that with probability

1− Cp−2

‖G1‖ ≤ λ

(
1 +O(

√
log p

n
)

)
‖αD1

‖ ‖βB2
‖ ≤ (1 + o(1))λ ‖η‖

∥∥∥α(B−1 )
c

∥∥∥
≤ (1 + o(1))λ ‖θ‖ eB,

where the second inequality follows from D1 ⊂
(
B−1
)c

. The third inequality in Lemma

A.4 implies that with probability 1− Cp−2,

‖G2‖ ≤

(
C(

√
log p

n
+

√
|H1|
n

+

√
|H2|
n

)

)
= o(eB),

where the last inequality is due to Lemma A.1 |Hi| = O

(
si

(
log p
n

)−q/2)
and Proposition

B.3. Moreover, the first two inequalities in Lemma A.5 further imply that with probability

1− Cp−2,

‖G3‖ ≤

(
C(

√
log p

n
+

√
|H2|
n

) ‖αD1
‖

)
≤ o(

∥∥∥α(B−1 )
c

∥∥∥) = o(eB),

‖G4‖ ≤

(
C(

√
log p

n
+

√
|H1|
n

) ‖βB2
‖

)
= o(eB).

Combining the above four results, we obtain that
∥∥∥ÂD1B2

∥∥∥ ≤ (1 + o(1))λ ‖θ‖ eB with

probability 1 − Cp−2. Similarly we can obtain that
∥∥∥ÂB1D2

∥∥∥ ≤ (1 + o(1))λ ‖θ‖ eB with

probability 1−Cp−2. To bound
∥∥∥ÂD1D2

∥∥∥, similarly we can write ÂD1B2
=
∑4

j=1 Fj , where

F1 =
λZTZ

n
αD1

βTD2
, F2 =

1

n
X ′TD1

Y ′D2
, F3 =

√
λαD1

ZTY ′D2

n
, F4 =

√
λX ′TD1

ZβTD2

n
.

Note that Di ⊂
(
B−i
)c

for i = 1, 2. Lemma A.4, Lemma A.5 and Proposition B.3 imply

that with probability 1− Cp−2,

‖F1‖ ≤ λ

(
1 +O(

√
log p

n
)

)
‖αD1

‖ ‖βD2
‖ ≤ C

∥∥∥α(B−1 )
c

∥∥∥∥∥∥β(B−2 )
c

∥∥∥ = o(eB),

‖F2‖ ≤

(
C(

√
log p

n
+

√
|H1|
n

+

√
|H2|
n

)

)
= o(eB),

‖F3‖ ≤ o(
∥∥∥α(B−1 )

c

∥∥∥) = o(eB), ‖F4‖ ≤ o(
∥∥∥β(B−2 )

c

∥∥∥) = o(eB).

Hence we obtain
∥∥∥ÂD1D2

∥∥∥ = o(eB). These upper bounds for
∥∥∥ÂD1D2

∥∥∥ , ∥∥∥ÂD1D2

∥∥∥ and∥∥∥ÂD1D2

∥∥∥, together with Equation (20) imply that with probability 1− Cp−2,∣∣∣l̂i − l̂Bi ∣∣∣ ≤ ∥∥∥ÂH1H2
− ÂB1B2

H1H2

∥∥∥ ≤ (1 + o(1)) (‖θ‖+ ‖η‖)λeB = o(1), (21)
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where the last inequality follows from Proposition B.3 and Assumption B (max {‖θ‖ , ‖η‖} ≤

w−1/2).

Proof (Proof of Result 3). We show that last result L
(
α(0), α̂ora

)
→ 0 and L

(
β(0), β̂ora

)
→

0. Note α(0) and α̂ora ∈ Rp1 but all entries in the index set Hc
1 are zeros. Hence we only

need to compare them in R|H1|. Similarly we calculate L
(
β(0), β̂ora

)
in space R|H2|. Con-

straint on coordinates in H1×H2,
(
α(0), β(0)

)
and

(
α̂ora, β̂ora

)
are leading pair of singular

vectors of ÂB1B2

H1H2
and ÂH1H2

respectively. We apply Wedin’s theorem (See Stewart and

Sun (1990), Theorem 4.4) to ÂH1H2
and ÂB1B2

H1H2
to obtain that

max
{
L
(
α(0), α̂ora

)
, L
(
β(0), β̂ora

)}
≤
√

2 max

{∥∥∥∥∥α(0)
(
α(0)

)T∥∥α(0)
∥∥2 − α̂ora (α̂ora)T

‖α̂ora‖2

∥∥∥∥∥ ,∥∥∥∥∥∥∥
β(0)

(
β(0)

)T∥∥β(0)
∥∥2 −

β̂ora
(
β̂ora

)T
∥∥∥β̂ora∥∥∥2

∥∥∥∥∥∥∥


≤
√

2

∥∥∥ÂB1B2

H1H2
− ÂH1H2

∥∥∥
δ
(
ÂB1B2

H1H2
, ÂH1H2

) , (22)

where δ
(
ÂB1B2

H1H2
, ÂH1H2

)
= l̂B1 − l̂2. The result of Lemma A.6 implies that l̂2 = o(1),

and Result 2 we just showed further implies that l̂B1 = (1 + o(1))l̂1 = (1 + o(1))λ ‖η‖ ‖θ‖

with probability 1 − Cp−2. Therefore we obtain that with probability 1 − Cp−2, the

value δ
(
ÂB1B2

H1H2
, ÂH1H2

)
= (1 + o(1))λ ‖η‖ ‖θ‖ is bounded below and above by constants

according to Assumption B. This fact, together with Equations (21) and (22) completes

our proof

max
{
L
(
α(0), α̂ora

)
, L
(
β(0), β̂ora

)}
= o(1),

with probability 1− Cp−2.

B.2. Proofs of Propositions

Proof (Proof of Proposition B.1). We first provide concentration inequality for

each âij = 1
n

∑
k X̃k,iỸk,j . By the latent variable representation, we have X̃1,i =

√
λαiZ1 +

X ′1,i and Ỹ1,j =
√
λβjZ1 + Y ′1,j where Z1 ∼ N(0, 1), X ′1,i ∼ N

(
0,Var

(
X ′1,i

))
and Y ′1,j ∼

N
(

0,Var
(
Y ′1,j

))
are independent. This representation leads to

âij =
1

n

(
λαiβj

∑
k

Z2
k +

∑
k

X ′k,iY
′
k,j +

√
λαi

∑
k

ZkY
′
k,j +

√
λβj

∑
k

ZkX
′
k,i

)
.
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The consistency assumption Equation (11) in Assumption B implies that Var
(
X ′1,i

)
≤

Var
(
X̃1,i

)
= (1 + o(1))ω̂1,ii = (1 + o(1))ω1,ii. Applying Lemma A.3, we obtain that

P

(∣∣∣∣∣λαiβjn

∑
k

Z2
k − aij

∣∣∣∣∣ > λαiβjt

)
≤ 2 exp

(
−3nt2

16

)
. (23)

Following the line of proof in Lemma A.5 and Proposition D.2 in Ma (2013), for n and p

large enough (hence n−1 log p→ 0), we have the following concentration inequalities,

P

(∣∣∣∣∣ 1n∑
k

X ′k,iY
′
k,j

∣∣∣∣∣ > (1 + o(1)) b
√
ω̂1,iiω̂2,jj

√
log p

n

)
≤ 2p−b

2/2, (24)

P

(∣∣∣∣∣ 1n√λβj∑
k

ZkX
′
k,i

∣∣∣∣∣ > (1 + o(1)) b
√
λ |βj |

√
ω̂1,ii

√
log p

n

)
≤ 2p−b

2/2, (25)

P

(∣∣∣∣∣ 1n√λαi∑
k

ZkY
′
k,j

∣∣∣∣∣ > (1 + o(1)) b
√
λ |αi|

√
ω̂2,jj

√
log p

n

)
≤ 2p−b

2/2. (26)

Recall the definition of the adaptive thresholding level tij ,

tij = 20
√

2
9

(√
λmax

(
Ω̂1

)
ω̂2,jj +

√
λmax

(
Ω̂2

)
ω̂1,ii

+
√
ω̂1,iiω̂2,jj +

√
8λmax

(
Ω̂1

)
λmax

(
Ω̂2

)
/3

)
.

Applying the union bound to Equations (23)-(26), we obtain the concentration inequality

for âij as follows

P

(
|âij − aij |

tij
> (1 + o(1))

9b1

20
√

2

√
log p

n

)
≤ 8p−b

2
1/2, (27)

where we used the fact λ ≤ 1 and |αi| ≤ (1 + o(1)) |θi| ≤ (1 + o(1))λ
1/2
max

(
Ω̂1

)
.

We finish our proof by bounding the probability P
(
Bi 6⊂ B++

i

)
and P

(
B−−i 6⊂ Bi

)
respectively. Let j∗i be an integer such that |aij∗i |/tij∗i = maxj |aij |/tij . We apply the

union bound to obtain

P
(
B−−1 6⊂ B1

)
≤

∑
i∈B−−1

P

{
max
j

|âij |
tij
≤
√

log p

n

}

≤
∑
i∈B−−1

P

{
|âij∗i |/tij∗i ≤

√
log p

n

}

≤
∑
i∈B−−1

P

{
|aij∗i − âij∗i |/tij∗i > (κ+ − 1)

√
log p

n

}
≤ p8p−b

2
1/2 ≤ Cp−3,

where the last inequality follows from Equation (27) with b1 = 2
√

2 and κ+ = 2. Similarly,
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we apply the union bound to obtain

P
(
B1 6⊂ B++

1

)
≤

∑
i∈(B++

1 )
c

P

{
max
j

|âij |
tij

>

√
log p

n

}

≤
∑

i∈(B++
1 )

c

p2∑
j=1

P

{
|âij |/tij >

√
log p

n

}

≤
∑

i∈(B++
1 )

c

p2∑
j=1

P

{
|âij − aij |/tij > (1− κ−)

√
log p

n

}

≤ p28p−b
2
1/2 ≤ Cp−2,

where the last inequality follows from Equation (27) with b1 = 2
√

2 and κ− = 0.09. We

can obtain the bounds for P
(
B2 6⊂ B++

2

)
and P

(
B−−2 6⊂ B2

)
, which finish our proof.

Proof (Proof of Proposition B.2). Recall aij = λαiβj . To show B++
1 ⊂ H1,

we only need to show that κ−mini,j tij
λmaxj |βj | > δ1, noting p1 ≤ p. To see this, the key part

is to bound maxj |βj | from above. In fact, Assumption B implies maxj |βj | ≤ ‖β‖ ≤∥∥∥Ω̂2Σ2

∥∥∥ ‖η‖ = (1 + o(1))w−1/2 with probability 1− Cp−2. Therefore this upper bound of

‖β‖, the definition of δ1 and λ ≤ 1 imply that,

κ−minj tij
λmaxj |βj |

≥ 0.08w1/2 min
i,j

tij = δ1,

where the last equation follows from the definition of δ1. Similarly, we can show that

B++
2 ⊂ H2 with probability 1− Cp−2.

To show B−−1 ⊂ B−1 , we only need to show that φ1s
1

2−q
2 > κ+ maxi,j tij

λmaxj |βj | . This time the key

part is to bound maxj |βj | from below. Note that ‖β‖ ≥ (1− o(1)) ‖η‖ ≥ (1− o(1))W−1/2

follows from Assumption B. For any positive integer k, we denote Ik as the index set of

the largest k coordinates of η in magnitude. Then we have with probability 1− Cp−2,

0.9W−1/2 ≤ ‖β‖ ≤ kmax
j
|βj |2 +

∑
j∈Ick

|βj |2

≤ kmax
j
|βj |2 +

∑
j∈Ick

|ηj |2 + ‖β − η‖

≤ kmax
j
|βj |2 +

q

2− q
s

2/q
2 k1−2/q + o(1).

Picking k0 =

⌈
s

2

2−q
2

(
2W 1/2

) q

2−q

⌉
, the Equation above implies that k0 maxj |βj |2 ≥ 0.3W−1/2.

Consequently, we get a lower bound maxj |βj | ≥
√
Cls
− 1

2−q
2 , where constant Cl = 0.6√

W

(
2W 1/2

) q

2−q .

We complete our proof by noting that the lower bound of maxj |βj |, the definition of φ

and Assumption λ > Cλ imply

κ+ maxi,j tij
λmaxj |βj |

≤ 2 max
i,j

tijC
−1
λ C

−1/2
l s

1

2−q
2 = φs

1

2−q
2 ,
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where the last equation follows from the definition of constant φ. Similarly, we can show

B−−2 ⊂ B−2 with probability 1− Cp−2.

Proof (Proof of Proposition B.3). Note we only assume θ and η are in the weak

lq ball. Define the relatively weak signal coordinates of θ and η as

B′−1 =

{
i, |θi| >

φ

2

√
log p

n
s

1

2−q
1

}
, B′−2 =

{
i, |ηi| >

φ

2

√
log p

n
s

1

2−q
2

}
.

We need the bound of cardinality of
(
B−i
)c − (B′−i )c. Following the lines of the proof of

Lemma A.1, we have that∣∣(B−i )c − (B′−i )c∣∣ ≤ C
[
s

(
1− q

2−q

)
i

(
log p

n

)−q/2
+ ξ2

Ω

(
log p

n

)−1

s
− 2

2−q
i

]
, (28)

where we use the fact ‖θ − α‖ ≤
∥∥∥Ω̂1 − Ω1

∥∥∥ ‖Σ1α‖ ≤ CξΩ by the Assumption B. Now we

bound
∥∥∥α(B−1 )

c

∥∥∥2
=
∑

i∈(B−1 )
c α2

i as follows,∥∥∥α(B−1 )
c

∥∥∥ ≤
∥∥∥θ(B−1 )

c

∥∥∥+ CξΩ ≤
∥∥∥θ(B−1 )

c−(B′−1 )
c

∥∥∥+
∥∥∥θ(B′−1 )

c

∥∥∥+ CξΩ

≤
∥∥∥α(B−1 )

c−(B′−1 )
c

∥∥∥+
∥∥∥θ(B′−1 )

c

∥∥∥+ 2CξΩ

≤

[
C1

(
log p

n

)1−q/2
s2

1 + C2ξ
2
Ω

]1/2

,

since we can bound the first two terms by Equation (28) and weak lq ball assumption on

θ as follows,∥∥∥α(B−1 )
c−(B′−1 )

c

∥∥∥2
≤ φ2 log p

n
s

2

2−q
1

∣∣(B−i )c − (B′−i )c∣∣ ≤ C
(
ξ2

Ω + s2
1

(
log p

n

)1−q/2
)
,

∥∥∥θ(B′−1 )
c

∥∥∥2
≤

∑
i∈(B′−1 )

c

θ2
i ≤

∑
k

(
φ

2

)2 log p

n
s

2

2−q
1 ∧ s2/q

1 k−2/q

≤ C

(
log p

n

)1−q/2
s2

1.

Similarly, we can obtain that
∥∥∥β(B−2 )

c

∥∥∥2
=
∑

i∈(B−2 )
c β2

i ≤ C1

(
log p
n

)1−q/2
s2

2 + C2ξ
2
Ω.

Therefore we finished the proof of Equation (19) and the lemma.

C. Proof of Lemma 7.1

In this section, we are going to show that the first pair of singular vectors of Âora is close

to the first pair of singular vectors of A = λαβT . We introduce an intermediate step by

involving another matrix

Aora =

λαH1
βTH2

0

0 0

 .
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It is easy to see (α/||α||, β/||β||) is the first pair of singular vectors ofA and (αora/||αora||, βora/||βora||)

is the first pair of singular vectors of Aora, where

αora =

αH1

0

 , βora =

βH2

0

 .

Let (α̂ora, β̂ora) be the first pair of singular vectors of Âora. Then, we have

L(α̂ora, α) ≤ L(α̂ora, αora) + L(αora, α).

We have a similar inequality for β. We present a deterministic lemma before proving the

results.

Lemma C.1. We have

L(α̂ora, α) ≤
√

2||ÂH1H2
−AH1H2

||
l̂1

+
8
√

2||θ − α||
0.9W−1/2

+
2
√

2

0.9W−1/2

(
2
q+1

2 +

√
2

2− q

)δ2−q
1 s1

(
log p1

n

)1−q/2
1/2

,

L(β̂ora, β) ≤
√

2||ÂH1H2
−AH1H2

||
l̂1

+
8
√

2||η − β||
0.9W−1/2

+
2
√

2

0.9W−1/2

(
2
q+1

2 +

√
2

2− q

)δ2−q
2 s2

(
log p2

n

)1−q/2
1/2

.

Proof. Starting with the above triangle inequality, we need to bound L(α̂ora, αora)

and L(αora, α). For the first term, we use Wedin’s sin-theta theorem (Theorem 4.4 in

Stewart and Sun (1990)).

L(α̂ora, αora) ≤
√

2

∥∥∥∥ α̂oraα̂ora,T||α̂ora||2
− αoraαora,T

||αora||2

∥∥∥∥
≤

√
2
∥∥∥ÂH1H2

βH2

||βH2
|| − λ||βH2

||αH1

∥∥∥
l̂1

≤
√

2||ÂH1H2
−AH1H2

||
l̂1

, (29)

where we also applied the fact l2 = 0 in Lemma A.6. For the second term, we have

L(αora, α) ≤
√

2

∥∥∥∥ αora

||αora||
− α

||α||

∥∥∥∥
≤ 2

√
2||α− αora||
||α||

≤ 2
√

2||αL1
||

0.9W−1/2
, (30)
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where the last inequality follows from Assumption B which leads to ||α|| = (1 + o(1)) ||θ|| ≥

0.9||θ|| ≥ 0.9W−1/2. Notice that

||αL1
|| ≤ ||θL1

||+ ||θ − α||

≤ ||θL1−L′1 ||+ ||θL′1 ||+ ||θ − α||

≤ ||αL1−L′1 ||+ ||θL′1 ||+ 2||θ − α||

≤

(
2

1+q

2 +

√
2

2− q

)δ2−q
1 s1

(
log p1

n

)1−q/2
1/2

+ 4||θ − α||,

because ||αL1−L′1 ||
2 ≤ δ2

1
log p1
n |L1 − L′1| ≤ 21+qδ2−q

1 s1

(
log p1
n

)1−q/2

+ 4||θ − α||2, and

||θL′1 ||
2 =

∑
k∈L′1

θ2
k

≤
p1∑
k=1

(
(δ1/2)2 log p1

n
∧ s2/q

1 k−2/q

)

≤
∫ ∞

0

(
(δ1/2)2 log p1

n

)
∧ s2/q

1 x−2/qdx

≤ (δ1/2)2−qs1

(
log p1

n

)1−q/2

+
q

2− q
(δ1/2)2−qs1

(
log p1

n

)1−q/2

≤ 2

2− q
δ2−q

1 s1

(
log p1

n

)1−q/2

.

Combining Equations (29) and (30), together with the bounds above, we finish our proof

for L(α̂ora, α). Similar analysis works for L(β̂ora, β) and we omit the details.

Proof (Proof of Lemma 7.1). The proof directly follows from the deterministic

bound in Lemma C.1 and the probabilistic bound in Lemma A.6.

D. Proofs of Lemma 7.2 and Lemma 7.3

In this section, we are going to give the convergence bound for the Algorithms 1 and 2

applied on the oracle matrix Âora. According to Lemma B.1, we obtain that the initializer

applied to the oracle matrix Âora by Algorithm 2 is idential to that applied to data matrix

Â, i.e. (α(0), β(0)) = (α(0),ora, β(0),ora) since Bi ⊂ Hi. As a consequence, the properties in

Lemma B.1 also hold for (α(0),ora, β(0),ora).

The following three lemmas are helpful for us to understand the convergence of oracle

sequence (α(k),ora, β(k),ora) obtained from Algorithm 1. By definition, the initializer satis-
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fies α
(0),ora
L1

= 0 and β
(0),ora
L2

= 0. Then, Algorithm 1 only involves the sub-matrix ÂH1H2
.

We first state the basic one-step analysis for power SVD method in the following lemma.

Lemma D.1. Let A be a matrix with first and second eigenvalues (l1, l2) satisfying

|l1| > |l2|. Let (u, v) be the first pair of singular vectors and (α, β) be any vectors. Define

ᾱ = Aβ and β̄ = ATα. We have

1

2
L(ᾱ, u)2 ≤

1
2L(β, v)2

1− 1
2L(β, v)2

∣∣∣∣ l2l1
∣∣∣∣2 ,

1

2
L(β̄, v)2 ≤

1
2L(α, v)2

1− 1
2L(α, v)2

∣∣∣∣ l2l1
∣∣∣∣2 .

Proof. We omit the proof because it is almost identical to the proof of Theorem 8.2.2

in Golub and Van Loan (1996).

Applying the above lemma in our case on the matrix ÂH1H2
and with unit-vector

initializers (α
(0)
H1
, β

(0)
H2

). For simplicity of notations, we drop the subscript and write Â and

(α(0), β(0)) in this section. At the k-th step, we write

ᾱ(k) = Âβ(k−1), β̄(k) = ÂTα(k−1),

α(k) =
T (ᾱ(k), γ1)

||T (ᾱ(k), γ1)||
, β(k) =

T (β̄(k), γ2)

||T (β̄(k), γ2)||
.

Now we give a one-step analysis for Algorithm 1.

Lemma D.2. Let (α̂, β̂) be the first pair of singular vectors of Â and (l̂1, l̂2) be the first

and second singular values. We assume

1

2
L(α(0), α̂)2 ≤ 1

2
,

1

2
L(β(0), β̂)2 ≤ 1

2
,

and ∣∣∣∣∣ l̂2l̂1
∣∣∣∣∣
2

+
8
(
γ2

1 |H1| ∨ γ2
2 |H2|

)
|l̂1|2

≤ 1

4
.

Then, we have

1

4
L(α(k), α̂)2 ≤ L(β(k−1), β̂)2

∣∣∣∣∣ l̂2l̂1
∣∣∣∣∣
2

+
8γ2

1 |H1|
|l̂1|2

,

1

4
L(β(k), β̂)2 ≤ L(α(k−1), α̂)2

∣∣∣∣∣ l̂2l̂1
∣∣∣∣∣
2

+
8γ2

2 |H2|
|l̂1|2

.

Proof. By triangle inequality, we have

L(α(k), α̂) ≤ L(α(k), ᾱ(k)) + L(ᾱ(k), α̂).
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The second term on the right hand side above is bounded in Lemma D.1. The first term

is bounded as

L(α(k), ᾱ(k)) ≤ 2
√

2||T (ᾱ(k), γ1)− ᾱ(k)||
||ᾱ(k)||

≤
2
√

2γ1

√
|H1|

||Âβ(k−1)||
,

where ||Âβ(k−1)||2 ≥ |l̂1|2|β̂Tβ(k−1)|2 = |l̂1|2
(

1− 1
2L(β(k−1), β̂)2

)
. Therefore, we have

1

4
L(α(k), α̂)2 ≤

1
2L(β(k−1), β̂)2

1− 1
2L(β(k−1), β̂)2

∣∣∣∣∣ l̂2l̂1
∣∣∣∣∣
2

+
4γ2

1 |H1|/|l̂1|2

1− 1
2L(β(k−1), β̂)2

.

In the same way, we have

1

4
L(β(k), β̂)2 ≤

1
2L(α(k−1), α̂)2

1− 1
2L(α(k−1), α̂)2

∣∣∣∣∣ l̂2l̂1
∣∣∣∣∣
2

+
4γ2

2 |H2|/|l̂1|2

1− 1
2L(α(k−1), α̂)2

.

Suppose L(α(k−1), α̂)2∨L(β(k−1), β̂)2 ≤ 1, then it is easy to see that L(α(k), α̂)2∨L(β(k), β̂)2 ≤

1 under the assumption. Using mathematical induction, L(α(k−1), α̂)2 ∨L(β(k−1), β̂)2 ≤ 1

is true for each k. Therefore, we deduce the desired result.

The above Lemma D.2 implies the following convergence rate of oracle sequence.

Lemma D.3. Suppose the assumptions of Lemma D.2 hold, and we further assume

|l̂2|/|l̂1| < 32−1/4, and then we have for all k ≥ 2,

L(α(k), α̂)2 ≤ max

(
4

∣∣∣∣∣ l̂2l̂1
∣∣∣∣∣
2

64γ2
2 |H2|
|l̂1|2

+
64γ2

1 |H1|
|l̂1|2

,
(

32

∣∣∣∣∣ l̂2l̂1
∣∣∣∣∣
4 )[k/2]

)
,

L(β(k), β̂)2 ≤ max

(
4

∣∣∣∣∣ l̂2l̂1
∣∣∣∣∣
2

64γ2
1 |H1|
|l̂1|2

+
64γ2

2 |H2|
|l̂1|2

,
(

32

∣∣∣∣∣ l̂2l̂1
∣∣∣∣∣
4 )[k/2]

)
.

Proof. We only prove the bound for L(α(k), α̂). Using the previous lemma, we derive

a formula of a two-step analysis

L(α(k), α̂)2 ≤ L(α(k−2), α̂)2ρ+ ω1,

where

ρ =

(
4

∣∣∣∣∣ l̂2l̂1
∣∣∣∣∣
2)2

, ω1 = 4

∣∣∣∣∣ l̂2l̂1
∣∣∣∣∣
2

32γ2
2 |H2|
|l̂1|2

+
32γ2

1 |H1|
|l̂1|2

.

Therefore, for each k, we have

L(α(k), α̂)2 ≤ max
(

2ω1, L(α(k−2), α̂)2(2ρ)
)
.



42 Chen et al.

We are going to prove for each k,

L(α(2k), α̂)2 ≤ max
(

2ω1, L(α(0), α̂)2(2ρ)k
)
.

It is obvious that this is true for k = 0. Suppose this is true for k − 1, then we have

L(α(2k), α̂)2 ≤ max
(

2ω1, L(α(2(k−1)), α̂)2(2ρ)
)

≤ max

(
2ω1,max

(
2ω1, L(α(0), α̂)2(2ρ)k−1

)
(2ρ)

)
≤ max

(
2ω1, 2ω1(2ρ), L(α(0), α̂)2(2ρ)k

)
= max

(
2ω1, L(α(0), α̂)2(2ρ)k

)
,

where the last inequality follows from the assumption |l̂2/l̂1| ≤ 32−1/4. By mathematical

induction, the inequality is true for each k. Similarly, we can show that for each k,

L(α(2k+1), α̂)2 ≤ max
(

2ω1, L(α(1), α̂)2(2ρ)k
)
.

Therefore,

L(α(k), α̂)2 ≤ max
(

2ω1, (2ρ)[k/2]
)
,

and the proof is complete by a similar argument for β(k).

Proof (Proof of Lemma 7.2). It is sufficient to check the conditions of Lemma D.2

and Lemma D.3. The first condition of Lemma D.2

1

2
L2(α(0), α̂)2 ≤ 1

2
,

1

2
L(β(0), β̂)2 ≤ 1

2
,

is directly by the fact that the initializer is consistent, which is guaranteed by Lemma B.1.

The second condition of Lemma D.2 is deduced from Lemma A.6 (bounds of |l̂1| and |l̂2|)

and Lemma A.1 (bounds of |H1| and |H2|). Finally, the condition of Lemma D.3 follows

from Lemma A.6. The conclusions of Lemma 7.2 are the conclusions of Lemma D.3 and

Lemma D.2 respectively.

Proof (Proof of Lemma 7.3). The bounds on |H1| and |H2| have been established

in Lemma A.1. The bounds for |l̂2|2 and |l̂1|−2 are from Lemma A.6.

E. Proofs of Lemma 7.4 and Lemma 7.5

We first present a deterministic bound and then prove the results by probabilistic argu-

ments.
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Lemma E.1. For any unit vectors a ∈ R|H1| and b ∈ R|H2|, we have

||ÂL1H2
b||∞ ≤ 1

n

n∑
i=1

Z2
i ||β||δ1

√
log p1

n
+ δ1

√
log p1

n

∥∥∥∥∥ 1

n

n∑
i=1

ZiY
′T
i,H2

∥∥∥∥∥+ ||β||

∥∥∥∥∥ 1

n

n∑
i=1

ZiX
′
i,L1

∥∥∥∥∥
∞

+
||Y ′TH2

Y ′H2
||1/2

n
max
k∈L1

√
Var(X ′1,k)

∣∣∣∣∣∣
∑n

i=1X
′
i,kY

′T
i,H2

b√
Var(X ′1,k)b

TY ′TH2
Y ′H2

b

∣∣∣∣∣∣ ,
||ÂTH1L2

a||∞ ≤ 1

n

n∑
i=1

Z2
i ||α||δ2

√
log p2

n
+ δ2

√
log p2

n

∥∥∥∥∥ 1

n

n∑
i=1

ZiX
′T
i,H1

∥∥∥∥∥+ ||α||

∥∥∥∥∥ 1

n

n∑
i=1

ZiY
′
i,L2

∥∥∥∥∥
∞

+
||X ′TH1

X ′H1
||1/2

n
max
k∈L2

√
Var(Y ′1,k)

∣∣∣∣∣∣
∑n

i=1 Y
′
i,kX

T
i,H1

a√
Var(Y ′1,k)a

TY ′TH1
Y ′H1

a

∣∣∣∣∣∣ .
Proof. Using the latent representation in Lemma A.2, we have

X̃i,L1
Ỹ T
i,H2

= λZ2
i αL1

βTH2
+
√
λZiαL1

Y ′Ti,H2
+
√
λZiX

′
i,L1

βTH2
+X ′i,L1

Y ′Ti,H2
.

Therefore,

||ÂL1H2
b||∞ ≤ λ

1

n

n∑
i=1

Z2
i ||αL1

||∞|βTH2
b|+
√
λ||αL1

||∞

∣∣∣∣∣ 1n
n∑
i=1

ZiY
′T
i,H2

b

∣∣∣∣∣
+
√
λ

∥∥∥∥∥ 1

n

n∑
i=1

ZiX
′
i,L1

∥∥∥∥∥
∞

|βTH2
b|+

∥∥∥∥∥ 1

n

n∑
i=1

X ′i,L1
Y ′Ti,H2

b

∥∥∥∥∥
∞

,

where the first term is bounded by

1

n

n∑
i=1

Z2
i ||β||δ1

√
log p1

n
,

the second term is bounded by

δ1

√
log p1

n

∥∥∥∥∥ 1

n

n∑
i=1

ZiY
′T
i,H2

∥∥∥∥∥ ,
the third term is bounded by

||β||

∥∥∥∥∥ 1

n

n∑
i=1

ZiX
′
i,L1

∥∥∥∥∥
∞

,

and the last term is bounded by

max
k∈L1

∣∣∣∣∣ 1n
n∑
i=1

X ′i,kY
T
i,H2

b

∣∣∣∣∣ ≤ max
k∈L1

√
Var(X ′1,k)

∣∣∣∣∣∣ 1n
n∑
i=1

X ′i,k√
Var(X ′1,k)

Y ′Ti,H2
b

∣∣∣∣∣∣
≤
||Y ′TH2

Y ′H2
||1/2

n
max
k∈L1

√
Var(X ′1,k)

∣∣∣∣∣∣
∑n

i=1X
′
i,kY

T
i,H2

b√
Var(X ′1,k)b

TY ′TH2
Y ′H2

b

∣∣∣∣∣∣ ,
where Y ′H2

is an n × |H2| matrix with the i-th row Y ′Ti,H2
. Summing up the bounds, the

proof is complete.
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Proof (Proof of Lemma 7.4). This is a corollary of Result 1 of Lemma B.1. By

Bi ⊂ Hi for i = 1, 2, we have Bora
i = Bi for i = 1, 2. Thus, (α(0),ora, β(0),ora) = (α(0), β(0)).

Proof (Proof of Lemma 7.5). We upper bound each term in the conclusion of

Lemma E.1. According to the concentration inequalities we have established,

1

n

n∑
i=1

Z2
i ≤ 2,

with probability at least 1− 2e−3n/16 by Lemma A.3.∥∥∥∥∥ 1

n

n∑
i=1

ZiY
′T
i,H2

∥∥∥∥∥ ≤ 2.06||Ω̂2||1/2,

with probability at least 1−
(
e−3n/64 + e−(

√
n−1)2/2

)
by Lemma A.5.∥∥∥∥∥ 1

n

n∑
i=1

ZiX
′
i,L1

∥∥∥∥∥
∞

≤ 2.07||Ω̂1||1/2
√

log p

n
,

with probability at least 1−
(
e−3n/64+log p1 + p−2

)
by Lemma A.5.

||Y ′TH2
Y ′H2
||1/2

n
≤ 3.02||Ω̂2||1/2n−1/2,

with probability at least 1 − 2e−n/2 by Lemma A.4. Using union bound and by Lemma

E.1, we have

||ÂL1H2
b(k)||∞ ≤

(
2δ1||β||+ 2.06δ1||Ω̂2||1/2 + 2.07||β||||Ω̂1||1/2

)√ log p

n

+3.02||Ω̂2||1/2n−1/2 max
l∈L1

√
Var(X ′1,l)

∣∣∣∣∣∣
∑n

i=1X
′
i,lY

′T
i,H2

b(k)√
Var(X ′1,l)b

(k),TY ′TH2
Y ′H2

b(k)

∣∣∣∣∣∣ ,
with probability at least 1−O(p−2) for all k. Notice by Lemma A.2

max
l∈L1

√
Var(X ′1,l)

∣∣∣∣∣∣
∑n

i=1X
′
i,lY

′T
i,H2

b(k)√
Var(X ′1,l)b

(k),TY ′TH2
Y ′H2

b(k)

∣∣∣∣∣∣ ≤ 1.01||Ω̂2||1/2 max
l∈L1

∣∣∣∣∣∣
∑n

i=1X
′
i,lY

′T
i,H2

b(k)√
Var(X ′1,l)b

(k),TY ′TH2
Y ′H2

b(k)

∣∣∣∣∣∣ .
Since b(k) only depends on ÂH1H2

, Y ′H2
and b(k) are jointly independent of X ′L1

. Therefore,

conditioning on YH2
and b(k), ∑n

i=1X
′
i,lY

′T
i,H2

b(k)√
Var(X ′1,l)b

(k),TY ′TH2
Y ′H2

b(k)

is a standard Gaussian. Therefore, by union bound,

max
l∈L1

∣∣∣∣∣∣
∑n

i=1X
′
i,lY

′T
i,H2

b(k)√
Var(X ′1,l)b

(k),TY ′TH2
Y ′H2

b(k)

∣∣∣∣∣∣ ≤√6 log p,
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with probability at least 1−Kp−2, for all k = 1, 2...,K. Finally we have

||ÂL1H2
b(k)||∞ ≤

(
2δ1||β||+ 2.06δ1||Ω̂2||1/2 + 2.07||β||||Ω̂1||1/2 + 7.5||Ω̂2||

)√ log p

n
,

for all k = 1, 2, ...,K, with probability at least 1−O(p−2). The same analysis also applies

to ||ÂTH1L2
a(k)||∞. The result is proved by ||α|| ≤ 1.01||Ω̂1||1/2 and ||β|| ≤ 1.01||Ω̂2||1/2 and

the choice of γ1 and γ2 in Section 7.2.

F. Proofs of Technical Lemmas

Proof (Proof of Lemma A.1). By definition,

|H ′1| ≤

∣∣∣∣∣
{
k : |θk| ≥

1

2
δ1

√
log p1

n

}∣∣∣∣∣
=

∣∣∣∣∣
{
k : |θ(k)| ≥

1

2
δ1

√
log p1

n

}∣∣∣∣∣
≤

∣∣∣∣∣
{
k : s1k

−1 ≥

(
1

2
δ1

√
log p1

n

)q}∣∣∣∣∣
≤ (δ1/2)−qs1

(
log p1

n

)−q/2
.

Notice

H1 ⊂

{
k : |θk|+ |αk − θk| ≥ δ1

√
log p1

n

}

⊂ H ′1
⋃{

k : |αk − θk| ≥
1

2
δ1

√
log p1

n

}
.

Since ∣∣∣∣∣
{
k : |αk − θk| ≥

1

2
δ1

√
log p1

n

}∣∣∣∣∣
(

1

2
δ1

√
log p1

n

)2

≤ ||α− θ||2,

we have

|H1| ≤ |H ′1|+

∣∣∣∣∣
{
k : |αk − θk| ≥

1

2
δ1

√
log p1

n

}∣∣∣∣∣
≤ (δ1/2)−qs1

(
log p1

n

)−q/2
+ (δ1/2)−2

(
log p1

n

)−1

||θ − α||2.

We also have

|L1−L′1| = |H ′1−H1| ≤ |H1|+|H ′1| ≤ 2(δ1/2)−qs1

(
log p1

n

)−q/2
+(δ1/2)−2

(
log p1

n

)−1

||θ−α||2.

Similar arguments apply to |H2|, |H ′2|, |H2 −H ′2|, |L2 − L′2|.
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Proof (Proof of Lemma A.2). It is not hard to find the formula

Cov(X ′) = Ω̂1Σ1Ω̂1 − λααT , Cov(Y ′) = Ω̂2Σ2Ω̂2 − λββT .

Plugging α = Ω̂1Σ1θ, we have

Cov(X ′) = Ω̂1Σ
1/2
1

(
I − λΣ

1/2
1 θθTΣ

1/2
1

)
Σ

1/2
1 Ω̂1.

Since ||Σ1/2θ|| = 1 and λ ≥ 1, we have Cov(X ′) ≥ 0. We proceed to prove the spectral

bound as follows.

||Cov(X ′)|| ≤ ||Ω̂1Σ1Ω̂1|| ≤
(

1 + o(1)
)
||Ω̂1||,

where the last inequality follows from Equation (11) in Assumption B. The same results

also hold for Cov(Y ′).

Proof (Proof of Lemma A.4). Let us denote the covariance matrix of each row of

the matrix X ′H1
by R. Then, we have ||X ′TH1

X ′H1
|| ≤ ||R||||UTH1

UH1
||, where UH1

is an

n× |H1| Gaussian random matrix. We bound ||R|| according to Lemma A.2 by

||R|| ≤ ||Cov(X ′)|| ≤ 1.01||Ω̂1||.

For ||UTH1
UH1
||, we have the bound

P

(
1

n
||UTH1

UH1
|| − 1 > 2

(√
|H1|
n

+ t

)
+

(√
|H1|
n

+ t

)2)

≤ P

(
|| 1
n
UTH1

UH1
− I|| > 2

(√
|H1|
n

+ t

)
+

(√
|H1|
n

+ t

)2)
≤ 2e−nt

2/2,

where the last inequality is from Proposition D.1 in Ma (2013). In the similar way, we

obtain the bound for ||Y ′TH2
Y ′H2
||. Now we bound ||X ′TH1

Y ′H2
||. Denote the covariance of each

row of the matrix Y ′H2
by S. Then we have ||X ′TH1

Y ′H2
|| ≤ ||R||1/2||S||1/2||UTH1

VH2
||, where

VH2
is an n×|H2| Gaussian random matrix. We have ||R||1/2||S||1/2 ≤ 1.01||Ω̂1||1/2||Ω̂2||1/2

by Lemma A.2, and

P

(
||UTH1

VH2
|| > 1.01

(√
|H1|n+

√
|H2|n+ t

√
n
))
≤
(
|H1| ∧ |H2|

)
e−3n/64 + e−t

2/2,

from Proposition D.2 in Ma (2013). Thus, the proof is complete.

Proof (Proof of Lemma A.5). Define Z be the vector (Z1, ..., Zn)T . We keep the

notations in the proof of the above lemma. Then, we have∥∥∥∥∥
n∑
i=1

ZiX
′
i,H1

∥∥∥∥∥ = ||ZTX ′H1
|| ≤ 1.01||Ω̂1||1/2||ZTUH1

||,
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where ||ZTUH1
|| is upper bounded by

P

(
||ZTUH1

|| > 1.01
(

(t+ 1)
√
n+

√
|H1|n

))
≤ e−3n/64 + e−t

2/2,

by Proposition D.2 in Ma (2013). The similar analysis also applies to
∥∥∥∑n

i=1 ZiY
′
i,H2

∥∥∥. For

the third inequality, we have

P

(∥∥∥∥∥
n∑
i=1

ZiX
′
i,L1

∥∥∥∥∥
∞

> 1.03||Ω̂1||1/2(t+ 2)
√
n

)

≤
∑
k∈L1

P

(∣∣∣∣∣
n∑
i=1

ZiX
′
ik

∣∣∣∣∣ > 1.03||Ω̂1||1/2(t+ 2)
√
n

)

≤
∑
k∈L1

P

(∣∣∣∣∣
n∑
i=1

Zi
X ′ik√

Var(X ′ik)

∣∣∣∣∣ > 1.01(t+ 2)
√
n

)
≤ |L1|

(
e−3n/64 + e−t

2/2
)
,

where we have used Proposition D.2 in Ma (2013) again. Similarly, we obtain the last

inequality. The proof is complete.

Proof (Proof of Lemma A.6). Using the latent representation in Lemma A.2, we

have

ÂH1H2
= AH1H2

+AH1H2

(
1

n

n∑
i=1

Z2
i − 1

)
+
√
λαH1

(
1

n

n∑
i=1

ZiY
′
i,H2

T

)

+
√
λ

(
1

n

n∑
i=1

ZiX
′
i,H1

T

)
βTH2

+
1

n

n∑
i=1

X ′i,H1
Y ′i,H2

T .

Therefore

||ÂH1H2
−AH1H2

|| ≤ ||AH1H2
||

∣∣∣∣∣ 1n
n∑
i=1

Z2
i − 1

∣∣∣∣∣+ ||α||

∥∥∥∥∥ 1

n

n∑
i=1

ZiY
′
i,H2

T

∥∥∥∥∥
+||β||

∥∥∥∥∥ 1

n

n∑
i=1

ZiX
′
i,H1

T

∥∥∥∥∥+

∥∥∥∥∥ 1

n

n∑
i=1

X ′i,H1
Y ′i,H2

T

∥∥∥∥∥ . (31)

Now we control the upper bounds of four terms above. By picking t = s1/2

(
log p
n

)1/2−q/4

,

Lemma A.3 implies ∣∣∣∣∣ 1n
n∑
i=1

Z2
i − 1

∣∣∣∣∣ ≤ s1/2

(
log p

n

)1/2−q/4

,

with probability at least 1−O(p−2). Moreover, Lemma A.5 implies that∥∥∥∥∥ 1

n

n∑
i=1

ZiY
′
i,H2

T

∥∥∥∥∥ ≤ C||Ω̂2||1/2
(
s1/2

( log p

n

)1/2−q/4
+

√
|H2|√
n

)

≤ C||Ω̂2||1/2
(
s1/2

( log p

n

)1/2−q/4
+ ||β − η||

)
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with probability at least 1−O(p−2) and∥∥∥∥∥ 1

n

n∑
i=1

ZiX
′
i,H1

T

∥∥∥∥∥ ≤ C||Ω̂1||1/2
(
s1/2

( log p

n

)1/2−q/4
+

√
|H1|√
n

)

≤ C||Ω̂1||1/2
(
s1/2

( log p

n

)1/2−q/4
+ ||α− θ||

)
with probability at least 1− O(p−2), where we also used Lemma A.1 to control |H1| and

|H2|. Similarly, Lemma A.1 and Lemma A.4 imply∥∥∥∥∥ 1

n

n∑
i=1

X ′i,H1
Y ′i,H2

T

∥∥∥∥∥ ≤ C||Ω̂1||1/2||Ω̂2||1/2
(
s1/2

( log p

n

)1/2−q/4
+ ||α− θ||+ ||β − η||

)
,

with probability at least 1 − O(p−2). Besides, Assumption B guarantees that ||AH1H2
||,

||Ω̂1||1/2, ||Ω̂2||1/2, ||α|| and ||β|| are bounded above by some constant. Equation (31),

together with above bounds, completes our proof for ||ÂH1H2
− AH1H2

||. The bound for

maxi=1,2 |l̂i − li| directly follows from Wely’s theorem,

max
i=1,2

|l̂i − li| ≤ ||ÂH1H2
−AH1H2

||.

For the last result, it’s clear that AH1H2
= λαH1

βH2
is of rank one with l2 = 0 and l1 =

λ ‖αH1
‖ ‖βH2

‖ ≥ λ (‖α‖ − ‖αL1
‖) (‖β‖ − ‖βL2

‖). Assumption B implies that ‖α‖ = (1 +

o(1)) ‖θ‖ ≥ 0.9W−1/2, ‖β‖ ≥ 0.9W−1/2 and λ ≥ Cλ. To finish our proof that l1 is bounded

below away from zero l1 ≥ C−1, we only need to show that ‖αL1
‖ = o(1) and ‖βL2

‖ = o(1).

This can be seen from our previous results Equation (19) max
{∥∥∥α(B−1 )

c

∥∥∥ ,∥∥∥β(B−2 )
c

∥∥∥} =

o(1) and Equation (17) Li ⊂
(
B−i
)c

.

G. Proof of Theorem 4.2

The main tool for our proof is the Fano’s Lemma, which is based on multiple hypotheses

testing argument. To introduce Fano’s Lemma, we first need to introduce a few notations.

For two probability measures P and Q with density p and q with respect to a common

dominating measure µ, write the Kullback-Leibler divergence as K(P,Q) =
∫
p log p

qdµ.

The following lemma, which can be viewed as a version of Fano’s Lemma, gives a lower

bound for the minimax risk over the parameter set Ω = {ω0, ω1, . . . , ωm∗} with the loss

function d (·, ·). See Tsybakov (2009), Section 2.6 for more detailed discussions.

Lemma G.1 (Fano). Let Ω = {ωk : k = 0, ...,m∗} be a parameter set, where d is a

distance over Ω. Let {Pω : ω ∈ Ω} be a collection of probability distributions satisfying

1

m∗

∑
1≤k≤m∗

K (Pωk ,Pω0
) ≤ c logm∗ (32)
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with 0 < c < 1/8. Let ω̂ be any estimator based on an observation from a distribution in

{Pθ, θ ∈ Θ}. Then

sup
ω∈Ω

Ed2 (ω̂, ω) ≥ min
i 6=j

d2 (ωi, ωj)

4

√
m∗

1 +
√
m∗

(
1− 2c−

√
2c

logm∗

)
.

To apply the Fano’s Lemma, we need to find a collection of least favorable parameters

Ω = {ω0, ω1, . . . , ωm∗} such that the difficulty of estimation among this subclass is almost

the same as that among the whole sparsity class Fp1,p2q (s1, s2, Cλ) . To be specific, we check

that the distance d2 (ωi, ωj) among this collection of least favorable parameters is lower

bounded by the sharp rate of the convergence and the average Kullback-Leibler divergence

is indeed bounded above by the logarithm cardinality of the collection, i.e. Equation (32).

In the proof we will show this via three main steps. Before that, we need two auxiliary

lemmas.

Lemma G.2. Let {0, 1}p1−1 be equipped with Hamming distance δ. For integer 0 < d <

p1−1
4 , there exists some subset Φ = {φ1, . . . , φm} ⊂ {0, 1}p1−1 such that

δ (φi, φj) ≥
d

2
for any φi 6= φj , (33)

δ
(
φi,~0

)
= d for any φi, (34)

logm ≥ C0d log
(p1

d

)
for some constant C0. (35)

See Massart (2007), Lemma 4.10 for more details.

Lemma G.3. For i = 1, 2, let θi and ηi be some unit vectors and Pi be the distribution

of n i.i.d. N (0,Σi), where the covariance matrix is defined as

Σi =

Ip1×p1 λθiη
T
i

ληiθ
T
i Ip2×p2

 .

Then we have

K (P1,P2) ≤ nλ2

2 (1− λ2)

(
‖θ1 − θ2‖2 + ‖η1 − η2‖2

)
.

We shall divide the proof into three main steps.

Step 1: Constructing the parameter set. Without loss of generality we assume

Cλ <
1
2 . The subclass of parameters we will pick can be described in the following form:

Σ(p1+p2)×(p1+p2) =

Ip1×p1 1
2θη

T

1
2ηθ

T Ip2×p2

 ,

where we will pick a collection of θ or η such that they are separated with the right rate

of convergence. Without loss of generality, we assume that s1 ≥ s2 and hence s = s1. If
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the inequality s1 ≥ s2 holds in the other direction, we only need to switch the roles of θ

and η. In this case, we will pick the collection of least favorable parameters indexed by

the canonical pair ω = (θ, η). Specifically, define Ω = {ω0, ω1, . . . , ωm∗} where ωi = (θi, e1)

and e1 is the unit vector in Rp2 with the first coordinate 1 and all others 0. The number

m∗ will be determined by the a version of Varshamov-Gilbert bound in Lemma G.2.

Now we define m∗ = m− 1 and each θi−1 =
((

1− ε2
)1/2

, φiεd
−1/2

)
, where we pick

ε = c1 (s1 − 1)1/2

(
log p1

n

) 1

2
− q

4

and d = (s1 − 1)

(
log p1

n

)− q
2

,

while φi and m are determined in Lemma G.2 accordingly. The constant c1 ∈ (0, 1) is to

be determined later. It’s easy to check that each θi−1 is a unit vector. By our sparsity

assumption 1− ε2 ≥ 0.5 by picking a sufficient small constant c1 and consequently the first

coordinate is the largest one in magnitude. Clearly
∣∣θi,(1)

∣∣q ≤ s1. Moreover, we have

∣∣θi,(k)

∣∣q = εqd−q/2 = cq1

(
log p1

n

) q

2

≤ s1k
−1, 2 ≤ k ≤ d+ 1,∣∣θi,(k)

∣∣q = 0 ≤ s1k
−1, k > d+ 1.

Hence each θi is in the corresponding weak lq ball. Therefore our parameter subclass

Ω ⊂ Fp1,p2q (s1, s2, Cλ).

Step 2: Bounding d2 (ωi, ωj). The loss function we considered in this section for ωi and

ωj can be simplified as

d2 (ωi, ωj) = L2(θi, θj) =
∥∥θiθTi − θjθTj ∥∥2

F
≥ ‖θj − θi‖2 ,

whenever ‖θj − θi‖2 ≤ 2 which is satisfied in our setting since ‖θj − θi‖2 ≤ 2ε2 ≤ 1. The

Equation (33) in Lemma G.2 implies that

min
i 6=j

d2 (ωi, ωj) ≥
d

2

(
εd−1/2

)2

≥ ε2

2
=
c2

1

2
(s1 − 1)

(
log p1

n

)1− q
2

. (36)

which is the sharp rate of convergence, noting that the Equation (36) is still true up to a

constant when we replace p1 by p and s1 by s.

Step 3: Bounding the Kullback-Leibler divergence.
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Note that in our case η1 = η2 = e1. Lemma G.3, together with Equations (34) and

(35), imply

1

m∗

∑
1≤k≤m∗

K (Pωk ,Pω0
) ≤ nλ2

2 (1− λ2)

d

2

(
εd−1/2

)2

=
nλ2

4 (1− λ2)
c2

1 (s1 − 1)

(
log p1

n

)1− q
2

=
n

12
c2

1d
log p1

n
<

1

10
logm,

where the last inequality is followed by picking a sufficiently small constant c1 > 0 and

noting that λ = 1
2 , si

(
n

log pi

)q/2
= o(pi) in the assumption. Therefore we could apply

Lemma G.1 and Equation (36) to obtain the sharp rate of convergence, which completes

our proof.

sup
P∈F

EP
(
L2(θ̂, θ) ∨ L2(η̂, η)

)
≥ Cs

(
log p

n

)1− q
2

,

for any estimator (θ̂, η̂), where F = Fp1,p2q (s1, s2, Cλ). Hence, Theorem 4.2 is proved.

We finally prove Lemma G.3 to complete the whole proof.

Proof (Proof of Lemma G.3). Let’s rewrite matrix Σi in the following way

Σi = I +
λ

2

 θi

ηi

 θi

ηi

T

− λ

2

 θi

−ηi

 θi

−ηi

T

.

Note that
∥∥(θTi , ηTi )∥∥ =

√
2, so Σ1 and Σ2 have the same eigenvalues 1 + λ, 1, 1, . . . , 1− λ.

Thus we have

K (P1,P2) =
n

2

[
tr
(
Σ−1

2 Σ1

)
− p− log det

(
Σ−1

2 Σ1

)]
=

n

2

[
tr
(
Σ−1

2 Σ1

)
− p
]

=
n

2
tr
(
Σ−1

2 (Σ1 − Σ2)
)

=
nλ

2
tr

Σ−1
2

 0 A1 −A2

AT1 −AT2 0

 , (37)

where p = p1 + p2 and Ai = θiη
T
i . To explicitly write down the inverse of Σ2, we use its

eigen-decomposition

Σ2 = I −

 θ2θ
T
2 0

0 η2η
T
2

+
1 + λ

2

 θ2

η2

 θ2

η2

T

+
1− λ

2

 θ2

−η2

 θ2

−η2

T

.

Thus we have

Σ−1
2 = I −

 θ2θ
T
2 0

0 η2η
T
2

+
1

2 (1 + λ)

 θ2

η2

 θ2

η2

T

+
1

2 (1− λ)

 θ2

−η2

 θ2

−η2

T

,

= I − λ

2 (1 + λ)

 θ2

η2

 θ2

η2

T

+
λ

2 (1− λ)

 θ2

−η2

 θ2

−η2

T
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Plugging this representation into Equation (37), we obtain that

K (P1,P2) =
nλ2

2

[
tr

(
A2

(
AT2 −AT1

)
1− λ2

)
+ tr

(
AT2 (A2 −A1)

1− λ2

)]

=
nλ2

1− λ2
tr
(
A2

(
AT2 −AT1

))
=

nλ2

1− λ2

(
1−

(
θT1 θ2

) (
ηT1 η2

))
=

nλ2

1− λ2

(
1−

(
1− ‖θ1 − θ2‖2

2

)(
1− ‖η1 − η2‖2

2

))

≤ nλ2

2 (1− λ2)

(
‖θ1 − θ2‖2 + ‖η1 − η2‖2

)
,

where we used that θi and ηi are unit vectors in the fourth equation above.
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