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SUPPLEMENT TO “OPTIMAL RATES OF
CONVERGENCE FOR SPARSE COVARIANCE MATRIX
ESTIMATION?”

By T. Tony Cat T anpD HaRrrisoN H. Zuou'

University of Pennsylvania and Yale University

In this supplement we prove the additional technical lemmas used
in the proof of Lemma 6.

1. Proof of Lemma 8 (ii). Jensen’s inequality yields that for any two
densities ¢p and ¢; with respect to a common dominating measure p,

R ([ O e [

Equation (40) implies
= 2 (T 2
i {7V (Proasiac Paissao)t < e

where TV (P, Q) denotes the total variation distance between two distribu-
tions P and @Q, which then yields

qo —
q1

(58) Eiop ) {TV Py iaa) Paayian)} < e

due to the simple fact (Average {a;})? < Average {aZ}. Note that the total
variation affinity [P A Q|| = 1 —TV(P,Q) for any two probability distribu-
tions P and Q. Equation (58) immediately implies

E(“f 1A 1){HP(10’Y 1L,A-1) /\]P)l,lﬁf LA ”} I —cy>0.

Thus we have

[Bro A Bral > Borany (B0 i A Baananl} > 1= 2> 0

following from Lemma 4. &
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2 T. TONY CAI AND HARRISON H. ZHOU

2. Proof of Lemma 10. Write

0
¥1-3% = ( ro D )
(Vix@-1))" Op-1)x(p-1)

0 VTX(pfl)

Yo —3%9 = T
(V’fx(pfl)) O(p-1)x(p-1)

where vy, (,—1) = (v;) satisfies v; = 0 for 2 < j <p—rand v; =0 or

2<j<p
1forp—r+1<j<pwith |v|, =k, and VTX(pfl) = (v;)2<j<p satisfies a
similar property. Without loss of generality we consider only a special case

with

S 1, p—r+1<j<p—r+k

7o 0, otherwise

oF 1, p—r+k—-J<j<p—r+2k—J
7o 0, otherwise

It is easy to see that

Jep i=j=1
qij = e%,p, p—r+l<i<p—r+kandp—r+k—-J<j—-1<p—r+2k—-J .
0, otherwise

It is clear that the rank of (31 — ) (X2 — Xp) is 2. A straightforward cal-
culation shows that the characteristic polynomial

det [Mpp — (51 — %0) (Za — To)] = (A= J&2,)* A2

which implies (31 — %) (X2 — Xp) has two identical nonzero eigenvalues
Jé

nip‘
Note that this special case corresponds to

IL={j:p—r+1<j<p—r+k}

and
In={j:p—r+k—J<j<p—r+2k—J}.

Hence, I, nl.={j:p—r+k—J <j<p—r+k}with Card(I, nI.) = J.
The general case can be reduced to the special case by matrix permutations.
|
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SPARSE COVARIANCE MATRIX ESTIMATION 3
3. Proof of Lemma 11. Let

(59) A=[I—(S0—%1)(So—%)] " (57 = 1) (S0 — 1) (S0 — %),

and R
RY;{,)\T = —logdet (I — A).
Note that
R = —logdet [1— (80— 1) (S0 — ) — (£57 = 1) (S0 — £1) (S0 — 5o)]

= —logdet {[I — A] - [I — (30 — £1) (X0 — X2)]}
= —logdet[I — (Xp—%1) (3¢ — X2)] — logdet (I — A)
2 —1,A—
(603 —2log (1—Je,,) + RFIY,AILA’;
where the last equation follows from Lemma 10.
Now we establish Equation (46). It is important to observe that rank (A) <

2 due to the simple structure of (Xg — 31) (X¢ — X2). Let ¢ be an eigenvalue
of A. It is easy to see that

lol < [IAIl < 1S5 = I]I1%0 = 1l %0 = Sl /(1 =1%o = Sl 130 — S21)

3\? 11 11 5 1
D((2) —1)=-2/(1-2-2)=2 <2
(€)<(2> )3 3/< 3 3) 32 6
since H|21 — 20||| < |||21 — 20H|1 = 2]€6n7p < 1/3 and Amin (20) > 1-—
I —%0fl =1—||I—20]l; >2/3 from Equation (22). Note that

1
llog (1 —x)| < 2|z, for |z] < 5

which implies
RIS < 4|4,

IBVY
i.e.,
exp (SRI0N) < exp @n Al
Note that )
I = Xoll < I — Zoflly = 2kenp <5 <1
and 11
(B0 =%1) (B0 - o) s -5 <1
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4 T. TONY CAI AND HARRISON H. ZHOU

( i[ o) )2—1

We can write

Se2-1 = (I-(I-%) -

(62) = [ D (m+2)(I - zo)m] (I — %)
m=0

where ” "
D(m+2)(I-S)"|| < D (m+2) () <3.
m=0 m=0

Define

(63) Ax = (I —%0) (X0 — 1) (X0 — X2)

then

Il < 1= (S0 =) (S0 - 27 'H i (m +2) (T = )"

27

< 3 1A= HIA < 5 max {{lAxlly, | 4x llo}

N
1
from Equations (59) and (62). It is then sufficient to show

- N 27 3
(64) By, )10 | Eirsr (o) 2 (Grmax {14l 401 ) | <5,
where [|Ax|| depends on the values of A\j, A} and (y_1, A_1). We dropped the
indices A1, A} and (7-1,A_1) from A to simplify the notations.

Let A, = (a) oy Then |44, = apy| and [|As|l, =

maxi<ms<p 2; |05, |- We will show that for every non-negative integer ¢ and
every absolute row sum we have

k2 !
(2 @il = 2t - €np - 34)) < (m)

and the same tail bound holds for every absolute column sum, which imme-
diately implies

) k2 i
P (max {[| Asly , [|Asll o} = 2t - €np - kel ) < 2p <p7/8 1= k) :
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SPARSE COVARIANCE MATRIX ESTIMATION 5

For each row m, define E,,, = {1,2,...,7}\ {1, m}. Note that for each column
of A\g,,, if the column sum of Ag, is less than or equal to 2k — 2, then the
other two rows can still freely take values 0 or 1 in this column, because the
total sum will still not exceed 2k. Let Mg, be the number of columns of
AR, with column sum at least 2k —1, and define py, = r—mn,, . Without
loss of generality we assume that k > 3. Since ny,, - (2k —2) < r -k, the
total number of 1’s in the upper triangular matrix by the construction of
the parameter set, we thus have ny, < - %, which immediately implies
Prp, =T — Mg, =7 = % — 1. Recall that the distribution of (y_1,A_1)
given (A1, \}) is uniform over ©_; (A1, \]). Thus from Lemma 10 we have

Oe=) ey
(bl 2 2o b s, ) < S < ()

for every non-negative integer ¢ as shown in Equation (47), which immedi-
ately implies

]{32 t—1
(2 ‘am]‘ 2t - enp - Ei,p> < (m) for every t > 2.

For any random variable X > 0 and constant a > 0 it is known that

EX — J>0P(X>:n)dx=L<GP(X>x)d:E+J P(X > 1) ds

r>a

< a+f P(X > x)dz.
Tr>a

Setting X = exp (%n max {[| A« , |||A*|||OO}) and a = exp (27n . ;—fl “Epp kefl,p),

where 8 > 1 and p > n® as defined in Section 1, we have

~ 27
o [ oty &0 (Gomax Al 400} |

2
< exp <27n . B——ﬁl “Enp k‘efhp)
27 k2 =t
2 3 “n-2-epy ket )29 ————
+ L>52—fl Tnke, , - exp ( 5 " €np k‘enm) D (p/8 — = k:> dt
4
s o (/35—51 Cnpn qu>
k
(65) +J s OXP [log (2p) — (t—1)lo ])/BT +27n (t + 1) k:ei,p] dt.
t> 22
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lo 1L - 2 —1 l—q _ 1
Note that ep, = vy/ ==L k = [gcn,pengy] -1, 0% < éTﬁ and Mov'~™% < 3

as defined in Section 3, and ¢, , < Mn'z" (logp)fg%q from Equation (3).
These facts imply

4 4
(66) exp (;—_’i 'Cn,Peg’zmq> < exp ( 545 V2 .leq> <es < g,

and also

(67) 27nke), < 27TMuv ¢

—-1-k
(1—!—%)105};]) = %-(1—%>logp$<ﬁ2—_ﬁl—l>logp/8k7;.

The last two equations yield

1=
J 2 P [log (2p) — (t — 1) log W +2Tn (t+1) kei,p] dt =o0(1)
t>2
since logp — . Then Equation (65) is bounded from above by %, which
immediately implies (64) and thus establishes Lemma 11. &

Remark 1 Under the assumption ¢, , < M n 7t (log p)_Tq we obtain a
finite upper bound in Equations (66) and (67). It is not clear to us if this

1— 1—
assumption can be weakened to ¢, , < M nz (log p)qu.
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