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given under the spectral norm loss. Data-driven adaptive procedures for estimating various

classes of matrices are presented. Some key technical tools including large deviation results

and minimax lower bound arguments that are used in the theoretical analyses are discussed.

In addition, estimation under other losses and a few related problems such as Gaussian graph-

ical models, sparse principal component analysis, and hypothesis testing on the covariance
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1 Introduction

Driven by a wide range of applications in many fields, from medicine to signal processing to

climate studies and social science, high dimensional statistical inference has emerged as one of

the most important and active areas of current research in statistics. There have been tremendous

recent efforts to develop new methodologies and theories for the analysis of high dimensional

data, whose dimension p can be much larger than the sample size n. The methodological and

theoretical developments in high dimensional statistics are mainly driven by the important scien-

tific applications, but also by the fact that some of these high dimensional problems exhibit new

features that are very distinct from those in the classical low dimensional settings.

Covariance structure plays a particularly important role in high-dimensional data analysis. A

large collection of fundamental statistical methods, including the principal component analysis,

linear and quadratic discriminant analysis, clustering analysis, and regression analysis, require

the knowledge of the covariance structure. Estimating a high-dimensional covariance matrix and

its inverse, the precision matrix, is becoming a crucial problem in many applications including

functional magnetic resonance imaging, analysis of gene expression arrays, risk management and

portfolio allocation.

The standard and most natural estimator, the sample covariance matrix, performs poorly and

can lead to invalid conclusions in the high dimensional settings. For example, when p/n → c ∈
(0,∞], the largest eigenvalue of the sample covariance matrix is not a consistent estimate of the

largest eigenvalue of the population covariance matrix, and the eigenvectors of the sample covari-

ance matrix can be nearly orthogonal to the truth. See Marčenko and Pastur (1967), Johnstone and

Lu (2009), Paul (2007), and Johnstone (2001). In particular, when p > n, the sample covariance

matrix is not invertible, and thus cannot be applied in many applications that require estimation

of the precision matrix.

To overcome the difficulty due to the high dimensionality, structural assumptions are needed

in order to estimate the covariance or precision matrix consistently. Various families of struc-

tured covariance and precision matrices have been introduced in recent years, including bandable

covariance matrices, sparse covariance matrices, spiked covariance matrices, covariances with a

tensor product structure, sparse precision matrices, bandable precision matrix via Cholesky de-

composition, and latent graphical models. These different structural assumptions are motivated

by various scientific applications, such as genomics, genetics, and financial economics. Many

regularization methods have been developed accordingly to exploit the structural assumptions for

estimation of covariance and precision matrices. These include the banding method in Wu and

Pourahmadi (2009) and Bickel and Levina (2008a), tapering in Furrer and Bengtsson (2007) and
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Cai et al. (2010), thresholding in Bickel and Levina (2008b), El Karoui (2008) and Cai and Liu

(2011a), penalized likelihood estimation in Huang et al. (2006), Yuan and Lin (2007), Rothman

et al. (2008), Lam and Fan (2009), Ravikumar et al. (2011), and Chandrasekaran et al. (2012),

regularizing principal components in Johnstone and Lu (2009), Zou et al. (2006), Cai, Ma, and

Wu (2013), and Vu and Lei (2013), and penalized regression for precision matrix estimation in

Meinshausen and Bühlmann (2006), Yuan (2010), Cai et al. (2011), Sun and Zhang (2013), and

Ren et al. (2013).

Parallel to methodological advances on estimation of covariance and precision matrices there

have been theoretical studies of the fundamental difficulty of the various estimation problems in

terms of the minimax risks. Cai et al. (2010) established the optimal rates of convergence for

estimating a class of high-dimensional bandable covariance matrices under the spectral norm and

Frobenius norm losses. Rate-sharp minimax lower bounds were obtained and a class of tapering

estimators were constructed and shown to achieve the optimal rates. Cai and Zhou (2012a,b)

considered the problems of optimal estimation of sparse covariance and sparse precision matrices

under a range of losses, including the spectral norm and matrix `1 norm losses. Cai, Ren, and Zhou

(2013) studied optimal estimation of a Toeplitz covariance matrix by using a method inspired by

an asymptotic equivalence theory between the spectral density estimation and Gaussian white

noise established in Golubev et al. (2010). Recently Ren et al. (2013) obtained fundamental limits

on estimation of individual entries of a sparse precision matrix.

Standard techniques often fail to yield good results for many of these matrix estimation prob-

lems, and new tools are thus needed. In particular, for estimating sparse covariance matrices under

the spectral norm, a new lower bound technique was developed in Cai and Zhou (2012b) that is

particularly well suited to treat the two-directional nature of the covariance matrices. The result

can be viewed as a generalization of Le Cam’s method in one direction and Assouad’s lemma in

another. This new technical tool is useful for a range of other estimation problems. For example,

it was used in Cai et al. (2012) for establishing the optimal rate of convergence for estimating

sparse precision matrices and Tao et al. (2013) applied the technique to obtain the optimal rate for

volatility matrix estimation.

The goal of the present paper is to provide a survey of these recent optimality results on

estimation of structured high-dimensional covariance and precision matrices, and discuss some

key technical tools that are used in the theoretical analyses. In addition, we will present data-

driven adaptive procedures for the various matrix estimation problems. A few related problems

such as sparse principal component analysis and hypothesis testing on the covariance structure are

also considered. Some open problems will be discussed at the end.

Throughout the paper, we assume that we observe a random sample {X(1), . . . , X(n)} which
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consists of n independent copies of a p-dimensional random vectorX = (X1, . . . , Xp)
′ following

some distribution with mean 0 and covariance matrix Σ = (σij). The goal is to estimate the

covariance matrix Σ and its inverse, the precision matrix Ω = Σ−1 = (ωij), based on the sample{
X(1), . . . , X(n)

}
. Here for ease of presentation we assume E(X) = 0. This assumption is not

essential. The non-centered mean case will be briefly discussed in Section 5.

Before we present a concise summary of the optimality results for estimating various struc-

tured covariance and precision matrices in this section, we introduce some basic notation that will

be used in the rest of the paper. For any vector x ∈ Rp, we use ||x||ω to denote its `ω norm with

the convention that ||x|| = ||x||2. For any p by q matrix M = (mij) ∈ Rp×q, we use M ′ to

denote its transpose. The matrix `ω operator norm is denoted by ||M ||`ω = max||x||ω=1 ||Mx||ω
with the convention ||M || = ||M ||`2 for the spectral norm. Moreover, the entrywise `ω norm is

denoted by ||M ||ω and the Frobenius norm is represented by ||M ||F = ||M ||2 = (
∑

i,jm
2
ij)

1/2.

The submatrix with rows indexed by I and columns indexed by J is denoted by MI,J . When

the submatrix is a vector or a real number, we sometimes also use the lower case m instead of

M . We use ||f ||∞ = supx |f(x)| to denote the sup-norm of a function f(·), and I {A} to denote

the indicator function of an event A. We denote the covariance matrix of a random vector X by

Cov(X) with the convention Var(X) = Cov(X) when X is a random variable. For a symmetric

matrix M , M � 0 means positive definiteness, M � 0 means positive semi-definiteness and

det(M) is its determinant. We use λmax(M) and λmin(M) to denote its largest and smallest

eigenvalues respectively. Given two sequences an and bn, we write an = O(bn), if there is some

constant C > 0 such that an ≤ Cbn for all n, and an = o(bn) implies an/bn → 0. The notation

an � bn means an = O(bn) and bn = O(an). The n × p dimensional data matrix is denoted by

X = (X(1), ..., X(n))′ and the sample covariance matrix with known E(X) = 0 is then defined

as Σ̂n = X′X/n = (σ̂ij). For any index set I ⊆ {1, ..., p}, we denote by XI the submatrix of

X consisting of the columns of X indexed by I . We say the distribution of a random vector X is

sub-Gaussian with constant ρ > 0 if

P{
∣∣v′(X − EX)

∣∣ > t} ≤ 2e−t
2ρ/2,

for all t > 0 and all unit vector ‖v‖ = 1.

We present the optimality results in the rest of this section under the Gaussian assumption

with the focus on estimation under the spectral norm loss. More general settings will be discussed

in Sections 2 and 3.
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1.1 Estimation of Structured Covariance Matrices

We will consider in this paper optimal estimation of a range of structured covariance matrices,

including bandable, Toeplitz, and sparse covariance matrices.

Bandable Covariance Matrices

The bandable covariance structure exhibits a natural “order” or “distance” among variables. This

assumption is mainly motivated by time series with many scientific applications such as climatol-

ogy and spectroscopy. We consider settings where σij is close to zero when |i− j| is large. In

other words, the variables Xi and Xj are nearly uncorrelated when the distance |i− j| between

them is large. The following parameter space was proposed in Bickel and Levina (2008a) (see

also Wu and Pourahmadi (2003)),

Fα (M0,M) =

{
Σ : max

j

∑
i

{|σij | : |i− j| > k} ≤Mk−α for all k, and λmax (Σ) ≤M0

}
.

(1)

The parameter α specifies how fast the sequence σij decays to zero as j → ∞ for each fixed

i. This can be viewed as the smoothness parameter of the class Fα, which is usually seen in

nonparametric function estimation problems. A larger α implies a smaller number of “effective”

parameters in the model. Some other classes of bandable covariance matrices have also been

considered in the literature, for example,

Gα (M1) =
{

Σp×p : |σij | ≤M1(|i− j|+ 1)−α−1
}
. (2)

Note that Gα (M1) ⊂ Fα (M0,M) if M0 and M are sufficiently large. We will mainly focus on

the larger class (1) in this paper. Assume that p ≤ exp(εn) for some constant ε > 0, then the

optimal rate of convergence for estimating the covariance matrix under the spectral norm loss over

the class Fα (M0,M) is given as follows. See Cai et al. (2010).

Theorem 1 (Bandable Covariance Matrix) The minimax risk of estimating the covariance ma-

trix over the bandable class given in (1) under the spectral norm loss is

inf
Σ̂

sup
Fα(M0,M)

E
∥∥∥Σ̂− Σ

∥∥∥2
� min

{(
log p

n
+ n−

2α
2α+1

)
,
p

n

}
.

The minimax upper bound is derived by using a tapering estimator and the key rate n−
2α

2α+1 in the

minimax lower bound is obtained by applying Assouad’s lemma. We will discuss the important

technical details in Sections 2.1 and 4.2 respectively. An adaptive block thresholding procedure,

not depending on the knowledge of smoothness parameter α, is also introduced in Section 2.1.
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Toeplitz Covariance Matrices

Toeplitz covariance matrix arises naturally in the analysis of stationary stochastic processes with

a wide range of applications in many fields, including engineering, economics, and biology. It

can also be viewed as a special case of bandable covariance matrices. Similar decay or smooth-

ness assumption like the one given in (1) is imposed, but each descending diagonal from left to

right is constant for a Toeplitz matrix. In other words, Toeplitz covariance matrix Σ is uniquely

determined by an autocovariance sequence (σm) ≡ (σ0, σ1, · · · , σp−1, · · · ) with σij = σ|i−j|. It

is well known that the Toeplitz covariance matrix Σ is closely connected to the spectral density of

the stationary process {Xi} given by

f (x) = (2π)−1

[
σ0 + 2

∞∑
m=1

σm cos (mx)

]
, for x ∈ [−π, π] .

Motivated by time series applications, we consider the following class of Toeplitz covariance

matrices FT α (M0,M) defined in terms of the smoothness of the spectral density f . Let α =

γ + β > 0, where γ is the largest integer strictly less than α, 0 < β ≤ 1,

FT α (M0,M) =
{
f : ‖f‖∞ ≤M0 and

∥∥∥f (γ)(·+ h)− f (γ)(·)
∥∥∥
∞
≤Mhβ

}
. (3)

In other words, the parameter space FT α (M0,M) contains the Toeplitz covariance matrices

whose corresponding spectral density functions are of Hölder smoothness α. See, e.g., Parzen

(1957) and Samarov (1977). Another parameter space, which directly specifies the decay rate

of the autocovariance sequence (σm), has also been considered in the literature, see, Cai, Ren,

and Zhou (2013). Under the assumption (np/ log(np))
1

2α+1 < p/2, the following theorem gives

the optimal rate of convergence for estimating the Toeplitz covariance matrices over the class

FT α (M0,M) under the spectral norm loss.

Theorem 2 (Toeplitz Covariance Matrix) The minimax risk of estimating the Toeplitz covari-

ance matrices over the class given in (3) satisfies

inf
Σ̂

sup
FT α(M0,M)

E
∥∥∥Σ̂− Σ

∥∥∥2
�
(

log(np)

np

) 2α
2α+1

.

The minimax upper bound is attained by a tapering procedure. The minimax lower bound is

established through the construction of a more informative model and an application of Fano’s

lemma. The essential technical details can be found in Sections 2.2 and 4.5 respectively. See Cai,

Ren, and Zhou (2013) for further details.
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Sparse Covariance Matrices

For estimating bandable and Toeplitz covariance matrices, one can take advantage of the infor-

mation from the natural “order” on the variables. However, in many other applications such

as genomics, there is no knowledge of distance or metric between variables, but the covariance

between most pairs of the variables are often assumed to be insignificant. The class of sparse

covariance matrices assumes that most of entries in each row and each column of the covariance

matrix are zero or negligible. Compared to the previous two classes, there is no information on the

“order” among the variables. We consider the following large class of sparse covariance matrices,

H(cn,p) =

Σ : max
1≤i≤p

p∑
j=1

min{(σiiσjj)1/2,
|σij |√

(log p)/n
} ≤ cn,p

 . (4)

If an extra assumption that the variances σii are uniformly bounded with maxi σii ≤ ρ for some

constant ρ > 0 is imposed, thenH(cn,p) can be defined in terms of the maximal truncated `1 norm

max1≤i≤p
∑p

j=1 min{1, |σij | (n/ log p)1/2}, which has been considered in high-dimensional re-

gression setting (see, for example, Zhang and Zhang (2012)).

For recovering the support of the sparse covariance matrices, it is natural to consider the

following parameter space in which there are at most cn,p nonzero entries in each row/column of

a covariance matrix,

H0(cn,p) =

Σ : max
1≤i≤p

p∑
j=1

I {σij 6= 0} ≤ cn,p

 . (5)

One important feature of the classes H(cn,p) and H0(cn,p) is that they do not put any con-

straint on the variances σii, i = 1, ..., p. Therefore the variances σii can be in a very wide range

and possibly maxi σii → ∞. When the additional bounded variance condition maxi σii ≤ ρ for

some constant ρ > 0 is imposed, it can be shown that the classH(cn,p) contains other commonly

considered classes of sparse covariance matrices in the literature, including an `q ball assump-

tion maxi
∑p

j=1 |σij |
q ≤ sn,p in Bickel and Levina (2008b), and a weak `q ball assumption

max1≤j≤p
{∣∣σj[k]

∣∣q} ≤ sn,p/k for each integer k in Cai and Zhou (2012a) where
∣∣σj[k]

∣∣ is the

kth largest entry in magnitude of the jth row (σij)1≤i≤p. More specifically, these two classes of

sparse covariance matrices are contained in H(cn,p) with cn,p = Cqsn,p(n/ log p)q/2 for some

constant Cq depending on q only. The class H(cn,p) also covers the adaptive sparse covariance

class U∗q (sn,p) proposed in Cai and Liu (2011a), in which each row/column (σij)1≤i≤p is assumed

to be in a weighted `q ball for 0 ≤ q < 1,i.e., maxi
∑p

j=1(σiiσjj)
(1−q)/2 |σij |q ≤ sn,p. Similarly

U∗q (sn,p) ⊂ H(cn,p) with cn,p = Cqsn,p(n/ log p)q/2 for 0 ≤ q < 1. We advocate the larger
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sparse covariance class H(cn,p) in this paper not only because it contains almost all other classes

considered in the literature, but also the comparison between the noise level ((σiiσjj log p)/n)1/2

and the signal level |σij | captures the essence of the sparsity of the model.

Under some mild conditions 1 ≤ cn,p ≤ C
√
n/(log p)3 and p ≥ nφ for some constants φ and

C > 0, the optimal rate of convergence for estimating sparse covariance matrices over the class

H(cn,p) under the spectral norm is given as follows. See Cai and Zhou (2012b).

Theorem 3 (Sparse Covariance Matrix) The minimax risk of estimating a sparse covariance

matrix over the classH(cn,p) given in (4) satisfies

inf
Σ̂

sup
H(cn,p)

E
∥∥∥Σ̂− Σ

∥∥∥2
� c2

n,p

log p

n
.

An adaptive thresholding estimator is constructed in Section 2.3.1, and it is shown to be adaptive

to the variability of the individual entries and attains the minimax upper bound. The lower bound

argument for estimation under the spectral norm was given in Cai and Zhou (2012b) by applying

Le Cam-Assouad’s method, which is introduced in Section 4.1.

1.2 Estimation of Structured Precision Matrices

In addition to covariance matrix estimation, there is also significant interest in estimation of its

inverse, the precision matrix, under the structural assumptions on the precision matrix itself. Pre-

cision matrix is closely connected to the undirected Gaussian graphical model, which is a powerful

tool to model the relationships among a large number of random variables in a complex system

and is used in a wide array of scientific applications. It is well known that recovering the structure

of an undirected Gaussian graph G = (V,E) is equivalent to recovering the support of the preci-

sion matrix. In fact, if X ∼ N
(
0,Ω−1

)
is a graphical model with respect to G, then the entry ωij

is zero if and only if the variablesXi andXj are conditionally independent given all the remaining

variables, which is equivalent to the edge (i, j) /∈ E. (See, e.g., Lauritzen (1996).) Consequently,

a sparse graph corresponds to a sparse precision matrix. We thus focus on estimation of sparse

precision matrices and present the optimality results under the Gaussian assumption.

Sparse Precision Matrices and Gaussian Graphical Model

The class of sparse precision matrices assumes that most of entries in each row/column of the

precision matrix are zero or negligible. The class of sparse precision matrices HP(cn,p,M)

introduced in this section is similar to the class of sparse covariance matrices defined in (4),

where the sparsity is modeled by a truncated `1 type norm. We also assume the spectra of Ω are
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bounded from below and maxi σii is bounded above for simplicity. More specifically, we define

HP(cn,p,M) by

HP(cn,p,M) =

 Ω : max1≤i≤p
∑

j 6=i min{1, |ωij |√
(log p)/n

} ≤ cn,p,
1
M ≤ λmin(Ω),maxi σii ≤M,Ω � 0

 , (6)

where M is some universal constant and the sparsity parameter cn,p is allowed to grow with

p, n→∞.

This class of precision matrices was proposed in Ren et al. (2013) and contains similar classes

proposed in Cai et al. (2011) and Cai et al. (2012), in which an extra matrix `1 norm bound

Mn,p is included in the definition. As a special case where each |ωij | is either zero or above

the level (n/ log p)−1/2, such a matrix in HP(cn,p,M) has at most cn,p nonzero entries on each

row/column which is called the maximum node degree of Ω in the Gaussian graphical model. We

define the following class for the support recovery purpose,

HP0(cn,p,M) =

{
Ω :
∑p

j=1 I {ωij 6= 0} ≤ cn,p,
1
M ≤ λmin(Ω),maxi σii ≤M,Ω � 0

}
. (7)

The following theorem provides the optimal rate of convergence for estimating sparse precision

class under the spectral norm loss.

Theorem 4 (Sparse Precision Minimax) Assume that 1 ≤ cn,p ≤ C
√
n/(log p)3. The minimax

risk of estimating the sparse precision matrix over the classHP(cn,p,M) given in (6) satisfies

inf
Ω̂

sup
HP(cn,p,M)

E
∥∥∥Ω̂− Ω

∥∥∥2
� c2

n,p

log p

n
.

In Section 3.1, we establish the minimax upper bound via a neighborhood regression approach.

The estimator ANT introduced in Section 3.2 also achieves this optimal rate. The lower bound

argument is provided by applying Le Cam-Assouad’s method developed in Cai et al. (2012) which

is discussed in Section 4.4.

For estimating sparse precision matrices, besides the minimax risk under the spectral norm, it

is also important to understand the minimax risk of estimating individual entries of the precision

matrix. The solution is not only helpful for the support recovery problem but also makes important

advancements in the understanding of statistical inference of low-dimensional parameters in a

high-dimensional setting. See Ren et al. (2013).

Theorem 5 (Entry of Sparse Precision Matrix) Assume that (cn,p log p)/n = o(1). The mini-

max risk of estimating ωij for each i, j over the sparse precision class given in (6) is
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inf
ω̂ij

sup
HP(cn,p,M)

E |ω̂ij − ωij | � max

{
cn,p

log p

n
,

√
1

n

}
.

The minimax upper bound is based on a multivariate regression approach given in Section 3.2

while Le Cam’s lemma is used to show the minimax lower bound in Section 4.3.

1.3 Organization of the Paper

The rest of the paper is organized as follows. Section 2 presents several minimax and adaptive

procedures for estimating various structured covariance matrices and establishes the correspond-

ing minimax upper bounds under the spectral norm loss. Estimation under the factor models is

also discussed. Section 3 considers minimax and adaptive estimation of sparse precision matri-

ces under the spectral norm loss. Section 3 also discusses inference on the individual entries of a

sparse precision matrix and the latent graphical model. Section 4 focuses on the lower bound argu-

ments in matrix estimation problems. It begins with a review of general lower bound techniques

and then applies the tools to establish rate-sharp minimax lower bounds for various covariance

and precision matrix estimation problems. The upper and lower bounds together yield immedi-

ately the optimal rates of convergence stated earlier in this section. Section 5 briefly discusses the

non-centered mean case and the positive semi-definite issue in covariance and precision matrix

estimation. Sparse principal component analysis and hypothesis testing on the covariance struc-

ture are also discussed. The paper is concluded with a discussion on some open problems on

estimating covariance and precision matrices as well as their functionals in Section 6.

2 Estimation of Structured Covariance Matrices

This section focuses on estimation of structured covariance matrices. Minimax upper bounds

and adaptive procedures are introduced. The estimators are based on “smoothing” the sample

covariance matrices. These include the banding, tapering and thresholding estimators. Estimation

of precision matrices is considered in the next section.

2.1 Bandable Covariance Matrices

Minimax Upper Bound

Bickel and Levina (2008a) introduced the class of bandable covariance matrices Fα(M0,M)

given (1) and proposed a banding estimator

Σ̂B,k = (σ̂ijI {|i− j| ≤ k}) (8)
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based on the sample covariance matrix Σ̂n = (σ̂ij) for estimating a covariance matrix Σ ∈

Fα(M0,M). The bandwidth k was chosen to be kB =
(

log p
n

) 1
2(α+1) and the rate of conver-

gence
(

log p
n

) α
α+1 for estimation under the spectral norm loss was proved under the sub-Gaussian

assumption on X = (X1, . . . , Xp)
′. It was unclear if this rate is optimal.

Cai et al. (2010) further studied the optimal estimation problem for the classes Fα (M0,M) in

(1) and Gα (M1) in (2) under the sub-Gaussian assumption. A tapering estimator was proposed.

Specifically, for a given even positive integer k ≤ p, let ω = (ωm)0≤m≤p−1 be a weight sequence

with ωm given by

ωm =


1, when m ≤ k/2

2− 2m
k , when k/2 < m ≤ k

0, Otherwise

. (9)

The tapering estimator Σ̂T,k of the covariance matrix Σ is defined by

Σ̂T,k = (σ̂ijω|i−j|).

It was shown that the tapering estimator with bandwidth kT = min{n
1

2α+1 , p} gives the following

rate of convergence under the spectral norm.

Theorem 6 (Cai et al. (2010)) Suppose that X is sub-Gaussian distributed with some finite con-

stant. Then the tapering estimator Σ̂T,k with kT = min{n
1

2α+1 , p} satisfies

sup
Fα(M0,M)

E
∥∥∥Σ̂T,kT − Σ

∥∥∥2
≤ min

{
C

(
log p

n
+ n−

2α
2α+1

)
, C

p

n

}
. (10)

Theorem 6 clearly also holds for Gα (M1), a subspace of Fα(M0,M). Note that the rate given

in (10) is faster than the rate ((log p)/n)α/(α+1) obtained in Bickel and Levina (2008a) for the

banding estimator Σ̂B,k with the bandwidth kB =
(

log p
n

) 1
2(α+1) , which implies that this banding

estimator is sub-optimal. A minimax lower bound is also established in Cai et al. (2010), which

shows that the rate of convergence in (10) is indeed optimal. We will discuss this minimax lower

bound argument in Section 4.2.

There are two key steps in the technical analysis of the tapering estimator. In the first step,

it is shown that the tapering estimator Σ̂T,k has a simple representation and can be written as the

average of many small disjoint submatrices of size no more than k in the sample covariance matrix

Σ̂n. Consequently, the distance
∥∥∥Σ̂T,kT − Σ

∥∥∥ can be bounded by the maximum of distances of

these submatrices from their respective means. The second key step involves the application of

a large deviation result for sample covariance matrix of relatively small size under the spectral

norm. This random matrix result, stated in the following lemma, is a commonly used technical

tool in high-dimensional statistical problems. See Cai et al. (2010) for further details.
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Lemma 1 Suppose Y = (Y1, . . . , Yk)
′ is sub-Gaussian with constant ρ > 0 and with mean 0 and

covariance matrix Σ. Let Y (1), . . . , Y (n) be n independent copies of Y . Then there exist some

universal constant C > 0 and some constant ρ1 depending on ρ, such that the sample covariance

matrix of {Y (1), . . . , Y (n)}, Σ̂Y
n , satisfies

P
(∥∥∥Σ̂Y

n − Σ
∥∥∥ > t

)
≤ 2 exp(−nt2ρ1 + Ck),

for all 0 < t < ρ1.

See also Davidson and Szarek (2001) for more refined results under the Gaussian assumption.

For the banding estimator, Bickel and Levina (2008a) used the matrix `1 norm as the upper

bound to control the spectral norm. Then bounding the risk under the spectral norm can be turned

into bounding the error on each row of Σ̂n under the vector `1 norm, which is an easier task.

An analysis of the bias and variance trade-off then leads to their choice of bandwidth kB =

(n/ log p)
1

2(α+1) . The loose control of spectral norm by the matrix `1 norm is the main reason

why the result in Bickel and Levina (2008a) is sub-optimal. An interesting question is whether

the banding estimator with a different bandwidth is also optimal. Indeed it can be shown that the

banding estimator Σ̂B,k with the bandwidth k = min{n
1

2α+1 , p} is rate-optimal. See, for example,

Xiao and Bunea (2014) for a detailed calculation under the Gaussian assumption.

Adaptive Estimation through Block Thresholding

It is evident that the construction of the optimal tapering estimator Σ̂T,kT requires the explicit

knowledge of the decay rate α which is usually unknown in practice. Cai and Yuan (2012) consid-

ered the adaptive estimation problem and constructed a data-driven block thresholding estimator,

not depending on α, M0, M or M1, that achieves the optimal rate of convergence simultaneously

over the parameter spaces Fα (M0,M) and Gα (M1) for all α > 0.

The construction of the adaptive estimator consists of two steps. In the first step, we divide the

sample covariance matrix into blocks of increasing sizes as they move away from the diagonal,

suggested by the decay structure of the bandable covariance matrices. The second step is to si-

multaneous kill or keep all the entries within each block to construct the final estimator, where the

thresholding levels are chosen adaptively for different blocks. The underlying idea is to mimic the

analysis for the tapering estimator Σ̂T,kT in the sense that the final estimator can be decomposed

as the sum of small submatrices. However, the choice of the bandwidth is chosen adaptively here

through using the block thresholding strategy, where the threshold rule is established by a novel

norm compression inequality. See Theorem 3.4 of Cai and Yuan (2012) for details.
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Now we briefly introduce the construction of blocks. First, we construct disjoint square blocks

of size kad � log p along the diagonal. Second, a new layer of blocks of size kad are created

towards the top right corner along the diagonal next to the previous layer. In particular, this layer

of blocks has either two or one block (of size kad) in an alternating fashion (see Figure 1). After

this step, we note that the odd rows of blocks has three blocks of size kad and even rows of blocks

have two blocks of size kad. This creates space to double the size of the blocks in the next step.

We then repeat the first and second steps building on the previous layer of blocks but double

the size of the blocks until the whole upper half of the matrix is covered. In the end, the same

blocking construction is done for the lower half of the matrix. It is possible that the last row and

last column of the blocks are rectangular instead of being square. For the sake of brevity, we omit

the discussion on these blocks. See Cai and Yuan (2012) for further details. By the construction,

the blocks form a partition of {1, ..., p}2. We list the indices of those blocks by B = {B1, ..., BN},
assuming there are N blocks in total. The construction of the blocks is illustrated in Figure 1.

Figure 1: Construction of blocks with increasing dimensions away from the diagonal.

Once the blocks B are constructed, we define the final adaptive estimator Σ̂Ada
CY by the follow-

ing thresholding procedure on the blocks of the sample covariance matrix Σ̂n. First, we keep the

diagonal blocks of size kad constructed at the very beginning, i.e., (Σ̂Ada
CY )B = (Σ̂n)B for those

B in the diagonal. Second, we set all the large blocks to 0, i.e., (Σ̂Ada
CY )B = 0 for all B ∈ B with

size(B) > n/ log n, where for B = I × J , size(B) is defined to be max{|I|, |J |}. In the end, we

threshold the intermediate blocks adaptively according to their spectral norm as follows. Suppose

13



B = I × J . Then (Σ̂Ada
CY )B = (Σ̂n)BI{||(Σ̂n)B|| > λB}, where

λB = 6(||(Σ̂n)I×I || · ||(Σ̂n)J×J ||(size(B) + log p)/n)1/2.

Finally we obtain the adaptive estimator Σ̂Ada
CY , which is rate optimal over the classes Fα (M0,M)

or Gα (M1) .

Theorem 7 (Cai and Yuan (2012)) Suppose that X is sub-Gaussian distributed with some finite

constant. Then for all α > 0, the adaptive estimator Σ̂Ada
CY constructed above satisfies

sup
Fα(M0,M)

E
∥∥∥Σ̂Ada

CY − Σ
∥∥∥2
≤ minC

{(
log p

n
+ n−

2α
2α+1

)
,
p

n

}
,

where the constant C depends on α, M0 and M .

In light of the optimal rate of convergence given in Theorem 1, this shows that the block thresh-

olding estimator adaptively achieves the optimal rate over Fα(M0,M) for all α > 0.

Estimation under Other Losses

In addition to estimating bandable covariance matrices under the spectral norm, estimation un-

der other losses has also been considered in literature. Furrer and Bengtsson (2007) introduced a

general tapering estimator, which gradually shrinks the off-diagonal entries toward zero with cer-

tain weights, to estimate covariance matrices under the Frobenius norm loss in different settings.

Cai et al. (2010) studied the problem of optimal estimation under the Frobenius norm loss over

the classes Fα (M0,M) and Gα (M1), and Cai and Zhou (2012a) investigated optimal estimation

under the matrix `1 norm.

The optimal estimators for both the Frobenius norm and matrix `1 norm are again based on

the tapering estimator (or banding estimator) with the bandwidth kT,F = n
1

2(α+1) and kT,1 =

min
{
n

1
2(α+1) , (n/ log p)

1
2α+1

}
respectively. The rate of convergence under the Frobenius norm

ofFα(M0,M) is different from that of Gα(M1). The optimal rate of convergence under the matrix

`1 norm is min
{(

(log p/n)
2α

2α+1 + n−
α
α+1

)
, p2/n

}
. Their corresponding minimax lower bounds

are established in Cai et al. (2010) and Cai and Zhou (2012a). Comparing these estimation results,

it should be noted that although the optimal estimators under different norms are all based on

tapering or banding, the best bandwidth critically depends on the norm under which the estimation

accuracy is measured.
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2.2 Toeplitz Covariance Matrices

We turn to optimal estimation of Toeplitz covariance matrices. Recall that if X is a stationary

process with autocovariance sequence (σm), then the covariance matrix Σp×p has the Toeplitz

structure such that σij = σ|i−j|.

Wu and Pourahmadi (2009) introduced and studied a banding estimator based on the sample

autocovariance matrix, and McMurry and Politis (2010) extended their results to tapering esti-

mators. Xiao and Wu (2012) further improved these two results and established sharp banding

estimator under the spectral norm. All these results are obtained in the framework of causal rep-

resentation and physical dependence measures. One important assumption is that there is only

one realization available, i.e. n = 1. More recently, Cai, Ren, and Zhou (2013) considered the

problem of optimal estimation of Toeplitz covariance matrices over the class FT α(M0,M). The

result is valid not only for fixed sample size but also for the general case when n, p→∞.
An optimal tapering estimator is constructed by tapering the sample autocovariance sequence.

More specifically, recall Σ̂n = (σ̂ij) is the sample covariance matrix. For 0 ≤ m ≤ p− 1, set

σ̃m = (p−m)−1
∑

s−t=m
σ̂st,

which is an unbiased estimator of σm. Then the tapering Toeplitz estimator Σ̂Toep
T,k = (σ̆st) of

Σ with bandwidth k is defined as σ̆st = ω|s−t|σ̃|s−t|, where the weight ωm is defined in (9).

By picking the best choice of the bandwidth kTo = (np/ log (np))
1

2α+1 , the optimal rate of

convergence is given as follows.

Theorem 8 (Cai, Ren, and Zhou (2013)) Suppose thatX is Gaussian distributed with a Toeplitz

covariance matrix Σ ∈ FT α (M0,M) and suppose (np/ log (np))
1

2α+1 ≤ p/2. Then the taper-

ing estimator Σ̂Toep
T,k with kTo = (np/ log (np))

1
2α+1 satisfies

sup
Σ∈FT α(M0,M)

E
∥∥∥Σ̂Toep

T,kTo
− Σ

∥∥∥2
≤ C

(
log(np)

np

) 2α
2α+1

.

The performance of the banding estimator was also considered in Cai, Ren, and Zhou (2013).

Surprisingly, the best banding estimator is inferior to the optimal tapering estimator over the class

FT α(M0,M), which is due to a larger bias term caused by the banding estimator. See Cai, Ren,

and Zhou (2013) for further details. At a high level, the upper bound proof is based on the fact

that the spectral norm of a Toeplitz matrix can be bounded above by the sup-norm of the corre-

sponding spectral density function. which leads to the appearance of the logarithmic term in the

upper bound. A lower bound argument will be introduced in Section 4.5. The appearance of the
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logarithmic term indicates the significant difference in the technical analyses between estimating

bandable and Toeplitz covariance matrices.

2.3 Sparse Covariance Matrices

We now consider optimal estimation of another important class of structured covariance matrices

– sparse covariance matrices. This problem has been considered by Bickel and Levina (2008b),

Rothman et al. (2009) and Cai and Zhou (2012a,b). These works assume that the variances are

uniformly bounded, i.e., maxi σii ≤ ρ for some constant ρ > 0. Under such a condition, a

universal thresholding estimator Σ̂U,Th =
(
σ̂U,Thij

)
is proposed with σ̂U,Thij = σ̂ij · I{|σ̂ij | ≥

γ (log p/n)1/2} for some sufficiently large constant γ = γ(ρ). This estimator is not adaptive as

it depends on the unknown parameter ρ. The rates of convergence sn,p (log p/n)(1−q)/2 under

the spectral norm and matrix `1 norm in probability are obtained over the classes of sparse co-

variance matrices, in which each row/column is in an `q ball or a weak `q ball, 0 ≤ q < 1. i.e.

maxi
∑p

j=1 |σij |
q ≤ sn,p or max1≤j≤p

{∣∣σj[k]

∣∣q} ≤ sn,p/k respectively.

2.3.1 Sparse Covariance: Adaptive Minimax Upper Bound

Estimation of a sparse covariance matrix is intrinsically a heteroscedastic problem in the sense

that the variances of the entries of the sample covariance matrix σ̂ij can vary over a wide range.

A universal thresholding estimator essentially treats the problem as a homoscedastic problem and

does not perform well in general. Cai and Liu (2011a) proposed a data-driven estimator Σ̂Ad,Th

which adaptively thresholds the entries according to their individual variabilities,

Σ̂Ad,Th =
(
σ̂Ad,Thij

)
, θ̂ij =

1

n

n∑
k=1

(XkiXkj − σ̂ij)2 (11)

σ̂Ad,Thij = σ̂ij · I{|σ̂ij | ≥ δ
(
θ̂ij log p/n

)1/2
}.

The advantages of this adaptive procedure are that it is fully data-driven and no longer requires

the variances σii to be uniformly bounded. The estimator Σ̂Ad,Th attains the following rate of

convergence adaptively over sparse covariance classesH(cn,p) defined in (4) under the matrix `ω
norms for all ω ∈ [1,∞].

Theorem 9 (Sparse Covariance Matrices) Suppose each standardized component Yi = Xi/σ
1/2
ii

is sub-Gaussian distributed with some finite constant and a mild condition minij Var(YiYj) ≥ c0

for some positive constant c0. Then the adaptive estimator Σ̂Ad,Th constructed above in (11)
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satisfies

inf
H(cn,p)

P(
∥∥∥Σ̂Ad,Th − Σ

∥∥∥
`ω
≤ Ccn,p((log p)/n)1/2) ≥ 1−O((log p)−1/2p−δ+2), (12)

where ω ∈ [1,∞].

The proof of Theorem 9 essentially follows from the analysis in Cai and Liu (2011a) for

Σ̂Ad,Th under the matrix `1 norm over a smaller class of sparse covariance matrices U∗q (sn,p),

where each row/column (σij)1≤i≤p is assumed to be in a weighted `q ball, maxi(σiiσjj)
(1−q)/2 |σij |q ≤

sn,p. That result is automatically valid for all matrix `ω norms, following the claim in Cai and

Zhou (2012b). The key technical tool in the analysis is the following large deviation result for

self-normalized entries of the sample covariance matrix.

Lemma 2 Under the assumptions of Theorem 9, for any small ε > 0,

P( |σ̂ij − σij | /θ̂1/2
ij ≥

√
α(log p)/n) = O((log p)−1/2p−(α/2−ε)),

Lemma 2 follows from a moderate deviation result in Shao (1999). See Cai and Liu (2011a) for

further details.

Theorem 9 states the rate of convergence in probability. The same rate of convergence holds

in expectation with a mild sample size condition p ≥ nφ for some φ > 0. A minimax lower

bound argument under the spectral norm is provided in Cai and Zhou (2012b) (see also Section

4.4), which shows that Σ̂Ad,Th is indeed rate optimal under all matrix `ω norms. In contrast,

the universal thresholding estimator Σ̂U,Th is sub-optimal over H(cn,p) due to the possibility of

maxi (σii)→∞.

Besides the matrix `ω norms, Cai and Zhou (2012b) considered a unified result on estimating

sparse covariance matrices under a class of Bregman divergence losses which include the com-

monly used Frobenius norm as a special case. Following a similar proof there, it can be shown that

the estimator Σ̂Ad,Th also attains the optimal rate of convergence under the Bregman divergence

losses over the large parameter class H(cn,p). In addition to the hard thresholding estimator in-

troduced above, Rothman et al. (2009) considered a class of thresholding rules with more general

thresholding functions including soft thresholding, SCAD and adaptive Lasso. It is straightfor-

ward to extend all results above to this setting. Therefore, the choice of the thresholding function

is not important as far as the rate optimality is concerned. Distributions with polynomial-type

tails have also been considered by Bickel and Levina (2008b), El Karoui (2008) and Cai and

Liu (2011a). In particular, Cai and Liu (2011a) showed that the adaptive thresholding estimator

Σ̂Ad,Th attains the same rate of convergence cn,p((log p)/n)1/2 as the one for the sub-Gaussian
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case (12) in probability over the class U∗q (sn,p), assuming that for some γ,C > 0, p ≤ Cnγ and

for some ε > 0,such that E |Xj |4γ+4+ε ≤ K for all j. The superiority of the adaptive threshold-

ing estimator Σ̂Ad,Th for heavy-tailed distributions is also due to the moderate deviation for the

self-normalized statistic σ̂ij/θ̂ij (see Shao (1999)). It is easy to see that this still holds over the

classH(cn,p).

2.3.2 Related Results

Support Recovery A closely related problem to estimating a sparse covariance matrix is the

recovery of the support of the covariance matrix. This problem has been considered by, for exam-

ple, Rothman et al. (2009) and Cai and Liu (2011a). For support recovery, it is natural to consider

the parameter spaceH0(cn,p). Define the support of Σ = (σij) by supp (Σ) = {(i, j) : σij 6= 0} .
Rothman et al. (2009) applied the universal thresholding estimator Σ̂U,Th to estimate the support

of true sparse covariance in H0(cn,p), assuming bounded variances maxi (σii) ≤ ρ. In particu-

lar, it successfully recovers the support of Σ in probability, provided that the magnitudes of the

nonzero entries are above a certain threshold, i.e., min(i,j)∈supp(Σ) |σij | > γ0 (log p/n)1/2 for a

sufficiently large γ0 > 0.

Cai and Liu (2011a) extended this result under a weaker assumption on entries in the support

using the adaptive thresholding estimator Σ̂Ad,Th. We state the result below.

Theorem 10 (Cai and Liu (2011a)) Let δ ≥ 2. Suppose the assumptions in Theorem 9 hold and

for all (i, j) ∈ supp (Σ)

|σij | > (2 + δ + γ) (θij log p/n)1/2 ,

for some constant γ > 0, where θij = Var (XiXj). Then we have

inf
H0(cn,p)

P(supp
(

Σ̂Ad,Th
)

= supp (Σ))→ 1.

Factor Model Factor models in the high dimensional setting as an extension of the sparse co-

variance structure have been used in a range applications in finance and economics such as model-

ing house prices and optimal portfolio allocations. We consider the following multi-factor model

Xj = b′jF + Uj , where bj is a deterministic k by 1 vector of factor loadings, F is the ran-

dom vector of common factors and Uj is the error component of Xj . Set U = (U1, . . . , Up)
′ be

the error vector of X and B = (b1, . . . ,bp)
′. Assume that U and factors F are independent,

then it is easy to see the covariance of X can be written as Σ = BCov (F ) B′ + ΣU , where

ΣU = Cov (U) =
(
σUij

)
is the error covariance matrix. When a few factors such as those in
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three-factor models (see Fama and French (1992)) could explain the data well, the number of pa-

rameters can be significantly reduced. Usually small value of k implies that the BCov (F ) B′ is a

low rank matrix and sparse structure is imposed on ΣU such as the diagonal structure. Therefore

in factor model, covariance matrix Σ can be represented as the sum of a low rank matrix and a

sparse matrix.

Fan et al. (2008) considered a factor model assuming that the error components are indepen-

dent, which results ΣU to be a diagonal matrix. This result was extended and improved in Fan

et al. (2011) by further assuming general sparse structure on ΣU , namely squares there are no

more than cn,p nonzero entries in each row/column, i.e. ΣU ∈ H0(cn,p). Let the ith observa-

tion X(i) = BF (i) + U (i) for i = 1, ..., n, where U (i) =
(
U

(i)
1 , . . . , U

(i)
p

)′
is its error vector.

Both works assume that the factors F (i), i = 1, ..., n are observable and hence the number of

factors k is known as well. This allows using ordinary least squares estimator b̂j to estimate

loadings bj accurately first and then estimating the errors Û (i)
j = X

(i)
j − b̂′jF

(i) by the resid-

uals. Additional adaptive thresholding procedure is then applied to the error covariance matrix

estimator Σ̂U = 1
n

∑n
i=1 Û

(i)(Û (i))′ to estimate ΣU , motivated by the one in (11). Under certain

conditions, including bounded variances maxi Var(Xi), bounded λmin (ΣU ), λmin (Cov(F )) and

exponential tails of F and U , the rates of convergence cn,pk (log p/n)1/2 under the spectral norm

are obtained for estimating Σ−1
U and Σ−1. Note the number of factors k plays a role on the rates,

compared to the one in (12).

Recently, Fan et al. (2013) considered the setting in which the factors are unobservable and

must be estimated from the data as well. This imposes new challenges since there are two matrices

to estimate while only a noisy version of their sum is observed. To overcome this difficulty, Fan

et al. (2013) assumed the factors are pervasive and as a result, the k eigenvalues of the low rank

matrix BCov (F ) B′ diverge at the rateO(p) while the spectra of the sparse matrix ΣU is assumed

to be bounded from below and above. Under this assumption, after simply running the SVD on the

sample covariance matrix Σ̂n, the matrix BCov (F ) B′ can be accurately estimated by the matrix

formed by the first k principal components of Σ̂n and the sparse matrix ΣU can then be estimated

by adaptively thresholding the remaining principal components. k is assumed to be finite rather

than diverging in this paper. Under other similar assumptions as those in Fan et al. (2011), the

rates of convergence cn,p (log p/n)1/2 for estimating Σ−1
U and Σ−1 under the spectral norm are

derived, assuming ΣU ∈ H0(cn,p).

We would like to point out that there also has been a growing literature on the study of decom-

position from the sum of a low rank matrix and a sparse matrix. However, most of them deal with

the data matrix instead of the covariance structure with the goal of identification. Their strategies

are mainly based on the incoherence between the two matrices while the spectra of them are on
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the same order. See, e.g., Candès et al. (2011) and Agarwal et al. (2012).

3 Minimax Upper Bounds of Estimating Sparse Precision Structure

We turn in this section to optimal estimation of sparse precision matrices and recovering its sup-

port which have close connections to Gaussian graphical models. The problem has drawn consid-

erable recent attentions. We have seen in the last section that estimators of a structured covariance

matrix are usually obtained from the sample covariance matrix through certain direct “smoothing”

operations such as banding, tapering, or thresholding. Compared to those methods, estimation of

the structured precision matrices is more involved due to the lack of a natural pivotal estimator

and is usually obtained through some regression or optimization procedures.

There are two major approaches to estimation of sparse precision matrices: neighborhood-

based and penalized likelihood approaches. Neighborhood-based approach runs a Lasso regres-

sion or Dantzig selector of each variable on all other variables to estimate the precision matrix

column by column. This approach requires running p Lasso regressions. We focus on it in Sec-

tion 3.1 with an emphasis on the adaptive rate optimal procedure proposed in Sun and Zhang

(2012). An extension of this approach to regressing two variables against others lead to a statisti-

cal inference result on each entry ωij . In Section 3.2, we introduce such a method proposed in Ren

et al. (2013) and consider support recovery as well. Penalized likelihood approach is surveyed in

Section 3.3, together with latent graphical model structure estimation problems.

3.1 Sparse Precision Matrix: Adaptive Minimax Upper Bound under Spectral
Norm

Under the Gaussian assumption, the motivation of neighborhood-based approach is the following

conditional distribution of Xj given all other variables Xjc ,

Xj |Xjc ∼ N
(
−ω−1

jj ωjcjXjc , ω
−1
jj

)
, (13)

where ωjcj is the jth column of Ω with the jth coordinate removed.

Meinshausen and Bühlmann (2006) first proposed the neighborhood selection approach and

applied the standard Lasso regression on Xj against Xjc to estimate nonzero entries in each row.

The goal of this paper however is to identify the support of Ω. In the same spirit, Yuan (2010)

applied the Dantzig selector version of this regression to estimate Ω column by column. i.e.

min ‖β‖1 s.t.
∥∥∥(X′jcXj −X′jcXjcβ

)
/n
∥∥∥
∞
≤ τ . Cai et al. (2011) further proposed an estimator
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called CLIME by solving a related optimization problem

arg min
{
‖Ω‖1 : ‖Σ̂nΩ− I‖∞ ≤ τ

}
.

In practice, the tuning parameter τ is chosen via cross-validation. However the theoretical choice

of τ = CMn,p

√
log p/n requires the knowledge of the matrix `1 norm Mn,p = ||Ω||`1 , which

is unknown. Cai et al. (2012) introduced an adaptive version of CLIME Ω̂ACLIME , which is

data-driven and adaptive to the variability of individual entries of Σ̂nΩ − I . Over the class

HP(cn,p,M), the estimators proposed in Yuan (2010), Cai et al. (2011) and Cai et al. (2012)

can be shown to attain the optimal rate under the spectral norm if the matrix `1 norm Mn,p is

bounded. Besides the Gaussian case, both Cai et al. (2011) and Cai et al. (2012) also considered

sub-Gaussian and polynomial tail distributions. It turns out that if each Xi has finite 4 + ε mo-

ments, under some mild condition on the relationship between p and n, the rate of convergence is

the same as those in the Gaussian case.

Now we introduce the minimax upper bound for estimating Ω under the spectral norm over

the classHP(cn,p,M). Sun and Zhang (2012) constructed an estimator for each column with the

scaled Lasso, a joint estimator for the regression coefficients and noise level. For simplicity, we

assume X is Gaussian. For each j = 1, . . . , p, the scaled Lasso is applied to the linear regression

of the jth column Xj of the data matrix against all other columns Xjc as follows:

{
β̂j , η̂j

}
= arg min

b,η

‖Xj −Xjcb‖22
2nη

+
η

2
+ λ

∑
k 6=j

√
σ̂kk |bk|

 , b ∈ Rp−1 and indexed by jc,

(14)

where λ = A
√

(log p) /n for some constant A > 2 and σ̂kk is the sample variance of Xk. The

optimization (14) is jointly convex in (b, η), hence an iterative algorithm, which in each iteration

first estimates b given η, then estimates η given the b just estimated, is guaranteed to converge to

the global solution. This iterative algorithm is run until convergence of
{
β̂j , η̂j

}
for each scaled

Lasso regression (14). After computing the solution
{
β̂j , η̂j

}
, the estimate of jth column ω̂SLj of

Ω is given by ω̂SLjj = η̂−2
j and ω̂SLjcj = −β̂j η̂−2

j . The final estimator Ω̂SL is obtained by putting the

columns ω̂SLj together and applying an additional symmetrization step, i.e.,

Ω̃SL = arg min
M :M ′=M

||Ω̂SL −M ||`1 , Ω̂SL = (ω̂SLij ).

Without assuming bounded matrix `1 norm on Ω, the rate of convergence of Ω̃SL is given under

the spectral norm as follows

Theorem 11 (Sun and Zhang (2012)) Suppose that X is Gaussian and cn,p
(

log p
n

)1/2
= o(1).

Then the estimator Ω̃SL with λ = A
√

(log p) /n for some constant A > 2 satisfies
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sup
HP(cn,p,M)

E
∥∥∥Ω̃SL − Ω

∥∥∥ ≤ Ccn,p( log p

n

)1/2

. (15)

The key technical tool in the analysis is the oracle inequality for the prediction error as well as

the bound on the error under the `1 norm in the high-dimensional sparse linear regression setting

for the Lasso estimator and Dantzig selector. We state the results for Lasso as a lemma in the

following simple case. Assume the observations Y = (Y1, Y2, . . . , Yn)′ have the following form

Y = Xβ + W,

where X is an n by p design matrix and W = (W1,W2, . . . ,Wn)′ is the vector of i.i.d. indepen-

dent sub-Gaussian noise with variance σ2. Suppose the coefficient β is sparse with no more than

s nonzero coordinates, i.e. ‖β‖0 ≤ s. The Lasso estimator of β is defined by

β̂L = arg min
β∈Rp

{
‖Y −Xb‖22

2n
+ λ ‖b‖1

}
. (16)

Moreover, we assume that the rows of X are i.i.d. copies of some sub-Gaussian distribution X

with mean 0 and covariance matrix Cov(X) whose spectra are bounded from below and above by

constants.

Lemma 3 Assume that (s log p)/n = o(1). For any given M > 0, there exists a sufficiently

large constant A > 0 depending on M and the spectra of Cov(X) such that the following

results hold with probability 1 − O(p−M ) for the Lasso estimator with the tuning parameter

λ > Aσ
√

(log p)/n in (16), ∥∥∥β̂L − β∥∥∥
1
≤ Csσ

√
(log p)/n,∥∥∥X(β̂L − β)∥∥∥2

≤ Csσ2(log p)/n,

where the constant C depends on M and the spectra of Cov(X).

Lemma 3 follows from the standard Lasso regression results. See, for example, Bickel et al. (2009)

for further details. Note that under the sub-Gaussian assumption on the random design matrix

X and the assumption (s log p)/n = o(1), the required properties on the Gram matrix X′X/n

such as the compatibility factor condition (Van De Geer and Bühlmann (2009)), the restricted

eigenvalue condition (Bickel et al. (2009)) or the cone invertibility factors condition (Ye and

Zhang (2010)) are automatically satisfied with probability 1 − c1 exp(−c2n), where constants

c1 and c2 depend on the spectra of Cov(X) and σ. See, for example, Rudelson and Zhou (2013)

for details.
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Another contribution of Ω̃SL is that the procedure is tuning-free in the sense that λ is well

specified. Finally, the assumptions in Theorem 11 can be further weakened and a smaller λ is also

valid. See Sun and Zhang (2012) for further details.

3.2 Individual Entries of Sparse Precision Matrix: Asymptotic Normality

Given the connection between the entry ωij and the corresponding edge (i, j) in a Gaussian graph,

it is of significant interest to make inference on and provide a confidence interval for ωij . Further-

more, the analysis would lead to results on support recovery. Along this line, to estimate a given

entry ωij , Ren et al. (2013) extended the neighborhood-based approach to regress two variables

against the remaining ones, based on the following conditional distribution,

XA|XAc ∼ N
(
−Ω−1

A,AΩA,AcXAc ,Ω
−1
A,A

)
, with ΘA,A = Ω−1

A,A =

(
θii θij

θji θjj

)
(17)

where A = {i, j} is the index set of the two variables. Unlike the regression interpretation for

(13) where the goal is to estimate the coefficients −ω−1
jj ωjcj as a whole under some vector norm

losses, in the distribution (17) the goal is to estimate the noise level since ωij is one of the three

parameters in ΘA,A. This leads to the multivariate regression with two response variables Xi and

Xj . Scaled Lasso regression is applied in Ren et al. (2013) as follows. For each m ∈ A = {i, j},

{
β̂m, θ̂

1/2
mm

}
= arg min

b∈Rp−2,σ∈R

{
‖Xm −XAcb‖2

2nσ
+
σ

2
+ λ

∑
k∈Ac

√
σ̂kk |bk|

}
, (18)

where the vector b is indexed by Ac and σ̂kk is the sample variance of Xk. Define the (p− 2)× 2

dimensional coefficients β̂ = (β̂i, β̂j) and the residuals of the scaled Lasso regression by ε̂A =

XA − XAc β̂. The estimator of ΘA,A can be given by Θ̂A,A = ε̂′Aε̂A/n. Finally, the estimator

Ω̂A,A = (ω̂kl)k,l∈A is obtained by simply inverting Θ̂A,A, i.e. Ω̂A,A = Θ̂−1
A,A. In particular,

ω̂ij = −θ̂ij/(θ̂iiθ̂jj − θ̂2
ij). (19)

The rate of convergence of estimating each ωij is then provided under a certain sparsity assump-

tion over HP(cn,p,M). In particular when cn,p = o (
√
n/ log p), asymptotical efficiency result

and the corresponding confidence interval are obtained.

Theorem 12 (Ren et al. (2013)) Let λ =
√

2δ log p
n for any δ > 1 in Equation (18). Assume

(cn,p log p)/n = o(1), then for any small ε > 0, there exists a constant C1 = C1 (ε) > 0 such

that

sup
HP(cn,p,M)

sup
i,j

P

{
|ω̂ij − ωij | > C1 max

{
cn,p

log p

n
,

√
1

n

}}
≤ ε. (20)
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Furthermore, ω̂ij is asymptotically efficient√
nFij (ω̂ij − ωij)

D→ N (0, 1) , (21)

when cn,p = o
( √

n
log p

)
, where F−1

ij = ωiiωjj + ω2
ij .

The key technical tool in the analysis is also related to Lemma 3 but focuses on the prediction

error rather than estimation under the `1 norm. The advantage of estimator ω̂ij is that by estimating

the noise level rather than each coefficient, the estimation accuracy can be significantly improved.

However, we have to pay for the accuracy by the computational cost. If our goal is to estimate

all those entries above the threshold level (log p/n)1/2 individually, we can first apply the method

proposed in Liu (2013) with p regressions to pick those order pcn,p entries above the threshold

level, then order pcn,p regressions have to be done to estimate them individually. In contrast,

methods in Section 3.1 only require p regressions. Minimax lower bounds are also provided in

Ren et al. (2013) to show the estimator ω̂ij is indeed rate optimal. See Section 4.3 for details. This

methodology can be routinely extended into a more general form with A replaced by some subset

B ⊂ {1, 2, . . . , p} with bounded size. Then the inference result can be obtained to estimate a

smooth functional of Ω−1
B,B .

Other related works in high dimensional regression also can be applied to the current setting.

Zhang and Zhang (2014) proposed a relaxed projection approach for making inference of each

coefficient in a regression setting. See also van de Geer et al. (2014) and Javanmard and Montanari

(2013). Although the procedures in those works seem different from ω̂ij in (19), essentially all

methods try to estimate the partial correlation of Xi and Xj and hence they are asymptotically

equivalent. Liu (2013) recently developed a multiple testing procedure with the false discovery

rate (FDR) control for testing the entries of Ω, H0ij : ωij = 0. Surprisingly, to test all ωij , it only

requires running p regressions as (14).

The support recovery problem is closely related due to the graphical interpretation as well.

Based on the estimator ω̂ij in (19), Ren et al. (2013) applied an additional thresholding procedure,

adaptive to the Fisher information Fij to recover the sign of Ω. More specifically, define S(Ω) =

{sgn(ωij), 1 ≤ i, j ≤ p} and

Ω̂ANT = (ω̂ANTij )p×p, where ω̂ANTii = ω̂ii, and ω̂ANTij = ω̂ijI{|ω̂ij | ≥ τij}

with τij =
√

(2ξ0(ω̂iiω̂jj + ω̂2
ij) log p)/n for i 6= j. (22)

Theorem 13 (Ren et al. (2013)) Let λ =
√

2δ log p
n for any δ > 3 and ξ0 > 2 in the thresholding

level (22). Assume cn,p = o
(√

n/ log p
)

and |ωij | ≥
√

(8ξ0(ωiiωjj + ω2
ij) log p)/n for any
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ωij 6= 0. Then we have

inf
HP0(cn,p,M)

P
(
S(Ω̂ANT ) = S(Ω)

)
→ 1. (23)

The sufficient condition on each nonzero entry in the Theorem 13 is much weaker compared

with other results in the literature, where the smallest magnitude of the nonzero entries is required

to be above the threshold level ||Ω||`1
√

(log p)/n. It is worthwhile to point out that based on

Theorem 12, it can be easily shown that Ω̂ANT also attains the optimal rates of convergence under

the spectral norm overHP(cn,p,M) as that in Theorem 11.

3.3 Related Results

Penalized Likelihood Approaches Penalized likelihood methods have also been introduced

for estimating sparse precision matrices. It is easy to see that under the Gaussian assumption the

negative log-likelihood up to a constant, can be written as l
(
X(1), . . . , X(n); Ω

)
= tr(Σ̂nΩ) −

log det(Ω), where det(Ω) is the determinant of Ω. To incorporate the sparsity of Ω, we consider

the following penalized log-likelihood estimator with Lasso-type penalty

Ω̂λ = arg min
Ω�0

tr(Σ̂nΩ)− log |Ω|+ λ
∑
i,j

|ωij | , (24)

where Ω � 0 means symmetric positive definite. Some results are derived by using `1 penalty

on the off-diagonal entries
∑

i 6=j |ωij | rather than all entries. We will review some theoretical

properties and computational issue respectively below.

Yuan and Lin (2007) first proposed using Ω̂λ and studied its asymptotic properties for fixed

p as n → ∞. Rothman et al. (2008) analyzed the high-dimensional behavior of this estima-

tor. Assuming that spectra of Ω are bounded from below and above, the rates of convergence

((p + s) log p/n)1/2 and ((1 + s) log p/n)1/2 under the Frobenius norm and spectral norm are

obtained respectively with s =
∑

i 6=j I{ωij 6= 0} being the number of nonzero off-diagonal en-

tries. Compare this result with that derived by neighborhood-based approach in (15). Note that

s can be as large as pcn,p over HP0(cn,p,M). Lam and Fan (2009) studied a generalization of

(24) and replace the Lasso penalty by general non-convex penalties such as SCAD to overcome

the bias issue. Ravikumar et al. (2011) applied the primal-dual witness construction to derive the

rate of convergence (log p/n)1/2 under the sup-norm which in turn leads to convergence rates in

the Frobenius and spectral norms as well as support recovery under certain regularity conditions.

The results heavily depend on a strong irrepresentability condition imposed on the Hessian matrix

Γ = Σ⊗Σ, where⊗ is the tensor (or Kronecker) product. Both sub-Gaussian and polynomial tail

cases are considered. However this method cannot be extended to allowing many small nonzero

entries such as the classHP(cn,p,M).
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Latent Gaussian Graphical Model We have seen the connections between the precision matrix

and the corresponding Gaussian graph, in which we assume all variables are fully observed. In

some applications, one may not have access to all the relevant variables. Suppose we only observe

p coordinates X = (X1, . . . , Xp)
′ of a (p + r)-dimensional Gaussian vector (X ′, Y ′)′, where

Y = (Y1, . . . , Yr)
′ represent the latent coordinates. Denote the covariance matrix of all variables

by Σ(X,Y ). It is natural to assume that the fully observed (p+ r)-dimensional Gaussian graphical

model has a sparse dependence graph. In other words, the precision matrix Ω(X,Y ) = Σ−1
(X,Y ) is

sparse. Represent the precision matrix Ω(X,Y ) in the following block form

Ω(X,Y ) =

(
ΩXX ΩXY

ΩY X ΩY Y

)
.

In such a case, the p × p precision matrix Ω of the observed coordinates X can be written as the

difference by the Schur complement formula,

Ω = ΩXX − ΩXY Ω−1
Y Y ΩY X = S∗ − L∗.

Here S∗ = ΩXX is a sparse matrix corresponding to the structure of the subgraph induced by

those observed p variables and L∗ = ΩXY Ω−1
Y Y ΩY X is a low rank matrix with rank at most r,

which is the number of the unobserved latent variables.

Chandrasekaran et al. (2012) proposed a penalized likelihood approach to estimate both the

sparse structure S∗ and the low rank part L∗ as the solutions to

min
(S,L):S−L�0, L�0

tr
(

(S − L) Σ̂n

)
− log det (S − L) + χn

γ∑
i,j

|sij |+ tr (L)

 . (25)

Here tr (L) is the trace of L, which is used to induce the low rank structure on L. Consistency

results were established under a strong irrepresentability condition and assumptions on the min-

imum magnitude of the nonzero entries of S∗ and the minimum nonzero eigenvalue of L∗. Ren

and Zhou (2012) relaxed the assumptions by considering the parameter space HP0(cn,p,M) (7)

for S∗ with bounded matrix `1 norm and a “spread-out” parameter space for L∗. Ren et al. (2013)

further removed the matrix `1 norm condition based on the estimator Ω̂ANT obtained in (22).

3.4 Computational Issues

Estimating high-dimensional precision matrices is a computationally challenging problem. Pang

et al. (2014) proposed an efficient parametric simplex algorithm to implement the CLIME estima-

tor. In particular, their algorithm efficiently calculates the full piecewise-linear regularization path
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and provides an accurate dual certificate as stopping criterion. An R package ’fastclime’ coded in

C has been developed. See Pang et al. (2014) for more details.

For the semi-definite program (24), Yuan and Lin (2007) solved the problem using interior-

point method for the general max-det problem which is proposed by Vanderberghe et al. (1998).

Rothman et al. (2008) derived their algorithm based on the Cholesky decomposition and the local

quadratic approximation such that cyclical coordinate descent approach can be applied. Define

W = Ω̂−1
λ . Banerjee et al. (2008) showed that one can solve the dual of (24) through optimiz-

ing over each row/column of W in a block coordinate descent form (see also d’Aspremont et al.

(2008)). In fact, solving this dual form is equivalent to solving p coupled Lasso regression prob-

lems, which are related to the neighborhood-based approach considered in Section 3.1. Friedman

et al. (2008) further proposed the GLasso algorithm which takes advantage of the fast coordinate

descent algorithms (Friedman et al. (2007)) to solve it efficiently. The computational complexity

of GLasso is O(p3). In comparison, the algorithms of Banerjee et al. (2008) and Yuan and Lin

(2007) have higher computational costs. A modified GLasso algorithm is proposed by Witten

et al. (2011) to improve the speed from O(p3) to O(p2 +
∑m

i=1 |Ci|
3) when the solution Ω̂λ is

block diagonal with blocks C1, . . . , Cm, where |Ci| is the size of the ith block.

Hsieh et al. (2011) apply a second-order algorithm to solve (24) and achieve superlinear rate

of convergence. Their algorithm is based on a modified Newton’s method which leverages the

sparse structure of the solution. Recently, Hsieh et al. (2013) further improved this result and

claimed that the optimization problem (24) can be solved even for a million variables. A block

coordinate descent method with the blocks chosen via a clustering approach is used to avoid the

memory bottleneck of storing the gradient W when dimension p is very large.

4 Lower Bounds

A major step in establishing a minimax theory is the derivation of rate sharp minimax lower

bounds. In this section, we first review a few effective lower bound arguments based on hypothesis

testing. These include Le Cam’s method, Assouad’s Lemma and Fano’s Lemma which have been

commonly used in the more conventional nonparametric estimation problems. See Yu (1997)

and Tsybakov (2009) for further discussions. We will also discuss a new lower bound technique

developed in Cai and Zhou (2012b) that is particularly well suited for treating “two-directional”

problems such as matrix estimation. The technique can be viewed as a generalization of both Le

Cam’s method and Assouad’s Lemma. We will then apply these lower bound arguments to the

various covariance and precision matrix estimation problems discussed in the previous sections

to obtain minimax lower bounds, which match the corresponding upper bound results in the last
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two sections. The upper and lower bounds together yield the optimal rates of convergence given

in Section 1.

4.1 General Minimax Lower Bound Techniques

Le Cam’s Method

Le Cam’s method is based on a two-point testing argument. See Le Cam (1973) and Donoho and

Liu (1991). In nonparametric estimation problems, Le Cam’s method often provides the minimax

lower bound for estimating a real-valued functional. See, for instance, Bickel and Ritov (1988)

and Fan (1991) for the quadratic functional estimation problems.

Let X be an observation from a distribution Pθ where θ belongs to a parameter set Θ. For

two distributions P and Q with densities p and q with respect to a common dominating measure

µ, the total variation affinity is given by ‖P ∧ Q‖ =
∫
p ∧ qdµ. Le Cam’s method relates the

testing problem with the total variation affinity. In other words, when the total variation affinity

between the two distributions are bounded away from zero, it is impossible to test between those

two distributions perfectly. As a consequence, a lower bound can be measured by the distance of

the two parameters which index those two distributions.

In the current paper, we introduce a version of Le Cam’s method which tests the simple hy-

pothesis H0 : θ = θ0 against a composite alternative H1 : θ ∈ Θ1 with a finite parameter set Θ =

{θ0, θ1, . . . , θD}. Let L be a loss function. Define `min = min1≤i≤D inft [L (t, θ0) + L (t, θi)]

and denote P̄ = 1
D

∑D
i=1 Pθi . Le Cam’s method gives a lower bound for the maximum estimation

risk over the parameter set Θ.

Lemma 4 (Le Cam) Let T be any estimator of θ based on an observation X from a distribution

Pθ with θ ∈ Θ = {θ0, θ1, . . . , θD}, then

sup
θ∈Θ

EθL (T, θ) ≥ 1

2
lmin

∥∥Pθ0 ∧ P̄
∥∥ . (26)

Assouad’s Lemma

Assouad’s lemma works with a hypercube Θ = {0, 1}r. It is based on testing a number of pairs

of simple hypotheses and is connected to multiple comparisons. See Assouad (1983). In nonpara-

metric estimation problems, Assouad’s lemma is often successful in obtaining the minimax lower

bound for many global estimation problems such as estimating the whole density or regression

functions in certain smoothness classes.

For a parameter θ = (θ1, ..., θr) where θi ∈ {0, 1}, one tests whether θi = 0 or 1 for each

1 ≤ i ≤ r based on the observation X . In other words, we decompose the global estimation
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problem into r sub-problems. For each sub-problem or each pair of simple hypotheses, there is a

certain loss for making an error in the comparison. The lower bound given by Assouad’s lemma

is a combination of losses from testing all pairs of simple hypotheses. To make connection to

Le Cam’s method, we can view the loss for making an error due to each sub-problem is obtained

by applying Le Cam’s method. In particular, when r = 1, Assouad’s lemma becomes Le Cam’s

method with D = 1 in Lemma 4.

Let

H
(
θ, θ̃
)

=
r∑
i=1

∣∣∣θi − θ̃i∣∣∣ (27)

be the Hamming distance on Θ. Assouad’s lemma gives a lower bound for the maximum risk over

the hypercube Θ of estimating an arbitrary quantity ψ (θ) belonging to a metric space with metric

d. It works especially well when the metric d is decomposable with respect to the Hamming

distance.

Lemma 5 (Assouad) Let X ∼ Pθ with θ ∈ Θ = {0, 1}r and let T = T (X) be an estimator of

ψ(θ) based on X . Then for all s > 0

max
θ∈Θ

2sEθds (T, ψ (θ)) ≥ min
H(θ,θ̃)≥1

ds
(
ψ (θ) , ψ

(
θ̃
))

H
(
θ, θ̃
) · r

2
· min
H(θ,θ̃)=1

∥∥Pθ ∧ Pθ̃
∥∥ . (28)

The lower bound in (28) has three factors. The first factor is the minimum cost of making

a mistake per comparison and the second one is the expected number of mistakes one would

make when each pair of simple hypotheses is indistinguishable. The last factor, which is usually

bounded below by some positive constant in applications, is the total variation affinity for each

sub-problem.

Le Cam-Assouad’s Method

The Le Cam-Assouad’s method, which was first introduced in Cai and Zhou (2012b), is designed

to treat problems such as estimation of sparse matrices with constraints on both rows and columns.

Again, let X ∼ Pθ where θ ∈ Θ. The parameter space Θ of interest has a special structure which

can be viewed as the Cartesian product of two components Γ and Λ. For a given positive integer

r and a finite set B ⊂ Rp \ {01×p}, define Γ = {0, 1}r and Λ ⊆ Br. Define

Θ = Γ⊗ Λ = {θ = (γ, λ) : γ ∈ Γ and λ ∈ Λ} . (29)

The Le Cam-Assouad’s method reduces to the classical Assouad’s lemma when Λ contains only

one matrix for which every row is nonzero, and becomes Le Cam’s method when r = 1. The
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advantage of this method is that it breaks down the lower bound calculations for the whole matrix

estimation problem into calculations for individual rows so that the overall analysis is tractable.

For θ = (γ, λ) ∈ Θ, denote the projection of θ to Γ by γ (θ) = (γi (θ))1≤i≤r and to Λ by

λ (θ) = (λi (θ))1≤i≤r. Let DΛ be the cardinality of Λ. For a given a ∈ {0, 1} and 1 ≤ i ≤ r, we

define the mixture distribution P̄a,i by

P̄a,i =
1

2r−1DΛ

∑
θ

{Pθ : γi(θ) = a}. (30)

So P̄a,i is the mixture distribution over all Pθ with γi(θ) fixed to be a while all other components

of θ vary over all possible values. In the construction of the parameter set for establishing the

minimax lower bound of matrix estimation problems, r usually is the number of possibly non-

zero rows in the upper triangle of the matrix, and Λ is the set of matrices with r rows to determine

the upper triangle matrix.

Lemma 6 (Le Cam-Assouad) For any estimator T of ψ(θ) based on an observation from a prob-

ability distribution in {Pθ, θ ∈ Θ}, and any s > 0

max
Θ

2sEθds (T, ψ (θ)) ≥ αr
2

min
1≤i≤r

∥∥P̄0,i ∧ P̄1,i

∥∥ (31)

where P̄a,i is defined in Equation (30) and α is given by

α = min
{(θ,θ̃):H(γ(θ),γ(θ̃))≥1}

ds(ψ(θ), ψ(θ̃))

H(γ(θ), γ(θ̃))
. (32)

Fano’s Lemma

Fano’s lemma, like Assouad’s lemma, is also based on multiple hypotheses testing argument and

has been widely used for global estimation problems in nonparametric settings. Fano’s lemma

applies to a more general setting and hence is stronger than Assouad’s lemma, although the latter

one seems easier to use in many applications. For their relationship, we refer to Yu (1997) for

more details.

For two probability measures P and Q with density p and q with respect to a common dominat-

ing measure µ, write the Kullback-Leibler divergence as K(P,Q) =
∫
p log p

qdµ. The following

lemma, which can be viewed as a version of Fano’s lemma, gives a lower bound for the minimax

risk over the parameter set Θ = {θ0, θ1, . . . , θm∗}. See (Tsybakov, 2009, Section 2.6) for more

detailed discussions.
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Lemma 7 (Fano) Let Θ = {θm : m = 0, ...,m∗} be a parameter set, where d is a distance over

Θ. Let {Pθ : θ ∈ Θ} be a collection of probability distributions satisfying

1

m∗

∑
1≤m≤m∗

K (Pθm ,Pθ0) ≤ c logm∗ (33)

with 0 < c < 1/8. Let θ̂ be any estimator based on an observation from a distribution in

{Pθ, θ ∈ Θ}. Then

sup
θ∈Θ

Ed2
(
θ̂, θ
)
≥ min

i 6=j

d2 (θi, θj)

4

√
m∗

1 +
√
m∗

(
1− 2c−

√
2c

logm∗

)
.

Another advantage of Fano’s lemma is that it sometimes only relies on the analytical behavior

of the packing number with respect to the loss function d and avoids constructing an explicit

subsets of parameter spaces, which can be a challenging task in many situations. See Yang and

Barron (1999) for details. Hence the accurate rate of packing number at the logarithm level is the

key to applying Fano’s lemma and obtaining the minimax lower bounds. Rigollet and Tsybakov

(2012) applied this method to improve the assumptions in the minimax lower bound argument for

estimating sparse covariance matrices under the matrix `1 norm in Cai and Zhou (2012a).

4.2 Application of Assouad’s Lemma to Estimating Bandable Covariance Matrices

In Section 2.1, we constructed that the tapering estimator Σ̂T,kT and showed in Theorem 6 that it

attains the rate of convergence min
{(

log p
n + n−

2α
2α+1

)
, pn

}
over the bandable class Fα (M0,M)

defined in (1) under the spectral norm. We now apply Assouad’s lemma to give a lower bound

n−
2α

2α+1 .

The basic strategy is to carefully construct a finite least favorable subset of the corresponding

parameter space in the sense that the difficulty of estimation over the subset is essentially the same

as that of estimation over the whole parameter space. The finite collection that is appropriate for

this lower bound argument is defined as follows. For given positive integers k andmwith k ≤ p/2
and 1 ≤ m ≤ k, define the p× p matrix D(m, k) = (dij)p×p with

dij = I {i = m and m+ 1 ≤ j ≤ 2k, or j = m and m+ 1 ≤ i ≤ 2k} .

Set k = n
1

2α+1 and a = k−(α+1). We then define the collection of 2k covariance matrices as

Fsub =

{
Σ (θ) : Σ (θ) = I + τa

k∑
m=1

θmD(m, k), θ = (θm) ∈ {0, 1}k
}

(34)

where I is the p× p identity matrix and 0 < τ < 2−α−1M . Without loss of generality we assume

that M0 > 1.
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Consider the observations X1, . . . ,Xn
i.i.d.∼ N (0,Σ (θ)) with Σ (θ) ∈ Fsub and the joint

distribution Pθ. For 0 < τ < 2−α−1M it is easy to check thatFsub ⊂ Fα(M0,M) for sufficiently

large n. Hence applying Lemma 5 to the parameter space Fsub, we have

inf
Σ̂

max
Σ∈Fα

22EΣ

∥∥∥Σ̂− Σ
∥∥∥2
≥ inf

Σ̂
max

θ∈{0,1}k
22Eθ

∥∥∥Σ̂− Σ (θ)
∥∥∥2

≥ min
H(θ,θ̃)≥1

∥∥∥Σ (θ)− Σ
(
θ̃
)∥∥∥2

H
(
θ, θ̃
) k

2
min

H(θ,θ̃)=1

∥∥Pθ ∧ Pθ̃∥∥ .
It’s easy to check by our construction that there exists some constant c1 > 0, such that the

first factor above is lower bounded by c1ka
2, i.e., minH(θ,θ̃)≥1

‖Σ(θ)−Σ(θ̃)‖2
H(θ,θ̃)

≥ c1ka
2. In ad-

dition, it can be shown that the total variation affinities between the pairs of distributions satisfy

minH(θ,θ̃)=1

∥∥Pθ ∧ Pθ̃∥∥ ≥ c2 for some positive constant c2. Putting all together, the minimax

lower bound n−
2α

2α+1 follows from the above results with the choice of k = n
1

2α+1 .

Other lower bound arguments based on Assouad’s lemma have also been established in the

literature. For instance, The lower bound rates n−
2α+1
2α+2 and n−

α
α+1 of estimating bandable co-

variance matrix under the Frobenius norm and matrix `1 norm over class Gα (M1) defined in (2)

respectively. See Cai et al. (2010) and Cai and Zhou (2012a). We omit the details here.

4.3 Application of Le Cam’s Method to Estimating Entries of Precision Matrices

In Section 3.2, we discussed that the estimator ω̂ij for each pair of i, j attains the rate of con-

vergence max{C1(cn,p log p)/n,C2n
−1/2}. Since the proof of parametric lower bound n−1/2 is

trivial, we focus on the novel lower bound (cn,p log p)/n only and apply Le Cam’s method to

show that it is indeed a lower bound for estimating ωij . Assume p ≥ cυn,p with ν > 2. In partic-

ular, a finite collection of distributions Fsub ⊂ HP(cn,p,M) is carefully constructed in the next

paragraph.

Without loss of generality, we consider estimating ω11 and ω12. Define Ω0 = (ω
(0)
kl )p×p =

Σ−1
0 , where Σ0 = (σ

(0)
kl )p×p is a matrix with all diagonal entries equal to 1, σ(0)

12 = σ
(0)
21 = b

and the rest all zeros. The constant b will be chosen later. It’s easy to see that Ω0 also has a very

simple form. i.e. ω(0)
11 = ω

(0)
22 = (1 − b2)−1, ω(0)

12 = −b(1 − b2)−1, ω(0)
ii = 1 for i ≥ 3 and all

other entries are zeros. Besides, denote by A the collection of all p× p symmetric matrices with

exactly (cn,p − 1) entries equal to 1 between the third and the last entries on the first row/column

and the rest all zeros. Now based on Ω0 and A, the finite collection Fsub = {Ω0, ,Ωm∗} can be

defined formally as follows

Fsub =
{

Ω : Ω = Ω0 or Ω = (Σ0 + aA)−1 , for some A ∈ A
}
,
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where a = (τ1 log p/n)1/2 and b = (1− 1/M) /2 for some sufficiently small positive τ1, de-

pending on M , b and ν. The cardinality of Fsub is 1 + m∗, where m∗ =
(
p−2
cn,p−1

)
. To show that

Fsub is a subclass of HP(cn,p,M), we check the sparsity as well as the spectra of each element.

First, it is easy to see that number of nonzero off-diagonal entries in Ωm, 0 ≤ m ≤ m∗ is no more

than cn,p per row/column by its construction. Second, tedious calculations yield that the spectra

of Ω0 are in [(1 + b)−1, (1 − b)−1] and the spectra of Ωm are in [(1 + g)−1, (1 − g)−1], where

g =
√
b2 + (cn,p − 1) a2. Hence we obtain that the spectra of each element of Fsub are between

[1/M,M ] by definitions of a and b. Thus Fsub ⊂ HP(cn,p,M).

The motivation of our construction is that a signal-to-noise ratio level a on each entry of the

covariance matrix with the sparsity cn,p is able to accumulate to a level of cn,pa2 � (cn,p log p)/n

on some entry of the precision matrix. Indeed, it is easy to check that

inf
1≤m≤m∗

∣∣∣ω(m)
11 − ω

(0)
11

∣∣∣ ≥ C11kn,pa
2 and inf

1≤m≤m∗

∣∣∣ω(m)
12 − ω

(0)
12

∣∣∣ ≥ C12kn,pa
2.

Let PΩm denote the joint distribution of X1, . . . , Xn, i.i.d. copies of N(0,Ω−1
m ), 0 ≤ m ≤ m∗. It

can be shown that
∥∥PΩ0 ∧ P̄

∥∥ ≥ C0. Finally, applying Lemma 4, together with above two facts,

we obtain the lower bounds of estimating ω11 and ω12 as follows, which match the upper bounds

attained by the corresponding estimators in Section 3.2.

inf
ω̃11

sup
Ω∈Fsub

EΩ|ω̃11 − ω11| ≥
1

2
lmin

∥∥Pθ0 ∧ P̄
∥∥ ≥ C11C0τ1kn,p log p

2n
,

inf
ω̃12

sup
Ω∈Fsub

EΩ|ω̃12 − ω12| ≥
1

2
lmin

∥∥Pθ0 ∧ P̄
∥∥ ≥ C12C0τ1kn,p log p

2n
.

The Le Cam’s method can also be used to show the lower bounds of other covariance/precision

matrix estimation problems. For example, the lower bound (log p/n)1/2 is derived for band-

able class Fα (M0,M) defined in (1) under the spectral norm by picking a collection of covari-

ance/precison matrices with nonzero value only on the diagonal entries. See Cai et al. (2010). Le

Cam’s method is also applied in Cai and Zhou (2012a) to obtain the lower bound c2
n,p(log p)/n for

estimating sparse covariance matrix class H(cn,p) defined in (4) under the matrix `1 norm. You

may see the lower bound under the spectral norm discussed later using Le Cam-Assouad’s method

immediately implies this lower bound under the matrix `1 norm. However, the construction using

Le Cam’s method is much easier if matrix `1 norm is the right loss function.
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4.4 Application of Le Cam-Assouad’s Method to Estimating Sparse Precision Ma-
trices

In Section 1.2, we introduced classes of parameters HP(cn,p,M) defined in (6) to model the

sparse structure of precision matrices. We have seen that Sun and Zhang (2013) show that

the estimator Ω̃SL attains the rate of convergence c2
n,p(log p)/n under the spectral norm over

HP(cn,p,M) in Theorem 11 of Section 3.1. Moreover, the estimator Ω̂ANT in Section 3.2 also

attains the same rate. In this section, we will apply Le Cam-Assouad’s method to show that these

estimators are indeed rate optimal. The same technique was also used to show the rate-optimality

of the ACLIME estimator proposed in Cai et al. (2012) over a different parameter space.

The Le Cam-Assouad’s method was originally developed in Cai and Zhou (2012b) to estab-

lish a rate sharp lower bound for estimating sparse covariance matrices over the parameter space

H(cn,p) defined in (4) under the squared spectral norm loss. It was shown that a lower bound in

such a setting is c2
n,p(log p)/n. Hence the thresholding estimator defined in (11) attaining the rate

of convergence c2
n,p(log p)/n is indeed rate optimal over H(cn,p). The main idea for the lower

bound proof is similar to that of estimating sparse precision matrices and hence omitted here. See

Cai and Zhou (2012b) for the detailed analysis.

Again, the key of the minimax lower bound proof is to carefully construct a finite collection

of distributions inHP(cn,p,M). We assume p > c1n
β for some β > 1 and c1 > 0. In the current

setting of estimating sparse precision matrices over the class HP(cn,p,M), the parameter subset

Fsub is constructed as follows.

Let r = dp/2e and let B be the collection of all vectors (bj)1≤j≤p such that bj = 0 for

1 ≤ j ≤ p− r and bj = 0 or 1 for p− r + 1 ≤ j ≤ p under the constraint ‖b‖0 = k = dcn,p/2e.
For each b ∈ B and each 1 ≤ m ≤ r, define a p × p matrix λm(b) by making the mth row

of λm(b) equal to b and the rest of the entries 0. It is clear that the cardinality of B is
(
r
k

)
. Set

Γ = {0, 1}r. Hence each component bi of λ = (b1, ..., br) ∈ Λ can be uniquely associated with

a p × p matrix λi(bi). Now it is the time to define Λ as the set of all matrices λ with the every

column sum less than or equal to 2k. Define Θ = Γ ⊗ Λ and let εn,p ∈ R be fixed, whose value

will be chosen later. For each θ = (γ, λ) ∈ Θ with γ = (γ1, ..., γr) and λ = (b1, ..., br), we

associate θ with a precision matrix Ω(θ) by

Ω(θ) = I + εn,p

r∑
m=1

γmλm(bm).

Finally we define the finite collection Fsub of precision matrices as

Fsub =

{
Ω(θ) : Ω(θ) = I + εn,p

r∑
m=1

γmλm(bm), θ = (γ, λ) ∈ Θ

}
.
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Set εn,p = υ((log p)/n)1/2 for some sufficiently small positive υ. Now we can check that each

Ω(θ) ∈ Fsub is diagonal dominated and further satisfies the bounded spectrum condition. Clearly

for each Ω(θ) ∈ Fsub, we have max1≤i≤p
∑

j 6=i min{1, |ωij |√
(log p)/n

} ≤ cn,p. Therefore, we obtain

that Fsub ∈ HP(cn,p,M).

Let X1, . . . , Xn be i.i.d. copies of N(0,Ω(θ)−1) with θ ∈ Θ and denote the joint distribution

by Pθ. Applying Lemmas 6 to the parameter space Θ indexing Fsub with s = 2 and metric d

being spectral norm, we have

inf
Ω̂

max
Ω(θ)∈Fsub

22Eθ

∥∥∥Ω̂− Ω(θ)
∥∥∥2
≥ α · p

4
·min

i

∥∥P̄0,i ∧ P̄1,i

∥∥ (35)

where the per comparison loss α is defined in (32) and mixture distributions P̄0,i and P̄1,i are

defined as in (30). It can be shown that the per comparison loss α ≥ (kεn,p)2

p and the affin-

ity mini
∥∥P̄0,i ∧ P̄1,i

∥∥ ≥ c1 with a constant c1 > 0. Plugging these two facts into equation

(35), we obtain the desired minimax lower bound for estimating a sparse precision matrix over

HP(cn,p,M),

inf
Ω̂

sup
HP(cn,p,M)

E
∥∥∥Ω̂− Ω(θ)

∥∥∥2
≥ (kεn,p)

2

p
· c1p

16
= c2c

2
n,p

log p

n

for some constant c2 > 0.

Besides covariance and precision matrix estimation problems, Le Cam-Assouad’s method

is also appropriate for lower bound proof in other matrix estimation problems. One particular

example is the volatility matrix estimation problem for high dimensional diffusions. For more

details, please refer to Tao et al. (2013).

4.5 Application of Fano’s Lemma to Estimating Toeplitz Covariance Matrices

In Section 2.2, we consider the problem of estimating Toeplitz covariance matrices. In particular,

for estimation over the parameter space FT α (M0,M) which is defined in terms of the smooth-

ness of the spectral density f in (3), Cai, Ren, and Zhou (2013) showed that the tapering estimator

Σ̂Toep
T,kTo

attains the optimal rate of convergence (log(np)/np)
2α

2α+1 under the spectral norm. We

briefly present a minimax lower bound argument, focusing on the use of Fano’s lemma in this

section.

LetX1, . . . , Xn be i.i.d. copies ofN(0,Σ), where the covariance sequence (σ0, σ1, . . . , σp) is

given via its corresponding spectral density f = 1
2π (σ0 +2

∑∞
m=1 σm cosmx) in FT α (M0,M).

There are two main steps in the lower bound argument. The first step is to construct a more in-

formative model which is exactly equivalent to a Gaussian scale model under which one observes
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Zij = Sp(f)1/2

(
2πj

2p− 1

)
ξij , with ξij

i.i.d.∼ N (0, 1) , (36)

for |j| ≤ p− 1, and i = 1, 2, · · ·n. Here Sp(f)(x) = 1
2π (σ0 + 2

∑p−1
m=1 σm cosmx) is the partial

sum of f with order p. The advantage of this more informative model is to make the analysis

much easier. (see Cai, Ren, and Zhou (2013) for details). From now on we focus on this more

informative model. The second step is to establish a minimax lower bound for this Gaussian

scale model, which automatically provides a lower bound for the original model. We elaborate

the second step which mainly involves the construction of finite collection of spectral densities

Fsub =
{
f0, f1, . . . fk∗/2

}
⊂ FT α (M0,M) as follows.

Define f0 = M0/2 and fi as follows,

fi = f0 + τεαn,p

[
A

(
x− εn,p(i− 0.5)

εn,p

)
+A

(
x+ εn,p(i− 0.5)

εn,p

)]
, εn,p = 2π/k∗ (37)

where i = 1, 2, · · · , k∗/2 with k∗ =
⌊
(np/ log (np))

1
2β+1

⌋
, and A(u) = exp(− 1

1−4u2
)1{|2u|<1}.

It is easy to check that each distribution in our collection fi ∈ FT α (M0,M) by setting τ > 0 suf-

ficiently small, notingA ∈ C∞(R)∩FT α
(
e−1, 1/2

)
. Therefore, we haveFsub ⊂ FT α (M0,M).

Now we apply Lemmas 7 to the parameter space Fsub with the distance d = ‖·‖∞, the sup-

norm. Careful calculation implies that the assumption (33) in Lemmas 7 is satisfied with m∗ =

k∗/2 and Pfi the probability distribution of the Gaussian scale model in (36) indexed by fi ∈ Fsub.

Hence we obtain that there exist some positive constants ci, i = 1, 2, 3 such that

inf
f̃

sup
Fsub

E
∥∥∥f̃ − f∥∥∥2

∞
≥ c1 min

i 6=j
‖fi − fj‖2∞

≥ c2

(
τεβn,p

)2
≥ c3 (np/ log (np))

− 2β
1+2β . (38)

Finally, a close connection between autocovariance matrix and spectral density function im-

plies that, for our construction of Fsub, it can be shown that

inf
Σ̂

sup
FT α(M0,M)

E
∥∥∥Σ̂− Σ

∥∥∥2
≥ c0 inf

f̃
sup
Fsub

E
∥∥∥f̃ − f∥∥∥2

∞
. (39)

Hence the minimax lower bound for estimating a Toeplitz covariance matrix over the collection

FT α (M0,M) is obtained by putting (38) and (39) together.

Besides covariance and precision matrix estimation problems, Fano’s lemma has also been

used in other matrix estimation problems. For example, Rohde and Tsybakov (2011) applied it

in a trace regression model to provide a lower bound of low rank matrix estimation under the

Frobenius norm.

36



5 Discussions

We have considered optimal estimation of high-dimensional covariance and precision matrices

under various structural assumptions. Minimax rates of convergence are established and rate-

optimal adaptive procedures are constructed. For ease of presentation, we have so far assumed

that the random vector X is centered. As mentioned in the introduction, this assumption is not

essential. We will elaborate this point here. The estimators introduced in the previous sections are

positive definite with high probability, but not guaranteed so for a given sample. It is sometimes

desirable to have estimators that are guaranteed to be positive (semi)-definite. We will show that a

simple additional step will lead to a desirable estimator with the same theoretical guarantees. We

also discuss in this section a few related problems, including sparse PCA and hypothesis testing

on the covariance structure.

5.1 Non-Centered Case

Suppose E(X) = µ with µ unknown. In this case, µ can be estimated by the sample mean

µ̂ = 1
n

∑n
i=1X

(i). We can then apply the corresponding procedures such as banding, tapering,

thresholding or regression to the sample covariance matrix Σ̂n = X′X/n − µ̂µ̂′. In fact, all

the results remain the same in the unknown mean case except those for estimating the Toeplitz

covariance matrix.

All the rate-optimal procedures introduced so far are translation invariant, hence we can as-

sume µ = 0. Those covariance estimators, which are directly based on the sample covariance

matrix, now depends on Σ̂n = X′X/n− µ̂µ̂′. Compared to the term X′X/n which is the sample

covariance matrix when the mean is known, the term µ̂µ̂′ is of higher order. In particular, note

Eµ̂µ̂′ = Σ/n. Clearly the contribution of this term entrywise is negligible with respect to the

noise level n−1/2. Globally, the contribution of µ̂µ̂′ is usually also negligible following an anal-

ysis that is similar to that of X′X/n, as long as the optimal rate is not faster than n−1/2. This

can be made rigorous for those covariance estimators in Section 2 except the estimator of Toeplitz

covariance matrices. See, for example, Remark 1 in Cai et al. (2010). In the Toeplitz case, the

effective sample size for estimating each autocovariance σi is far larger than n but there are only

n samples for estimating its mean. Under the condition that all coordinates of the mean are equal

to some constant cu, we can estimate it using all np samples by ĉu = 1
np

∑n
i=1

∑p
j=1X

(i)
j . Then

the Toeplitz estimator depends on X′X/n − ĉu11′, where the second term ĉu ∼ Op((np)
−1/2)

is of higher order and can be ignored. In this setting, it can be shown that the results of Toeplitz

covariance estimators remain valid.

For the sparse precision matrix classes, we introduced rate optimal matrix estimators under
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the spectral norm in Section 3.1 and rate optimal estimators of each entry ωij in Section 3.2. Both

estimators are derived through a regression approach, motivated by the conditional distribution

N
(
−Ω−1

A,AΩA,AcXAc ,Ω
−1
A,A

)
ofXA|XAc , where either the index setA is a singleton in Equation

(13) or A = {i, j} in Equation (17). The corresponding regression model of the data matrix can

be written as XA = XAcβ + εA. Then the analysis of both estimators involves the scaled Lasso

in Equations (14) and (18). When taking the unknown mean µ̂ into account, the analysis of scaled

Lasso is applied to the data matrix as follows

XA − µ̂A1 = (XAc − µ̂Ac1)β + εA − ε̄A1,

where ε̄A is the sample mean of the noise vector εA. Note that the extra sample mean terms

introduced above have a higher order, for example, ε̄A ∼ Op(n
−1/2). As a consequence, the

contribution of these terms is also negligible and all the results remain valid. For more details,

see, for instance, the discussion section in Ren et al. (2013).

5.2 Positive (Semi-)Definiteness

In many applications, the positive (semi-) definiteness of the covariance or precision matrix esti-

mator is usually required. Although nearly all estimators of both covariance and precision matri-

ces we surveyed in the current paper are symmetric, they are not guaranteed to be positive (semi-)

definite. Under the mild condition that the population covariance is nonsingular, it follows from

the consistency results that those estimators are positive definite with high probability. Whenever

an estimator Â is not positive semi-definite, a simple extra step can make the final estimator Â+

positive semi-definite and also achieve the optimal rate of convergence.

Write the eigen-decomposition of the estimator Â as

Â =

p∑
i=1

λ̂iv̂iv̂
′
i,

where eigenvalues λ̂1 ≥ λ̂2 ≥ . . . ≥ λ̂p and v̂i’s are the corresponding eigenvectors. Define the

final estimator

Â+ = Â+
∣∣∣λ̂p∣∣∣ Ip · I{λ̂p < 0},

where Ip is the p-dimensional identity matrix and I{λ̂p < 0} is the indicator function that Â is

negative definite. Then with A being the target covariance or precision matrix and λp being its
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smallest eigenvalue, we have∥∥∥Â+ −A
∥∥∥ ≤

∥∥∥Â−A∥∥∥+
∣∣∣λ̂p∣∣∣ · I{λ̂p < 0}

≤
∥∥∥Â−A∥∥∥+

∣∣∣λ̂p − λp∣∣∣ · I{λ̂p < 0}

≤ 2
∥∥∥Â−A∥∥∥ .

Clearly Â+ is positive semi-definite and enjoys the same rate of convergence as that of Â. Another

advantage of this final procedure is that Â+ has the same desirable structure of Â such as bandable,

sparse or Toeplitz structure.

5.3 Sparse Principal Component Analysis

Principal component analysis (PCA) is one of the most commonly used techniques for dimen-

sion reduction and feature extraction with many applications, including image recognition, data

compression, and clustering. PCA is closely related to, but different from, covariance matrix es-

timation under the matrix norm losses. In the classical fixed p setting, the leading eigenvector or

eigenspace of Σ can be consistently estimated by the counterparts operated on the sample covari-

ance matrix Σ̂n as n → ∞. However this standard PCA approach yields inconsistent estimators

in the high dimensional settings. See, for example, Johnstone and Lu (2009), Paul (2007) and

Nadler (2008). It is worthwhile to point out that this is different from the high dimensional factor

model considered in Fan et al. (2013), where leading eigenvalues increase at least in order of p

and as a result the standard PCA still performs well.

Various regularized approaches have been introduced in the literature for PCA, assuming cer-

tain sparsity structures on the leading eigenvectors. Zou et al. (2006) imposed Lasso type sparsity

constraints on the eigenvector after transforming the PCA problem into a regression problem.

d’Aspremont et al. (2007) proposed a semi-definite program as a relaxation to the `0 penalty.

Shen and Huang (2008) applied a regularized low rank approach with its consistency established

in Shen et al. (2013). See also Jolliffe et al. (2003) and Witten et al. (2009) for other methodolo-

gies.

Theoretical analysis for PCA has so far mainly focused on the spiked covariance matrix model

Σ =

r∑
i=1

λrviv
′
i + I , (40)

where λ1 ≥ λ2 ≥ ... ≥ λr > 0 and the vectors v1, ..., vr are orthonormal. It is commonly

assumed that the λi’s are bounded from below and above by some universal constants and each
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eigenvector vi is either in a weak `q ball with radius c1/q
n,p for 0 < q < 2 or exactly sparse with cn,p

nonzero entries for q = 0.

Johnstone and Lu (2009) considered the single spike case r = 1 and proposed a diagonal

thresholding (DT) procedure. In particular, a thresholding procedure is applied to each σ̂ii to

pick out those coordinates of strong signals with magnitude at least at the level of ((log p)/n)1/4

and then the standard PCA is performed on this subset of coordinates. The final estimator of the

leading eigenvector is obtained by padding zeros to the remaining coordinates. Consistency is

shown in the paper for estimating the leading eigenvector v1 under the squared `2 loss. Amini

and Wainwright (2009) studied the theoretical properties of the leading eigenvectors obtained

in Johnstone and Lu (2009) and d’Aspremont et al. (2007) with a focus on the model selection

setting, in which the leading eigenvector v1 is exactly sparse, i.e. q = 0.

Birnbaum et al. (2013) established the minimax rates of convergence cn,p(log p/n)1−q/2 of

the individual leading eigenvectors for finite r with distinct leading eigenvalues λi 6= λj for

i 6= j. The DT method is shown to be sub-optimal but can be used as the first step of a two-

stage optimal coordinate selection approach called ASPCA. The purpose of the second stage

is to further pick out those coordinates with magnitude larger than the optimal threshold level

((log p)/n)1/2. Ma (2013) proposed an iterative thresholding procedure (ITSPCA) based on DT,

which also attains the same optimal rate for estimating each leading eigenvector. Estimation of the

principal subspace spanned by the leading r eigenvectors is more appropriate when some of the

leading eigenvalues have multiplicity great than one. Ma (2013) further established the rates of

convergence of ITSPCA for estimating leading principal subspace under a loss function defined by

the squared Frobenius distance between the projection matrices of the leading principal subspace

V = (v1, v2, ..., vr) and its estimator V̂ , i.e., ‖V V ′ − V̂ V̂ ′‖2F .

Cai, Ma, and Wu (2013) further considered the optimality problems of estimating the leading

principal subspace under a group sparsity assumption, allowing the number of spikes r to diverge

to infinity. Specifically, it is assumed that the vector obtained from the `2 norm of each row of V is

in a weak `q ball with radius c1/q
n,p for 0 < q < 2 or exactly sparse with cn,p nonzero entries for q =

0. The minimax rate of convergence is established and an aggregation procedure is constructed

and shown to attain the optimal rate cn,p((r+log ep
cn,p

)/(nh(λ)))1−q/2, where h(λ) = λ2/(1+λ)

and leading eigenvalues λi � λ for all i. In particular, the rate is optimal with respect to all the

parameters n, p, r, λ, cn,p. However, this aggregation procedure is computationally infeasible and

an optimal adaptive procedure is then proposed in Cai, Ma, and Wu (2013).

In a related paper, Cai et al. (2014) studied the minimax estimation the principal subspace

V under the squared spectral norm loss ‖V V ′ − V̂ V̂ ′‖2 as well as the minimax estimation of

the spike covariance matrix Σ and minimax rank detection. It required significantly different
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techniques from those for estimating other structured covariance matrices such as bandable or

sparse covariance matrices. The results also resolved the gap in a recent paper by Berthet and

Rigollet (2013), where the special case of rank one is considered. Vu and Lei (2013) extended the

spike model (40) into a more general setting and considered the optimality problems of estimating

the leading eigenspace under group sparsity or column sparsity assumption in a slightly difference

setting. Compared to the optimal rates in Cai, Ma, and Wu (2013), the dependency on λ is not

optimal for the method proposed in Vu and Lei (2013).

5.4 Hypothesis Testing on the Covariance Structure

In addition to estimation, there have been considerable recent developments on testing high-

dimensional covariance structure. Unlike the estimation problems, an asymptotic null distribution

of a test statistic is required explicitly such that the significance level of the test can be controlled.

The asymptotic analysis can be very delicate. Various testing methods have been proposed in-

cluding likelihood ratio test in Bai et al. (2009) and Jiang et al. (2012), largest eigenvalue test

in Johnstone (2001), Soshnikov (2002) and Peche (2009), Frobenius distance test in Ledoit and

Wolf (2002), Srivastava (2005), Birke and Dette (2005), and Chen et al. (2010), and maximum

entrywise deviation test in Jiang (2004), Zhou (2007), Liu et al. (2008), Li et al. (2010), Li et al.

(2012), Cai and Jiang (2011), Shao and Zhou (2014), and Cai, Liu, and Xia (2013). But unlike

estimation problems there are only few optimality results on testing, see Cai and Ma (2013) and

Onatski et al. (2013). To show the optimality of a test, asymptotic power functions are needed

under alternatives to match the lower bound. We now briefly survey some recent developments

on testing the covariance structure.

Testing Identity We mainly focus on the problem of testing H0 : Σ = I . A slightly more

general testing problem is that of testing sphericity H0 : Σ = σ2I for some unknown σ2. For

reasons of space, we omit the details on testing sphericity. Four types of test statistics have

been proposed and studied in the literature: likelihood-based, largest eigenvalue-based, Frobenius

distance-based and maximum entrywise deviation-based statistics.

In the classical fixed p regime, it is very natural to consider the likelihood ratio test where

the test statistic LLRn = tr(Σ̂n) − log det(Σ̂n) − p weakly converges to χ2
p(p+1)/2 under H0, see

i.e. Anderson (2003). In the high dimensional setting, the Chi-squared limiting null distribution

is no longer valid. Bai et al. (2009) proposed a corrected LRT with the Gaussian limiting null

distribution in the regime p, n → ∞ and p/n → c ∈ (0, 1) and Jiang et al. (2012) further

extended it to the regime p < n→∞ and p/n→ c = 1.
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Johnstone (2001) established the limiting distribution of the largest eigenvalue of the sample

covariance matrix in the case of Gaussian distribution with the identity covariance matrix. It is

shown that its scaled limiting law is the Tracy-Widom distribution, assuming p/n→ c ∈ (0,∞).

The result immediately yields a test for H0 : Σ = I in the Gaussian case by using the largest

eigenvalue of the sample covariance matrix as the test statistic. Johnstone’s work was extended

by Soshnikov (2002) under a sub-Gaussian assumption and further extended by Peche (2009) by

allowing p/n→ c ∈ [0,∞].

Frobenius distance-based test was originally proposed by John (1971) and Nagao (1973) in

the fixed p regime. The Frobenius distance between Σ and I is

1

p
tr
{

(Σ− I)2
}

=
1

p
tr
(
Σ2
)
− 2

p
tr(Σ) + 1, (41)

which is zero if and only ifH0 holds. Nagao (1973) replaced Σ in (41) with the sample covariance

matrix to obtain the test statistic V = tr
(

Σ̂n − I
)2
/p while John (1971) proposed a similar

statistic to test sphericity. In the regime p/n → c ∈ (0,∞), Ledoit and Wolf (2002) showed that

V is inconsistent and proposed a modification, which has a Gaussian limiting null distribution.

Birke and Dette (2005) further investigated and modified their test statistic in the extreme cases

where p/n → c ∈ {0,∞}. Note that expression (41) is a function of the first two moments of

the spectra of Σ. Based on this idea, Srivastava (2005) constructed similar test statistics in the

restricted regime n = O(pδ) with δ ≤ 1. In the high dimensional setting, Chen et al. (2010) also

investigated the testing problem with the Frobenius distance (41). However, instead of plugging in

the sample covariance matrix to estimate
(
tr(Σ), tr(Σ2)

)
, a U -statistic is applied to derive more

accurate and reliable estimators (T̂1,n, T̂2,n) of
(
tr (Σ) , tr

(
Σ2
))

. Chen et al. (2010) also provided

a lower bound for the asymptotic power function. In particular, as long as ‖Σ− I‖F
√
n/p→∞,

the test is consistent. In a separate paper, Cai and Ma (2013) showed that this procedure is indeed

optimal under some natural alternatives. Similar results are obtained for testing sphericity as well.

Several tests based on the maximum entrywise deviations for testing the hypothesis H0 : R =

I , whereR is the correlation matrix, have been proposed and studied in the literature. Jiang (2004)

studied the asymptotic distribution of the test statistic

Ln = max
1≤i<j≤p

|ρ̂i,j | , (42)

where ρ̂ij is the sample correlation between Xi and Xj . In particular, the Gumbel distribution is

derived as the null limiting distribution of Ln

lim
n→∞

P
(
nL2

n − 4 log p+ log log p ≤ y
)

= exp

{
− 1√

8π
e−y/2

}
, −∞ < y <∞, (43)
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under strong moment condition E |Xi|30+ε < ∞ and regime p/n → γ ∈ (0,∞). Jiang’s work

attracted considerable attention. However, the moment condition and asymptotic regime seem

too restrictive. Zhou (2007) reduced the moment condition to x6P (|X1X2| ≥ x) → 0 and Liu

et al. (2008) further weakened it to x6/ log3 xP (|X1X2| ≥ x) → 0 as a special case. In general,

their result allowed wide regime cnα ≤ p ≤ Cnα but the moment condition also depends on

α. Liu et al. (2008) also introduced some “intermediate” approximation to the test statistic with

a much faster rate of convergence to the limiting Gumbel distribution. Li et al. (2010) and Li

et al. (2012) further showed that some moment condition is necessary. More specifically, in the

bounded ratio regime lim p/n ∈ (c, C), if X1 has finite second moment, then E |X1|β < ∞
for all β < 6 is a necessary condition such that limiting distribution (43) holds. Cai and Jiang

(2011) and Shao and Zhou (2014) generalized the polynomial regime and push it to the ultra-

high dimensional case log p = o(nβα). Shao and Zhou (2014) showed that under the moment

condition E exp (t |X1,1|α) < ∞ for some t > 0 and α ∈ (0, 1], the necessary and sufficient

conditions for establishing (43) in the ultra-high dimensional setting in terms of the optimal βα is

that βα = 4/ (4− α).

Testing More General Covariance Structures Hypothesis testing for other covariance struc-

tures has also been considered in the literature. These include (i) banded structure withH0 (k) : Σ

is k banded, (ii) bandable structure and (iii) Toeplitz structure. Here a matrix Σ = (σij) is called

k banded if σij = 0 for all pairs (i, j) such that |i− j| ≥ k.

Cai and Jiang (2011) and Shao and Zhou (2014) considered testing k banded structure. To

test this hypothesis H0 (k), analogous to the definition of Ln, Cai and Jiang (2011) proposed the

following test statistic

Ln,k = max
|i−j|≥k

|ρ̂i,j | .

It can be shown that Ln,k has the same limiting Gumbel distribution in (43) as long as most

correlations are bounded away from 1 and k = o(pτ ) for some small τ . Recently, Xiao and Wu

(2011) established a more general result which allows dependent entries over large range of p.

Instead of the Ln,k, a self-normalized version of maximum entrywise deviation is constructed in

Xiao and Wu (2011) as the new test statistic,

Mn = max
1≤i≤j≤p

|σij − σ̂ij | /
√
τ̂ij ,

where τij = Var(XiXj) and τ̂ij is the empirical counterpart. In different regimes p = O(nα)

and p = o
(
expnβ

)
, Mn is also shown to weakly converge to the Gumbel distribution. This

result in turn allows testing all three structures (i), (ii), and (iii) listed above. Qiu and Chen (2012)
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constructed an unbiased estimator of Σ|i−j|≥kσ
2
ij via certain U -statistic to test banded covariance

structure H0 (k), motivated by the Frobenius distance-based tests in Chen et al. (2010). A lower

bound of asymptotic power function is also established.

6 Some Open Problems

Although much progress has been made on estimation of structured high-dimensional covariance

and precision matrices, there are still many open problems. We conclude the paper with a brief

discussion on a few interesting open problems.

6.1 Optimality for Covariance Matrix Estimation under Schatten q Norm

In addition to the matrix `ω norm and Frobenius norm considered in this paper, Schatten q norm,

which is unitarily invariant, is another commonly used matrix norm. Schatten q norm is the vector

`q norm of the spectra. Denote the singular values of Σ by {λi}, i = 1, . . . , p. The Schatten q

norm is defined by

‖Σ‖Sq =

(
p∑
i=1

λqi

)1/q

.

When q = 2, it coincides with the Frobenius norm and when q =∞, it becomes the spectral norm.

Estimating a covariance or precision matrix under the general Schatten q norm is an interesting

open problem. So far the corresponding optimality results for covariance and precision matrix

estimation under the general Schatten q norm remain unknown. The major difficulty lies in the

establishment of a rate-sharp minimax lower bound. We believe that new technical tools are

needed to solve this problem.

6.2 Lower Bound via Packing Number

Fano’s lemma is a standard tool for deriving the minimax lower bounds. It relies on a good bound

for the cardinality of a suitable packing set for a given parameter space. So far little is known

about the packing number for the class of sparse matrices under the spectral norm. Consider the

following general sparse matrix class S(k) in which there are at most k ones in each row and each

column

S(k) =
{
Ap×p = (aij) : aij = 0 or 1,max

{
‖A‖`1 , ‖A‖`∞

}
≤ k

}
.

We conjecture that there exists a “good” packing set Ssub(k) ⊂ S(k) under the spectral norm

such that for any A1, A2 ∈ Ssub(k), we have ‖A1 −A2‖ ≥ εk and log |Ssub(k)| > εkp log(p/k)
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for some small constant ε. If this statement is true, then the standard Fano’s lemma can be ap-

plied to obtain the minimax lower bound under the spectral norm for estimating sparse covari-

ance/precision/volatility matrix. As a consequence, the proof of those lower bounds in literature

using Le Cam-Assouad’s method introduced in Section 4 can be simplified.

Similarly, a good bound on the packing number for the class of bankable covariance matrices

and the class of sparse covariance matrices under the general Schatten q norm would be very help-

ful for the establishment of the minimax lower bound for estimating the corresponding covariance

matrices under the Schatten q norm.

6.3 Optimal Estimation of Matrix Functionals

Many high-dimensional statistical inference problems such as linear discriminant analysis (LDA)

and quadratic discriminant analysis (QDA) require knowledge of certain aspects, i.e., functionals,

of the covariance structure, instead of the whole matrix itself. So estimation of the functionals

of covariance/precision matrices is an important problem. The most common practice for matrix

functional estimation is the plug-in approach: first estimating the whole matrix in a certain optimal

way and then plugging-in the estimator to estimate the corresponding functional. This often leads

to a sub-optimal solution.

Despite recent progress on optimality of estimating covariance and precision matrices under

various matrix norms, there have been few optimality results on estimation of functionals of the

covariance matrices. Cai, Liang, and Zhou (2013) obtained the limiting distribution of the log

determinant of the sample covariance matrix in the Gaussian setting and applied the result to

establish the optimality for estimation of the differential entropy, which is a functional of the

covariance matrix. The problem of optimally estimating an individual entry of a sparse precision

matrix discussed in Section 3.2 can also be viewed as estimating a functional.

Given two independent samples, X(1), . . . , X(n1) iid∼ Np(µ1,Ω
−1) and Y (1), . . . , Y (n2) iid∼

Np(µ2,Ω
−1), an important functional to estimate is Ω(µ1 − µ2). This is motivated by the linear

discriminant analysis. In the ideal case when the parameters µ1, µ2 and Ω are known, for a new

observation Z drawn with equal probability from eitherNp(µ1,Ω
−1) orNp(µ2,Ω

−1), the optimal

classification rule is Fisher’s linear discriminant rule which classifies Z to class 1 if and only if

(Z − (µ1 + µ2)/2)′Ω (µ1 − µ2) > 0. In applications, the parameters µ1, µ2 and Ω are unknown

and it is a common practice to estimate them separately and then plug in. This approach has

been shown to be inefficient as the discriminant depends on the parameters primarily through the

functional Ω (µ1 − µ2). Cai and Liu (2011b) introduced a constrained `1 minimization method

for estimating the functional Ω (µ1 − µ2) directly and proposed a classification method based on
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the estimator. A similar approach was also used in Mai et al. (2012). Although direct estimators

of Ω (µ1 − µ2) have been proposed and used for classification, the optimality of the estimation

problem remains unknown. It is of significant interest to study the problem of optimal estimation

of the functional Ω (µ1 − µ2) under certain sparsity assumptions.
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