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Abstract

Toeplitz covariance matrices are used in the analysis of stationary stochastic pro-

cesses and a wide range of applications including radar imaging, target detection,

speech recognition, and communications systems. In this paper, we consider optimal

estimation of large Toeplitz covariance matrices and establish the minimax rate of

convergence for two commonly used parameter spaces under the spectral norm. The

properties of the tapering and banding estimators are studied in detail and are used

to obtain the minimax upper bound. The results also reveal a fundamental difference

between the tapering and banding estimators over certain parameter spaces. The

minimax lower bound is derived through a novel construction of a more informative

experiment for which the minimax lower bound is obtained through an equivalent

Gaussian scale model and through a careful selection of a finite collection of least

favorable parameters. In addition, optimal rate of convergence for estimating the

inverse of a Toeplitz covariance matrix is also established.
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1 Introduction

Estimation of a Toeplitz covariance matrix and its inverse arises naturally in the analysis

of stationary time series which are used in a wide range of applications in many fields in-

cluding engineering, economics, and biology. For example, stationary Gaussian processes

is one of the most fundamental models in statistical signal processing and Toeplitz covari-

ance matrices are used for radar imaging, target detection, speech recognition, and com-

munications systems. See, e.g., Snyder, O’Sullivan and Miller (1989), Fuhrmann (1991),

Roberts and Ephraim (2000), and Christensen (2007). Toeplitz matrices are also used

to model the correlation of cyclostationary processes in periodic time series (Dzhaparidze

(1986), Chakraborty (1998), Brockwell and Davis (1991)).

In the classical low dimensional setting, many methods including the maximum like-

lihood estimator using the EM algorithm have been developed for estimating Toeplitz

covariance matrices. However, in the high-dimensional setting, which is becoming in-

creasingly common in many contemporary applications, the standard estimators do not

provide satisfactory performance and regularization is needed. In recent papers, Wu and

Pourahmadi (2003) has introduced and studied banding estimators for autocovariance ma-

trix of a stationary process which is Toeplitz, and McMurry and Politis (2010) extended

their results to tapering estimators.

The problem of optimal estimation of large covariance matrices has drawn considerable

recent attention. In the present paper, we consider estimation of large Toeplitz covariance

matrix and its inverse under the matrix spectral norm in the high dimensional setting. The

goal is to gain fundamental understanding of the problem by constructing rate-optimal

estimators and establishing the optimal rate of convergence. To be more specific, suppose

we observe independent and identically distributed (i.i.d.) p-variate random variables

X1, . . . ,Xn with covariance matrix Σp×p where each Xi is a stationary process so that

Σp×p has a Toeplitz structure,

Σp×p =



























σ0 σ1 σ2 · · · σp−2 σp−1

σ1 σ0 σ1 σp−2

σ2 σ1 σ0
...

...
. . .

...

σp−2 σ0 σ1

σp−1 σp−2 · · · · · · σ1 σ0



























. (1)

The goal is to estimate the unknown Toeplitz matrix Σp×p and its inverse under the
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spectral norm based on the sample {Xi : i = 1, . . . , n}. We assume both n and p are

growing. However, unlike many other covariance matrix estimation problems, the results

also hold for a fixed sample size n. For example, n can be taken to be 1 as is common in

time series analysis. For a matrix A its spectral norm is defined as ‖A‖ = sup‖x‖
2
=1 ‖Ax‖2.

The minimax risk of estimating Σ over a given collection F of Toeplitz covariance matrices

under the spectral norm ‖ · ‖ is defined as

R(F) = inf
Σ̂

sup
Σ∈F

E‖Σ̂− Σ‖2.

In the present paper, we establish the optimal rates of convergence of R(F) over two

commonly used parameter spaces and introduce a rate-optimal tapering estimator.

It is clear that the Toeplitz covariance matrix Σp×p is uniquely determined by the

sequence of covariances (σm) ≡ (σ0, σ1, · · · , σp−1, · · · ). A natural parameter space to

consider is the following collection defined in terms of the rate of decay of the covariance

sequence (σm),

Gβ (M) =
{

Σp×p : |σm| ≤ M(m+ 1)−β−1,Σ ≻ 0
}

(2)

where 0 < β, M < ∞, and Σ ≻ 0 denotes that Σ is positive-semidefinite. It is also well

known that the Toeplitz covariance matrix Σ is closely connected to the spectral density

of the stationary process X1 given by

f (x) =
1

2π

[

σ0 + 2
∞
∑

m=1

σm cos (mx)

]

, x ∈ [−π, π] ,

which is a real-valued and even function on [−π, π]. Another natural parameter space

to consider is a set defined in terms of the smoothness of the spectral density f . The

parameter space Fβ(M0,M), defined in Section 2, contains Toeplitz covariance matrices

whose corresponding spectral density functions are of Hölder smoothness β.

Our analysis establishes the minimax rates of convergence for estimating the Toeplitz

covariance matrices over the parameter spaces Gβ (M) and Fβ (M0,M). We first intro-

duce the tapering and banding estimators and study in detail their properties under the

matrix spectral norm. The optimal tapering estimator is constructed and its rate of con-

vergence is derived. Somewhat surprisingly, our results show that the banding estimators

and tapering estimators are fundamentally different in the context of estimating Toeplitz

covariance matrices over a range of parameter spaces Fβ(M0,M), in the sense that the

best banding estimator cannot achieve the same rate of convergence as the one attained by

the optimal tapering estimator because of a large bias. In other words, banding is strictly

sub-optimal and in particular is not as good as tapering for estimating Toeplitz covariance
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matrices over a range of Fβ (M0,M). However for estimation over the parameter spaces

Gβ (M), with the same choice of the banding and tapering parameters, the two estimators

attain the same rate of convergence. This phenomenon is different from those in the esti-

mation of other types of covariance matrices. In addition, we also establish in this paper

the optimal rate of convergence for estimating the inverse of a Toeplitz covariance matrix.

The problem of estimating Toeplitz covariance matrices and its inverse exhibits in-

teresting new features different from those in other related covariance matrix estimation

problems. This is particularly true for establishing minimax lower bounds. In this paper,

the lower bound is obtained through a novel construction of a more informative exper-

iment which is shown to be exactly equivalent to a Gaussian scale model. A minimax

lower bound for the more informative model, which immediately provides a lower bound

for the original problem, is derived by carefully constructing a collection of least favor-

able spectral densities and by applying Fano’s Lemma. This two-step technique is quite

different from those used to establish the optimal rate of convergence in other covariance

matrix estimation problems. See. e.g., Cai, Zhang and Zhou (2010) and Cai and Zhou

(2010).

By combining the minimax lower and upper bounds developed in later sections, the

main results on the optimal rate of convergence for estimating a Toeplitz covariance matrix

can be summarized in the following theorem. Here for two sequences of positive numbers

an and bn, an ≍ bn means that there exist positive constants c and C independent of n

such that c ≤ an/bn ≤ C.

Theorem 1 The minimax risk of estimating the Toeplitz covariance matrix Σp×p over

the collections Gβ (M) or Fβ (M0,M) satisfies

inf
Σ̂p×p

sup
Hβ

E

∥

∥

∥
Σ̂p×p −Σp×p

∥

∥

∥

2
≍
(

log(np)

np

)
2β

2β+1

under the condition (7), where Hβ = Gβ (M), or Hβ = Fβ (M0,M) defined in (6).

Harmonic analysis plays a major role in the technical arguments for establishing both the

minimax upper and lower bounds.

In addition to the Toeplitz matrices considered in the present paper, estimation of

large covariance matrices under other structural assumptions has been actively studied

in the recent literature. The most commonly considered assumptions are “sparse”, where

only a small number of entries in each row/column are nonzero, and “bandable”, where

the entries of the matrix decay as they move away from the diagonal. Many regularization
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methods have been proposed and studied under these assumptions. For example, Bickel

and Levina (2008a, b) proposed a banding estimator for estimating bandable covariance

matrices and a thresholding estimator for sparse covariance matrices and obtained rate of

convergence for the two estimators. See also El Karoui (2008) and Lam and Fan (2009).

Cai, Zhang and Zhou (2010) established the optimal rates of convergence for estimating

bandable covariance matrices and introduced rate-optimal tapering estimators. Cai and

Zhou (2010) derived the minimax rate of convergence for estimating sparse covariance ma-

trices under the spectral norm. In particular, a new general lower bound technique was

developed. Cai and Liu (2011) introduced an adaptive thresholding procedure for estimat-

ing sparse covariance matrices that automatically adjusts to the variability of individual

entries. Estimation of sparse inverse covariance matrices has also drawn considerable

attention due to its close connections to Gaussian graphical model selection. See Raviku-

mar, Wainwright, Raskutti and Yu (2008), Yuan (2010), and Cai, Liu and Luo (2010).

The optimal rate of convergence for estimating sparse inverse covariance matrices was

established in Cai, Liu and Zhou (2010).

The rest of the paper is organized as follows. In Section 2, tapering and banding esti-

mators are introduced and studied. In particular, a minimax upper bound for estimating

Toeplitz covariance matrices under the spectral norm is obtained. Section 3 establishes

a minimax lower bound which matches in terms of the rate of convergence the minimax

upper bound derived in Section 2. The upper and lower bounds together yield the optimal

rate of convergence. Section 4 considers estimation of the inverse of a Toeplitz covariance

matrix and establishes the optimal rate of convergence for estimating the inverse under

the spectral norm. Section 5 discusses connections and differences of our work with other

related problems. The proofs are given in Sections 6 and 7.

2 Methodology andMinimax Upper Bound under the Spec-

tral Norm

In this section we introduce tapering and banding procedures for estimating the Toeplitz

covariance matrix Σp×p based on a random sample of p-variate Gaussian observations

X1, . . . ,Xn
iid∼ N(µ,Σp×p). The properties of the tapering and banding estimators under

the spectral norm are then studied and used to establish the minimax upper bounds.

Given a random sample {X1, . . . ,Xn} from a Gaussian distribution with a Toeplitz
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covariance matrix Σp×p, the sample covariance matrix is

Σ∗
p×p = (σ∗

st)1≤s,t≤p =
1

n− 1

n
∑

l=1

(

Xl − X̄
) (

Xl − X̄
)T

(3)

where X̄ = 1
n

∑n
l=1Xl is the sample mean. Note that Σ∗ is translation invariant, thus

we shall assume EXl = 0 hereafter. When the covariance matrix Σp×p is Toeplitz, an

immediate improvement of the sample covariance estimator is to average the entries in

the diagonals of Σ∗
p×p. For 0 ≤ m ≤ p− 1, set

σ̃m =
1

p−m

∑

s−t=m

σ∗
st (4)

and define the Toeplitz matrix Σ̃ by Σ̃ = (σ̃st)1≤s,t≤p with σ̃st = σ̃|s−t|. Then Σ̃ is an

unbiased estimator of Σ.

We shall construct tapering estimators of the Toeplitz covariance matrix Σp×p based

on the unbiased estimator Σ̃ as follows. For a given even positive integer k ≤ p/2, let

ω = (ωm)0≤m≤p−1 be a weight sequence with the ωm given by

ωm =















1, when m ≤ k/2

2− 2m
k , when k/2 < m ≤ k

0, Otherwise

.

Define the tapering estimator Σ̂k of the Toeplitz matrix Σ by Σ̂k = (σ̂st) where

σ̂st = σ̂|s−t| = ω|s−t|σ̃|s−t|.

For the tapering estimator it is easy to see

Eσ̂m = ωmσm.

Similarly, for a given integer 0 ≤ k ≤ p − 1, a banding estimator Σ̂B
k can be defined as

Σ̂B
k = (σ̂B

st) with

σ̂B
st = σ̂B

|s−t| = σ̃|s−t| · I(|s − t| ≤ k). (5)

It is clear that the tapering estimator Σ̂k is different from the banding estimator Σ̂B
k ,

which is an unbiased estimator of ΣB
k = (σB

st)1≤s,t≤p with σB
st = σ|s−t|I(|s − t| ≤ k). Note

that both tapering and banding estimators have been used for other covariance estimation

problems and the two estimators share similar properties. See, e.g., Bickel and Levina

(2008a) and Cai, Zhang and Zhou (2010).
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As mentioned in the introduction, the Toeplitz covariance matrix is closely connected

to the spectral density of the stationary process. In addition to the parameter space

Gβ (M) defined in (2) in terms of the rate of decay of the covariance sequence (σm),

another natural parameter space to consider is defined in terms of the smoothness of the

spectral density f , which is commonly used in the analysis of periodic time series. Let

β = γ + α > 0, where γ is the largest integer strictly less than β, 0 < α ≤ 1, and

0 < M0,M < ∞. Define

Fβ (M0,M) =
{

Σ (f) : ‖f‖∞ ≤ M0 and
∥

∥

∥f (γ)(·+ h)− f (γ)(·)
∥

∥

∥

∞
≤ Mhα,Σ ≻ 0

}

, (6)

where Σ (f) is a p × p Toeplitz matrix uniquely determined by Fourier coefficients of

f . The smoothness parameter β of the spectral density f is closely connected to the

rate of decay of the covariances σm as m increases. The optimal rate of convergence for

estimating the Toeplitz covariance matrices Σp×p over the parameter space Fβ (M0,M)

critically depends on the value of β. For two parameter spaces Gβ (M) and Fβ (M0,M),

one is not a subclass of the other. Their connections and differences are discussed in

Section 5.

We study the performance of both the tapering estimator Σ̂k and the banding esti-

mator Σ̂B
k over the two parameter spaces Fβ (M0,M) and Gβ (M). The analysis is quite

similar for the two parameter spaces , but the asymptotic behaviors of the tapering and

banding estimators are more interesting over Fβ (M0,M) than Gβ (M). We therefore will

mainly focus our analysis on Fβ (M0,M). We begin by establishing the following risk

bounds for the tapering estimator Σ̂k under the spectral norm.

Remark 1 Throughout the paper we shall assume that

(

np

log (np)

) 1

2β+1

≤ p/2. (7)

The purpose of assumption (7) is to rule out the naive estimator (4). The right hand side

p/2 in (7) can of course be replaced by cp for any positive constant c < 1.

To simplify the notation, from now on we shall write Σ for Σp×p if the dependence on

p is clearly understood. Throughout the paper we denote by C, c, C1, c1, C2, c2, ... etc.

generic constants, not depending on n or p, which may vary from place to place. Let ⌊x⌋
denote the largest integer less than or equal x.
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Theorem 2 The tapering estimator Σ̂k of the Toeplitz covariance matrix Σ with k ≤ p/2

satisfies

sup
Fβ(M0,M)

E

∥

∥

∥
Σ̂k − Σ

∥

∥

∥

2
≤ C

k log (np)

np
+ Ck−2β (8)

for some constant C > 0. Consequently, by setting an optimal choice k = k∗ ≡
⌊

(

np
log(np)

) 1

2β+1

⌋

,

we have

sup
Fβ(M0,M)

E

∥

∥

∥
Σ̂k∗ − Σ

∥

∥

∥

2
≤ C1

(

log(np)

np

)
2β

2β+1

. (9)

The upper bounds given in Theorem 2 are proved by using the connections between

the spectral norm of a Toeplitz matrix Σ and the supnorm of the corresponding spectral

density f . Indeed,

‖Σ‖ ≤ 2π‖f‖∞ = sup
[−π,π]

|σ0 + 2

∞
∑

m=1

σm cosmx|. (10)

See, for example, Chapter 1 of Böttcher and Silbermann (1999). Note that

E

∥

∥

∥Σ̂k − Σ
∥

∥

∥

2
≤ 2E

∥

∥

∥Σ̂k − EΣ̂k

∥

∥

∥

2
+ 2

∥

∥

∥EΣ̂k − Σ
∥

∥

∥

2
.

The variance term E

∥

∥

∥
Σ̂k − EΣ̂k

∥

∥

∥

2
and the bias term

∥

∥

∥
EΣ̂k − Σ

∥

∥

∥

2
can then be bounded

from above by the supnorm of the corresponding spectral densities of the Toeplitz matrices

Σ̂k − EΣ̂k and EΣ̂k − Σ respectively. For the variance part, we apply a large deviation

result for spectral density estimation from Bentus and Rudzkis (1982) and show that

E

∥

∥

∥Σ̂k − EΣ̂k

∥

∥

∥

2
≤ C

k log (np)

np
.

The upper bound for the bias term
∥

∥

∥
EΣ̂k − Σ

∥

∥

∥

2
is of order k−2β due to a well known

result for the tapering estimators from harmonic analysis. See Zygmund (2002). Set

k = k∗ ≡
⌊

(

np
log(np)

)
1

2β+1

⌋

, then the tapering estimator achieves the rate of convergence

( log(np)np )2β/(2β+1).

Remark 2 The tapering estimator Σ̂k∗ in (9) is not guaranteed to be positive semidefinite

for a given sample. By using results on circulant matrices, one can construct a new

estimator Σ̂New based on Σ̂k∗ such that Σ̂New is positive semidefinite, Toeplitz and attains

the upper bound in Equation (9). See Section 5 for details.
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We now turn to the performance of the banding estimator. The analysis is similar,

but the result is somewhat surprisingly different. It is interesting to note that the best

banding estimator is inferior to the optimal tapering estimator for estimating the Toeplitz

covariance matrices over Fβ(M0,M). Assume that

(np log(np))1/(2β+1) = O(pκ) (11)

for some κ < 2
5 . The following theorem is established by extending a major result of

Woodroofe and Van Ness (1967) in which a condition similar to (11) was imposed, together

with the fact that the banding estimator may have a large bias as shown in Lemma 3.

The details are given in Section 6.3.

Theorem 3 Under the assumption (11), the banding estimator (5) satisfies

(

np

log(np)

)
2β

2β+1

inf
k

sup
Fβ(M0,M)

E

∥

∥

∥
Σ̂B
k − Σ

∥

∥

∥

2
→ ∞.

Let us now consider the parameter space Gβ(M) defined in (2). It can be shown that

the tapering estimator attains the same rate of convergence as the one for Fβ(M0,M).

Furthermore, in contrast to estimation over Fβ(M0,M), for estimating Σ over the pa-

rameter space Gβ(M) the banding estimator achieves the same rate of convergence as the

tapering estimator.

Theorem 4 For k ≤ p/2, the tapering estimator Σ̂k or the banding estimator Σ̂B
k of the

Toeplitz covariance matrix Σ satisfies, for some constant C > 0,

sup
Σ∈Gβ(M)

E

∥

∥

∥
Σ̂− Σ

∥

∥

∥

2
≤ C

k log (np)

np
+ Ck−2β

where Σ̂ = Σ̂k or Σ̂
B
k . Consequently, by setting an optimal choice of k = k∗ ≡

⌊

(

np
log(np)

)
1

2β+1

⌋

,

we have

sup
Σ∈Gβ(M)

E

∥

∥

∥Σ̂k∗ − Σ
∥

∥

∥

2
≤ C1

(

log(np)

np

)
2β

2β+1

.

The parameter spaces Gβ(M) and Fβ(M0,M) are similar, but they also have subtle

differences which lead to distinct risk properties for the banding estimator over the two

parameter spaces. For a Toeplitz covariance matrix Σ ∈ Gβ(M), due to the rate of decay

of the sequence of covariances (σi), the bias component of the risk of the banding estimator

Σ̂B
k has the upper bound

sup
Gβ(M)

‖EΣ̂B
k − Σ‖2 ≤ Ck−2β,
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which is the same as that of the tapering estimator Σ̂k in terms of the rate of convergence.

The bias bound above is different from the case of Fβ(M0,M), for which as shown in

Lemma 3 the banding estimator Σ̂B
k satisfies

sup
Fβ(M0,M)

‖EΣ̂B
k − Σ‖2 ≍ (log k)2 k−2β ,

whereas the maximum squared bias of the tapering estimator Σ̂k is of order k−2β . There

is no significant difference in the variance behavior between the banding estimator Σ̂B
k and

the tapering estimator Σ̂k. We shall omit the proof of Theorem 4 for reasons of space.

3 Minimax Lower Bound under the Spectral Norm

The problem of optimal estimation of large covariance matrices poses new technical chal-

lenges, partly due to the difficulty in obtaining rate-sharp minimax lower bounds. For

estimating Toeplitz covariance matrices, it appears difficult to derive a rate-sharp mini-

max lower bound directly. In this section we shall establish a minimax lower bound for

estimating Toeplitz covariance matrices by first constructing a more informative model

under which independent random variables are observed, and then deriving a lower bound

for the more informative model through an equivalent Gaussian scale model. The mini-

max lower bound for the more informative model then immediately yields a lower bound

for the original problem.

Recall that in the original experiment, we observe an i.i.d. random sample {X1, . . . ,Xn}
from a p-variate Gaussian distribution with the Toeplitz covariance matrix Σ given as in

(1). Now let us consider an“enlarged” experiment in which one observes an i.i.d. ran-

dom sample {Y1, . . . ,Yn} from a (2p − 1)-variate Gaussian distribution with a circulant

covariance matrix Σ̌ = Σ̌(2p−1)×(2p−1) matrix where

Σ̌ =































σ0 σ1 σ2 · · · σp−2 σp−1

σ1 σ0 σ1 σp−2

σ2 σ1 σ0
...

...
. . .

...

σp−2 σ0 σ1

σp−1 σp−2 · · · · · · σ1 σ0

σp−1 σp−2 · · · σ2 σ1

σp−1 σp−1 σ2

σp−2 σp−1
...

...
. . .

...

σ2 σp−1 σp−1

σ1 σ2 · · · σp−2 σp−1

· · · · · · · · · · ··






























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i.e.,

(

Σ̌
)

st
=

{

σ|s−t| when |s− t| ≤ p− 1

σ2p−1−|s−t| when p ≤ |s− t| ≤ 2p− 2
.

Denote the vector of the first p coordinates of Yi by Y
(1)
i and the last p− 1 coordinates

by Y
(2)
i . Then Yi can be written as Yi = (Y

(1)
i ,Y

(2)
i ) and Y

(1)
i has exactly the same

distribution as Xi. The second experiment with the random sample {Y1, . . . ,Yn} is

clearly more informative than the first one with {X1, . . . ,Xn} because in the second

experiment one can always make inference simply based only on {Y(1)
1 , . . . ,Y

(1)
n } and

ignore {Y(2)
1 , . . . ,Y

(2)
n }.

The major advantage of the more informative experiment is that it is easier to analyze.

It is important to note that the second experiment in which we observe the random sample

{Y1, . . . ,Yn} is exactly equivalent to a Gaussian scale model under which one observes

Zij = Sp(f)
1/2

(

2πj

2p− 1

)

ξij, with ξij
iid∼ N (0, 1) , (12)

for |j| ≤ p− 1, and i = 1, 2, · · · n. Here

Sp(f)(x) =
1

2π
(σ0 + 2

p−1
∑

m=1

σm cosmx) (13)

is the partial sum of f with order p. This can be seen as follows. Define

υj =
2πj

2p− 1
for |j| ≤ p− 1.

It is well known (see Brockwell and Davis (1991)) that the spectral decomposition of Σ̌

can be given by

Σ̌ =
∑

|j|≤p−1

λjuju
′
j

where λj are real eigenvalues and uj are real orthonormal eigenvectors. The eigenvalues

are

λj =
∑

|k|≤p−1

σk exp(−iυjk) = 2πSp(f) (υj) , |j| ≤ p− 1

where Sp(f)(x) is the pth order partial sum of f given in (13). The eigenvectors uj of the

circulant matrix Σ̌ are given by u′
0 = (2p− 1)−1/2(1, . . . , 1) and for j = 1, . . . , p− 1,

u′
j = (

2

2p − 1
)1/2(1, cos(υj), cos(2υj), . . . , cos((2p − 2)υj)), (14)

u′
−j = (

2

2p − 1
)1/2(0, sin(υj), sin(2υj), . . . , sin((2p − 2)υj)), (15)
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which in fact do not depend on the entries σj of the matrix Σ̌. In particular, the set of

eigenvectors do not depend on the set of eigenvalues λj . This is the key advantage of

working with the circulant matrix Σ̌ = Σ̌(2p−1)×(2p−1) over the Toeplitz matrix Σp×p.

Define the (2p − 1)× (2p− 1) orthogonal matrix U by U = (u−(p−1), . . . ,u(p−1)) and

set

Zi =
1√
2π

U ′Yi, for i = 1, 2, · · · , n.

Note that Zi are independent (2p−1)-dimensional zero-mean Gaussian variables and each

Zi has a diagonal covariance matrix with values λj/2π along the diagonal. Hence Zi can

be equivalently written in the form of the Gaussian scale model given in (12). Notice

that the transformation is invertible and independent of the unknown parameter f , thus

the experiment of observing the random sample {Y1, . . . ,Yn} is exactly equivalent to

observing {Zij , |j| ≤ p− 1, i = 1, ..., n} under the Gaussian scale model given in (12).

We shall work with the Gaussian scale model (12) to establish a minimax lower bound.

It is clear that for any statistical problem an optimal procedure based on a more informa-

tive experiment performs at least as well as the best procedure based on a less informative

experiment. Hence, for our problem of estimating Σ under the spectral norm, a minimax

lower bound for the above more informative model automatically provides a lower bound

for the original model. The following lower bound is obtained through this technique.

Theorem 5 The minimax risk for estimating the Toeplitz covariance matrix Σ over

Fβ(M0,M) under the spectral norm satisfies

inf
Σ̂

sup
Fβ(M0,M)

E

∥

∥

∥
Σ̂− Σ

∥

∥

∥

2
≥ c

(

np

log (np)

)− 2β
1+2β

for some constant c > 0.

After the construction of the more informative model, there are two additional major

steps in establishing the minimax lower bound. The first step is to construct a finite

collection of least favorable spectral densities to reduce the lower bound problem for

estimating Σ over the whole parameter space to the one for estimating the spectral density

over this finite parameter space. The second step is to use Fano’s Lemma to obtain a lower

bound for estimating the spectral density under the Gaussian scale model (12) over the

finite parameter space. This lower bound then yields immediately the desired lower bound

for the original problem of estimating a Toeplitz covariance matrix under the spectral

norm.

Similarly, the same lower bound can be obtained for the parameter space Gβ (M).

12



Theorem 6 The minimax risk for estimating the covariance matrix Σ over Gβ (M) under

the operator norm satisfies

inf
Σ̂

sup
Gβ(M)

E

∥

∥

∥Σ̂− Σ
∥

∥

∥

2
≥ c

(

np

log (np)

)− 2β
1+2β

.

The upper bounds given in Theorems 2 and 4 together with the lower bounds stated

in Theorems 5 and 6 show that the minimax risk of estimating the Toeplitz covariance

matrix Σp×p over the collections Gβ (M) or Fβ (M0,M) satisfies

inf
Σ̂p×p

sup
Hβ

E

∥

∥

∥
Σ̂p×p − Σp×p

∥

∥

∥

2
≍
(

log(np)

np

)
2β

2β+1

, (16)

where Hβ = Gβ (M) or Fβ (M0,M). The results also show that the tapering estimator Σ̂k

with the tapering parameter k =

⌊

(

np
log(np)

) 1

2β+1

⌋

attains the optimal rate of convergence

(

log(np)
np

)
2β

2β+1
over both Gβ (M) and Fβ (M0,M), while the banding estimator Σ̂B

k with

the same choice of k is rate optimal over Gβ (M), but not for Fβ (M0,M). These results

show subtle differences between tapering and banding estimators and between the two

parameter spaces Gβ (M) and Fβ (M0,M).

4 Estimation of the Inverse Toeplitz Covariance Matrix

As mentioned in the introduction, the inverse Σ−1 of the Toeplitz covariance matrix Σ is

of significant interest in many applications. The results and analysis given in the last two

sections can be extended to establish the optimal rate of convergence for estimating Σ−1

under the spectral norm.

For estimating the inverse Σ−1
p×p, we require the minimum value of the spectral density

f to be bounded from below by a positive constant so that the minimum eigenvalue of

Σp×p is bounded away from zero for all p. For a given constant δ > 0, define

Lδ =
{

f : inf
x

f(x) >
δ

2π

}

.

Define the parameter spaces

Pβ = Fβ (M0,M) ∩ Lδ and Qβ = Gβ (M) ∩ Lδ. (17)

Recall that for any f ∈ Fβ (M0,M) , we have ‖f‖∞ ≤ M0 and for f ∈ Gβ (M) , we have

‖f‖∞ ≤ M/ (βπ) . Note that for every Toeplitz matrix Σ

λmin (Σ) ≥ 2π inf
x

f(x) (18)
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where λmin (Σ) denotes the smallest eigenvalue of Σ ((cf. Brockwell and Davis (1991),

Proposition 4.5.3). Equations (18) and (10) imply

δ < λmin (Σ) ≤ λmax (Σ) ≤ η,

where η = 2πmax {M0,M/ (βπ)}.
The following theorem gives the minimax rate of convergence for estimating Σ−1.

Theorem 7 The minimax risk of estimating the inverse of the Toeplitz covariance matrix

Σ−1 over the class Pβ or the class Qβ defined in (17) satisfies

inf
Ω̂

sup
Rβ

E

∥

∥

∥
Ω̂− Σ−1

∥

∥

∥

2
≍
(

log(np)

np

)
2β

2β+1

where Rβ = Pβ or Qβ.

In fact, the optimal rate of convergence is achieved by the inverse of a slight modifi-

cation of the tapering estimator Σ̂∗ = Σ̂k∗ with k∗ =

⌊

(

np
log(np)

) 1

2β+1

⌋

. Set

Σ̃ =

{

Σ̂∗ for λmin(Σ̂) ≥ 1
log(np)

I otherwise
(19)

and let Ω̂∗ = Σ̃−1. Then Ω̂∗ is rate-optimal, i.e.,

sup
Rβ

E

∥

∥

∥
Ω̂∗ − Σ−1

∥

∥

∥

2
≤ C

(

log(np)

np

)
2β

2β+1

for some constant C > 0, where in this case Rβ = Pβ or Qβ . The proof can be found in

Section 6.6.

Minimax lower bound for estimating the inverse

It is interesting to note that it is not necessary to have a completely separate lower

bound derivation for estimating the inverse Σ−1. The following simple argument yields a

minimax lower bound for estimating Σ−1 based on the lower bound for Σ, which is already

established in Section 3. Let Rβ = Pβ or Qβ. For any estimator Ω̂ of Σ−1, define

Σ̂proj = argmin
A∈Rβ

{‖Ω̂ −A−1‖}.

In other words, Σ̂−1
proj is the closest matrix to Ω̂ such that Σ̂proj is in the parameter space

Rβ . The true Σ is in Rβ, so ‖Ω̂− Σ−1‖ ≥ ‖Ω̂− Σ̂−1
proj‖ and hence

2
∥

∥

∥Ω̂− Σ−1
∥

∥

∥ ≥
∥

∥

∥Ω̂− Σ−1
∥

∥

∥+
∥

∥

∥Ω̂− Σ̂−1
proj

∥

∥

∥ ≥
∥

∥

∥Σ−1 − Σ̂−1
proj

∥

∥

∥ .

14



Also note that

∥

∥

∥
Σ̂proj − Σ

∥

∥

∥
=
∥

∥

∥
Σ̂proj(Σ

−1 − Σ̂−1
proj)Σ

∥

∥

∥
≤
∥

∥

∥
Σ̂proj

∥

∥

∥

∥

∥

∥
Σ−1 − Σ̂−1

proj

∥

∥

∥
‖Σ‖ .

Since both Σ̂proj and Σ are in the space Rβ , their spectral norms are bounded from above

by a constant η as commented earlier, we conclude that

∥

∥

∥
Σ−1 − Σ̂−1

proj

∥

∥

∥
≥ η−2 ·

∥

∥

∥
Σ̂proj − Σ

∥

∥

∥
.

Therefore the minimax risk for estimating Σ−1 can be bounded from below as

inf
Ω̂

sup
Rβ

E

∥

∥

∥
Ω̂− Σ−1

∥

∥

∥

2
≥ 1

4η4
inf
Ω̂

sup
Rβ

E

∥

∥

∥
Σ̂proj − Σ

∥

∥

∥

2
≥ 1

4η4
inf
Σ̂

sup
Rβ

E

∥

∥

∥
Σ̂− Σ

∥

∥

∥

2

≥ c

(

np

log (np)

)− 2β
2β+1

for some constant c > 0.

Note that the above simple argument can also be applied to some other covariance

matrix estimation problems such as that in Cai, Zhang and Zhou (2010) and Cai and

Zhou (2011) to more conveniently establish a minimax lower bound for estimating the

inverse covariance matrices.

5 Discussions

This paper introduces a rate optimal tapering estimator and establishes the minimax

rate of convergence for estimating Toeplitz covariance matrices over the parameter spaces

Fβ(M0,M) and Gβ(M) under the spectral norm. The results also show interesting dif-

ferences between the tapering and banding estimators for estimation over Fβ (M0,M). A

key step in the lower bound argument is the construction of a more informative model

for which the minimax lower bound is easier to obtain. The more informative model is

shown to be equivalent to a Gaussian scale model and the lower bound for this model

is established by carefully constructing a collection of least favorable spectral densities

and by applying Fano’s Lemma. Harmonic analysis plays a major role in the technical

arguments for establishing both the minimax upper and lower bounds.

The problem of estimating Toeplitz covariance matrices is quite distinct from other

covariance matrix estimation problems such as those of estimating bandable or sparse

covariance matrices. In those problems technical analyses rely much more heavily on

random matrix theory and the lower bound techniques are significantly different from what
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is used here. See Cai, Zhang and Zhou (2010) and Cai and Zhou (2010). For example,

here a major step in the lower bound argument is the construction of a more informative

experiment. To the best of our knowledge, this is not needed in other covariance matrix

estimation problems.

As mentioned in Section 2, the tapering estimator Σ̂k∗ in (9) is not guaranteed to

be positive semidefinite for a given realization. Through a circulant matrix, a new es-

timator Σ̂New can be constructed such that it is positive semidefinite, Toeplitz and at-

tains the upper bound in (9). The construction is as follows. Recall that for the ta-

pering estimator Σ̂k∗ with k∗ =

⌊

(

np
log(np)

)
1

2β+1

⌋

, the corresponding spectral density is

f̂k∗ (x) =
1
2π

(

σ̂0 + 2
∑k∗

m=1 σ̂m cos (mx)
)

. Define

f̂New (x) =

{

f̂k∗ (x) , if f̂k∗ (x) ≥ 0

0, otherwise
.

Let

Σ̂New
(2p−1)×(2p−1) = 2π

∑

|j|≤p−1

f̂New (υj)uju
′
j (20)

where υj = (2πj)/(2p − 1) and uj are defined in Equations (14) and (15). Now define a

new estimator Σ̂New
p×p by selecting the first p rows and p columns of Σ̂New

(2p−1)×(2p−1). It is

clear that Σ̂New
p×p is a Toeplitz matrix. Since f̂New (x) ≥ 0, Σ̂New

(2p−1)×(2p−1) is non-negative

which implies Σ̂New
p×p is non-negative too. The following proposition shows that it attains

the optimal rate of convergence
(

np
log(np)

)−2β/(2β+1)
.

Proposition 1 The estimator Σ̂New
p×p satisfies

sup
Hβ

E

∥

∥

∥Σ̂New
p×p − Σ

∥

∥

∥

2
≤ C

(

log(np)

np

)2β/(2β+1)

,

where Hβ = Gβ (M) or Fβ (M0,M).

The parameter spaces Fβ (M0,M1) and Gβ (M) are similar, but also have subtle dif-

ferences, which lead to different risk properties for the banding estimators over these two

parameters spaces. For any M > 0 and noninteger β > 0, it can be shown that there exists

some constants M0 and M1 depending on M such that Gβ (M) ⊂ Fβ (M0,M1). However

in general this is not true for integer β. See, for example, Zygmund (2002). Conversely, it

is easy to see for any Σ ∈ Fβ (M0,M1) we have |σm| ≤ Mm−β, where M is some constant

depending only on M0 and M1. Therefore Fβ (M0,M1) ⊂ Gβ−1(M) for some constant M

depending on M0 and M1.
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The problem of estimating a Toeplitz covariance matrix is closely connected to the

problem of estimating the spectral densities. For example, an upper bound for the risk

of estimating the spectral density f under the supnorm automatically provides an upper

bound for estimating the Toeplitz covariance matrix Σ under the spectral norm through

the classical bound

‖Σ̂− Σ‖ ≤ 2π‖f̂ − f‖∞.

However, despite their close connections, the two problems are different. For example, it

is usually not true that ‖Σ̂−Σ‖ ≥ c‖f̂−f‖∞ uniformly over all f̂ and f for some constant

c > 0. The lower bound argument for the matrix estimation problem is more involved

than that for the spectral density estimation problem.

Golubev, Nussbaum and Zhou (2010) studied the asymptotic equivalence between

the spectral density estimation and a Gaussian white noise model, which suggests it

should be possible to provide an asymptotic equivalence theory for the Toeplitz covariance

matrix estimation problem. Observe a sample X1 = (y(1), . . . , y(p))′ from a real Gaussian

stationary sequence y(t) with Ey(t) = 0 and autocovariance function σm = Ey(t)y(t+m)

with the spectral density f(x) = 1
2π

∑∞
m=−∞ σmexp(ihx), i.e.,

X1 ∼ Np(0,Σ(f))

where Σ (f) is the p × p Toeplitz covariance matrix with entries (Σ)j,k = σ|k−j|, for

j, k = 1, . . . , p. Let F be a set of spectral densities defined by

F =
{

f : f ∈ Fβ (M0,M) , and inf
x
f (x) ≥ ǫ

}

for β > 1/2, and some positive constants ǫ, M and M0. It was shown in Golubev,

Nussbaum and Zhou (2010) that the experiments given by observations

X1 ∼ Np(0,Σ(f))

and

dZx = log f(x)dx+ 2π1/2p−1/2dWx, x ∈ [−π, π]

with f ∈ F are asymptotically equivalent. This suggests the experiment of observing

X1, . . . ,Xn
i.i.d.∼ Np(0,Σ(f))

is asymptotically equivalent to

dZt = log f(t)dt+ 2π1/2 (np)−1/2 dWt, t ∈ [−π, π]
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under a certain smoothness assumption. Applications of the asymptotic equivalence the-

ory include sharp asymptotic minimaxity in estimating Σ by expecting that

inf
Σ̂

sup
F

E

∥

∥

∥
Σ̂− Σ

∥

∥

∥

2
= (1 + o (1)) 4π2 inf

f̂
sup
F

E

∥

∥

∥
f̂ − f

∥

∥

∥

2

∞

and

inf
Σ̂

sup
F

E
1

p

∥

∥

∥
Σ̂− Σ

∥

∥

∥

2

F
= (1 + o (1)) inf

f̂
sup
F

E

∥

∥

∥
f̂ − f

∥

∥

∥

2

2

due to the following facts,

‖Σ∞×∞‖ = 2π ‖f‖∞
and

‖ f ‖22=
1

2π

∫

f2 =
∞
∑

m=−∞
σ2
m = σ2

0 + 2
∞
∑

m=1

σ2
m.

It is an interesting and important topic for future research to establish the asymptotic

equivalence rigorously.

6 Proofs of Main Theorems

In this section, we will first prove the risk upper bounds for the tapering procedures in

Sections 6.1 and 6.2, and show that the banding estimator has inferior risk properties

in Section 6.3, then establish the minimax lower bounds in Sections 6.4 and 6.5 for the

parameter spaces Fβ and Gβ respectively. In Section 6.6, we prove Theorem 7, which

gives minimax risk results for estimating the inverse of a Toeplitz covariance matrix.

6.1 Proof of Theorem 2

It follows from the triangle inequality and Equation (10) that

∥

∥

∥
Σ̂k − Σ

∥

∥

∥

2
≤ 2

∥

∥

∥
Σ̂k − EΣ̂k

∥

∥

∥

2
+ 2

∥

∥

∥
EΣ̂k − Σ

∥

∥

∥

2

≤ 8π2

(

∥

∥

∥Ef̂k(x)− f̂k(x)
∥

∥

∥

2

∞
+
∥

∥

∥Ef̂k(x)− f(x)
∥

∥

∥

2

∞

)

where

f(x) =
1

2π
(σ0 + 2

∞
∑

m=1

σm cosmx), and f̂k(x) =
1

2π
(σ̂0 + 2

k
∑

m=1

σ̂m cosmx).

We shall establish following upper bounds for the bias and variance separately,

sup
Fβ

∥

∥

∥
Ef̂k(x)− f(x)

∥

∥

∥

2

∞
≤ Ck−2β (21)
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and

sup
Fβ

E

∥

∥

∥Ef̂k(x)− f̂k(x)
∥

∥

∥

2

∞
≤ C

k log (np)

np
. (22)

These two bounds together immediately imply Equation (8) of Theorem 2. A trade-off

between the bias and variance leads to an optimal choice of k = k∗ ≡
(

np
log(np)

) 1

2β+1
, which

yields the rate of convergence
(

log(np)
np

)
2β

2β+1
as stated in Equation (9) of Theorem 2.

We now establish Equations (21) and (22). It is relatively easy to derive the upper

bound (21) for the bias. Note that

Ef̂k(x) =
1

2π
(ω0σ0 + 2

k
∑

m=1

ωmσm cosmx)

=
1

2π
(σ0 + 2

k/2
∑

m=1

σm cosmx+ 2
k
∑

m=k/2+1

(

2− 2m

k

)

σm cosmx).

Since Ef̂k(x) is the de la Vallée Poussin mean of f , we have

∥

∥

∥
Ef̂k(x)− f(x)

∥

∥

∥

∞
≤ C inf

T∈TriPoly(k)
‖T − f(x)‖∞ (23)

where TriPoly(k) is the collection of all trigonometric polynomial with degree no more

than k, and the right hand side of (23) can be further bounded as

inf
T∈TriPoly(k)

‖T − f(x)‖∞ ≤ 3Mk−β

for f ∈ Fβ(M0,M) (cf. Vol 1, Chapter 3.13 and page 117 of Zygmund (2002)). Conse-

quently, we obtain the desired upper bound in Equation (21).

To study the variance part, we need the following large deviation bounds, which is

proved in Section 7.1.

Lemma 1 For each observation Xl, l = 1, 2, · · · n, the corresponding estimated spectral

density f̂
(l)
k (x) has the following property

P

{

±
√

p

k

(

f̂
(l)
k (x)− Ef̂

(l)
k (x)

)

≥ t

}

≤ exp
(

−c1t
2
)

for 0 ≤ t ≤ c2

√

p

k

and

P

{
√

p

k

∣

∣

∣
f̂
(l)
k (x)− Ef̂

(l)
k (x)

∣

∣

∣
≥ t

}

≤ c3 exp (−c4t)

uniformly over all x and the parameter space Fβ(M0,M).
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Lemma 1, together with certain continuity property of f̂k(x) =
1
n

∑n
l=1 f̂

(l)
k (x), yields

the following desired upper bound for the variance part.

Lemma 2 The estimator f̂k of spectral density satisfies

sup
Fβ

E

∥

∥

∥
Ef̂k(x)− f̂k(x)

∥

∥

∥

2

∞
≤ C

k log (np)

np
.

The detailed proofs of Lemmas 1 and 2 are given in Section 7.

6.2 Proof of Proposition 1

Similar to the definitions of Σ̂New
(2p−1)×(2p−1) and Σ̂New

p×p in Section 5, we define ΣTaper
(2p−1)×(2p−1)

by

ΣTaper
(2p−1)×(2p−1) = 2π

∑

|j|≤p−1

Ef̂k∗ (υj)uju
′
j,

where υj = (2πj)/(2p − 1) and uj are defined in Equations (14) and (15), and define a

new matrix ΣTaper
p×p by selecting the first p rows and columns of ΣTaper

(2p−1)×(2p−1). Note that

ΣTaper
p×p = EΣ̂k∗, where k∗ ≡

(

np
log(np)

) 1

2β+1
, then

∥

∥

∥Σ
Taper
p×p − Σp×p

∥

∥

∥

2
≤ (2π)2

∥

∥

∥f − Ef̂k∗

∥

∥

∥

2

∞
≤ Ck−2β

∗ = C

(

log(np)

np

)
2β

2β+1

from Theorem 2. By the triangle inequality, we have

∥

∥

∥Σ̂New
p×p − Σp×p

∥

∥

∥

2
≤ 2

∥

∥

∥Σ̂New
p×p − ΣTaper

p×p

∥

∥

∥

2
+ 2

∥

∥

∥Σ
Taper
p×p − Σp×p

∥

∥

∥

2
,

thus it is enough to show that

E

∥

∥

∥
Σ̂New
p×p − ΣTaper

p×p

∥

∥

∥

2
≤ C

(

log(np)

np

)2β/(2β+1)

(24)

to establish Proposition 1.

Now we establish Equation (24). Note that

∥

∥

∥
Σ̂New
p×p − ΣTaper

p×p

∥

∥

∥

2
≤

∥

∥

∥
Σ̂New
(2p−1)×(2p−1) − ΣTaper

(2p−1)×(2p−1)

∥

∥

∥

2
(25)

= (2π)2
(

max
j

∣

∣

∣f̂New (υj)− Ef̂k∗ (υj)
∣

∣

∣

)2

≤ (2π)2
∥

∥

∥f̂New − Ef̂k∗

∥

∥

∥

2

∞

By the triangle inequality, we can write

∥

∥

∥f̂New − Ef̂k∗

∥

∥

∥

2

∞
≤ 2

∥

∥

∥f̂New − f
∥

∥

∥

2

∞
+ 2

∥

∥

∥f − Ef̂k∗

∥

∥

∥

2

∞
.
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Since f is non-negative and f̂New is the positive part of f̂k∗, it is easy to see that
∥

∥

∥
f̂New − f

∥

∥

∥

2

∞
≤
∥

∥

∥
f̂k∗ − f

∥

∥

∥

2

∞
,

then we have

E

∥

∥

∥f̂New − Ef̂k∗

∥

∥

∥

2

∞
≤ 2E

∥

∥

∥f̂k∗ − f
∥

∥

∥

2

∞
+ 2E

∥

∥

∥f − Ef̂k∗

∥

∥

∥

2

∞
≤ 2E

∥

∥

∥f̂k∗ − f
∥

∥

∥

2

∞
+ Ck−2β

∗

which, together with Equation (25), immediately implies

E

∥

∥

∥
Σ̂New
p×p − ΣTaper

p×p

∥

∥

∥

2
≤ (2π)2 E

∥

∥

∥
f̂New − Ef̂k∗

∥

∥

∥

2

∞

≤ 8π2
E

∥

∥

∥
f̂k∗ − f

∥

∥

∥

2

∞
+ Ck−2β

∗ ≤ C

(

log(np)

np

)2β/(2β+1)

where the last inequality follows from Theorem 2.

6.3 Proof of Theorem 3

This theorem is a consequence of the following three auxiliary lemmas. The proofs of the

first two lemmas can be found in the Appendix. We omit the proof of the third lemma,

since it is similar to the tapering case which was shown in Section 6.1. A key step in the

proof of Lemma 3 is to follow an example in page 315 of Zygmund (2002) by explicitly

constructing a covariance matrix Σ, or equivalently the corresponding spectral density,

for which the bias of the banding estimator Σ̂B
k is much larger than k−2β . Lemma 4 is an

extension of a major result in Woodroofe and Van Ness (1967).

Lemma 3 The bias of the banding estimator Σ̂B
k in Equation (5) of the Toeplitz covari-

ance matrix Σ with k ≤ p
2 satisfies

sup
Fβ(M0,M)

∥

∥

∥
EΣ̂B

k − Σ
∥

∥

∥

2
≥ Ck−2β (log k)2

for some constant C > 0.

Lemma 4 Let Σ = Ip×p, the identity matrix. The banding estimator Σ̂B
k with k = O(pκ)

for some κ < 2
5 and k → ∞ as p → ∞ satisfies

E
∥

∥

∥
Σ̂B
k − Σ

∥

∥

∥

2
≥ c

k log k

np

for some constant c > 0. Moreover, if k ≥ pκ, the banding estimator satisfies

E
∥

∥

∥
Σ̂B
k − Σ

∥

∥

∥

2
≥ c

pκ log p

np

for some constant c > 0.
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Lemma 5 The banding estimator Σ̂B
k defined in (5) satisfies

sup
Fβ(M0,M)

E

∥

∥

∥Σ̂B
k − EΣ̂B

k

∥

∥

∥

2
≤ C

k log (np)

np
, (26)

for some constant C > 0.

It suffices to show that for each fixed pair (k, p) there exists some Σ, or equivalently

some f ∈ Fβ(M0,M) such that

E

∥

∥

∥Σ̂B
k − Σ

∥

∥

∥

2
≥ C

(

log(np)

np

)
2β

2β+1

(log np)
2

2β+1
−ǫ

for some constants C > 0 and ǫ < 1
2β+1 .

Firstly we consider banding Σ̂B
k estimators with k < (np)

1

2β+1 (log np)
( 1

2β+1
−ǫ)

. It

follows from Lemma 3 and Equation (26) that

E

∥

∥

∥
Σ̂B
k − Σ

∥

∥

∥

2
≥

∥

∥

∥
EΣ̂B

k − Σ
∥

∥

∥

2
− E

∥

∥

∥
Σ̂B
k − EΣ̂B

k

∥

∥

∥

2

≥ Ck−2β (log k)2 −C1
k log (np)

np
.

Hence, for some ǫ < 1
2β+1 and all sufficiently large n or p,

E

∥

∥

∥
Σ̂B
k − Σ

∥

∥

∥

2
≥ C

(

log(np)

np

)
2β

2β+1

(log np)
2

2β+1
+2βǫ −C1

(

log(np)

np

)
2β

2β+1

(log np)
2

2β+1
−ǫ

≥ C2

(

log(np)

np

)
2β

2β+1

(log np)
2

2β+1
−ǫ

.

When k ≥ (np)
1

2β+1 (log np)(
1

2β+1
−ǫ) = O(pκ), let Σ be the identity matrix, then Lemma

4 implies

E

∥

∥

∥Σ̂B
k − Σ

∥

∥

∥

2
≥ c

k log k

np
≥ C3

(

log(np)

np

)
2β

2β+1

(log np)
2

2β+1
−ǫ

.

6.4 Proof of Theorem 5

Define f0 = M0/2 and fi (with period 2π) as follows,

fi = f0 + τǫβn,p

[

A

(

x− ǫn,p(i− 0.5)

ǫn,p

)

+A

(

x+ ǫn,p(i− 0.5)

ǫn,p

)]

, ǫn,p = 2π/k∗ (27)

where i = 1, 2, · · · k∗/2 with k∗ =

⌊

(

np
log(np)

)
1

2β+1

⌋

, and A(u) = exp(− 1
1−4u2 )1{|2u|<1}. It

is easy to see that

A ∈ C∞(R) ∩ Fβ

(

e−1, 1/2
)

and A(x) > 0 ⇐⇒ x ∈ (−1/2, 1/2) (28)
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and fi is positive and even, then fi ∈ Fβ(M0,M) by setting τ to be a sufficiently small

positive constant. Let Fsub =
{

f0, f1, . . . fk∗/2
}

.

As we have seen that there is a close connection between autocovariance matrix and

spectral density function, now we reduce the lower bound problem for estimating covari-

ance matrix under the spectral norm to the one for estimating spectral density under

the supnorm. The careful construction of fi in Equation (27) is crucial to establish the

following lemma.

Lemma 6 There exists some positive constant c such that

inf
Σ̂

sup
Fβ

E

∥

∥

∥
Σ̂− Σ

∥

∥

∥

2
≥ c inf

f̃
sup
Fsub

E

∥

∥

∥
f̃ − f

∥

∥

∥

2

∞
.

It is then enough to show

inf
f̃

sup
Fsub

E

∥

∥

∥f̃ − f
∥

∥

∥

2

∞
≥ c

(

np

log (np)

)− 2β
1+2β

(29)

to establish Theorem 5.

We now establish the lower bound for the spectral density estimation in Equation

(29). Recall that we have already constructed a more informative model, which is exactly

equivalent to a Gaussian scale model where one observes

Zij = Sp(f)
1/2

(

2πj

2p− 1

)

ξij, with ξij
iid∼ N (0, 1) ,

for |j| ≤ p − 1, and i = 1, 2, · · · n. For the above more informative model we will give a

lower bound of order
(

np
log(np)

)− 2β
1+2β

, which of course is also a lower bound for the original

model. It is easy to see that

‖fi − fj‖2∞ > c0

(

τǫβn,p

)2
≥ c

(

np

log (np)

)− 2β
1+2β

. (30)

In Section 7.4 we prove the following lemma.

Lemma 7 Let Pf denote the joint distribution of (Zij : i = 1, . . . , n, |j| ≤ p− 1) indexed

by function f . Then

2

k∗

k/2
∑

i=1

K(Pfi ,Pf0) ≤ a · log k∗, a ∈ (0, 1/8) . (31)

By the Fano’s lemma (cf. Tsybakov (2009)), Equation (30) and Lemma 7 immediately

imply Equation (29), which then yields Theorem 5 together with Lemma 6.
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6.5 Proof of Theorem 6

The proof of Theorem 6 is similar to that of Theorem 5, except that we need to show that

the trigonometric coefficients of fi belongs to the parameter space Gβ (M), i.e.,

|σm,i| ≤ C (β) τm−β−1

uniformly for all i = 0, 1, · · · , k/2, where the constant C (β) only depends on β. Note that

σm,i =

∫

(−π,π]
τǫβn,p

[

A

(

x− ǫn,p(i− 0.5)

ǫn,p

)

+A

(

x+ ǫn,p(i− 0.5)

ǫn,p

)]

cos (xm) dx.

Since the length of the support of A(u) is 1 and A(u) ≤ e−1, then there exists a set Ii

with measure ǫn,p such that

|σm,i| ≤
∫

Ii

τǫβn,p · 2e−1dx = τǫβn,p · 2e−1 · ǫn,p = 2τe−1ǫβ+1
n,p , (32)

which implies |σm,i| ≤ C (β) τm−β−1 for m ≤ k. For those m > k, since A is chosen such

that all derivatives are bounded and vanish at −1/2 and 1/2, we apply integration by

parts and immediately obtain |σm,i| ≤ C (β) τm−β−1.

6.6 Proof of Theorem 7

Since we have included the lower bound derivation in Section 4, here we only need to show

the upper bound. Note that

∥

∥

∥Ω̂∗ − Σ−1
∥

∥

∥

2
=
∥

∥

∥Σ̃−1 − Σ−1
∥

∥

∥

2
=
∥

∥

∥Σ̃−1(Σ− Σ̃)Σ−1
∥

∥

∥

2
≤
∥

∥

∥Σ̃−1
∥

∥

∥

2 ∥
∥

∥Σ̃− Σ
∥

∥

∥

2 ∥
∥Σ−1

∥

∥

2
.

It follows from the assumption (17) that
∥

∥Σ−1
∥

∥

2 ≤ C for some C > 0, then we have

E

∥

∥

∥Ω̂∗ − Σ−1
∥

∥

∥

2
≤ CE

∥

∥

∥Σ̃−1
∥

∥

∥

2 ∥
∥

∥Σ̃− Σ
∥

∥

∥

2
.

Let R0 = E

{

∥

∥

∥
Σ̃−1

∥

∥

∥

2 ∥
∥

∥
Σ̃− Σ

∥

∥

∥

2
· I{λmin(Σ̃) ≤ δ/2}

}

and write

E

∥

∥

∥
Σ̃−1

∥

∥

∥

2 ∥
∥

∥
Σ̃− Σ

∥

∥

∥

2
= E

{

∥

∥

∥
Σ̃−1

∥

∥

∥

2 ∥
∥

∥
Σ̃− Σ

∥

∥

∥

2
· I{λmin(Σ̃) > δ/2}

}

+R0

≤ C1E

∥

∥

∥
Σ̃− Σ

∥

∥

∥

2
+R0

where λmin(Σ̃) denotes the minimal eigenvalue of Σ̃. The risk upper bound is then estab-

lished by showing that

R0 = o

(

(

np

log (np)

)− 2β
2β+1

)

(33)
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and

E

∥

∥

∥
Σ̃− Σ

∥

∥

∥

2
≤ C

(

np

log (np)

)− 2β
2β+1

. (34)

The following lemma is helpful to establish Equations (33) and (34). Its proof is very

similar to that of Lemma 2 and thus omitted.

Lemma 8 For any positive constant δ1, the tapering estimator Σ̂k∗ satisfies

sup
Rβ

P(
∥

∥

∥
Σ̂k∗ − Σ

∥

∥

∥
> δ1) ≤ CD(np)

−D

for all D > 0.

It is easy to establish Equation (34). Indeed,

E

∥

∥

∥Σ̃−Σ
∥

∥

∥

2
≤ E

∥

∥

∥Σ̂∗ − Σ
∥

∥

∥

2
+

(

P(λmin(Σ̂∗) ≤
1

log (np)
)

)

‖I − Σ‖2

≤ E

∥

∥

∥
Σ̂∗ − Σ

∥

∥

∥

2
+ CP

(

∥

∥

∥
Σ̂∗ − Σ

∥

∥

∥
) > δ − 1

log (np)

)

≤ C

(

np

log (np)

)− 2β
2β+1

+ o

(

(

np

log (np)

)− 2β
2β+1

)

,

where the last inequality follows from Lemma 8.

To show the Equation (33), we apply the Cauchy-Schwarz inequality to R0 and have

R0 ≤ (E
∥

∥

∥
Σ̃−1

∥

∥

∥

4 ∥
∥

∥
Σ̃− Σ

∥

∥

∥

4
)1/2 · (P(

{

λmin(Σ̃) ≤ δ/2
}

))1/2

≤ (log (np))2
(

E

∥

∥

∥Σ̃− Σ
∥

∥

∥

4
)1/2

· (P(λmin(Σ̂∗) ≤ δ/2))1/2 (35)

where the second inequality follows from the definition of Σ̃ in (19). Since λmin(Σ) > δ

for p sufficiently large, we have

{

λmin(Σ̂∗) ≤ δ/2
}

⊂
{∥

∥

∥
Σ̂∗ −Σ

∥

∥

∥
> δ/2

}

then

P(λmin(Σ̂∗) ≤ δ/2) ≤ P(
∥

∥

∥Σ̂∗ − Σ
∥

∥

∥ > δ/2)

which decays to 0 than any polynomial of np from Lemma 8. It is trivial to see

E

∥

∥

∥
Σ̃− Σ

∥

∥

∥

4
≤ E

∥

∥

∥
Σ̃− Σ

∥

∥

∥

4

Frobenius
≤ Cp4

which, together with Lemma 8 and Equation (35), proves the negligibility of R0 in Equa-

tion (33), thus we complete the proof of Theorem 7.
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7 Proofs of Auxiliary Lemmas

In this section we collect proofs for some auxiliary lemmas.

7.1 Proof of Lemma 1

Write

f̂
(l)
k (x) =

1

2π

∑

|m|≤p

wm,pCp(m)e−ixm,

where

Cp(m) =







1
p

∑

s−t=m
X

(s)
l X

(t)
l for |m| ≤ k − 1

0 otherwise

and

wm,p =















p
p−|m| for |m| ≤ k/2

p
p−|m|

2(k−|m|)
k for k/2 < |m| ≤ k

0 otherwise

.

Define ‖W‖∞ = 1
2π

∑

|m|≤k

wm,p and ‖W‖2 = 1
2π

(

∑

|m|≤k

w2
m,p

)1/2

.

The key technical of the proof of Lemma 1 is Theorem 2.1 of Bentkus and Rudzkis

(1982), from which we have

P
{

±(f̂
(l)
k (x)− Ef̂

(l)
k (x))ap ≥ t

}

≤ exp

{

− t2

2
G(

t

∆
)

}

(36)

for all x and t > 0, where ap =
√
p

2
√
π‖W‖

2
‖f‖

∞

, ∆ = 1
2π

‖W‖2
√
p

‖W‖
∞

, and

G(t) =

{

1 , t = 0

2t−2[t− log(1 + t)], t > 0
.

The proof of Lemma 1 can be completed by studying ap, ∆ and G as follows. Note

that for any f ∈ Fβ(M0,M) we have ‖f‖∞ ≤ M0, and for k ≤ p/2,

‖W‖∞ ≍ k and ‖W‖2 ≍ k1/2 (37)

then we have ap ≥ c
√

p
k for some c > 0. Consequently (36) implies that

P

{

±(f̂
(l)
k (x)− Ef̂

(l)
k (x))

√

p

k
≥ t

}

≤ exp

{

− t2

c2
G(

t

c∆
)

}

.
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Equation (37) implies ∆ ≍
√

p
k , then there exist some constants c1, c2 > 0 such that

P

{

±
√

p

k

(

f̂
(l)
k (x)− Ef̂

(l)
k (x)

)

≥ t

}

≤ exp
(

−c1t
2
)

, for 0 ≤ t ≤ c2

√

p

k
. (38)

For t ≥ 1 it is easy to see that tG( t
c∆) > c0 > 0 for some c0 > 0. Therefore we conclude

that for t ≥ 1 there exists some constant c3 > 0 such that

P

{

±(f̂
(l)
k (x)− Ef̂

(l)
k (x))

√

p

k
≥ t

}

≤ exp (−c3t)

Clearly, we could choose a large enough constant c4 to complete our proof, i.e., for all

t > 0

P

{
√

p

k

∣

∣

∣f̂
(l)
k (x)− Ef̂

(l)
k (x)

∣

∣

∣ ≥ t

}

≤ c4 exp (−c3t) (39)

uniformly over x and the parameter space Fβ(M0,M).

7.2 Proof of Lemma 2

Set A to be the uniform grids on [−π, π] with Card (A) = (np)5, and define

G =

{

sup
x∈A

∣

∣

∣
f̂k (x)− Ef̂k(x)

∣

∣

∣
≤ b(

k

np
log (np))

1

2

}

where b is a positive constant to be specified later. Write

sup
Fβ

E

∥

∥

∥Ef̂k(x)− f̂k(x)
∥

∥

∥

2

∞
(40)

≤ sup
Fβ

Esup
x∈A

∣

∣

∣f̂k (x)− Ef̂k(x)
∣

∣

∣

2
+ sup

Fβ

E sup
|x−y|≤2π(np)−5

∣

∣

∣f̂k (x)− Ef̂k(x)− f̂k (y) + Ef̂k(y)
∣

∣

∣

2

= R1 +R2 +R3

where

R1 = sup
Fβ

Esup
x∈A

∣

∣

∣f̂k (x)− Ef̂k(x)
∣

∣

∣

2
{G} , R2 = sup

Fβ

Esup
x∈A

∣

∣

∣f̂k (x)− Ef̂k(x)
∣

∣

∣

2
{Gc}

R3 = sup
Fβ

E sup
|x−y|≤π(np)−5

∣

∣

∣f̂k (x)− Ef̂k(x)− f̂k (y) + Ef̂k(y)
∣

∣

∣

2
.

Note that

R1 ≤ c
k

np
log (np) . (41)

We will complete the proof of Lemma 2 by showing that

R2 = o

(

k

np
log (np)

)

, (42)

and R3 = o

(

k

np
log (np)

)

. (43)
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We first establish Equation (42). Equation (39) of lemma 1 yields

E

{

exp

(
√

p

k

(

f̂
(l)
k (x)− Ef̂

(l)
k (x)

)

t

)}

≤ exp
(

c5t
2
)

for |t| ≤ c6

which implies

P

{
√

np

k

∣

∣

∣
f̂k (x)− Ef̂k(x)

∣

∣

∣
≥ t

}

≤ 2 exp
(

−c7t
2
)

for t ≤ c8
√
n. (44)

where f̂k (x) =
1
n

∑n
l=1 f̂

(l)
k (x). See, for example, Chapter 3.4 of Petrov (1975).

When log (np) = o(n), let b >
√

(D + 5)/c7 for any positive value D. Equation (44)

implies

P {Gc} ≤ 2(np)5 exp
(

−c7b
2 log (np)

)

= o
(

(np)−D
)

.

If log (p) ≥ c9n for some constant c9 > 0, then we have log (np) = o( pk ) by noting

k =
(

np
log(np)

)1/(1+2β)
. Write Zl =

√

p
k

(

f̂
(l)
k (x)− Ef̂

(l)
k (x)

)

and its truncation ZT
l =

Zl

{

|Zl| ≤ b1
√

log(np)
}

for some large constant b1 and each l = 1, 2, . . . , n. Note that

ZT
l − EZl is subgaussian because of log (np) = o( pk ) and the tail probability (38), then

there is a constant c10 such that

P {Gc} ≤ (np)5P

{√

np

k

∣

∣

∣f̂k (x)− Ef̂k(x)
∣

∣

∣ ≥ b
√

log(np)

}

≤ (np)5
[

P

{

1√
n

∣

∣

∣

∑n

l=1
ZT
l

∣

∣

∣
≥ b
√

log(np)

}

+ nP
{

|Z1| ≥ b1
√

log(np)
}

]

≤ (np)5
[

(np)−b2c10 + n (np)−b2
1
c10
]

= o
(

(np)−D
)

.

The last step holds by setting the constants b >
√

(D + 5)/c10 and b1 >
√

(D + 5)/c10.

Therefore we conclude that P {Gc} = o
(

(np)−D
)

for any positive value D.

Moreover,

E sup
x

∣

∣

∣f̂k (x)− Ef̂k(x)
∣

∣

∣

4
=

(

1

2π

)4

E sup
x

∣

∣

∣

∣

∣

σ̂0 − σ0 + 2

k
∑

m=1

(σ̂m − ωmσm) cosmx

∣

∣

∣

∣

∣

4

≤ cE

(

k
∑

m=0

|σ̂m − ωmσm|
)4

≤ ck3E
k
∑

m=0

(σ̂m − ωmσm)4

≤ ck3E

k
∑

m=0

(

1

p−m

∑

t−s=m

σ∗
st − σm

)4

≤ ck3
k
∑

m=0

(

∑

t−s=m E (σ∗
st − σm)4

p−m

)

= O

(

k4

n2

)

.
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where in the last step we used the normality assumption. The Cauchy-Schwarz inequality

then implies

R2 ≤
[

E

(

sup
x∈A

∣

∣

∣f̂k (x)− Ef̂k(x)
∣

∣

∣

)4

P {Gc}
] 1

2

= O

(

(

k4

n2
(np)−D

)1/2
)

= o

(

k

np
log (np)

)

uniformly over the parameter space Fβ(M0,M) by letting D large.

We now establish Equation (43). Note that

R3 ≤ sup
Fβ

E sup
|x−y|≤2π(np)−5

2

(

k−1
∑

m=1

|σ̂m − ωmσm| |cosmx− cosmy|
)2

≤ 2k sup
Fβ

k−1
∑

m=1

E sup
|x−y|≤2π(np)−5

|σ̂m − ωmσm|2 |cosmx− cosmy|2 .

Since ωm ≤ 1 and |cosmx− cosmy| ≤ m|x− y|, we have

R3 ≤ 8π2k

(np)10
sup
Fβ

k−1
∑

m=1

m2
E

(

1

p−m

∑

t−s=m

σ∗
st − σm

)2

≤ ck

(np)10
sup
Fβ

k−1
∑

m=1

m2

[

1

p−m

∑

t−s=m

E (σ∗
st − σm)2

]

≤ c11k

(np)10
sup
Fβ

k−1
∑

m=1

m2 1

p−m
· p

≤ c12k

(np)10
k4 = o

(

k

np
log (np)

)

.

Equations (40)-(43) all together complete the proof of Lemma 2.

7.3 Proof of Lemma 6

Since

sup
Fβ(M0,M)

E

∥

∥

∥
Σ̂− Σ

∥

∥

∥

2
≥ sup

Fsub

E

∥

∥

∥
Σ̂− Σ

∥

∥

∥

2
,

it is enough to show that

inf
Σ̂

sup
Fsub

E

∥

∥

∥
Σ̂− Σ

∥

∥

∥

2
≥ cR (Fsub) (45)

to establish Lemma 6, where R (Fsub) = inf f̃ supFsub
E

∥

∥

∥f̃ − f
∥

∥

∥

2

∞
.
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The estimator Σ̂ in (45) can be arbitrary, but we show that it is enough to consider

estimators of the Toeplitz form in the parameter space Fsub as follows. For any estimator

Σ̂, we define Σ̂sub to be the closest matrix in Fsub to Σ̂ in terms of the spectral norm. For

Σ ∈ Fsub we have

2
∥

∥

∥
Σ̂− Σ

∥

∥

∥
≥
∥

∥

∥
Σ̂−Σ

∥

∥

∥
+
∥

∥

∥
Σ̂− Σ̂sub

∥

∥

∥
≥
∥

∥

∥
Σ̂sub − Σ

∥

∥

∥

which implies
∥

∥

∥
Σ̂− Σ

∥

∥

∥
≥ 1

2

∥

∥

∥
Σ̂sub − Σ

∥

∥

∥
. (46)

Thus a minimax lower bound for estimators of the Toeplitz form in Fsub provides a lower

bound among all possible estimators up to a constant factor 1/2, i.e.,

inf
Σ̂

sup
Fsub

E

∥

∥

∥Σ̂− Σ
∥

∥

∥

2
≥ 1

2
inf

Σ̂sub∈Fsub

sup
Fsub

E

∥

∥

∥Σ̂sub − Σ
∥

∥

∥

2
. (47)

To establish Equation (45), it is then sufficient to show that

inf
Σ̂sub∈Fsub

sup
Fsub

E

∥

∥

∥Σ̂sub − Σ
∥

∥

∥

2
≥ π2R (Fsub) . (48)

for p sufficiently large.

A key tool to establish Equation (48) is the following fact,

‖Σ‖ ≥ sup
x∈[−π,π]

〈Σvx, vx〉
〈vx, vx〉

= 2π sup
x∈[−π,π]

|Fp(f)(x)| (49)

where vx = (eix, ei2x, · · · , eipx) for any Toeplitz matrix Σ of size p× p, and

Fp(f)(x) =
1

2π
(σ0 + 2

p−1
∑

m=1

(1− m

p
)σm cosmx).

Define

ΣBk∗ = [σmωm]p×p

where

ωm =















1 when m ≤ Bk∗/2

2− 2m
Bk when Bk∗/2 < m ≤ Bk∗

0 Otherwise

i.e. ΣBk is a tapering matrix of Σ, and

TBk(f)(x) =
1

2π
(σ0 + 2

Bk
∑

m=1

ωmσm cosmx).
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By the triangle inequality and Equation (49) we have
∥

∥

∥
Σ̂sub − Σ

∥

∥

∥

≥
∥

∥

∥
Σ̂sub − ΣBk

∥

∥

∥
− ‖ΣBk − Σ‖ ≥ 2π

∥

∥

∥
Fp(TBk(f))− Fp(f̂sub)

∥

∥

∥

∞
− ‖ΣBk − Σ‖

≥ 2π
[∥

∥

∥
Fp(f̂sub)− f

∥

∥

∥

∞
− ‖f − TBk(f)‖∞ − ‖TBk(f)− Fp(TBk(f))‖∞

]

− ‖ΣBk − Σ‖ ,

= 2π
∥

∥

∥
Fp(f̂sub)− f

∥

∥

∥

∞
−
[

2π ‖f − TBk(f)‖∞ + 2π ‖TBk(f)− Fp(TBk(f))‖∞ + ‖ΣBk − Σ‖
]

,(50)

From Equation (29) we have seen that

inf
f̃

sup
{f0,f1,...fk/2}

(2π)2 E
∥

∥

∥Fp(f̃)− f
∥

∥

∥

2

∞
≥ 4π2 inf

f̃
sup
Fsub

E

∥

∥

∥f̃ − f
∥

∥

∥

2

∞
≥ c2

(

np

log (np)

)− 2β
1+2β

,

which will be helpful to show that 2π
∥

∥

∥Fp(f̂sub)− f
∥

∥

∥

∞
is the dominating term in Equation

(50) as follows. From Equation (21), we have

sup
Fsub

‖ΣBk − Σ‖ ≤ CB−βk−β
∗ = CB−β

(

np

log (np)

)− β
1+2β

(51)

2π sup
Fsub

‖f − TBk(f)‖∞ ≤ 2πCB−βk−β
∗

(

np

log (np)

)− β
1+2β

(52)

which can be made to be bounded by ε
√

R (Fsub) for any ε > 0 by setting the constant

B sufficiently large. The term ‖TBk(fi)− Fp(TBk(fi))‖∞ is negligible, since

2π ‖TBk(fi)− Fp(TBk(fi))‖∞

≤ 2

∥

∥

∥

∥

∥

Bk
∑

m=1

ωmσm,i
m

p
cosmx

∥

∥

∥

∥

∥

∞

≤ 4τe−1ǫβ+1
n,p

1

p

Bk
∑

m=1

m = O

(

τB2k2

p
ǫβ+1
n,p

)

= O
(

τ
√

R (Fsub)
)

(53)

where the second inequality is due to the bound |σm,i| ≤ 2τe−1ǫβ+1
n,p in Equation (32).

This value also can be made to be bounded by ε
√

R (Fsub) for any ε > 0 by setting the

constant τ sufficiently small after setting the constant B.

Equations (50)-(53) imply (48), which together with Equation (47) yield the proof of

Lemma 6.

7.4 Proof of Lemma 7

Note that f0 = M0/2 is a constant function, hence Sp(f0) = f0 for all p. Since

K (N (0, σ1) , N (0, σ0)) =
1

2

(

σ1
σ0

− 1− log
σ1
σ0

)

,
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we have

2

k

k/2
∑

i=1

K(Pfi ,Pf0) = n
2

k

k/2
∑

i=1

∑

|j|≤p−1

1

2

(

Sp (fi) (tj)

f0 (tj)
− 1− log

Sp (fi) (tj)

f0 (tj)

)

, (54)

where tj =
2πj
2p−1 . We will show that

(

Sp(fi)(tj)

f0(tj)
− 1

)

− log
Sp(fi)(tj)

f0(tj)
≤ 4

M2
0

(Sp(fi)(tj)− f0(tj))
2, for all i and j, (55)

and

n

k

4

M2
0

k/2
∑

i=1

∑

|j|≤p−1

(Sp(fi)(tj)− f0(tj))
2 ≤ Cτ2 log (np) , (56)

which are crucial to bound (54) and prove Lemma 7.

We first establish Equation (55). Since Sp is a linear operator, we may write

Sp(fi) = f0 + τǫβn,p

[

Sp

[

A

(

x− ǫn,p(i− 0.5)

ǫn,p

)]

+ Sp

[

A

(

x− ǫn,p(i+ 0.5)

ǫn,p

)]]

,

then

‖Sp(fi)− f0‖∞ ≤ 2τǫβn,p

∥

∥

∥

∥

Sp

(

A

(

x

ǫn,p

))∥

∥

∥

∥

∞
→ 0.

Since a− log (1 + a) ≤ a2 when |a| ≤ 1/4, consequently we have

(

Sp(fi)(tj)

f0(tj)
− 1

)

− log
Sp(fi)(tj)

f0(tj)
≤
(

Sp(fi)(tj)

f0(tj)
− 1

)2

=
4

M2
0

(Sp(fi)(tj)− f0(tj))
2.

Now we show Equation (56). Recall that Sp(fi)(tj) − f0(tj) =
∑p−1

m=1 σm,i cos(tjm),

then we write

n

k

4

M2
0

k/2
∑

i=1

∑

|j|≤p−1

(Sp(fi)(tj)− f0(tj))
2 ≤ n

k

4

M2
0

k/2
∑

i=1

∑

|j|≤p−1

(

p−1
∑

m=1

σm,i cos(tjm)

)2

.

Since

2

2p − 1

2p−1
∑

j=1

ϕm(
2πj

2p − 1
)ϕḿ(

2πj

2p − 1
) = δmḿ , 1 ≤ m,m´≤ p− 1,

where ϕm(x) = cos(xm), the Parseval’s identity yields

2

k

k/2
∑

i=1

K(Pfi ,Pf0) ≤ n

k

4

M2
0

· 2p − 1

2

k/2
∑

i=1

p−1
∑

m=1

σ2
m,i

=
n

k

4

M2
0

· 2p − 1

2

k/2
∑

i=1

∫

[−π,π]
[Sp(fi − f0)(x)]

2 dx
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which is bounded by

n

k

4

M2

2p− 1

2

k/2
∑

i=1

∫

[−π,π]
(fi(x)− f0(x))

2dx ≤ Cnpτ2ǫ2β+1
n,p = Cτ2 log (np) .

Equations (54)-(56) implies

2

k

k/2
∑

i=1

K(Pfi ,Pf0) ≤ Cτ2 log (np) ,

which can be bounded by a · log k = a
1+2β log (np) (1 + o(1)) by choosing τ sufficiently

small. We then establish Lemma 7.
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8 Appendix

We prove Lemmas 3 and 4 in this appendix.

8.1 Proof of Lemma 3

To show for the banding estimator the bias part has lower bound k−2β (log k)2 , we only

need to construct a special spectral density f ∈ Fβ(M0,M) for each fixed pair (k, p) with

k ≤ p/2 such that
∥

∥

∥EΣ̂B
k − Σ

∥

∥

∥

∞
≥ ck−β (log k) for some positive constant c. Here we only

give a special spectral density for 0 < β < 1. The construction is similar to an example

in Zygmund (2002) (page 315, example 10). Define the function

Q(x,N, n) = 2 sinNx

n
∑

t=1

sin(tx)

t

Clearly
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Q =
cos(N − n)x

n
+

cos(N − n− 1)x

n− 1
+ · · ·

+
cos(N − 1)x

1
− cos(N + 1)x

1
− · · · − cos(N + n)x

n

is a purely cosine polynomial with terms of rank varying from N − n to N + n. On one

hand the polynomial Q is uniformly bounded in x,N, n, say ‖Q‖∞ ≤ A. On the other

hand, at x = 0 the sum of the first n terms of Q(x,N, n) is 1/n + · · · + 1/2 + 1 > log n.

For each pair (k, p) with k ≤ p/2, let us define

f(x) = 2A+ 4−tβQ(x, k, 4t) (57)

with k ∈ [4t, 4t+1). Clearly, A ≤ f(x) ≤ 3A, therefore it’s indeed a spectral density since

the Toeplitz matrix Σp×p corresponding to f(x) is positive definite for any p.

It’s not hard to check that for each M0 and M, we may pick a constant C > 0 such

that Cf(x) ∈ Fβ(M0,M) uniformly for all pairs (k, p) with k ≤ p/2. Now we show that

for this function the desired bias lower bound is of order k−2β (log k)2 as follows,

∥

∥

∥
EΣ̂B

k − Σ
∥

∥

∥
≥ sup

x∈[−π,π]

∣

∣

∣

∣

∣

2

p
∑

m=k+1

(1− m

p
)σm cosmx

∣

∣

∣

∣

∣

≥ 2C · 4−tβ ·
k+4t
∑

m=k+1

(1− m

p
)

1

m− k

≥ C

4
4−tβ log k ≥ C

4
k−β log k.

For β ≥ 1 the desired special spectral density exists similarly. We omit the proof for

the limit of space.

8.2 Proof of Lemma 4

We will modify the Woodroofe and Van Ness’s proof (1967) a little to a stronger statement

of which our first claim here E

∥

∥

∥
Σ̂B
k − Σ

∥

∥

∥

2
≥ ck log k

np is just a simple consequence. Only a

brief proof is given here. For more details, refer to Woodroofe and Van Ness (1967). Ac-

cording to (49), we have that
∥

∥

∥Σ̂B
k − Σ

∥

∥

∥ ≥ sup
λ∈[−π,π]

∣

∣

∣σ̃0 − 1 + 2
∑k−1

m=1(1− m
p )σ̃m cosmλ

∣

∣

∣ .

Here we will prove a stronger result, as p → ∞

(
np

4k log k
)1/2 sup

λ∈[−π,π]

∣

∣

∣

∣

∣

σ̃0 − 1 + 2

k−1
∑

m=1

(1− m

p
)σ̃m cosmλ

∣

∣

∣

∣

∣

→ 1 in probability.
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Recall that σ̃m = 1
p−m

1
n

∑n
l=1

∑

s−t=mX
(l)
s X

(l)
t where X

(l)
s are i.i.d. standard normal

for all l = 1, . . . , n and s = 1, . . . , p.We could write

(np

k

)1/2
(

σ̃0 − 1 + 2

k−1
∑

m=1

(1− m

p
)σ̃m cosmλ

)

= Zp(λ)− rp(λ) + tp

where 0 ≤ λ ≤ π, and

Zp(λ) = p−1/2
∑p

t=1
Zp,t(λ) (58)

Zp,t(λ) = 2 (kn)−1/2
∑n

l=1

∑k−1

v=1
X

(l)
t X

(l)
t+v cos (vλ) (59)

= 2 (kn)−1/2
∑n

l=1

∑k−1

v=1
ωunif (v/k)X

(l)
t X

(l)
t+v cos (vλ) (60)

with ωunif (x) = 1{|x| < 1}, and

rp(λ) = 2(npk)−1/2
∑n

l=1

∑p

t=p−k+2

∑k−1

v=p−t+1
X

(l)
t+vX

(l)
t cos (vλ)

tp = (npk)−1/2
∑n

l=1

∑p

t=1

[

(X
(l)
t )2 − 1

]

.

In the proof of our second claim, we need to replace uniform kernel by another kernel but

the remaining part of the proof is similar. Since for p = 1, 2, · · ·

E sup
λ

|rp(λ)| ≤ 2(npk)−1/2
∑k−1

v=1
E

∣

∣

∣

∑n

l=1

∑p

t=p−v+1
X

(l)
t+vX

(l)
t

∣

∣

∣

E

∣

∣

∣

∑n

l=1

∑p

t=p−v+1
X

(l)
t+vX

(l)
t

∣

∣

∣

2
≤ vn

and k = O(pκ) for some κ < 2
5 , we have supλ |−rp(λ) + tp| = op((log k)

−1) as p → ∞.

Hence it suffices to consider the processes Zp(λ), 0 ≤ λ ≤ π defined by (58) and (59). The

random variables Zp,1(λ), Zp,2(λ), . . . , Zp,p(λ), 0 ≤ λ ≤ π, have the desirable property of

k-dependence, which we will now exploit. Define q = qp =
⌊

k (log k)4
⌋

where ⌊·⌋ denotes

the greatest integer function. We may write p = qd+ r where 0 ≤ r < q. Let us define for

i = 1. . . . , d.

Up,i(λ) = q−1/2(Zp,(i−1)q+1(λ) + · · ·+ Zp,iq−k(λ))

Vp,i(λ) = k−1/2(Zp,iq−k+1(λ) + · · · + Zp,iq(λ))

Vp,0(λ) = Zp,dq+1(λ) + · · ·+ Zp,p(λ)

Up(λ) = d−1/2
∑d

i=1
Up,i(λ) and Vp(λ) = d−1/2

∑d

i=1
Vp,i(λ)
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Then clearly

Zp(λ) = (qd/p)1/2
(

Up(λ) + (k/q)1/2Vp(λ)
)

+ p−1/2Vp,0(λ)

The proof of max0≤λ≤π

∣

∣Vp,0(λ)

∣

∣ = o(p1/2(log k)−1) is similar to the proof for supλ |rp(λ)| =
op((log k)

−1). Next we will truncate Up,i(λ) and Vp,i(λ) as follow

Up,i(λ)
′ = Up,i(λ){|Up,i(λ)| ≤ p0.3}

Vp,i(λ)
′ = Vp,i(λ){|Vp,i(λ)| ≤ p0.3}

Up,i(λ)
′′ = (Up,i(λ)

′ − EUp,i(λ)
′)/V ar(Up,i(λ)

′)1/2

Vp,i(λ)
′′ = (Vp,i(λ)

′ − EVp,i(λ)
′)/V ar(Vp,i(λ)

′)1/2

and let Up(λ)
′, Up(λ)

′′, Vp(λ)
′, Vp(λ)

′′ be d−1/2 times their respective sums. Note all of

them are sums of independent identically distributed random variables.

Before showing Vp(λ) is negligible, we need some lemmas. For the proof of these

lemmas, please refer to Woodroofe and Van Ness (1967). The first lemma is a standard

result of trigonometric polynomial and the last two are based on Lemma (10) and Lemma

(11), which are not hard to prove.

Lemma 9 Let p(λ) =
∑k

v=−k αv exp(ivλ) be a trigonometric polynomial. Define λj =

π(j/rk), |j| ≤ rk. Then

max
|λ|≤π

p(λ) ≤ max
|j|≤rk

∣

∣p(λj)/(1 − 3πr−1)
∣

∣

Lemma 10 The random variables Zp,1(λ), . . . , Zp,p(λ) have zero means and covariance

Cov(Zp,1(λ1), Zp,1(λ2)) = (4/k)
∑k−1

v=1
(cos vλ2)(cos vλ1)

If t1 < t2 < t3 < t4 and 0 ≤ λi ≤ π, then

E(Zp,t1(λ1)Zp,t2(λ2)) = 0 = E(
∏4

i=1
Zp,ti(λi))

Moreover, there exists a constant C for which

∣

∣

∣E(
∏4

i=1
Zp,ti(λ1))

∣

∣

∣ ≤ C if t1 = t2 and t3 = t4

≤ C(nk)−1 if t1 = t2 6= t3 6= t4

Lemma 11 Let h(p) = kλp and 0 ≤ λp < π. If h(p) → ∞ as p → ∞, then (2/k)
∑k−1

v=0 cos vλp =

O(h(p)−1) as p → ∞; if lim inf h(p) ≥ 1, then lim(2/k)
∣

∣

∣

∑k−1
v=0 cos vλp

∣

∣

∣
< ‖ωunif‖22 = 2.
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Lemma 12 Let σ2
p(λ) = V ar(Zp,1(λ)), then σ2

p(λ) is uniformly bounded and

σ2
p(λ) → 2 as p → ∞

uniformly on [k−1 log k, π]

Lemma 13 Let γp(λ1, λ2) be the correlation of Zp,1(λ1) and Zp,1(λ2), 0 ≤ λi ≤ π, then

sup
|λ1−λ2|≥(log k)2k−1

|γp(λ1, λ2)| = O((log k)−2)

lim
p→∞

sup
|λ1−λ2|≥k−1

|γp(λ1, λ2)| < 1

Based on Lemma (10), it’s not hard to see E |Vp,i(λ)|4 ≤ C and E |Up,i(λ)|4 ≤
Cq(nk)−1. According to Lemma (9), the fact that Vp(λ) is negligible follows from

P (Vp(λp,j)
′ 6= Vp(λp,j), for some j) → 0 (61)

max
j

∣

∣Vp(λp,j)
′ − Vp(λp,j)

′′∣
∣ ≤ O(1)max

j

∣

∣Vp(λp,j)
′∣
∣+ o(1) (62)

max
j

∣

∣Vp(λp,j)
′′∣
∣ = op(log k) (63)

as p → ∞ where λp,j = πj/ ⌊k log k⌋ , j = 0, . . . , ⌊k log k⌋ . Equation (61) follows from

E |Vp,i(λ)|4 ≤ C since

P (Vp(λp,j)
′ 6= Vp(λp,j), for some j) ≤

∑

i

∑

j
p−6/5

E |Vp,i(λp,j)|4 ≤ Cp−1/5.

Equation (62) can be shown to follow similarly. Since for ε > 0,

P (max
j

∣

∣Vp(λp,j)
′′∣
∣ ≥ ε log k) ≤

∑

j
P (
∣

∣Vp(λp,j)
′′∣
∣ ≥ 2(2 log k)1/2)

when p is sufficiently large, Equation (63) is then an easy consequence of the first part of

Lemma (14) below.

Lemma 14 Let Φ(·) denote the standard univariate normal distribution function and

ϕr(·, ·) to denote the standard bivariate normal density with correlation r. If 0 < zp → ∞
and zp = o(log k) as p → ∞, then as p → ∞

P (
∣

∣Vp(λ)
′′∣
∣ ≥ zp) ∼ 2(1 − Φ(zp)) as p → ∞ uniformly on [0, π]

P (±Up(λ1)
′′ ≥ zp,±Up(λ2)

′′ ≥ zp)

∼
∫ ∞

zp

∫ ∞

zp

ϕrp(λ1,λ2)(±y1, ± y2)dy1dy2 uniformly on Sp

P (±Up(λi)
′′ ≥ zp, i = 1, . . . , v) ∼ (1− Φ(zp))

v uniformly on Sp,v

P (±Up(λi)
′′ ≥ zp, i = 1, . . . , v)

∼ (1− Φ(zp))
v−2

∫ ∞

zp

∫ ∞

zp

ϕrp(λ1,λ2)(±y1, ± y2)dy1dy2 uniformly on S′
p,v
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where Sp = {(λ1, λ2), 0 ≤ λi ≤ π and |λ1 − λ2| ≥ k−1}, Sp,v = {(λ1, . . . λv), 0 ≤ λi ≤ π

and mini 6=j |λi − λj | ≥ k−1(log k)2} and S′
p,v = {(λ1, . . . λv), λ2−λ1 ≥ k−1 and λi−λi−1 ≥

k−1(log k)2 i = 3, . . . , v}.
As a consequence, we have P (|Up(λ)

′′| ≥ zp) ∼ 2(1 − Φ(zp)) as p → ∞ uniformly

on [0, π]. The result of Lemma (12) is also true for σ2
p(λ)

′ =V ar(Up,i(λ)
′).i.e. uniformly

bounded and

σ2
p(λ)

′ → 2 as p → ∞

uniformly on [k−1 log k, π].

Please refer to Woodroofe and Van Ness (1967) for full details. Basically lemma (13)

and the truncation are used to prove this lemma.

Now it’s enough to show

(
1

4 log k
)1/2 sup

λ∈[−π,π]
Up(λ) → 1 in probability

To further simplify it, we note that P (Up(λp,j)
′ 6= Up(λp,j), for some j) → 0 by the same

argument (61) above for Vp(λp,j). By the fact E |Up,i(λ)|4 ≤ Cq(nk)−1 and Lemma (10)

it’s easy to see that

(Up(λ)
′′σp(λ)

′ − Up(λ)
′) = d1/2

(

EUp,i(λ)
′) = o(1)

According to Lemma (9), it’s enough to show

limP (max
j

∣

∣Up(λp,j)
′′∣
∣ σp(λp,j)

′) ≥ (1 + ε)
√
2(2 log k)1/2) = 0, (64)

limP (max
j

∣

∣Up(λp,j)
′′∣
∣ σp(λp,j)

′) ≤ (1− ε)
√
2(2 log k)1/2) = 0 (65)

To establish (64), let S be the set of integers j for which 1 ≤ j ≤ ⌊k log k⌋ and λp,j ≥
k−1 log k. Then if ε = 2ε′ is given, we find from last two parts of Lemma (14) that for p

sufficiently large

P (max
j∈S

∣

∣Up(λp,j)
′′∣
∣ σp(λp,j)

′ ≥ (1 + ε)
√
2(2 log k)1/2)

≤
∑

j∈S
P (
∣

∣Up(λp,j)
′′∣
∣ ≥ (1 + ε′)(2 log k)1/2)

≤ 4k log k(1− Φ((1 + ε′)(2 log k)1/2)) = o(1)
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and

P (max
j /∈S

∣

∣Up(λp,j)
′′∣
∣ σp(λp,j)

′ ≥ (1 + ε)
√
2(2 log k)1/2)

≤
∑

j /∈S
P (
∣

∣Up(λp,j)
′′∣
∣ ≥ c(2 log k)1/2)

≤ 2(log k)2(1− Φ(c(2 log k)1/2)) = o(1)

as p → ∞, where c2 > 0 is a lower bound for 2/σ2
p(λ)

′. This establishes (64). (65) could be

established using Lemma (14). Full details are given in the technical report of Woodroofe

and Van Ness (1967). Therefore we finish the first part of Lemma 4.

To show the second claim, E
∥

∥

∥Σ̂B
k − Σ

∥

∥

∥

2
≥ cp

κ log p
np for k ≥ pκ, first we set k0 = pκ and

note that

∥

∥

∥
Σ̂B
k − Σ

∥

∥

∥
≥
∥

∥

∥

∥

(

Σ̂B
k − Σ

)

k0×k0

∥

∥

∥

∥

≥ sup
λ∈[−π,π]

∣

∣

∣

∣

∣

σ̃0 − 1 + 2

k0−1
∑

m=1

(1− m

k0
)σ̃m cosmλ

∣

∣

∣

∣

∣

,

where
(

Σ̂B
k − Σ

)

k0×k0
is the upper k0×k0 submatrix of Σ̂B

k −Σ. Note the subtle difference

between the right hand side of the inequality above and that in the (60) at the beginning

of this proof. This time we need to replace the uniform kernel in the expression of Zp,t(λ)

by another kernel. Zp,t(λ) can be written as

Zp,t(λ) = 2 (k0n)
−1/2

∑n

l=1

∑k0−1

v=1
ωp(v/k0)X

(l)
t X

(l)
t+v cos (vλ)

where kernel ωp(x) = 1{|x| < 1} 1−|x|
1−|x|pκ−1 . The proof is pretty similar to that of the first

claim if we could prove the following fact corresponding to Lemma (11).

Lemma 15 Let h(p) = k0λp and 0 ≤ λp < π. If h(p) → ∞ as p → ∞, then

(2/k0)
∑k0−1

v=0
ωp(v/k0)

2 cos vλp = O(h(p)−1) as p → ∞

If limh(p) ≥ 1, then

lim(2/k0)

∣

∣

∣

∣

∑k−1

v=0
ωp(v/k0)

2 cos vλp

∣

∣

∣

∣

< ‖ωtriangle‖22 = 2/3

where ωtriangle(x) = 1{|x| < 1}(1 − |x|).

Once this is proved, there is no difficulty in showing the desired result, following the

steps in the above proof (refer to Woodroofe and Van Ness (1967) for details)

(
np

2 ‖ωtriangle‖22 k0 log k0
)1/2 sup

λ∈[−π,π]

∣

∣

∣

∣

∣

σ̃0 − 1 + 2

k0−1
∑

m=1

(1− m

k0
)σ̃m cosmλ

∣

∣

∣

∣

∣

→ 1
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in probability. Finally note that E
∥

∥

∥Σ̂B
k − Σ

∥

∥

∥

2
≥ ck0 log k0np is just a consequence of it.

The Lemma (15) cannot be shown directly using the method in Woodroofe and Van Ness

(1967) since the requirement of the kernel in that paper is not satisfied by our kernel,

namely that its second derivative at 0 doesn’t exist. Hence we prove it in details. First

of all notice that to prove Lemma (15) we only need to show

(2/k0)
∑k0−1

v=0
ωtriangle(v/k0)

2 cos vλp = O(h(p)−1) as p → ∞ (66)

and lim(2/k0)
∣

∣

∣

∑k−1
v=0 ωtriangle(v/k0)

2 cos vλp

∣

∣

∣ < ‖ωtriangle‖22 = 2/3 because it is easy to

see that

(2/k0)
∑k0−1

v=0

∣

∣ωtriangle(v/k0)
2 − ωp(v/k0)

2
∣

∣ = O(pκ−1) = o(h(p)−1)

noting the facts h(p) = k0λp = O(pκ) and κ < 2
5 . The proof of

lim(2/k0)

∣

∣

∣

∣

∑k−1

v=0
ωtriangle(v/k0)

2 cos vλp

∣

∣

∣

∣

< ‖ωtriangle‖22 = 2/3

is straightforward (cf. Woodroofe and Van Ness (1967) page 1562) and here we only focus

on the proof of the fact (66). Let W (y) be the Fourier transform of the kernel ωtriangle(x).

i.e.

W (y) = (2π)−1
∫

e−ixyωtriangle(x)dx = π−1 1− cos x

x2
≥ 0

Routine Fourier analysis yields

k−1
0

∑k0−1

v=0
ωtriangle(v/k0)

2 cos vλp =

∫ π

−π

sin [(k0 − 1)(y + λp)]

sin [2−1(y + λp)]
Wp(y)dy

where Wp(y) =
∑∞

m=−∞ W ∗ W (k0y + 2mk0y), ∗ denotes convolution in L1(R) space.

Notice Wp(y) is non-negative and λp ≤ π, we have
∫

2|y|≤λp

∣

∣

∣

∣

sin [(k0 − 1)(y + λp)]

sin [2−1(y + λp)]

∣

∣

∣

∣

Wp(y)dy

≤ |sin (λp/4)|−1
∫ π

−π
Wp(y)dy =

1

|sin (λp/4)| k0

∫ ∞

−∞
W ∗W (y)dy

=
2π

|sin (λp/4)| k0
ω2
triangle(0) = O(h(p)−1)

Notice that W ∗W (y) = 2(λ−sinλ)
πλ3 , we have

∫

2|y|>λp

∣

∣

∣

∣

sin [(k0 − 1)(y + λp)]

sin [2−1(y + λp)]

∣

∣

∣

∣

Wp(y)dy ≤ k0

∫

2|y|>h(p)/k0

Wp(y)dy ≤
∫

2|y|>h(p)
W ∗W (y)dy

≤ C

∫ ∞

h(p)/2
y−2dy = O(h(p)−1)

The two inequalities above show the desired result and hence Lemma (15) is proved.
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