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Abstract

Large matrix estimation gains an increasing attention in recent years. This paper

investigates the high dimensional statistical problem where a p-dimensional diffusion

process is observed with measurement errors at n distinct time points, and our goal

is to estimate the volatility matrix of the diffusion process. We establish the minimax

theory for estimating large sparse volatility matrices under matrix spectral norm as

both n and p go to infinity. The theory shows that the optimal convergence rate

depends on n and p through n−1/4
√
log p and a volatility matrix estimator is explicitly

constructed to achieve the optimal convergence rate.
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1 Introduction

Diffusions are widely employed in modern scientific studies in fields ranging from biology

and finance to engineering and physical science. The diffusion models play a key role in

describing complex dynamic systems where it is essential to incorporate internally or exter-

nally originating random fluctuations in the system. See for example, Fan and Wang (2007),

Mueschke and Andrews (2006), Prakasa Rao (1999), Wang and Zou (2010), Whitmore (1995)

and Zhang et. al. (2005). The scientific studies motivate this paper to investigate optimal

estimation of large matrices for high dimensional diffusions with noise contamination.

Consider process X(t) = (X1(t), · · · , Xp(t))
T following the continuous-time diffusion

model

dX(t) = µtdt+ σT
t dBt, t ∈ [0, 1], (1)

where µt is a p-dimensional drift vector, Bt is a p-dimensional standard Brownian motion,

and σt is a p by p matrix. Continuous-time process Xt is observed only at discrete time

points with measurement errors, that is, the observed discrete data Yi(tℓ) obey

Yi(tℓ) = Xi(tℓ) + εi(tℓ), i = 1, · · · , p, tℓ = ℓ/n, ℓ = 1, · · · , n, (2)

where εi(tℓ) are independent noises with mean zero.

Let γ(t) = σT
t σt be the volatility matrix of X(t). We are interested in estimating the

following integrated volatility matrix of X(t),

Γ = (Γij)1≤i,j≤p =

∫ 1

0

γ(t)dt =

∫ 1

0

σT
t σtdt

based on noisy discrete data Yi(tℓ), i = 1, · · · , p, ℓ = 1, · · · , n.
Below is the main theorem of the paper that establishes the minimax risk for estimating

Γ based on Yi(tℓ), i = 1, · · · , p, ℓ = 1, · · · , n, which is a consequence of Theorems 3 and 4 in

Sections 2 and 3.

Theorem 1 For models (1)-(2) under the conditions A1-A3 specified in Section 2, we have

that as n, p → ∞,

C∗

[
πn(p)

(
n−1/4

√
log p

)1−q
]2

≤ inf
Γ̌

sup
Pq(πn(p))

E
∥∥Γ̌− Γ

∥∥2
d
≤ C∗

[
πn(p)

(
n−1/4

√
log p

)1−q
]2

,

and the optimal convergence rate is achieved by estimator Γ̂ given by (7) in Section 2.1,

where C∗ and C∗ are positive constants free of n and p, ∥ · ∥d is a matrix norm with d ≥ 1

in Section 2.2, Pq(πn(p)) denotes the minimax estimation problem for models (1)-(2) given

in Theorem 3, constant q ∈ [0, 1) and deterministic factor πn(p) characterize the sparsity of

Γ specified by (8) and (11).
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Because of the importance, large matrix estimation receives lots of attentions recently

in statistics as well as in fields like remote sensing and finance. Classic optimal estimation

procedures like sample covariance matrix estimator behave very poorly when the matrix size

is comparable to or exceed the sample size (Bickel and Levina (2008a, b), Johnstone (2001)

and Johnstone and Lu (2009)). In recent years various techniques have been developed for

large covariance matrix estimation via sparsity. Wu and Pourahmadi (2003) explored the

local stationary structure for nonparamertic estimation of large covariance matrices. Huang

et al. (2006) used penalized likelihood method to estimate large covariance matrices. Yuan

and Lin (2007) considered large covariance matrix estimation in Gaussian graph models.

Bickel and Levina (2008a, b) developed regularization methods by banding or thresholding

sample covariance matrix estimator or its inverse. Johnstone and Lu (2009) studied the

consistent estimation of leading principal components when the matrix size is comparable

to sample size. El Karoui (2008) employed the graph model approach to investigate sparsity

structures and construct consistent estimators of large covariance matrices. Fan et. al.

(2008) utilized factor models for estimating large covariance matrices. Lam and Fan (2009)

studied sparsistency and convergence rates in large covariance matrix estimation. Cai et.

al. (2010) and Cai and Zhou (2011) investigated minimax estimation of covariance matrices

when both n and p are allowed to go to infinity and derived optimal convergence rates for

estimating decaying or sparse covariance matrices. Wang and Zou (2010) considered the

problem of estimating large volatility matrix based on noisy high-frequency financial data.

Tao et. al. (2011) employed a matrix factor model to study the dynamics of large volatility

matrices estimated from high-frequency financial data.

Models (1)-(2) capture the asymptotic essence of large volatility matrix estimation in

high-frequency finance (Fan, Li and Yu (2011), Tao et. al. (2011), Wang and Zou (2010),

Zheng and Li (2011)), where Xi(t) correspond to true log prices, and εi are micro-structure

noises in the observed high-frequency financial data. The models can also be viewed as a

generalization of covariance matrix estimation in two scenarios. Take µt = 0 and σt to be

constant in (1), then Γ is the covariance matrix of
√
n [X(tℓ)−X(tℓ−1)]. For the case of no

noise (i.e. εi(tℓ) = 0), the problem becomes regular large covariance matrix estimation. For

the noise case (i.e. εi(tℓ) ̸= 0), we may view models (1)-(2) as a complicated covariance ma-

trix estimation problem where observed data are dependent and have measurement errors.

The optimal convergence rate for sparse covariance matrix estimation obtained in Cai and

Zhou (2011) is πn(p)
(
n−1/2

√
log p

)1−q
. Comparing it with the convergence rate in Theorem

1 we find that the dependence on sample size n is changed from n−1/2 to n−1/4. Such slower

convergence rate is intrinsically due to the noise contamination in the observed data. When

a univariate continuous diffusion process is observed with noise at n discrete time points,
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Gloter and Jacod (2001) showed that the optimal convergence rate for estimating univari-

ate integrated volatility is n−1/4. The convergence rate n−1/4 in Theorem 1 matches with

the optimal convergence rate for estimating univariate volatility based on noisy data. The

phenomenon will be heuristically explained through model transformation in the derivation

of the minimax lower bound.

Our approach to solving the minimax problem is as follows. We construct a multi-scale

volatility matrix estimator and then threshold it to obtain threshold volatility matrix es-

timator. We show that the elements of the multi-scale volatility matrix estimator obey

sub-Gaussian tail with optimal rate n−1/4 and then demonstrate that the constructed esti-

mator has convergence rate given by Theorem 1. As models (1)-(2) involve a nonparametric

diffusion with measurement errors, it is generally very hard to derive the minimax risk for

such a complicated problem. Fortunately we are able to find a clever way to establish the

asymptotic optimality of the estimator. We first take µ(t) = 0 and σ(t) (thus Γ) to be a

constant matrix. The problem becomes covariance matrix estimation where the observed

data are dependent and have measurement errors. Second, taking a special transformation

we are able to convert the problem into a new covariance matrix estimation problem where

observed data are independent but not identically distributed, with covariance matrices equal

to Γ plus an identity matrix multiplying by a shrinking factor depending on sample size.

Third adopting the minimax lower bound technique developed in Cai and Zhou (2011) for

covariance matrix estimation based on i.i.d. data, we establish a minimax lower bound for

estimating constant Γ based on the independent but non-identical observations. With the

established minimax lower bound, we prove that the constructed estimator asymptotically

achieves the minimax lower bound and thus is optimal.

The rest of the paper proceeds as follows. Section 2 presents the construction of volatility

matrix estimator and establishes the asymptotic theory for the estimator as both n and p go

to infinity. Section 3 derives the minimax lower bound for estimating large volatility matrix

under models (1)-(2) and shows that the constructed estimator asymptotically achieves the

minimax lower bound. Thus combining results in Sections 2 and 3 together we prove Theorem

1 in Section 1. To facilitate the reading we relegate all proofs to Sections 4 and 5, where

we first provide main proofs of the theorems and then collect additional proofs of technical

lemmas after the main proofs.
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2 Volatility matrix estimation

2.1 Estimator

Let K be an integer and ⌊n/K⌋ be the largest integer ≤ n/K. We divide n time points

t1, · · · , tn into K non-overlap groups τ k = {tℓ, ℓ = k,K + k, 2K + k, · · · }, k = 1, · · · , K.

Denote by |τ k| the number of time points in τ k. Obviously, the value of |τ k| is either ⌊n/K⌋
or ⌊n/K⌋ + 1. For k = 1, · · · , K, we write the r-th time point in τ k as τ kr = t(r−1)K+k,

r = 1, · · · , |τ k|. With each τ k, we define volatility matrix estimator

Γ̃ij(τ
k) =

|τk|∑
r=2

[Yi(τ
k
r )− Yi(τ

k
r−1)][Yj(τ

k
r )− Yj(τ

k
r−1)], Γ̃(τ k) =

(
Γ̃ij(τ

k)
)
1≤i,j≤p

. (3)

Here in (3) to account for noise in data Yi(tℓ), we use τ k to subsample the data and define

Γ̃(τ k). To reduce the noise effect, we average K volatility matrix estimators Γ̃(τ k) to define

one-scale volatility matrix estimator

Γ̃K
ij =

1

K

K∑
k=1

Γ̃ij(τ
k), Γ̃

K
=
(
Γ̃K
ij

)
=

1

K

K∑
k=1

Γ̃(τ k). (4)

Let N be the largest integer ≤ n1/2, and Km = m +N , m = 1, · · · , N . We use each Km to

define a one-scale volatility matrix estimator Γ̃
Km

and then combine them together to form

a multi-scale volatility matrix estimator

Γ̃ =
N∑

m=1

amΓ̃
Km

+ ζ(Γ̃
K1 − Γ̃

KN
), (5)

where

am =
12Km(m−N/2− 1/2)

N(N2 − 1)
, ζ =

K1KN

n(N − 1)
, (6)

which satisfy
N∑

m=1

am = 1,
N∑

m=1

am
Km

= 0,
N∑

m=1

|am| = 9/2 + o(1).

We threshold Γ̃ to obtain our final volatility matrix estimator

Γ̂ =
(
Γ̃ij1(|Γ̃ij| ≥ ϖ)

)
, (7)

where ϖ is a threshold value.

In the estimation construction we use only time scales corresponding to Km ∼
√
n to

form increments and averages. In Section 3 we will demonstrate that the data at these

scales contain essential information about estimating Γ and show that Γ̂ is asymptotically

an optimal estimator of Γ.
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2.2 Asymptotic theory

First we fix notations for asymptotic analysis. Let x = (x1, · · · , xp)
T be a p-dimensional

vector and A = (Aij) be a p by p matrix, and define their ℓd-norms

∥x∥d =

(
p∑

i=1

|xi|d
)1/d

, ∥A∥d = sup{∥Ax∥d, ∥x∥d = 1}, d ≥ 1.

For the case of matrix, the ℓ2-norm is called matrix spectral norm. ∥A∥2 is equal to the

square root of the largest eigenvalue of AAT ,

∥A∥1 = max
1≤j≤p

p∑
i=1

|Aij|, ∥A∥∞ = max
1≤i≤p

p∑
j=1

|Aij|,

and

∥A∥22 ≤ ∥A∥1 ∥A∥∞.

For symmetric A, ∥A∥2 ≤ ∥A∥1 = ∥A∥∞, and ∥A∥2 is equal to the largest absolute eigen-

value of A.

Second we state some technical conditions for asymptotic analysis.

A1. Assume that noise εi(tℓ) and diffusion process X(t) in models (1)-(2) are indepen-

dent; εi(tℓ), i = 1, · · · , p, ℓ = 1, · · · , n, are independent normal with mean zero and

V ar[εi(tℓ)] = ηi ≤ κ for some positive constant κ. Also assume nβ/2 ≤ p ≤ exp(β0

√
n)

for some constants β > 1 and β0 > 0.

A2. Assume that each component of drift µ(t) has bounded variation, and

max
1≤i≤p

max
0≤t≤1

|µi(t)| ≤ c1, max
1≤i≤p

max
0≤t≤1

γii(t) ≤ c2,

where c1 and c2 are positive constants.

A3. We impose sparsity on Γ,

p∑
j=1

|Γij|q ≤ Ψπn(p), i = 1, · · · , p, (8)

where Ψ is a positive random variable with finite second moment, 0 ≤ q < 1, and πn(p)

is a deterministic function with slow growth in p such as log p.
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In Condition A1, the first part is a typical assumption in the literature of measurement

error models; p ≥ nβ/2 is required for obtaining the minimax lower bound in Theorem

1, otherwise the problem will be similar to usual asymptotics with large n but fixed p;

p ≤ exp(β0

√
n) is to ensure the existence of a consistent estimator of Γ, otherwise the

minimax risk in Theorem 1 will be bounded below from zero. Condition A2 is to impose

proper assumptions on drift and volatility of the diffusion process so that we can obtain

sub-Gaussian tail probability for volatility matrix estimator Γ̃. Condition A3 is a common

sparsity assumption required for consistently estimating large matrices (Bickel and Levina

(2008b), Cai and Zhou (2011), and Johnstone and Lu (2009)).

The following two theorems establish asymptotic theory for estimators Γ̃ and Γ̂ defined

by (5) and (7), respectively.

Theorem 2 Under Models (1)-(2) and Conditions A1-A2, estimator Γ̃ in (5) satisfies that

for 1 ≤ i, j ≤ p and positive x in a neighbor of 0,

P
(∣∣∣Γ̃ij − Γij

∣∣∣ ≥ x
)
≤ ς1 exp

{
log(n/x)−

√
nx2/ς0

}
, (9)

where ς0 and ς1 are positive constants free of n and p.

Remark 1. Theorem 2 establishes sub-Gaussian tail for the elements of matrix estimator

Γ̃. It is known that, when a univariate continuous diffusion process is observed with noise

at n discrete time points, the optimal convergence rate for estimating integrated volatility

is n−1/4 (Gloter and Jacod (2001), Fan and Wang (2007) and Zhang (2006)). The
√
nx2

factor in the exponent of the tail probability bound in (9) indicates the n−1/4 convergence

rate for Γ̃ij − Γij, which matches the optimal convergence rate for estimating univariate

integrated volatility. This is in comparison with sub-optimal convergence results on limiting

distributions and tail probabilities in the literature where the n−1/6 convergence rate was

obtained, see for example Fan et. al. (2011), Wang and Zou (2010)), and Zheng and Li

(2011).

Theorem 3 For threshold estimator Γ̂ in (7) we choose threshold ϖ = ~n−1/4
√
log(np) with

any fixed constant ~ ≥ 5
√
ς0, where ς0 is the constant in the exponent of tail probability bound

in (9). Denote by Pq(πn(p)) the set of distributions of Yi(tℓ), i = 1, · · · , p, ℓ = 1, · · · , n,
from models (1)-(2) satisfying Conditions A1-A3. Then as n, p → ∞,

sup
Pq(πn(p))

E
∥∥∥Γ̂− Γ

∥∥∥2
2
≤ sup

Pq(πn(p))

E
∥∥∥Γ̂− Γ

∥∥∥2
1
≤ C∗

[
πn(p)

(
n−1/4

√
log p

)1−q
]2

, (10)

where C∗ is a constant free of n and p.
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Remark 2. The convergence rate obtained in Theorem 3 increases with sample size n

and matrix size p through n−1/4
√
log p. In section 3 we will establish the minimax lower

bound for estimating Γ and show that the convergence rate in Theorem 3 is asymptotically

optimal. For sparse covariance matrix estimation, Cai and Zhou (2011) has shown that the

thresholding estimator in Bickel and Levina (2008b) is optimal and the optimal convergence

rate depends on n and p through n−1/2
√
log p. In comparison of Theorem 3 with the optimal

convergence rate for covariance matrix estimation, the convergence rate in Theorem 3 has

a similar form but depends on n in terms of n−1/4 instead of n−1/2 for covariance matrix

estimation. The slower convergence rate here is intrinsically due to the noise contamination in

the observed data under our set-up. The n−1/4 convergence rate conforms with the optimal

convergence rate for estimating univariate integrated volatility, and will be heuristically

explained in Remark 5 after the minimax lower bound result in Section 3.

3 Optimal convergence rate

This section establishes the minimax lower bound for estimating Γ under models (1)-(2)

and shows that Γ̂ asymptotically achieves the lower bound and thus it is optimal. We state

the minimax lower bound for estimating matrix Γ with Pq(πn(p)) under the matrix spectral

norm as follows.

Theorem 4 For models (1)-(2) satisfying Conditions A1-A3, if for some M > 0,

πn (p) ≤ Mn(1−q)/4/ (log p)(3−q)/2 , (11)

the minimax risk for estimating matrix Γ with Pq(πn(p)) satisfies that as n, p → ∞,

inf
Γ̌

sup
Pq(πn(p))

E
∥∥Γ̌− Γ

∥∥2
2
≥ C∗

[
πn(p)

(
n−1/4

√
log p

)1−q
]2

, (12)

where C∗ is a positive constant.

Remark 3. The lower bound convergence rate in Theorem 4 matches the convergence

rate of estimator Γ̂ obtained in Theorem 3. Since for a symmetric matrix A, the Riesz-

Thorin interpolation theorem implies that for all d ≥ 1, ∥A∥d ≤ ∥A∥1 = ∥A∥∞. Combining

Theorems 3 and 4 together we prove Theorem 1 in Section 1, which shows that the optimal

convergence rate is πn(p)
(
n−1/4

√
log p

)1−q
and estimator Γ̂ in (7) asymptotically achieves

the optimal convergence rate.

Remark 4. Condition (11) is a technical condition that we need to establish the minimax

lower bound. It is compatible with Assumptions A1 and A3 regarding the constraint on n

and p and slow growth of πn(p) in sparsity condition (8).
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We usually rely on LeCam’s method or Assouad’s lemma to establish minimax lower

bound. For matrix estimation problem Cai and Zhou (2011) has developed an approach

combining both LeCam’s method and Assouad’s lemma to deal with minimax lower bound

in estimating covariance matrix based on i.i.d. observations. The observations from Models

(1)-(2) are noisy and dependent. Luckily we are able to find a nice trick that takes a special

subset of matrices and transforms the problem into a new covariance matrix estimation

problem with independent but non-identical observations. We then adopt the approach in

Cai and Zhou (2011) to derive the minimax lower bound for the new covariance matrix

estimation problem with independent but non-identical data. Thus, we prove Theorem 4.

3.1 Model transformation

We take diffusion drift µt = 0 and diffusion matrix σt to be constant matrix σ, then

Γ = (Γij) = σT σ, and the sparsity condition (8) becomes

p∑
j=1

|Γij|q ≤ c πn(p), (13)

where c = E(Ψ) and Ψ is given by (8).

LetYl = (Y1(tl), · · · , Yp(tl))
T , and εl = (ε1(tl), · · · , εp(tl))T . Then Models (1)-(2) become

Yl = σBtl + εl, l = 1, · · · , n, tl = l/n, (14)

and we assume εl ∼ N(0, κ2Ip), where κ > 0 is specified in Condition A1. As Yl are

dependent, we take differences in (14) and obtain

Yl −Yl−1 = σ(Btl −Btl−1
) + εl − εl−1, l = 1, · · · , n, (15)

here Y0 = ε0 ∼ N(0, κ2Ip). For matrix (εl − εl−1, 1 ≤ l ≤ n) = (εi(tl) − εi(tl−1), 1 ≤ i ≤
p, 1 ≤ l ≤ n), its elements at different rows are independent but have correlation at the same

row. At the i-th row, elements εi(tl) − εi(tl−1), l = 1, · · · , n, have covariance matrix κ2 Υ,

where Υ is a n × n tridiagonal matrix with 2 for diagonal entries, −1 for next to diagonal

entries, and 0 elsewhere. Υ is a Toeplitz matrix (Wilkinson (1988)) that can be diagonalized

as follows,

Υ = QΦQT , Φ = diag(φ1, · · · , φn), (16)

where φl are eigenvalues with expressions

φl = 4 sin2

[
π l

2(n+ 1)

]
, l = 1, · · · , n, (17)
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and Q is an orthogonal matrix formed by the eigenvectors of Υ. Using (16) we transform

the i-th row of matrix (εl − εl−1, 1 ≤ l ≤ n) by Q, and obtain

V ar[(εi(tl)− εi(tl−1), 1 ≤ l ≤ n)Q] = κ2QTΥQ = κ2Φ,

For i = 1, · · · , p, let

(eil, 1 ≤ l ≤ n) = (
√
n[εi(tl)− εi(tl−1)], 1 ≤ l ≤ n)Q,

(uil, 1 ≤ l ≤ n) = (
√
n[Yi(tl)− Yi(tl−1)], 1 ≤ l ≤ n)Q,

(vil, 1 ≤ l ≤ n) = (
√
n[Bi(tl)−Bi(tl−1)], 1 ≤ l ≤ n)Q.

Then (i) as Q diagonalizes Φ, eil are independent, with eil ∼ N(0, nκ2φl); (ii) because

Bi(tl)−Bi(tl−1) are i.i.d. normal, andQ is orthogonal, vil are i.i.d. N(0, 1) random variables.

Put (15) in a matrix form and multiply by
√
nQ on both sides to obtain

(uil) = σ(vil) + (eil).

Denote by Ul, Vl and el the column vectors of matrices (uil), (vil) and (eil), respectively.

Then the above matrix equation is equivalent to

Ul = σVl + el, l = 1, · · · , n, (18)

where el ∼ N(0, κ2 nφl Ip) and Vl ∼ N(0, Ip).

From (18) we have that observed vectors U1, · · · ,Un are independent with

Ul ∼ N (0,Γ+ (al − 1) Ip)

where al = 1 + κ2 nφl with 0 < κ < ∞.

3.2 Lower bound

We convert the minimax lower bound problem stated in Theorem 4 into a much simpler

problem of estimating Γ based on observations U1, · · · ,Un from (18), where Γ are constant

matrices satisfying (13) and ∥Γ∥2 ≤ τ for some constant τ > 0, and we denote the new

minimax estimation problem by Qq(πn(p)). The theorem below derives its minimax lower

bound.

Theorem 5 Assume p ≥ nβ/2 for some β > 1. If πn(p) obeys (11), the minimax risk for

estimating matrix Γ with Qq(πn(p)) satisfies that as n, p → ∞,

inf
Γ̌

sup
Qq(πn(p))

E
∥∥Γ̌− Γ

∥∥2
2
≥ C∗

[
πn(p)

(
n−1/4

√
log p

)1−q
]2

, (19)

where C∗ is a positive constant.
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Remark 5. As we discussed in Remarks 1 and 2 in Section 2.2, due to noise con-

tamination, the optimal convergence rate depends on sample size through n−1/4 instead of

n−1/2 for covariance matrix estimation. Actually Section 3.1 reveals some intrinsical in-

sight on the n−1/4 convergence rate. The transformation in Section 3.1 converts model (15)

with noisy data into model (18) where independent vector Ul follow multivariate normal

distribution with mean zero and covariance matrix Γ + κ2 nφl Ip, l = 1, · · · , n. The trans-

formation is via orthogonal matrix Q, which diagonalizes Toeplitz matrix Υ and is equal to

(sin(ℓrπ/(n+ 1)), 1 ≤ ℓ, r ≤ n) normalized by
√
2/(n+ 1) (see Salkuyeh (2006)). Thus the

transformation from model (15) to model (18) corresponds to a discrete sine transform, with

(18) in frequency domain and Ul ∼ N(0,Γ + κ2 nφl Ip) corresponding to the discrete sine

transform of the data at frequency lπ/(n + 1). Note that (17) indicates that nφl behave

like l2/n. Since for l with much higher order than
√
n, Γ + κ2 nφl Ip are dominated by

κ2 nφl Ip, the corresponding Ul essentially behave like noise el and thus are not informative

for estimating Γ. On the other hand, for l up to the order of
√
n, nφl are relatively small,

and Γ + κ2 nφl Ip are close to Γ, thus the corresponding Ul are statistically similar to Vl.

Hence, there are only
√
n number of frequencies at which the transformed data Ul are in-

formative for estimating Γ, and we use these Ul to estimate covariance matrix Γ and obtain

(
√
n)−1/2 = n−1/4 convergence rate. In fact, we have seen the phenomenon in Section 2.1

where scales used in the construction of Γ̃ in (5) correspond to the
√
n number of Km, which

all are of order
√
n.

4 Proofs of Theorems 2 and 3

Denote by C’s generic constants whose values are free of n and p and may change from

appearance to appearance. For two sequences un,p and vn,p we write un,p ≍ vn,p if there exist

positive constants C1 and C2 free of n and p such that C1 ≤ un,p/vn,p ≤ C2. Let

Ykm
r = (Y1(τ

km
r ), · · · , Yp(τ

km
r ))T , Xkm

r = (X1(τ
km
r ), · · · , Xp(τ

km
r ))T ,

εkmr = (ε1(τ
km
r ), · · · , εp(τ kmr ))T

the vectors corresponding to the data, diffusion process, and noise at time point τ kmr , r =

1, · · · , |τ km |, km = 1, · · · , Km, and m = 1, · · · , N . Note that we choose index km to specify

that the analyses are associated with the study of ΓKm here and below. We decompose Γ̃
Km
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defined in (4) as follows,

Γ̃
Km

=
1

Km

Km∑
km=1

|τkm |∑
r=2

(
Ykm

r −Ykm
r−1

) (
Ykm

r −Ykm
r−1

)T
=

1

Km

Km∑
km=1

|τkm |∑
r=2

(
Xkm

r −Xkm
r−1 + εkmr − εkmr−1

) (
Xkm

r −Xkm
r−1 + εkmr − εkmr−1

)T
=

1

Km

Km∑
km=1

|τkm |∑
r=2

{(
Xkm

r −Xkm
r−1

) (
Xkm

r −Xkm
r−1

)T
+
(
εkmr − εkmr−1

) (
εkmr − εkmr−1

)T
+
(
Xkm

r −Xkm
r−1

) (
εkmr − εkmr−1

)T
+
(
εkmr − εkmr−1

) (
Xkm

r −Xkm
r−1

)T}
≡ VKm +GKm(1) +GKm(2) +GKm(3),

(20)

and thus from (5) we obtain the corresponding decomposition for Γ̃,

Γ̃ =
N∑

m=1

amΓ̃
Km

+ ζ(Γ̃
K1 − Γ̃

KN
)

=
N∑

m=1

amV
Km + ζ(VK1 −VKN ) +

3∑
r=1

[
N∑

m=1

amG
Km(r) + ζ(GK1(r)−GKN (r))

]
≡ V +G(1) +G(2) +G(3), (21)

where the terms denoted by G’s are associated with noise, and the V term corresponds to

process Xt. We establish tail probabilities for these V and G terms in the following three

propositions whose proofs will be given in the subsequent subsections.

Proposition 6 Under the assumptions of Theorem 2, we have for 1 ≤ i, j ≤ p and positive

d in a neighbor of 0,

P (|Vij − Γij| ≥ d) ≤ C1n exp
{
−
√
nd2/C2

}
.

Proposition 7 Under the assumptions of Theorem 2, we have for 1 ≤ i, j ≤ p and positive

d in a neighbor of 0,

P (|Gij(1)| ≥ d) ≤ C1 exp
{
−
√
nd2/C2

}
. (22)

Proposition 8 Under the assumptions of Theorem 2, we have for 1 ≤ i, j ≤ p and positive

d in a neighbor of 0,

P (|Gij(2)| ≥ d) ≤ C1(n
1/2/d) exp

{
−
√
nd2/C2

}
, (23)

P (|Gij(3)| ≥ d) ≤ C1(n
1/2/d) exp

{
−
√
nd2/C2

}
. (24)
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Proof of Theorem 2. From (21) we have

P
(∣∣∣Γ̃ij − Γij

∣∣∣ ≥ x
)
≤ P (|Vij − Γij| ≥ x/4) +

3∑
r=1

P (|Gij(r)| ≥ x/4) ,

and thus the theorem is a consequence of Propositions 6-8.

Proof of Theorem 3. Define

Aij =
{
|Γ̂ij − Γij| ≤ 2min{|Γij|, ϖ}

}
,

Dij = (Γ̂ij − Γij)1(A
c
ij), D = (Dij)1≤i,j≤p.

As the spectral norm of a symmetric matrix is bounded by ℓ1-norm, then

E||Γ̂− Γ||22 ≤ E||Γ̂− Γ||21 ≤ E||Γ̂− Γ−D||21 + E||D||21. (25)

We can bound E||Γ̂− Γ−D||1 as follows,

E||Γ̂− Γ−D||21 = E

[
max
1≤j≤p

p∑
i=1

|Γ̂ij − Γij|1(|Γ̂ij − Γij| ≤ 2min{|Γij|, ϖ})

]2

≤ E

[
max
1≤j≤p

p∑
i=1

2|Γij|1(|Γij| < ϖ)

]2
+ E

[
max
1≤j≤p

p∑
i=1

2ϖ1(|Γij| ≥ ϖ)

]2
≤ 8E[Ψ2]π2

n(p)ϖ
2(1−q)

≤ Cπ2
n(p)

(
n−1/4

√
log p

)2−2q

,

where the second inequality is due to the fact that sparsity of Γ implies

max
1≤j≤p

p∑
i=1

|Γij|1(|Γij| < ϖ) ≤ Ψπn(p)ϖ
1−q, max

1≤j≤p

p∑
i=1

1(|Γij| ≥ ϖ) ≤ Ψπn(p)ϖ
−q,

see Lemma 1 inWang and Zou (2010). The rest of the proof is to show thatE||D||1 = O(n−2),

a negligible term. Indeed, thresholding rule indicates that Γ̂ij = 0 if |Γ̃ij| < ϖ and Γ̂ij = Γ̃ij

if |Γ̃ij| ≥ ϖ, thus

E||D||21 = E

[
max
1≤j≤p

p∑
i=1

|Γ̂ij − Γij|1(|Γ̂ij − Γij| > 2min{|Γij|, ϖ})

]2

≤ p

p∑
i,j=1

E
[
|Γij|21(|Γij| > 2min{|Γij|, ϖ})1(Γ̂ij = 0)

]
+ p

p∑
i,j

E
[
|Γ̃ij − Γij|21(|Γ̃ij − Γij| > 2min{|Γij|, ϖ})1(Γ̂ij = Γ̃ij)

]
≡ I1 + I2.

13



For term I1, we have

I1 = p

p∑
i,j=1

E
[
|Γij|21(|Γij| > 2ϖ)1(|Γ̃ij| < ϖ)

]
≤ p

p∑
i,j=1

E
[
|Γij|21(|Γ̃ij − Γij| > ϖ)

]
≤ Cp

p∑
i,j=1

P (|Γ̃ij − Γij| > ϖ)

≤ Cp3 exp
{
log(n/ϖ)−

√
nϖ2/ς0

}
≤ Cn−2,

where the third inequality is from Theorem 2, and the last inequality is due to ϖ =

~n−1/4
√

log(np) with ~2/ς0 > 4.

On the other hand, we can bound term I2 as follows,

I2 = p

p∑
i,j=1

E
[
|Γ̃ij − Γij|21(|Γ̃ij − Γij| > 2min{|Γij|, ϖ})1(|Γ̃ij| ≥ ϖ)

]
= p

p∑
i,j=1

E
[
|Γ̃ij − Γij|21(|Γ̃ij − Γij| > 2min{|Γij|, ϖ})1(|Γij| ≥ ϖ/2)1(|Γ̃ij| ≥ ϖ)

]
+ p

p∑
i,j=1

E
[
|Γ̃ij − Γij|21(|Γ̃ij − Γij| > 2min{|Γij|, ϖ})1(|Γij| < ϖ/2)1(|Γ̃ij| ≥ ϖ)

]
≤ p

p∑
i,j=1

E
[
|Γ̃ij − Γij|21(|Γ̃ij − Γij| > ϖ)

]
+ p

p∑
i,j=1

E
[
|Γ̃ij − Γij|21(|Γij| < ϖ/2, |Γ̃ij| ≥ ϖ)

]
≤ 2p

p∑
i,j=1

E
[
|Γ̃ij − Γij|21(|Γ̃ij − Γij| > ϖ/2)

]
≤ 2p

p∑
i,j=1

{
E
[
|Γ̃ij − Γij|4

]
P
(
|Γ̃ij − Γij| > ϖ/2

)}1/2

≤ Cp3 exp
{
log(n/ϖ)/2−

√
nϖ2/(8ς0)

}
≤ Cn−2,

where the third inequality is due to Hölder’s inequality, the fourth inequality is from Theorem

2 and (26) below, and the last inequality is due to the fact that ϖ = ~n−1/4
√
log(np) with

~2/(8ς0) > 3.

max
1≤i,j≤p

E
[
|Γ̃ij − Γij|4

]
≤ C. (26)
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To complete the proof we need to show (26). Let

η̃ = diag(η̃1, · · · , η̃p), η̃i =
1

2n

n∑
ℓ=2

[Yi(tℓ)− Yi(tℓ−1)]
2. (27)

Then

Γ̃
∗Km

= Γ̃
Km − 2

n−Km + 1

Km

η̃ (28)

are called average realized volatility matrix (ARVM) estimators in Wang and Zou (2010).

Applying Theorem 1 of Wang and Zou (2010) to Γ̃
∗Km

we have for 1 ≤ i, j ≤ p and

1 ≤ m ≤ N ,

E(|Γ̃∗Km
ij − Γij|4) ≤ C

[
(Kmn

−1/2)−4 +K−2
m + (n/Km)

−2 +K−4
m + n−2

]
≤ C. (29)

From (5), (6) and (28) and with simple algebraic manipulations we can express Γ̃ by Γ̃
∗Km

as follows,

Γ̃ =
N∑

m=1

amΓ̃
∗Km

+ ζ(Γ̃
∗K1 − Γ̃

∗KN
),

and thus

Γ̃− Γ =
N∑

m=1

am

(
Γ̃

∗Km − Γ
)
+ ζ

[
(Γ̃

∗K1 − Γ)− (Γ̃
∗KN − Γ)

]
. (30)

Combining (29) and (30) and using (6) we conclude for 1 ≤ i, j ≤ p,

E
[
|Γ̃ij − Γij|4

]
≤ (N+2)3

[
N∑

m=1

a4mE(|Γ̃∗Km
ij − Γij|4) + ζ4E(|Γ̃∗K1 − Γij|4 + |Γ̃∗KN − Γij|4)

]
≤ C.

4.1 Proof of Proposition 6

From the definition of V Km
ij in (20), we have

V Km
ij =

1

Km

Km∑
km=1

|τkm |∑
r=2

{Xi(τ
km
r )−Xi(τ

km
r−1)}{Xj(τ

km
r )−Xj(τ

km
r−1)} ≡ 1

Km

Km∑
km=1

[Xi, Xj]
(km),

V Km
ij − Γij =

1

Km

Km∑
km=1

[
[Xi, Xj]

(km) −
∫ 1

0

γij(s)ds

]
.
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Note that A =
∑N

m=1 |am|+ 2ζ ∼ 9/2. From the expression of V Km
ij − Γij we obtain that for

1 ≤ m ≤ N ,

P
(∣∣V Km

ij − Γij

∣∣ ≥ d/A
)
≤ P

(
1

Km

Km∑
km=1

∣∣∣∣[Xi, Xj]
(km) −

∫ 1

0

γij(s)ds

∣∣∣∣ ≥ d/A

)

≤
Km∑

km=1

P

(∣∣∣∣[Xi, Xj]
(km) −

∫ 1

0

γij(s)ds

∣∣∣∣ ≥ d/A

)
≤ C1

√
n exp

{
−
√
nd2/C2

}
,

where the last inequality is due to Lemma 9 below and the fact that the maximum distance

between consecutive grids in τ km is bounded by Km/n ≤ 2/
√
n. Therefore,

P (|Vij − Γij| ≥ d) ≤ P

(
N∑

m=1

|am|
∣∣V Km

ij − Γij

∣∣+ ζ
(∣∣V K1

ij − Γij

∣∣+ ∣∣V KN
ij − Γij

∣∣) ≥ d

)

≤
N∑

m=1

P
(∣∣V Km

ij − Γij

∣∣ ≥ d/A
)
+ P

(∣∣V K1
ij − Γij

∣∣ ≥ d/A
)
+ P

(∣∣V KN
ij − Γij

∣∣ ≥ d/A
)

≤ C1n exp
{
−
√
nd2/C2

}
.

Lemma 9 Under Model (1) and Condition A2, for any sequence 0 = ν0 ≤ ν1 < ν2 < · · · <
νm ≤ νm+1 = 1 satisfying max1≤r≤m+1 |νr − νr−1| ≤ C/m, we have for 1 ≤ i, j ≤ p and small

d > 0,

P

(∣∣∣∣∣
m∑
r=2

(Xi(νr)−Xi(νr−1))(Xj(νr)−Xj(νr−1))−
∫ 1

0

γij(s)ds

∣∣∣∣∣ ≥ d

)
≤ C1 exp

(
−md2/C2

)
.

Proof. The same arguments in the proof of Lemma 3 in Fan et. al. (2011) lead to

P

(∣∣∣∣∣
m∑
r=2

(Xi(νr)−Xi(νr−1))(Xj(νr)−Xj(νr−1))−
∫ νm

ν1

γij(s)ds

∣∣∣∣∣ ≥ d

)
≤ C1 exp

{
−md2/C2

}
.

(31)

From Condition A2 we have∣∣∣∣∫ νm

ν1

γij(s)ds−
∫ 1

0

γij(s)ds

∣∣∣∣ ≤ C(ν1 + 1− νm) ≤ C/m,
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and then for d > C/m,

P

(∣∣∣∣∣
m∑
r=2

(Xi(νr)−Xi(νr−1))(Xj(νr)−Xj(νr−1))−
∫ 1

0

γij(s)ds

∣∣∣∣∣ ≥ d

)

≤ P

(∣∣∣∣∣
m∑
r=2

(Xi(νr)−Xi(νr−1))(Xj(νr)−Xj(νr−1))−
∫ νm

ν1

γij(s)ds

∣∣∣∣∣ ≥ d− C/m

)
≤ C1 exp

{
−m(d− C/m)2/C2

}
≤ C1 exp

{
−md2/C2

}
,

where the second inequality is from (31) and the last inequality is due to the fact that

−m(d− C/m)2 = −md2 + 2C − C/m ≤ −md2 + 2C. This proves the lemma for d > C/m.

For d ≤ C/m, the tail probability bound in the lemma

C1 exp
{
−md2/C2

}
≥ C1 exp

{
−C2/(mC2)

}
≥ C1 exp

{
−C2/C2

}
,

and we easily show the probability inequality in the lemma by choosing C1 and C2 so that

C1 exp {−C2/C2} ≥ 1. The proof is completed.

4.2 Proof of Proposition 7

From the definition of G(1) = (Gij(1)) in (21), we obtain that P (|Gij(1)| ≥ d) is bounded

by

P

(∣∣∣∣∣
N∑

m=1

amG
Km
ij (1)− 2ηi1(i = j)

∣∣∣∣∣ ≥ d/2

)
+ P

(∣∣ζ(GK1
ij (1)−GKN

ij (1))− 2ηi1(i = j)
∣∣ ≥ d/2

)
≤ C1 exp{−

√
nd2/C2}+ C3 exp{−nd2/C4} ≤ C1 exp{−

√
nd2/C2},

where the first inequality is from Lemmas 10 and 11 below.

Lemma 10 Under the assumptions of Theorem 2, we have for 1 ≤ i, j ≤ p,

P

(∣∣∣∣∣
N∑

m=1

amG
Km
ij (1)− 2ηi1(i = j)

∣∣∣∣∣ ≥ d

)
≤ C1 exp{−

√
nd2/C2}.
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Proof. From the definition of GKm = (GKm
ij (1)) in (20), we have

GKm
ij (1) =

1

Km

Km∑
km=1

|τkm |∑
r=2

[
εi(τ

km
r )− εi(τ

km
r−1)

] [
εj(τ

km
r )− εj(τ

km
r−1)

]
=

1

Km

Km∑
km=1

|τkm |∑
r=2

[
εi(τ

km
r )εj(τ

km
r )− εi(τ

km
r )εj(τ

km
r−1)− εi(τ

km
r−1)εj(τ

km
r ) + εi(τ

km
r−1)εj(τ

km
r−1)

]
=

2

Km

n∑
r=1

εi(tr)εj(tr)−

[
1

Km

n∑
r=Km+1

εi(tr)εj(tr−Km) +
1

Km

n∑
r=Km+1

εi(tr−Km)εj(tr)

]

−

[
1

Km

Km∑
r=1

εi(tr)εj(tr) +
1

Km

n∑
r=n−Km+1

εi(tr)εj(tr)

]
≡ IKm

1 − IKm
2 − IKm

3 ,

and
N∑

m=1

amG
Km
ij (1) =

N∑
m=1

amI
Km
1 −

N∑
m=1

amI
Km
2 −

N∑
m=1

amI
Km
3 . (32)

First of all, the fact that
∑N

m=1 am/Km = 0 implies

N∑
m=1

amI
Km
1 =

N∑
m=1

am
Km

n∑
r=1

εi(tr)εj(tr) = 0. (33)

Second, IKm
2 can be written as a quadratic form with matrix expression

N∑
m=1

am IKm
2 ≡ εTi Λεj =

n∑
r=1

√
ηiηjλrZi(tr)Zj(tr),

where Λ = (Λrℓ, r, ℓ = 1, · · · , n) is a n by n symmetric matrix with Λrr = 0, Λr,r±Km =

am/Km for m = 1, · · · , N , and zero otherwise, {λr, r = 1, · · · , n} are the eigenvalues of Λ,

εi = (εi(t1), εi(t2), · · · , εi(tn))T , and Zi(tr), r = 1, · · · , n, i = 1, · · · , p, are i.i.d. standard

normal random variables. Simple calculations show

max
1≤r≤n

|λr| = ||Λ||2 ≤ ||Λ||1 ≤ 2
N∑

m=1

|am|
|Km|

≍ 1/N,

n∑
r=1

λr = tr(Λ) = 0.

Both Zi(tr)Zj(tr), i ̸= j and Zi(tr)
2 − 1 satisfy Condition (P ) and Equation (3.12) on

page 45 of Saulis and Statulevičius (1991), and

E

(
N∑

m=1

am IKm
2

)
= 0,
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V ar

(
N∑

m=1

am IKm
2

)
= 2[1 + 1(i = j)]ηiηj

N∑
m=1

n∑
r=Km+1

(
am
Km

)2

≍ n

N3
,

thus applying Theorem 3.2 on page 45 of Saulis and Statulevičius (1991), we obtain

P

(∣∣∣∣∣
N∑

m=1

amI
Km
2

∣∣∣∣∣ ≥ d

)
≤ C1 exp

{
−(N3/n)d2/C2

}
= C1 exp{−

√
nd2/C2}. (34)

Finally we will prove the result for
∑N

m=1 amI
Km
3 . Due to the similarity we show the result

only for its first term.

N∑
m=1

am
Km

Km∑
r=1

εi(tr)εj(tr) =
N∑

m=1

am
Km

K1∑
r=1

εi(tr)εj(tr) +
N∑

m=2

am
Km

Km∑
r=K1+1

εi(tr)εj(tr)

=

(
N∑

m=1

am
Km

)(
K1∑
r=1

εi(tr)εj(tr)

)
+

KN∑
r=K1+1

(
N∑

m=r−K1+1

am
Km

)
εi(tr)εj(tr)

=

KN∑
r=K1+1

Rrεi(tr)εj(tr),

where Rr =
(∑N

m=r−K1+1 am/Km

)
. Simple algebraic manipulations get maxr |Rr| ∼ 1/N ,

and

E

(
KN∑

r=K1+1

Rrεi(tr)εj(tr)

)
= ηi · 1(i = j),

V ar

(
KN∑

r=K1+1

Rrεi(tr)εj(tr)

)
= [1 + 1(i = j)]ηiηj

KN∑
r=K1+1

(
N∑

m=r−K1+1

am
Km

)2

≍ 1

N
.

An application of Theorem 3.2 on page 45 of Saulis and Statulevičius (1991) leads to

P

(∣∣∣∣∣
N∑

m=1

amI
Km
3 − 2ηi · 1(i = j)

∣∣∣∣∣ ≥ d

)
≤ C1 exp

{
−
√
nd2/C2

}
. (35)

Combining (32)-(35) we conclude

P (|Gij(1)− 2ηi · 1(i = j)| ≥ d)

≤ P

(∣∣∣∣∣
N∑

m=1

amI
Km
2

∣∣∣∣∣ ≥ d/2

)
+ P

(∣∣∣∣∣
N∑

m=1

amI
Km
3 − 2ηi · 1(i = j)

∣∣∣∣∣ ≥ d/2

)
≤ C1 exp

{
−
√
nd2/C2

}
.
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Lemma 11 Under the assumptions of Theorem 2, we have for 1 ≤ i, j ≤ p,

P
(∣∣ζ(GK1

ij (1)−GKN
ij (1))− 2ηi1(i = j)

∣∣ ≥ d
)
≤ C1 exp{−nd2/C2}. (36)

Proof. First consider ζGK1
ij (1) term.

ζGK1
ij (1) =

KN

n(N − 1)

K1∑
k1=1

|τk1 |∑
r=2

(
εi(τ

k1
r )− εi(τ

k1
r−1)

) (
εj(τ

k1
r )− εj(τ

k1
r−1)

)
=

KN

n(N − 1)

n∑
r=K1+1

(εi(tr)εj(tr)− εi(tr)εj(tr−K1)− εi(tr−K1)εj(tr) + εi(tr−K1)εj(tr−K1))

≡ R1 +R2 +R3 +R4.

For i ̸= j, using Lemma A.3 in Bickel and Levina (2008a) and KN , N ∼
√
n, we have

P (|Rk| ≥ d) ≤ C1 exp{−nd2/C2}, 1 ≤ k ≤ 4. (37)

For i = j, due to similarity, we will provide arguments only for R1 and R2. For R1, with

i = j, ε2i (tr) − ηi = ηi(V
2
r − 1), where V 2

r are i.i.d. χ2
1 random variables, which satisfy

Condition (P) and Equation (3.12) on page 45 of Saulis and Statulevičius (1991). Therefore,

P (|R1| ≥ d) = P

(∣∣∣∣∣ KN

n(N − 1)
ηi

n∑
r=K1+1

(V 2
r − 1)

∣∣∣∣∣ ≥ d

)
≤ C1 exp{−nd2/C2}. (38)

Regarding to R2 we have

|R2| =
KN

n(N − 1)

∣∣∣∣∣
n∑

r=K1+1

εi(tr)εi(tr−K1)

∣∣∣∣∣ = KN

n(N − 1)

∣∣∣∣∣∣
K1∑

k1=1

|τk1 |∑
r=2

εi(τ
k1
r )εi(τ

k1
r−1)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
KN

n(N − 1)

K1∑
k1=1

⌊ |τk1 |
2

⌋∑
r=1

εi(τ
k1
2r )εi(τ

k1
2r−1)

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣

KN

n(N − 1)

K1∑
k1=1

⌊ |τk1 |−1
2

⌋∑
r=1

εi(τ
k1
2r+1)εi(τ

k1
2r )

∣∣∣∣∣∣∣ = R1
2 +R2

2,

where εi(·)’s in R1
2 and R2

2 are independent. Lemma A.3 in Bickel and Levina (2008a) infers

that for r = 1, 2, P (|Rr
2| ≥ d) ≤ C1 exp{−nd2/C2}. Hence, we have

P (|R2| ≥ d) ≤ P (|R1
2| ≥ d/2) + P (|R2

2| ≥ d/2) ≤ C1 exp{−nd2/C2}. (39)

Finally (37)-(39) together conclude

P

(∣∣∣∣ζGK1
ij (1)− KN(n−K1)

n(N − 1)
ηi1(i = j)

∣∣∣∣ ≥ d

)
≤ C1 exp{−nd2/C2}.

We can establish a similar tail probability result for ζGKN
ij (1) term and thus prove the lemma.
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4.3 Proof of Proposition 8

As the proofs for Gij(2) and Gij(3) are similar, we give arugments only for Gij(2). As Lemma

12 below gives the tail probability for GKm
ij (2) we have

P (|Gij(2)| ≥ d) ≤
N∑

m=1

P
(∣∣GKm

ij (2)
∣∣ ≥ d/A

)
+ P

(∣∣GK1
ij (2)

∣∣ ≥ d/A
)
+ P

(∣∣GKN
ij (2)

∣∣ ≥ d/A
)

≤ C1(n
1/2/d) exp

{
−
√
nd2/C2

}
,

where A =
∑N

m=1 |am|+ 2ζ ∼ 9/2.

Lemma 12 Under the assumptions of Theorem 2, we have for 1 ≤ i, j ≤ p,

P (|GKm
ij (2)| ≥ d) ≤ (C1/d) exp

{
−
√
nd2/C2

}
.

Proof. Simple algebra shows

GKm
ij (2) =

1

Km

Km∑
km=1

|τkm |∑
r=2

[
Xi(τ

km
r )−Xi(τ

km
r−1)

] [
εj(τ

km
r )− εj(τ

km
r−1)

]
=

1

Km

Km∑
km=1

|τkm |∑
r=2

[
Xi(τ

km
r )−Xi(τ

km
r−1)

]
εj(τ

km
r )− 1

Km

Km∑
km=1

|τkm |∑
r=2

[
Xi(τ

km
r )−Xi(τ

km
r−1)

]
εj(τ

km
r−1)

≡ RKm
5 +RKm

6 .

Due to similarity, we prove only the result for RKm
5 . Conditional on the whole path of X,

RKm
5 is the weighted sum of independent noise εj(·). Hence,

P (|RKm
5 | ≥ d) = E

[
P (|RKm

5 | ≥ d|X)
]

= 2E

P
 Km∑

km=1

|τkm |∑
r=2

[
Xi(τ

km
r )−Xi(τ

km
r−1)

]
εj(τ

km
r ) ≥ dKm

∣∣∣∣∣∣X


≤ E

C
√
V Km
ii ηj

d
√
Km

exp

{
− d2Km

2V Km
ii ηj

}
= E

C
√

V Km
ii ηj

d
√
Km

exp

{
− d2Km

2V Km
ii ηj

}
1(Ω)

+ E

C
√
V Km
ii ηj

d
√
Km

exp

{
− d2Km

2V Km
ii ηj

}
1(Ωc)


≡ RKm

5,1 +RKm
5,2 ,
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where the inequality is due to the facts that RKm
5 |X ∼ N(0, V Km

ii ηjKm), and for Z ∼ N(0, 1),

P (Z ≥ z) ≤ C exp{−z2/2}/z, and V Km
ii is defined in (20), i.e.

V Km
ii =

1

Km

Km∑
km=1

[Xi, Xi]
km =

1

Km

Km∑
km=1

|τkm |∑
r=2

[
Xi(τ

km
r )−Xi(τ

km
r−1)

]2
, (40)

Ω =
{
|V Km

ii − Γii| ≥ d
}
. (41)

From the definition of Ω and for small d we obtain

RKm
5,2 = E

C
√
V Km
ii ηj

d
√
Km

exp

{
− d2Km

2V Km
ii ηj

}
1(Ωc)

 ≤ C1

d
√
Km

exp

{
−Kmd

2

C2

}
.

On the other hand,

RKm
5,1 = E

C
√
V Km
ii ηj

d
√
Km

exp

{
− d2Km

2V Km
ii ηj

}
1(Ω)

 ≤ CE

[√
V Km
ii

√
ηj

d2Km

1(Ω)

]

≤ C

d
√
Km

[
E(V Km

ii )
] 1

2 [P (Ω)]
1
2 ≤ (C1/d) exp

{
−
√
nd2

C2

}
,

where the second inequality is due to Hölder inequality, and the last inequality is from

Lemma 9 and the proof in Proposition 6 that

P (Ω) ≤ C1

√
n exp

{
−
√
nd2/C2

}
.

Therefore,

P (|Gij(2)
Km| ≥ d/(4A)) ≤ C1

d
√
Km

exp

{
−Kmd

2

C2

}
+ (C1/d) exp

{
−
√
nd2

C2

}
≤ (C1/d) exp

{
−
√
nd2/C2

}
.

5 Proofs of Theorems 4 and 5

Section 3.1 shows that Theorem 4 is a consequence of Theorem 5. The proof of Theorem

5 is similar to but more involved than the proof of Theorem 2 in Cai and Zhou (2011)

which considered only i.i.d. observations. It contains four major steps. In the first step

we construct in detail a finite subset F∗ of the parameter space Gq(πn(p)) such that the

difficulty of estimation over F∗ is essentially the same as that of estimation over Gq(πn(p)),
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where Gq(πn(p)) is the class of constant matrices Γ satisfying (13) and ∥Γ∥2 ≤ τ for constant

τ > 0. The second step applies the lower bound argument in Cai and Zhou (2011, Lemma

3) to the carefully constructed parameter set F∗. In the third step we calculate the factor

α defined in (50) below and the total variation affinity between two average of products of

n independent but not identically distributed multivariate normals. The final step combines

together the results in steps 2 and 3 to obtain the minimax lower bound.

Step 1: Construct parameter set F∗. Set r = ⌈p/2⌉, where ⌈x⌉ denotes the smallest

integer greater than or equal to x, and let B be the collection of all row vectors b = (vj)1≤j≤p

such that vj = 0 for 1 ≤ j ≤ p − r and vj = 0 or 1 for p − r + 1 ≤ j ≤ p under the

constraint ∥b∥0 = k (to be specified later). Each element λ = (b1, ..., br) ∈ Br is treated as

an r × p matrix with the ith row of λ equal to bi. Let ∆ = {0, 1}r. Define Λ ⊂ Br to be

the set of all elements in Br such that each column sum is less than or equal to 2k. For

each b ∈ B and each 1 ≤ m ≤ r, define a p× p symmetric matrix Am(b) by making the mth

row of Am(b) equal to b, mth column equal to bT , and the rest of the entries 0. Then each

component λi of λ = (λ1, ..., λr) ∈ Λ can be uniquely associated with a p× p matrix Ai(λi).

Define Θ = ∆ ⊗ Λ and let ϵn,p ∈ R be fixed (the exact value of ϵn,p will be chosen later).

For each θ = (γ, λ) ∈ Θ with γ = (γ1, ..., γr) ∈ ∆ and λ = (λ1, ..., λr) ∈ Λ, we associate

θ = (γ1, ..., γr, λ1, ..., λr) with a volatility matrix Γ(θ) by

Γ(θ) = Ip + ϵn,p

r∑
m=1

γmAm(λm). (42)

For simplicity we assume that τ > 1 in the assumption (13), otherwise we replace Ip in (42)

by cIp with a small constant c > 0. Finally we define F∗ to be a collection of covariance

matrices as

F∗ =

{
Γ(θ) : Γ(θ) = Ip + ϵn,p

r∑
m=1

γmAm(λm), θ = (γ, λ) ∈ Θ

}
. (43)

Note that each matrix Γ ∈ F∗ has value 1 along the main diagonal, and contains an r × r

submatrix, say, A, at the upper right corner, AT at the lower left corner, and 0 elsewhere;

each row of the submatrix A is either identically 0 (if the corresponding γ value is 0) or has

exactly k nonzero elements with value ϵn,p.

Now we specify the values of ϵn,p and k:

ϵn,p = υ

(
log p√

n

)1/2

, k =

⌈
1

2
πn(p)ϵ

−q
n,p

⌉
− 1, (44)

where υ is a fixed small constant that we require

0 < υ <

[
min

{
1

3
, τ − 1

}
1

M

] 1
1−q

(45)
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and

0 < υ2 <
β − 1

27cκβ
, (46)

where cκ = (2κ)−1 satisfies
n∑

l=1

a−2
l ≤ cκ

√
n, (47)

since

n∑
l=1

a−2
l ≤

∫ n

0

[
1 + 4κ2n sin2

(
πx

2(n+ 1)

)]−2

dx ≤ n+ 1

πκ
√
n

∫ ∞

0

[
1 + v2

]−2
dv =

√
n+ 1/

√
n

4κ
.

Note that ϵn,p and k satisfy maxj≤p

∑
i̸=j |Γijσij|q ≤ 2kϵqn,p ≤ πn(p),

2kϵn,p ≤ πn(p)ϵ
1−q
n,p ≤ Mυ1−q < min

{
1

3
, τ − 1

}
, (48)

and consequently every Γ(θ) is diagonally dominant and positive definite, and ∥Γ(θ)∥2 ≤
∥Γ(θ)∥1 ≤ 2kϵn,p + 1 < τ . Thus we have F∗ ⊂ Gq(πn(p)).

Step 2: Apply the general lower bound argument. Let Ul be independent with

Ul ∼ N (0,Γ (θ) + (al − 1) Ip) ,

where θ ∈ Θ, and we denote the joint distribution by Pθ. Applying Lemma 3 in Cai and

Zhou (2011) to the parameter space Θ, we have

inf
Γ̌

max
θ∈Θ

22Eθ

∥∥Γ̌− Γ(θ)
∥∥2
2
≥ α · r

2
· min
1≤i≤r

∥∥P̄i,0 ∧ P̄i,1

∥∥ , (49)

where we use ∥P∥ to denote the total variation of probability P,

α ≡ min
{(θ,θ′):H(γ(θ),γ(θ′))≥1}

∥Γ(θ)− Γ(θ′)∥22
H(γ(θ), γ(θ′))

, H(γ(θ), γ(θ′)) =
r∑

i=1

|γi(θ)− γi(θ
′)|, (50)

and

P̄i,a =
1

2r−1DΛ

∑
θ∈Θ

Pθ · {θ : γi(θ) = a} , (51)

where a ∈ {0, 1} and DΛ = Card {Λ}.

Step 3: Bound the affinity and per comparison loss. We need to bound the two

factors α and mini

∥∥P̄i,0 ∧ P̄i,1

∥∥ in (49). A lower bound for α is given by the following lemma

whose proof is the same as that of Lemma 5 in Cai and Zhou (2011).
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Lemma 13 For α defined in Equation (50) we have

α ≥ (kϵn,p)
2

p
.

A lower bound for mini

∥∥P̄i,0 ∧ P̄i,1

∥∥ is provided by the lemma below. Since its proof is

long and very much involved, the proof details are collected in Section 5.1.

Lemma 14 Let Uj be independent with Uj ∼ N (0,Γ+ (al − 1) Ip) with θ ∈ Θ and denote

the joint distribution by Pθ. For a ∈ {0, 1} and 1 ≤ i ≤ r, define P̄i,a as in (51). Then there

exists a constant c1 > 0 such that

min
1≤i≤r

∥∥P̄i,0 ∧ P̄i,1

∥∥ ≥ c1

uniformly over Θ.

Step 4: Obtain the minimax lower bound. We obtain the minimax lower bound for

estimating Γ over Gq(πn(p)) by combining together (49) and the bounds in Lemmas 13 and

14,

inf
Γ̌

sup
Gq(πn(p))

E
∥∥Γ̌− Γ

∥∥2
2

≥ max
Γ(θ)∈F∗

Eθ

∥∥Γ̌− Γ (θ)
∥∥2
2
≥ (kϵn,p)

2

p
· r
8
· c1

≥ c1
16

(kϵn,p)
2 = c2π

2
n(p)

(
n−1/4

√
log p

)2−2q

,

for some constant c2 > 0.

5.1 Proof of Lemma 14

We break the proof into a few major technical lemmas which are proved in Sections 5.3-5.4.

Without loss of generality we consider only the case i = 1 and prove that there exists a

constant c1 > 0 such that
∥∥P̄1,0 ∧ P̄1,1

∥∥ ≥ c1.

The following lemma turns the problem of bounding the total variation affinity into a

chi-square distance calculation. Denote the projection of θ ∈ Θ to Γ by γ (θ) = (γi (θ))1≤i≤r

and to Λ by λ (θ) = (λi (θ))1≤i≤r. More generally, for a subset A ⊆ {1, 2, . . . , r}, we define a

projection of θ to a subset of Γ by γA (θ) = (γi (θ))i∈A. A particularly useful example of set

A is

{−i} = {1, . . . , i− 1, i+ 1, · · · , r} ,
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for which γ−i (θ) = (γ1 (θ) , . . . , γi−1 (θ) , γi+1 (θ) , γr (θ)). λA (θ) and λ−i (θ) are defined

similarly. We define the set ΛA = {λA (θ) : θ ∈ Θ}. For a ∈ {0, 1}, b ∈ {0, 1}r−1, and

c ∈ Λ−i ⊆ Br−1, let

Θ(i,a,b,c) = {θ ∈ Θ : γi(θ) = a, γ−i(θ) = b and λ−i(θ) = c} ,

and D(i,a,b,c) = Card(Θ(i,a,b,c)) which depends actually on the value of c, not values of i, a

and b for the parameter space Θ constructed in Section 5. Define the mixture distribution

P̄(i,a,b,c) =
1

D(i,a,b,c)

∑
θ∈Θ(i,a,b,c)

Pθ. (52)

In other words, P̄(i,a,b,c) is the mixture distribution over all Pθ with λi(θ) varying over all

possible values while all other components of θ remain fixed. Define

Θ−1 = {(b, c) : there exists a θ ∈ Θ such that γ−1(θ) = b and λ−1(θ) = c} .

Lemma 15 If there is a constant c2 < 1 such that

Average
(γ−1,λ−1)∈Θ−1

{∫ (
dP̄(1,1,γ−1,λ−1)

dP̄(1,0,γ−1,λ−1)

)2

dP̄(1,0,γ−1,λ−1) − 1

}
≤ c22, (53)

then
∥∥P̄1,0 ∧ P̄1,1

∥∥ ≥ 1− c2 > 0.

We can prove Lemma 15 using the same arguments as the proof of Lemma 8 in Cai and

Zhou (2011). To complete the proof of Theorem 5 we need to verify only Equation (53).

5.2 Technical lemmas for proving Equation (53)

From the definition of P̄(1,0,γ−1,λ−1) in Equation (52) and θ = (γ, λ) with γ = (γ1, · · · , γr)
and λ = (λ1, · · · , λr), γ1 = 0 implies P̄(1,0,γ−1,λ−1) is a product of n multivariate normal

distributions each with a covariance matrix,

Σl,0 =

(
1 01×(p−1)

0(p−1)×1 S(p−1)×(p−1)

)
+ (al − 1) Ip, for l = 1, 2, . . . , n, (54)

where S(p−1)×(p−1) = (sij)2≤i,j≤p is uniquely determined by (γ−1, λ−1) = ((γ2, ..., γr), (λ2, ..., λr))

with

sij =


1, i = j

ϵn,p, γi = λi (j) = 1

0, otherwise

.
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Let nλ−1 be the number of columns of λ−1 with column sum equal to 2k and pλ−1 = r−nλ−1 .

Since nλ−1 · 2k ≤ r · k, the total number of 1’s in the upper triangular matrix, we have

nλ−1 ≤ r/2, which implies pλ−1 = r − nλ−1 ≥ r/2 ≥ p/4 − 1. From Equations (52) and

θ = (γ, λ) with γ = (γ1, · · · , γr) and λ = (λ1, · · · , λr), P̄(1,1,γ−1,λ−1) is an average of
(pλ−1

k

)
number of products of multivariate normal distributions each with covariance matrix of the

following form (
1 r1×(p−1)

r(p−1)×1 S(p−1)×(p−1)

)
+ (al − 1) Ip, for l = 1, 2, . . . , n, (55)

where ∥r∥0 = k with nonzero elements of r equal to ϵn,p and the submatrix S(p−1)×(p−1) is

the same as the one for Σl,0 given in (54). Note that the indices γi and λi are dropped from

r and S to simplify the notations.

With Lemma 15 in place, it remains to establish Equation (53) in order to prove Lemma

14. The following lemma is useful for calculating the cross product terms in the chi-square

distance between Gaussian mixtures. The proof of the lemma is straightforward and is thus

omitted.

Lemma 16 Let gi be the density function of N (0,Σi) for i = 0, 1 and 2, respectively. Then∫
g1g2
g0

=
1[

det
(
I− Σ−2

0 (Σ1 − Σ0) (Σ2 − Σ0)
)]1/2 .

Let Σl,i, i = 1 or 2, be two covariance matrices of the form (55). Note that Σl,i, i = 0, 1

or 2, differs from each other only in the first row/column. Then Σl,i − Σl,0, i = 1 or 2, has

a very simple structure. The nonzero elements only appear in the first row/column, and in

total there are 2k nonzero elements. This property immediately implies the following lemma

which makes the problem of studying the determinant in Lemma 16 relatively easy.

Lemma 17 Let Σl,i, i = 1 and 2, be matrices of the form (55). Define J to be the number

of overlapping ϵn,p’s between Σl,1 and Σl,2 on the first row, and

Q
△
= (qij)1≤i,j≤p = (Σl,1 − Σl,0) (Σl,2 − Σl,0) .

There are index subsets Ir and Ic in {1, 2, . . . , p} with Card (Ir) = Card (Ic) = k and

Card (Ir ∩ Ic) = J such that

qij =


Jϵ2n,p, i = j = 1

ϵ2n,p, i ∈ Ir and j ∈ Ic

0, otherwise

and the matrix (Σl,0 − Σl,1) (Σl,0 − Σl,2) has rank 2 with two identical nonzero eigenvalues

Jϵ2n,p when J > 0.
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Let

R
γ−1,λ−1

l,λ1,λ́1
= − log det

(
I − Σ−2

l,0 (Σl,0 − Σl,1) (Σl,0 − Σl,2)
)
, (56)

where Σl,0 is defined in (54) and determined by (γ−1, λ−1), and Σl,1 and Σl,2 have the first

row λ1 and λ´1 respectively. We drop the indices λ1, λ
´
1 and (γ−1, λ−1) from Σi to simplify

the notations. Define

Θ−1 (a1, a2) = {(b, c) : there exist θi ∈ Θ, i = 1, 2, , such that λ1(θi) = ai, and λ−1(θi) = c} .

It is a subset of Θ−1 in which the element can pick both a1 and a2 as the first row to form

parameters in Θ. From Lemma 16 the left hand side of Equation (53) can be written as

Average
(γ−1,λ−1)∈Θ−1

{
Average

λ1,λ́1∈Λ1(λ−1)

[
exp

(
1

2

n∑
l=1

R
γ−1,λ−1

l,λ1,λ́1

)
− 1

]}
(57)

= Average
λ1,λ́1∈B

 Average
(γ−1,λ−1)∈Θ−1(λ1,λ́1)

[
exp

(
1

2

n∑
l=1

R
γ−1,λ−1

l,λ1,λ́1

)
− 1

] ,

where B is defined in Step 1.

Lemma 17 and Lemma 18 below show that R
γ−1,λ−1

l,λ1,λ́1
is approximately

− log det
(
I − a−2

l (Σl,0 − Σl,1) (Σl,0 − Σl,2)
)
= −2 log

(
1− a−2

l Jϵ2n,p
)
.

Define

Λ1,J = {(λ1, λ
′
1) ∈ Λ1 ⊗ Λ1 : the number of overlapping ϵn,p’s between λ1and λ′

1is J} .

Lemma 18 For R
γ−1,λ−1

l,λ1,λ́1
defined in Equation (56) we have

R
γ−1,λ−1

l,λ1,λ́1
= −2 log

(
1− Ja−2

l ϵ2n,p
)
+ δ

γ−1,λ−1

l,λ1,λ́1
, (58)

where δ
γ−1,λ−1

l,λ1,λ́1
satisfies

Average
(λ1,λ′

1)∈Λ1,J

 Average
(γ−1,λ−1)∈Θ−1(λ1,λ́1)

exp

(
1

2

n∑
l=1

δ
γ−1,λ−1

l,λ1,λ́1

) ≤ 3/2, (59)

uniformly over all J defined in Lemma 17.

We will prove Lemma 18 in Section 5.4.
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5.3 Proof of Equation (53)

We are now ready to establish Equation (53) using Lemma 18. It follows from Equation (58)

in Lemma 18 that

Average
λ1,λ́1∈B

 Average
(γ−1,λ−1)∈Θ−1(λ1,λ́1)

[
exp

(
1
2

∑n
l=1 R

γ−1,λ−1

l,λ1,λ́1

)
− 1
] =

Average
J

−
∑n

l=1 log
(
1− Jϵ2n,p

a2l

)
Average
(λ1,λ′

1)∈Λ1,J

 Average
(γ−1,λ−1)∈Θ−1(λ1,λ́1)

exp
(

1
2

∑n
l=1 δ

γ−1,λ−1

l,λ1,λ́1

)− 1

 .

Recall that J is the number of overlapping ϵn,p’s between Σl,1 and Σl,2 on the first row. It is

easy to see that J has the hypergeometric distribution with

P (number of overlapping ϵn,p’s = J) =

(
k

J

)(
pλ−1 − k

k − J

)
/

(
pλ−1

k

)
≤
(

k2

pλ−1 − k

)J

. (60)

Equations (59) and (60) imply

Average
(γ−1,λ−1)∈Θ−1

{∫ (
dP̄(1,1,γ−1,λ−1)

dP̄(1,0,γ−1,λ−1)

)2

dP̄(1,0,γ−1,λ−1) − 1

}

≤
∑
J≥0

(
k
J

)(pλ−1
−k

k−J

)(pλ−1

k

) {
−

n∑
l=1

log
(
1− Jϵ2n,p/a

2
l

)} 3

2
− 1

≤ C
∑
J≥1

(
p

β−1
β

)−J

exp

(
2J

n∑
l=1

a−2
l · υ

2 log p√
n

)
+ 1/2

≤ C
∑
J≥1

(
p

β−1
β

)−J

exp

(
2Jcκ

√
n · υ

2 log p√
n

)
+ 1/2

≤ C
∑
J≥1

(
p

β−1
β

)−J

exp
(
2cκJυ

2 log p
)
+ 1/2 ≤ C

∑
J≥1

(
p

β−1
2β

)−J

+ 1/2 < c22,

where the third inequality is from (47), the fifth inequality is due to (46), and the last

inequality is obtained by setting c22 = 3/4.

5.4 Proof of Lemma 18

Define

Al =
[
I − a−2

l (Σl,0 − Σl,1) (Σl,0 − Σl,2)
]−1 (

a2l (Σl,0)
−2 − I

)
a−2
l (Σl,0 − Σl,1) (Σl,0 − Σl,2) ,(61)
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and

δ
γ−1,λ−1

l,λ1,λ́1
= − log det (I − Al) .

We rewrite R
γ−1,λ−1

l,λ1,λ́1
as follows

R
γ−1,λ−1

l,λ1,λ́1
=

− log det
[
I − a−2

l (Σl,0 − Σl,1) (Σl,0 − Σl,2)−
(
a2lΣ

−2
l,0 − I

)
a−2
l (Σl,0 − Σl,1) (Σl,0 − Σl,2)

]
= − log det

{
[I − Al] ·

[
I − a−2

l (Σl,0 − Σl,1) (Σl,0 − Σl,2)
]}

= − log det
[
I − a−2

l (Σl,0 − Σl,1) (Σl,0 − Σl,2)
]
− log det (I − Al)

= −2 log
(
1− Jϵ2n,p/a

2
l

)
+ δ

γ−1,λ−1

l,λ1,λ́1
, (62)

where the last equation follows from Lemma 17.

Now we are ready to establish Equation (59). For simplicity we will write matrix norm

∥ · ∥2 as ∥ · ∥ below. It is important to observe that rank (Al) ≤ 2 due to the simple structure

of (Σl,0 − Σl,1) (Σl,0 − Σl,2). Let ϱl be an eigenvalue of Al. It is easy to see that

|ϱl| ≤ ∥Al∥
≤
∥∥a2lΣ−2

l,0 − I
∥∥ · a−2

l ∥Σl,0 − Σl,1∥ ∥Σl,0 − Σl,2∥ /
(
1− a−2

l ∥Σl,0 − Σl,1∥ ∥Σl,0 − Σl,2∥
)

≤

((
3

2

)2

− 1

)
1

3
· 1
3
/

(
1− 1

3
· 1
3

)
= 5/32 < 1/6, (63)

since
∥∥a−1

l (Σl,0 − Σl,1)
∥∥ ≤

∥∥a−1
l (Σl,0 − Σl,1)

∥∥
1
= 2kϵn,p < 1/3 and λmin

(
a−1
l Σl,0

)
≥ 1 −∥∥I − a−1

l Σl,0

∥∥ ≥ 1−
∥∥I − a−1

l Σl,0

∥∥
1
> 2/3 from Equation (48).

Note that (63) and

|log (1− x)| ≤ 2 |x| , for |x| < 1/6,

imply

δ
γ−1,λ−1

l,λ1,λ́1
≤ 4 ∥Al∥ ,

and then

exp

(
1

2

n∑
l=1

δ
γ−1,λ−1

l,λ1,λ́1

)
≤ exp

(
2

n∑
l=1

∥Al∥

)
. (64)

Since { ∥∥I − a−1
l Σl,0

∥∥ ≤
∥∥I − a−1

l Σl,0

∥∥
1
= 2kϵn,p < 1/3 < 1,∥∥a−2

l (Σl,0 − Σl,1) (Σl,0 − Σl,2)
∥∥ ≤ 1

3
· 1
3
< 1,

(65)
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we write

a2lΣ
−2
l,0 − I =

(
I −

(
I − a−1

l Σl,0

))−2 − I =

(
I +

∑
k=1

(
I − a−1

l Σl,0

)k)2

− I (66)

=

[
∞∑

m=0

(m+ 2)
(
I − a−1

l Σl,0

)m] (
I − a−1

l Σl,0

)
,

where ∥∥∥∥∥
∞∑

m=0

(m+ 2)
(
I − a−1

l Σl,0

)m∥∥∥∥∥ ≤
∞∑

m=0

(m+ 2)

(
1

3

)m

< 3. (67)

Define

Al∗ =
(
I − a−1

l Σl,0

)
· a−2

l (Σl,0 − Σl,1) (Σl,0 − Σl,2) . (68)

From Equations (61) and (65)-(68) we have

∥Al∥ ≤
∥∥∥[I − a−2

l (Σl,0 − Σl,1) (Σl,0 − Σl,2)
]−1
∥∥∥∥∥∥∥∥

∞∑
m=0

(m+ 2)
(
I − a−1

l Σl,0

)m∥∥∥∥∥ ∥Al∗∥

<
1

1− 1
3
· 1
3

· 3 · ∥Al∗∥ =
27

8
∥Al∗∥ ≤ 27

8
max {∥Al∗∥1 , ∥Al∗∥∞} .

The above result and (64) indicate that the proof of Lemma 18 is completed if we show

Average
(λ1,λ′

1)∈Λ1,J

 Average
(γ−1,λ−1)∈Θ−1(λ1,λ́1)

exp

(
27

2

n∑
l=1

max {∥Al∗∥1 , ∥Al∗∥∞}

) ≤ 3/2, (69)

where ∥Al∗∥1 and ∥Al∗∥∞ depend on the values of λ1, λ
´
1 and (γ−1, λ−1). We dropped the

indices λ1, λ
´
1 and (γ−1, λ−1) from Al to simplify the notations.

Let Em = {1, 2, . . . , r} / {1,m}. Let nλEm
be the number of columns of λEm with column

sum at least 2k − 2 for which two rows can not freely take value 0 or 1 in this column.

Then we have pλEm
= r − nλEm

. Without loss of generality we assume that k ≥ 3. Since

nλEm
· (2k − 2) ≤ r · k, the total number of 1’s in the upper triangular matrix by the

construction of the parameter set, we thus have nλEm
≤ r · 3

4
, which immediately implies

pλEm
= r − nλEm

≥ r
4
≥ p/8− 1. Thus we have for every non-negative integer t

P
(
max {∥Al∗∥1 , ∥Al∗∥∞} ≥ 2t · ϵn,p · kϵ2n,p · a−3

l

)
≤ P

(
∥Al∗∥1 ≥ 2t · ϵn,p · kϵ2n,p · a−3

l

)
+ P

(
∥Al∗∥∞ ≥ 2t · ϵn,p · kϵ2n,p · a−3

l

)
≤ 2

∑
m

Average
λEm

(
k
t

)(pλEm
k−t

)(pλEm
k

) ≤ 2p

(
k2

p/8− 1− k

)t
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from Equation (60), which immediately implies

Average
(λ1,λ′

1)∈Λ1,J

 Average
(γ−1,λ−1)∈Θ−1(λ1,λ́1)

exp

(
27

2

n∑
l=1

max {∥Al∗∥1 , ∥Al∗∥∞}

)
≤ exp

(
27

2

n∑
l=1

4β

β − 1
· ϵn,p · kϵ2n,p · a−3

l

)
+

∫ ∞

2β
β−1

(
27kϵ3n,p

n∑
l=1

a−3
l

)
exp

(
27

2

n∑
l=1

2t · ϵn,p · kϵ2n,p · a−3
l

)
2p

(
k2

p/8− 1− k

)t−1

dt

≤ exp

(
54 ·

(
n∑

l=1

a−3
l

)
· β

β − 1
· kϵ3n,p

)

+2p

∫ ∞

2β
β−1

exp

[
(t+ 1) · 27

(
n∑

l=1

a−3
l

)
kϵ3n,p − (t− 1) log

p/8− 1− k

k2

]
dt. (70)

Note that (47) implies
n∑

l=1

a−3
l ≤

n∑
l=1

a−2
l ≤ cκ

√
n,

using (11) and (44) we have

2
√
nkϵ3n,p ≤

√
nπn(p)ϵ

3−q
n,p ≤ Mv3−qn1/2n(1−q)/4 (log p)(q−3)/2 n(q−3)/4 (log p)(3−q)/2 = Mv3−q,

and thus we can bound the first term on the right hand side of (70)

exp

(
54 · cκ

√
n · β

β − 1
· kϵ3n,p

)
≤ exp

(
β

β − 1
· 27cκv2 ·Mv1−q

)
≤ exp (1/3) < 3/2,

where the second inequality is from (45) and (46). We will show that the second term on

the right hand side of (70) is negligible and hence establish (69). Indeed, since we have just

shown that

27

(
n∑

l=1

a−3
l

)
kϵ3n,p ≤

β − 1

6β
,

the second term on the right hand side of (70) is bounded by

2p

∫ ∞

2β
β−1

exp

[
(t+ 1)

β − 1

6β
− (t− 1) log

p/8− 1− k

k2

]
dt

= 2

(
log

p/8− 1− k

k2
− β − 1

6β

)−1

exp

[
log p+

(
2β

β − 1
+ 1

)
β − 1

6β
−
(

2β

β − 1
− 1

)
log

p/8− 1− k

k2

]
= O

(
p−1/β[log p]6/(β−1)+2

)
= o (1) ,
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where the second equality is from the fact that (11) and (44) together with p ≥ nβ/2 indicate

k2 ≤ πn(p)ϵ
−2q
n,p /4 ≤ Mv−2q

√
n

4 log3 p
≤ Mv−2qp1/β

4 log3 p
,

and then(
2β

β − 1
− 1

)
log

p/8− k

k2
∼

(
2β

β − 1
− 1

)
log
(
pk−2

)
≥

(
2β

β − 1
− 1

)[
β − 1

β
log p+ 3 log log p− log(Mv−2q/4)

]
∼

(
1 +

1

β

)
log p.
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