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This paper studies the optimal rate of estimation in a finite Gaussian lo-
cation mixture model in high dimensions without separation conditions. We
assume that the number of components & is bounded and that the centers lie in
a ball of bounded radius, while allowing the dimension d to be as large as the
sample size n. Extending the one-dimensional result of Heinrich and Kahn
[38], we show that the minimax rate of estimating the mixing distribution in

Wasserstein distance is @((d/n)l/4 + n_l/(4k_2)), achieved by an esti-

mator computable in time O(nd2 +nb/ 4‘). Furthermore, we show that the
mixture density can be estimated at the optimal parametric rate ©(1/d/n)
in Hellinger distance and provide a computationally efficient algorithm to
achieve this rate in the special case of k = 2.

Both the theoretical and methodological development rely on a careful ap-
plication of the method of moments. Central to our results is the observation
that the information geometry of finite Gaussian mixtures is characterized by
the moment tensors of the mixing distribution, whose low-rank structure can
be exploited to obtain a sharp local entropy bound.

1. Introduction. Mixture models are useful tools for dealing with heterogeneous data.
A mixture model posits that the data are generated from a collection of sub-populations, each
governed by a different distribution. The Gaussian mixture model is one of the most widely
studied mixture models because of its simplicity and wide applicability; however, optimal
rates of both parameter and density estimation in this model are not well understood in high
dimensions. Consider the k-component Gaussian location mixture model in d dimensions:

k
(1.1) X1y X0 ST w N (g, 0°1),
j=1

where p; € R¢ and wj > 0 are the center and the weight of the jth component, respectively,
with 2?21 w; = 1. Here the scale parameter o? and k as an upper bound on the number of

components are assumed to be known; for simplicity, we assume that o2 = 1. Equivalently,
we can view the Gaussian location mixture (1.1) as the convolution

(1.2) Pr2TxN(0,1,)

between the standard normal distribution and the mixing distribution

k
(1.3) T'=> w;d,,
j=1
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which is a k-atomic distribution on R,

For the purpose of estimation, the most interesting regime is one in which the centers lie
in a ball of bounded radius and are allowed to overlap arbitrarily. In this case, consistent
clustering is impossible but the mixing distribution and the mixture density can nonetheless
be accurately estimated. Indeed, [15, 38] provided optimal convergence rates for general
one-dimensional mixtures, including Gaussian location mixtures, under weak conditions,
while [81] proposed a practical algorithm that achieves the optimal rate specifically for one-
dimensional Gaussian mixtures. This paper extends the procedure and results in [81] to high
dimensions.

1.1. Main results. We start by defining the relevant parameter space. Let Gy, 4 denote the
1

collection of k-atomic distributions supported on a ball of radius R in d dimensions," i.e.,
k k
(1.4) Gra 2T = widu, : piy €RY ||pjlly < Row; > 0,) wj=10,
j=1 j=1

where |[|-||, denotes the Euclidean norm. Throughout the paper, R is assumed to be an ab-
solute constant. The corresponding collection of k-Gaussian mixtures (k-GMs) is denoted
by

(1.5) Pea={Pr:T €Gra}, Pr=TxN(0,1y).

Let ¢g(x) = (2rr)~%/2e~11#I3/2 denote the standard normal density in d dimensions. Then the
density of Pr is given by

!
(1.6) pr(l‘)zzwj% (z — py)-
j=1

We first discuss the problem of parameter estimation. The distribution (1.1) has kd + k — 1
parameters: fi,..., U € R? and wy,...,w; that sum up to one. Without extra assump-
tions such as separation between centers or a lower bound on the weights, estimating in-
dividual parameters is clearly impossible; nevertheless, estimation of the mixing distribution
I' = > w;0,, is always well-defined. Reframing the parameter estimation problem in terms
of estimating the mixing distribution allows for the development of a meaningful statistical
theory in an assumption-free framework [38, 81] since the mixture model is uniquely identi-
fied through the mixing distribution.

For mixture models and deconvolution problems, the Wasserstein distance is a natural and
commonly-used loss function ([15, 61, 39, 40, 38, 81]). For ¢ > 1, the ¢g-Wasserstein distance
(with respect to the Euclidean distance) is defined as

1
(1.7) Wo(D,T') £ (infE|U - U'||9) -,
where the infimum is taken over all couplings of I" and I", i.e., joint distributions of random
vectors U and U’ with marginals " and T, respectively. We will mostly be concerned with
the case of ¢ = 1, although the Ws-distance will make a brief appearance in the proofs.
In one dimension, the W;-distance coincides with the L;-distance between the cumulative
distribution functions [79]. For multivariate distributions, there is no closed-form expression,

UIf the mixing distributions have unbounded support, the minimax risk under the Wasserstein distance is
infinite (see [81, Sec. 4.4]).
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and the W -distance can be computed by linear programming. In the widely-studied case of
the symmetric 2-GM in which

(1.8) PM:%N(M,Id)—F%N(—u,Id),

the mixing distribution is I';, = %(5_ u + 6,), and the Wasserstein distance coincides with
the commonly-used loss function W1 (I',,,T',,) = min{||px — z/||2, [|£ + '||2}. In this paper
we do not postulate any separation conditions or any lower bound on the mixing weights;
nevertheless, given such assumptions, statistical guarantees in W/ -distance can be translated
into those for the individual parameters cf. [§1, Lemma 1].

For general k-GMs in one dimension where k£ > 2 is a constant, the minimax Wj-rate
of estimating the mixing distribution is n~%/(**=2) achieved by a minimum WV;-distance
estimator [38] or the Denoised Method of Moments (DMM) approach [81]. This is the
worst-case rate in the absence of any separation assumptions. In the case where the cen-
ters can be grouped into kg clusters each separated by a constant, the optimal rate improves
to n~1/(4(k=ko)+2) 'wwhich reduces to the parametric rate n~/2 in the fully separated case.

Given the one-dimensional result, it is reasonable to expect that the d-dimensional rate
is given by (d/n)'/(**=2)_ This conjecture turns out to be incorrect, as the following result
shows.

THEOREM 1.1 (Estimating the mixing distribution). Let k > 2 and Pr be the k-GM
defined in (1.2). Given n i.i.d. observations from Pr, the minimax risk of estimating " over
the class Gy, q satisfies

1/4 1/(4k—2)

(1.9) inf sup EpWy(I,T) =y () AL+ () ,
I' Te€Gy,a n n

where the notation <, means that both sides agree up to constant factors depending only on

k. Furthermore, if n > d, there exists an estimator T, computable in O(nd?) + Oy (n®/*) time,

and an absolute constant C, such that for any I € G, g and any 0 < 6 < % with probability

at least 1 — 6,

. d\ /4 1\ 1/ (4k=2) 1
(1.10) Wy (I, T)<C \/E<n> +k5<n) logg .

The estimator in Theorem 1.1 achieves the minimax rate in the worst-case scenario where
no lower bounds on the weights or separation or weights are imposed. While the main aim of
this result is to demonstrate the achievability of the optimal rate in time that is polynomial in
n and d for constant k, this estimator involves an exhaustive grid search and is far from being
practical except for small k as the hidden constant depends on & as kR Finding a practical
algorithm that provably achieves the optimal rate in Theorem 1.1 in the worst case remains
an outstanding question.

We now explain the intuition behind the minimax rate (1.9). The atoms p1,...,u; of T’
span a subspace V in R? of dimension at most k. We can identify I" with this subspace
and its projection therein, which is a k-atomic mixing distribution in k¥ dimensions. This
decomposition motivates a two-stage procedure which achieves the optimal rate (1.9):

* First, estimate the subspace V' by principal component analysis (PCA), then project the
d-dimensional data onto the learned subspace. Since we do not impose any spectral gap
assumptions, standard perturbation theory cannot be directly applied; instead, one needs

to control the Wasserstein loss incurred by the subspace estimation error, which turns out
to be (d/n)'/*.
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* Having reduced the problem to k£ dimensions, a relevant notion is the sliced Wasserstein
distance [64, 20, 63], which measures the distance of multivariate distributions by the
maximal Wj-distance of their one-dimensional projections. We show that for k-atomic
distributions in R¥, the ordinary and the sliced Wasserstein distance are comparable up
to constant factors depending only on k. This allows us to construct an estimator for a
k-dimensional mixing distribution whose one-dimensional projections are simultaneously
close to their estimates. We shall see that the resulting error is n =/ (4*=2) exactly as in the
one-dimensional case.

Overall, optimal estimation in the general case is as hard as the special cases of d-
dimensional symmetric 2-GM [82] and 1-dimensional k-GM [38, 81]. From (1.9), we see
that there is a threshold d* = n(2k=3)/(2k=1) (¢ g d* = n'/3 for k = 2). For d > d*, the rate
is governed by the subspace estimation error; otherwise, the rate is dominated by the error
of estimating the low-dimensional mixing distribution. Note that Theorem 1.1 pertains to the
optimal rate in the worst case. A faster rate is expected when the components are better sep-
arated, such as a parametric rate when the centers are separated by a constant, which, in one
dimension, can be adaptively achieved by the estimators in [38, 81]. However, adaptation
to the separation between components in d dimensions remains an open problem; see the
discussion in Section 6.

We note that the idea of using linear projections to reduce a multivariate Gaussian mixture
to a univariate one has been previously explored in the context of parameter and density
estimation (e.g., [60, 35, 2, 52, 81]); nevertheless, none of these results achieves the precision
needed for attaining the optimal rate in Theorem 1.1. In particular, to avoid the unnecessary
logarithmic factors, we use the denoised method of moments (DMM) algorithm introduced
in [81] to simultaneously estimate many one-dimensional projections, which is amenable to
sharp analysis via chaining techniques.

Next we discuss the optimal rate of density estimation for high-dimensional Gaussian mix-
tures, measured in the Hellinger distance. For distributions P and @), let p and ¢ denote their
respective densities with respect to some dominating measure . The squared Hellinger dis-

2
tance between P and Q is H*(P,Q) £ [ (\ /p(x) — o /q(x)) w(dzx). In this work, we focus
on proper learning, in which the estimated density is required to be a k-GM. While there
is no difference in the minimax rates for proper and improper density estimators, compu-
tationally the former is more challenging as it is not straightforward to find the best k-GM
approximation to an improper estimate.

THEOREM 1.2 (Density estimation). Let Pr be as in (1.2). Then the minimax risk of
estimating Pr over the class Py, q satisfies:

- d
(1.11) inf sup ErH (P, Pr) = \/>/\ 1.
P T'eGi.q n

Furthermore, there exists a proper density estimate Py and a positive constant C' not de-

pending on Pr such that for any I' € G, q and any 0 < < % with Pr-probability at least
1-4,

4 2k+2

Theorem 1.2, which follows a long line of research, is the first result we know of that
establishes the sharp rate without logarithmic factors. The parametric rate Oy (y/d/n) can be
anticipated by noting that the model (1.1) is a smooth parametric family with k(d + 1) — 1
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parameters. Justifying this heuristic, however, is not trivial, especially in high dimensions. To
this end, we apply the Le Cam-Birgé construction of estimators from pairwise tests, which,
as opposed to the analysis of the maximum likelihood estimator (MLE) based on bracketing
entropy [77, 58, 32, 39], relies on bounding the local Hellinger entropy without brackets. By
doing so, we also avoid the logarithmic slack in the existing result for the MLE; see Section 6
for more discussion.

The celebrated result of Le Cam-Birgé [51, 12, 13] shows that if the local covering number
(the minimum number of Hellinger-balls of radius ¢ that cover any Hellinger-ball of radius ¢)
is at most (g)O(D ), then there exists a density estimate that achieves a squared Hellinger risk
@) (%) Here the crucial parameter D is known as the doubling dimension (or the Le Cam
dimension [76]), which serves as the effective number of parameters. In order to apply the
theory of Le Cam-Birgé, we need to show that the doubling dimension of Gaussian mixtures
is at most Og(d).

Bounding the local entropy requires a sharp characterization of the information geometry
of Gaussian mixtures, for which the moment tensors play a crucial role. To explain this, we
begin with an abstract setting: Consider a parametric model { P : 6 € O}, where the param-
eter space © is a subset of the D-dimensional Euclidean space. We say a parameterization is
good if the Hellinger distance satisfies the following dimension-free bound:

(1.13) Coll0 —0'|| < H(Py, Py) < C1]|60 — 0],

for some norm || - || and constants Cy, C;. The two-sided bound (1.13) leads to the desired
result on the local entropy in the following way. First, given any P in an e-Hellinger neigh-
borhood of the true density Fy_, the lower bound in (1.13) localizes the parameter 6 in an
O(e)-neighborhood (in || - ||-norm) of the true parameter 6., which, thanks to the finite di-
mensionality, can be covered by at most (%)O(D) 0-balls. Then the upper bound in (1.13)
shows that this covering constitutes an O(4)-covering for the Hellinger ball.

While satisfied by many parametric families, notably the Gaussian location model, (1.13)
fails for their mixtures if we adopt the natural parametrization (in terms of the centers
and weights), as shown by the simple counterexample of the symmetric 2-GM where
Py=1N(—0,1)+ $N(0,1), with |§| < 1. Indeed, it is easy to show that [82]:

0—0'> < H(Pp,Py) S 100,

which is tight since the lower and upper bound are achieved when ' — 6 and for § = 0 and
say 6 = 0.1, respectively. The behavior of the lower bound can be attributed to the zero Fisher
information at @ = 0. The importance of a two-sided comparison result like (1.13) and the
difficulty in Gaussian mixtures were recognized by [27, 26] in their study of the local entropy
of mixture models. See Section 4 for detailed discussion.

It turns out that for Gaussian mixture model (1.2), a good parametrization satisfying (1.13)
is provided by the moment tensors. The degree-¢ moment tensor of the mixing distribution I
is the symmetric tensor

k
(1.14) M(T) £ By (U] = " w;ps”.
j=1

It can be shown that any k-atomic distribution is uniquely determined by its first 2k — 1 mo-
ment tensors Mog_1(T') = [M1(T),..., Mak_1(T")]. Consequently, moment tensors provides
a valid parametrization of the k-GM in the sense that Mo;_1(I") = My (I”) if and only
if Pr = Pp. At the heart of our proof of Theorem 1.2 is the following robust version of this
identifiability result:

(1.15) H?(Pr, Prv) < || Maj_1(I) —Mzk—l(F,)H;



6

which shows that the Hellinger distance between k-GMs are characterized by the Euclidean
distance of their moment tensors up to dimension-free constant factors. Furthermore, the
same result also holds for the Kullback-Leibler (KL) and the x? divergences. See Section 4.1
for details.

Note that moment tensors appear to be a gross overparameterization of Gy, ¢ since the
original number of parameters is only kd + k — 1 as compared to the size d®*) of moment
tensors. The key observation is that the moment tensors (1.14) for k-atomic distributions are
naturally low rank, so that the effective dimension remains © (kd). This observation underlies
tensor decomposition methods for learning mixture models [4, 42]; here we use it for the
information-theoretic purpose of bounding the local metric entropy of Gaussian mixtures.

Results similar to (1.15) were previously shown in [9] for the problem of multiple-
reference alignment, a special case of Gaussian mixtures with mixing distribution being
uniform over the cyclic shifts of a given vector. The crucial difference is that the charac-
terization (1.15) involves moments tensors of degree at most 2k — 1, while [9, Theorem 9]
involves all moments.

The Le Cam-Birgé construction used to show Theorem 1.2 does not result in a computa-
tionally efficient estimator. In Section 4.3, we provide a variant of the algorithm in Section 3
that runs in n°*) time which achieves the suboptimal rate of Oy ((d/n)'/*) for general k-
GM (Theorem 4.7). Though not optimal, this result nonetheless improves the state of the
art of [2] by logarithmic factors. Furthermore, in the special case of 2-GM, a slightly mod-
ified estimator is shown to achieve the optimal rate of O(1/d/n) (Theorem 4.8). Finding a
polynomial-time algorithm achieving the optimal rate in Theorem 1.2 for all £ is an open
problem.

1.2. Related work. There is a vast literature on Gaussian mixtures; see [54, 38, 81] and
the references therein for an overview. In one dimension, fast algorithms and optimal rates
of convergence have already been achieved for both parameter and density estimation by,
e.g., [81]. We therefore focus the following discussion on multivariate Gaussian mixtures, in
both low and high dimensions.

Parameter estimation. For statistical rates, [39, Theorem 1.1] and [40, Theorem 4.3] ob-
tained convergence rates for mixing distribution estimation in Wasserstein distances for low-
dimensional location-scale Gaussian mixtures, both over- and exact-fitted. Their rates for
over-fitted mixtures are determined by algebraic dependencies among a set of polynomial
equations whose order depends on the level of overfitting and identifiability of the model; the
rates are potentially much slower than n~/2. The estimator analyzed in [39, 40] is the MLE,
which involves non-convex optimization and is typically approximated by the Expectation-
Maximization (EM) algorithm.

In the computer science literature, a long line of research starting with [18] has devel-
oped fast algorithms for individual parameter estimation in multivariate Gaussian mixtures
under fairly weak separation conditions, see, e.g., [78, 6, 11, 45, 60, 42, 35, 41]. Since these
works focus on individual parameter estimation, some separation assumption on the mixing
distribution is necessary.

Density estimation. Computational issues aside, there are several recent works address-
ing the minimax rate of density estimation for Gaussian mixtures. In low dimensions, an
O(y/logn/n)-Hellinger guarantee for the MLE is obtained for finite Gaussian mixtures
[39, 40]. The near-optimal rate for high-dimensional location-scale mixtures was obtained
recently in [7]. This work also provides a total variation guarantee of O(/kd/n) for location
mixtures, where O hides polylogarithmic factors, as compared to the sharp result in Theo-
rem 1.2. The algorithm in [7] runs in time that is exponential in d.
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To our knowledge, there is no polynomial-time algorithm that achieves the sharp density
estimation guarantee in Theorem 1.2 (or the slightly suboptimal rate in [7]), even for constant
k. The works of [45, 60] showed that their polynomial-time parameter estimation algorithms
also provide density estimators without separation conditions, but the resulting rates of con-
vergence are far from optimal. [23, 2, 52] provided polynomial-time algorithms for density
estimation with improved statistical performance. In particular, [2] obtained an algorithm that
runs in time Oy, (n%d +d?(n/d)***/*) and achieves a total variation error of O((d/n)"/*). The
running time was further improved in [52], which achieves the rate O((d/n)'/%) for 2-GM.

Nonparametric mixtures. The above-mentioned works all focus on finite mixtures, which is
also the scenario considered in this paper. A related strain of research (e.g., [28, 32, 83, 70])
studies the so-called nonparametric mixture model, in which the mixing distribution I" may
be an arbitrary probability measure.

In this case, the nonparametric maximum likelihood estimator (known as the NPMLE)
entails solving a convex (but infinite-dimensional) optimization problem, which, in principle,
can be solved by discretization [48]. For statistical rates, it is known that in one dimension,
the optimal Ly-rate for density estimation is ©((logn)'/4/,/n) and the Hellinger rate is at
least Q(+/logn/n) [43, 47], which shows that the parametric rate (1.11) is only achievable
for finite mixture models. For the NPMLE, [83] proved the Hellinger rate of O(logn//n) in
one dimension; this was extended to the multivariate case by [70]. In particular, [70, Theorem
2.3] obtained a Hellinger rate of Cy+/k(logn)@*!/n for the NPMLE when the true model
is a k-GM. In high dimensions, this is highly suboptimal compared to the parametric rate in
(1.11), although the dependency on k is optimal.

Bayesian methods. There is a rich literature on the asymptotic behavior of the posterior
distribution of mixture models in Bayesian settings. Analysis of the posterior in Wasser-
stein distance, for both finite and infinite Dirichlet-process mixture models, was investigated
[62], which provides posterior contraction rates under various conditions. Asymptotic pos-
terior contraction rates, both under Dirichlet process priors and in more general Bayesian
nonparametric settings, were considered for instance in [29, 30, 72, 31, 71]. [32], mentioned
previously for its maximum likelihood results, also considered rates of contraction for infinite
Gaussian mixtures in a Bayesian nonparametric setting.

For overfitted mixtures in multiple dimensions, where an upper bound on the number of
components is known, [68, Theorem 1] showed that with a Dirichlet prior with sufficiently
small hyperparameters, and under certain regularity conditions, the redundant weights vanish
at a near n~ /2 rate under the posterior. Classical posterior contraction results under Dirichlet
process priors do not in fact show that the posteriors converge to distributions with the correct
number of components, and a standard practice for inferring the number of components was
demonstrated to be inconsistent in [59]. This, however, can be corrected by a post-processing
procedure in [33], which moreover provides an alternative prior that yields both posterior
contraction at the correct rate and convergence to the correct number of components.

1.3. Organization. The rest of the paper is organized as follows. Section 3 presents a
polynomial-time algorithm for estimating the mixing distribution and provides the theoretical
justification for Theorem 1.1. Section 4 introduces the necessary background on moment
tensors and proves the optimal rate of density estimation in Theorem 1.2. Section 5 provides
simulations that support the theoretical results. Section 6 provides further discussion on the
connections between this work and the Gaussian mixture literature.

2. Notation. Let [n] 2 {1,...,n}. Let S~ and A?~! denote the unit sphere and the
probability simplex in R?, respectively. Let e;j be the vector with a 1 in the jth coordinate
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and zeros elsewhere. For a matrix A, let | Al|; = sup,.||,|, -1 [| 4|, and |A||% =tr(AT A).
For two positive sequences {a,},{b,}, we write a,, < b, or a, = O(by,) if there exists a
constant C' such that a,, < Cb,, and we write a,, <, by, and a,, = O (b,,) to emphasize that
C may depend on a parameter k.

For € > 0, an e-covering of a set A with respect to a metric p is a set N such that for all
a € A, there exists b € N such that p(a,b) < €; denote by N (e, A, p) the minimum cardinality
of e-covering sets of A. An e-packing in A with respect to the metric p is a set M C A such
that p(a,b) > € for any distinct a,b in M; denote by M (¢, A, p) the largest cardinality of
e-packing sets in A.

For distributions P and @, let p and ¢ denote their relative densities with respect to some
dominating measure 1, respectively. The total variation distance is defined as TV(P,Q) =

5 [Ip(z x)|p(dx). If P << Q, the KL divergence and the y2-divergence are defined
as KL ( PHQ = [p(z log (d:r) and 2 (P||Q) £ foq)(x))z (dx), respectively. Let

supp(P) denote the support set of a distribution P. Let £(U) denote the distribution of
a random variable U. For a one-dimensional distribution v, denote the rth moment of v
by m,(v) £ Ey~,[U"] and its moment vector m,(v) = (mq(v),...,m,(v)). Given a d-
dimensional distribution T, for each 6 € R?, we denote

(2.1) Lo 2 L(0'U), U~T;

in other words, I'y is the pushforward of T' by the projection u — @ " u; in particular, the ith
marginal of T is denoted by I'; £ ', with e; being the ith coordinate vector. Similarly, for
V e R¥*_denote

(2.2) Iy 2L(V'U), U~T.

3. Mixing distribution estimation. In this section we present the algorithm that
achieves the optimal rate for estimating the mixing distribution in Theorem 1.1. The pro-
cedure is described in Sections 3.1 and 3.2. The proof of correctness is given in Sections 3.3,
with supporting lemmas proved in the supplemental material [22]. Throughout this section
we assume that n > d.

3.1. Dimension reduction via PCA. In this section we assume d > k and reduces the
dimension from d to k. For d < k, we will directly apply the procedure in Section 3.2. Re-
call that the atoms I are ju1, ..., uy; they span a subspace of R? of dimension at most .
Therefore, there exists V' = [v1,...,v;] consisting of orthonormal columns, such that for
each j =1,...,k, we have p; = V4p;, where 9; = VTuj € R* encodes the coefficients of
(5 in the basis vectors in V. Therefore, we can identify a k-atomic distribution I' on R? with
a pair (V,~), where v =) jelk] Widy, is a k-atomic distribution on R*. This perspective
motivates the following two-step procedure. First, we estimate the subspace V' using PCA,
relying on the fact that the covariance matrix satisfies E[X X ] = I; + Z?Zl wj kg ,u,jT. We
then project the data onto the estimated subspace, reducing the dimension from d to k, and
apply an estimator of k-GM in k£ dimensions. The precise execution of this idea is described
below.

For simplicity, consider a sample of 2n observations Xi, ..., Xo,
estimator I' of I in the following way:

ii.d.
~"Pr. We construct an

(a) Estimate the subspace V using the first half of the sample. Let V = [01,...,0k] €
R** be the matrix whose columns are the top k orthonormal left singular vector of
[(X1,...,X,].
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(b) Project the second half of the sample onto the learned subspace V:
(3.1) AV Xign, i=1,...,n.

Thanks to independence, conditioned on V, x1,...,T, are i.i.d. observations from a k-
GM in k dimensions, with mixing distribution

k
(3.2) Y = FV = Z wj(SVTM
7=1

obtained by projecting the original d-dimensional mixing distribution I" onto V.
(c) To estimate 7, we apply a multivariate version of the denoised method of moments to
x1,...,T, to obtain a k-atomic distribution on RE:

(3.3) §= ;s .

This procedure is explained next and detailed in Algorithm 1.
(d) Lastly, we report

(3.4) D=4y =) by,
j=1

as the final estimate of I".

A slightly better dimension reduction can be achieved by first centering the data by sub-
tracting the sample mean, then projecting to a subspace of dimension k£ — 1 rather than k,
and finally adding back the sample mean after obtaining the final estimator. As this only af-
fect constant factors, we forgo the centering step in this section. Later in Section 4.3, it turns
out that centering is important for achieving the optimal density estimation for 2-GM (see
Theorem 4.8).

The usefulness of dimension reduction has long been recognized in the literature of mix-
ture models [18, 78, 46, 3, 36, 56], where the mixture data is projected to a good low-
dimensional subspace (by either random projection or spectral methods) and parameter esti-
mation or clustering are carried out subsequently in the low-dimensional mixture model. For
such methods, the error bound typically depends on those of these two steps, analogously to
the analysis of mixing distribution estimation in Theorem 1.1.

3.2. Estimating the mixing distribution in low dimensions. We now explain how we esti-
mate a k-GM in k dimensions from i.i.d. observations. As mentioned in Section 1, the idea is
to use many projections to reduce the problem to one dimension. We first present a concep-
tually simple estimator 4° with an optimal statistical performance but unfavorable run time
n®®) We then describe an improved estimator 4 that retains the statistical optimality and
can be executed in time n®(). These procedures are also applicable to estimating a k-GM in
d < k dimensions using fewer projections.

To make precise the reduction to one dimension, a relevant metric is the sliced Wasserstein
distance [64, 20, 63], which measures the distance of two d-dimensional distributions by the
maximal W;-distance of their one-dimensional projections:

(3.5) wiliced(D T') & sup Wi (Tp, ).

fesi-—1
Here we recall that I'y defined in (2.1) denotes the projection, or pushforward, of I' onto
the direction . A related definition was introduced earlier by [67], where the supremum
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over  in (3.5) is replaced by the average. Computing the sliced Wasserstein distance can
be difficult and in practice is handled by gradient descent heuristics [20]; we will, however,
only rely on its theoretical properties. The following result, which is proved in Section 2
of the supplement [22], shows that for low-dimensional distributions with few atoms, the
full Wasserstein distance and the sliced one are comparable up to constant factors. Related
results are obtained in [64, 10]. For instance, [10, Theorem 2.1(ii)] showed that W7 (T',T") <
Cy - Wiliced (I T") holds for all distributions ', I for some non-explicit constant C.

LEMMA 3.1 (Sliced Wasserstein distance).  For any k-atomic distributions I',T" on R¢,

wilieed (T Ty < Wy (T, TY) < k2Vd - Wileed (T, 1),

Having obtained via PCA the reduced sample x1,...,x, ~~* N(0, ;) in (3.1), Lemma
3.1 suggests the following “meta-procedure”: Suppose we have an algorithm (call it a 1-D
algorithm) that estimates the mixing distribution based on n i.i.d. observations drawn from a
k-GM in one dimension. Then

1. Foreach # € S*~1, since (), ;) l'kfj'yg * N (0, 1), we can apply the 1-D algorithm to obtain
an estimate Yy € Gy, 1;

2. We obtain an estimate of the multivariate distribution by minimizing a proxy of the sliced
Wasserstein distance:

(3.6) 4° = argmin sup Wi(vp,7p)-
Y €Gk 1k 0SSk

Then by Lemma 3.1 (with d = k) and the optimality of 4°, we have

Wi(5°,7) Sk Wied(5°,7) = S Wi (46, 70)
sup

< sup Wi(9p,7%) + sup Wi(9s,%)
pesk—1 gesk—1

(3.7) <2 sup Wi(9s,7)-
pest-1

Recall that the optimal Wj-rate for k-atomic one-dimensional mixing distribution is

O(n_ﬁ ). Suppose there is a 1-D algorithm that achieves the optimal rate simultaneously
for all projections, in the sense that

(3.8) E | sup Wi(99,7%)| Skn #-2.
pesh—1

This immediately implies the desired
(3.9) EW1(5°,7)] Sen™#-=.

However, it is unclear how to solve the min-max problem in (3.6) where the feasible sets for
~ and 6 are both non-convex. The remaining tasks are two-fold: (a) provide a 1-D algorithm
that achieves (3.8); (b) replace 4° by a computationally feasible version.

Achieving (3.8) by denoised method of moments. In principle, any estimator for a one-
dimensional mixing distribution with exponential concentration can be used as a black box;
this achieves (3.8) up to logarithmic factors by a standard covering and union bound argu-
ment. In order to attain the sharp rate in (3.8), we consider the Denoised Method of Moments
(DMM) algorithm introduced in [81], which allows us to use the chaining technique to obtain
a tight control of the fluctuation over the sphere (see Lemma 3.2).
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DMM is an optimization-based approach that introduces a denoising step before solving
the method of moments equations. For location mixtures, it provides an exact solver to the
non-convex optimization problem arising in generalized method of moments [34]. For Gaus-
sian location mixtures with unit variance, the DMM algorithm proceeds as follows:

(a) GivenYy,...,Y, ESPISY (0,1) for some k-atomic distribution v supported on [— R, R],

we first estimate the moment vector mog_1(v) = (mq1(v),...,mag—1(v)) by their unique
unbiased estimator m = (M1, ...,Mak_1), wWhere m, = ZZ 1 H-(Y;), and H, is the
degree-r Hermite polynomial defined via
[r/2]
(L2
3.10 7! "
(3.10) Z il(r — 20)!

Then E[m,.] = m,(v) for all . This step is common to all approaches based on the method
of moments.

(b) In general the unbiased estimate m is not a valid moment vector, in which case the
method-of-moment-equation lacks a meaningful solution. The key idea of the DMM
method is to denoise m by its projection onto the space of moments:

(3.11) m = argmin{ |/ —m|| : m € M, },
where the moment space
(3.12) M, & {m,(r) : 7 supported on [~ R, R]}

consists of the first » moments of all probability measures on [— R, R|. The moment space
is a convex set and characterized by positive semidefinite constraints (of the associated
Hankel matrix); we refer the reader to the monograph [73] or [81, Sec. 2.1] for details.
This means that the optimization problem (3.11) can be solved efficiently as a semidefinite
program (SDP); see [81, Algorithm 1].

(c) Use Gauss quadrature to find the unique k-atomic distribution & such that moy_1(7) =
m. We denote the final output 2 by DMM(Y7,...,Y,).

The following result shows the DMM estimator achieves the optimal rate in (3.8) simul-
taneously for all one-dimensional projections. (For a single €, this is shown in [81, Theorem
1].)

LEMMA 3.2. Foreach € S¥=1, let 5 = DMM((0, 1), ...,(0,2,)) where 1, ... ,xnl'ﬂ'y*
N(0,1Iy) as in (3.1). There is a positive constant C' such that, for any 6 € (0, %), with proba-
bility at least 1 — 6,

1
max W (Yo,70) < CK™2p =Y (4=2), [1og —
9cSk- 0

Solving (3.6) efficiently using marginal estimates. We first note that in order to achieve the
optimal rate in (3.9), it is sufficient to consider any approximate minimizer of (3.6) up to an
additive error of €, as long as € = O(nlef?). Therefore, to find an e-optimizer, it suffices
to maximize over § in an e-net (in /) of the sphere, which has cardinality (1)* = nfW),
and, likewise, minimize -y over an e-net (in W7p) of Gy, ;.. The Wy-net can be constructed by
combining an e-net (in ¢5) for each of the k centers and an e-net (in ¢1) for the weights,
resulting in a set of cardinality (%)O(kz) =nOk)_ This naive discretization scheme leads to

an estimator of ~ with optimal rate but time complexity n°*). We next improve it to n®(%).
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The key idea is to first estimate the marginals of ~, which narrows down its support set.
It is clear that a k-atomic joint distribution is not determined by its marginal distributions, as
shown by the example of %6(_1’_1) + %5(171) and %5(_171) + %5(1,_1), which have identical
marginal distributions. Nevertheless, the support of the joint distribution must be a k-subset
of the Cartesian product of the marginal support sets. This suggests that we can select the
atoms from this Cartesian product and weights by fitting all one-dimensional projections, as
in (3.6).

Specifically, for each j € [k], we estimate the jth marginal distribution of v by 7;, ob-
tained by applying the DMM algorithm on the coordinate projections (e;, x1), ..., (€;, Zn).
Consider the Cartesian product of the support of each estimated marginal as the candidate set
of atoms:

A £ supp(F1) x -+ x supp(7i)-
Throughout this section, let

(3.13) enp 2 T,

and fix an (€, k, ||*||,)-covering A for the unit sphere S*~! and an (e, , ||-||,)-covering W
for the probability simplex A*~!, such that?

C k—1
(3.14) max{|N]|, W|} < <6> .

n,k

Define the following set of candidate k-atomic distributions on R¥:

(3.15) S& ijéwj :(wl,...,wk)GW,ijA

JE[K]
Note that S is a random set which depends on the sample; furthermore, each v¢; € A has
coordinates lying in [— R, R] by virtue of the DMM algorithm.

The next lemma shows that with high probability there exists a good approximation of
in the set S.

LEMMA 3.3. Let S be given in (3.15). There is a positive constant C such that, for any
J € (0, %), with probability 1 — 6,

1
(3.16) min Wi (v/,7) < Ck®n =Y/ =2), [log —.
y'eS )

We conclude this subsection with Algorithm 1, which provides a full description of an
estimator for k-atomic mixing distributions in k£ dimensions. The following result shows its
optimality under the W7 loss:

LEMMA 3.4. There is a positive constant C such that the following holds. Let

:Ul,...,a:ni%l"y * N(0,1y) for some v € Gy . Then Algorithm 1 produces an estimator
4 € G such that, for any § € (0, 3), with probability 1 — 5,

(3.17) Wi(y,%) < CkPn~Y4=2), [log %

2This is possible by, e.g., [69, Prop. 2.1] and [32, Lemma A.4] for the sphere and probability simplex, respec-
tively.
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Algorithm 1: Parameter estimation for k-GM in k£ dimensions

Input: Dataset {mi}z‘e[n] with each point in R¥ . order k, radius R.
Output: Estimate 4 of k-atomic distribution in k£ dimensions.
Forj=1,... k:
Compute the marginal estimate 7; = DMM ({e;xi}ie[n]) ;
Form the set S of k-atomic candidate distributions on R¥ as in 3.15) ;
For each 0 € \V:
Estimate the projection by 75 = DMM ({QTﬂfi}ie[n}) ;
For each candidate distribution ' € S and each direction € \:
Compute Wy (wé, 70) ;
Report

3.18 Y = arg min max W- ,,A.
) 7= arg min max 1(79:79)

REMARK 1. The total time complexity to compute the estimator (3.4) is O(nd?) +
Ok(n5/ 4). Indeed, the time complexity of computing the sample covariance matrix is
O(nd?), and the time complexity of performing the eigendecomposition is O(d?), which
is dominated by O(nd?) since d < n. By (3.14), both WW and N have cardinality at most
(C/en k)=t = Op(n'/*). Bach one-dimensional DMM estimate takes Oy (n) time to com-
pute [81, Theorem 1]. Thus computing the one-dimensional estimator 7y for all # = ¢; and
0 € N takes time Oy (n®/*). Since both ~/, and 4 are k-atomic distributions by definition,
their ¥, distance can be computed in Oy (1) time. Finally, |A| = k¥, and to form S we se-
lect all sets of k& atoms from A4, so |S| < W] (kg) = Oy, (n!/*). Thus searching over S x N
takes time at most Oy, (n/4) * Oy, (n'/*) = Oy, (n'/?). Therefore, the overall time complexity
of Algorithm 1 is Oy (n®/%).

3.3. Proof of Theorem 1.1. The proof is outlined as follows. Recall that the estimate I
in (3.4) is supported on the subspace spanned by the columns of V, whose projection is 7 in
(3.3). Similarly, the projection of the ground truth I" on the space V' is denoted by v =T';, in

(3.2). Note that both  and ¥ are k-atomic distributions in k& dimensions. Let H=VVT be
the projection matrix onto the space spanned by the columns of V. By the triangle inequality,

Wi(T,T) < Wi(D,T ) + Wi(Dp,T)
(3.19) < Wi, Ty) + Wi(y,79).

We will upper bound the first term by (d/ n)l/ 4 (using Lemmas 3.5 and 3.6 below) and the
second term by n~/(45=2) (ysing the previous Lemma 3.4).

We first control the difference between I' and its projection onto the estimated subspace
V. Since we do not impose any lower bound on || t]l5, we cannot directly show the accuracy

of V by means of perturbation bounds such as the Davis-Kahan theorem [19]. Instead, the
following general lemma bounds the error by the difference of the covariance matrices. For
a related result, see [78, Corollary 3].

LEMMA 3.5. LetI'= Z?:l w;d,, be a k-atomic distribution. Let ¥ = Eyr[UU ] =

E;?:l wjujujT with eigenvalues \y > --- > \g. Let X be a symmetric matrix and 11, be the
projection matrix onto the subspace spanned by the top r eigenvectors of X'. Then,

W3 (T, Ty ) <k (Arg1 + 2|2 = X))
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We will apply Lemma 3.5 with ¥/ being the sample covariance matrix 3. The follow-
ing lemma provides the concentration of > we need to prove the upper bound on the high-
dimensional component of the error in Theorem 1.1.

LEMMA 3.6.  Let I' € Gyg and ¥ = Ey..r[UUT]. Let S=15" XX, — I, where
Xi,... ,Xn”m’fl "Pr. Then there exists a positive constant C' such that, with probability at least

-5
-2l <C <\/§+k\/@+ 10g($/5)> '

Proof of Theorem 1.1. We first show that the estimator (3.4) achieves the tail bound
stated in (1.10), which, after integration, implies the average risk bound in (1.9). To bound
the first term in (3.19), note that the rank of ¥ = Ey p[UU T] is at most k. Furthermore,
the top k left singular vectors of [X,...,X,] coincide with the top k eigenvectors of
Y= % Yo XX ZT — I4. Applying Lemmas 3.5 and 3.6 yields that, with probability 1 — 9§,

/ 1/4
62 W) < QCk((g)+<1f1gW> N 1g<1/5>>

n n

where we used the fact that W1 (T',I”) < W (T',IV) by the Cauchy-Schwarz inequality. To
upper bound the second term in (3.19), recall that V' was obtained from {X1,..., X, } and
hence is independent of {X,,+1,..., X2, }. Thus conditioned on V',

2 =V Xin &y« N0, 1), i=1,...,n.

Let 4 be obtained from Algorithm 1 with input z1,...,x,. By Lemma 3.4, with probability
1-96,

(3.21) Wi (7,4) < Ck>n~Y@=2), [1og %

Note that (k%log(k/d)/n)'/* + (log(1/8)/n)'/? in (3.20) is dominated by the right-hand
side of (3.21). The desired (1.10) follows from combining (3.19), (3.20), and (3.21).
Finally, we prove the lower bound in (1.9). For any subset G C Gy, 4, we have

A A 1 A
(3.22) inf sup EW (I',I") > inf supEW; (I, T") > — inf sup EW;(I',T),
I' TeGr.q I Teg regreg

where the second inequality follows from replacing an arbitrary estimator r by its Wi-
projection arg ming . W1(I',I') and applying the triangle inequality for . To obtain the
lower bound in (1.9), we apply the Q((d/n)'/* A 1) lower bound in [82, Theorem 10] for
d-dimensional symmetric 2-GM (by taking G to the mixtures of the form (1.8)) and the
Q(n~1/(*=2)) lower bound in [81, Proposition 7] for 1-dimensional k-GM (by taking G to
be the set of mixing distributions whose atoms are zero except for their coordinates.) O

4. Density estimation. In this section we prove the density estimation guarantee of
Theorem 1.2 for finite Gaussian mixtures. The lower bound simply follows from the
minimax quadratic risk of the Gaussian location model (corresponding to k£ = 1), since
H2(N(0,1;),N(0', 1)) =2 —2ell0=0"13/8 < ||g — /||> when 6, 6’ € B(0, R). Thus, we focus
on the attainability of the parametric rate of density estimation. Departing from the prevail-
ing approach of maximum likelihood, we aim to apply the estimator of Le Cam and Birgé
which requires bounding the local entropy of Hellinger balls for k-GMs. This is given by the
following lemma.
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LEMMA 4.1 (Local entropy of k-GM). For any T'g € G4, let P(Io) ={Pr:T €
Gk.a, H(Pr, Pr,) < €}. Then, for any 6 <¢/2,
6)c(dk4+(2k)2k+2)

(.1) N(8,Pe(To) H) < (5

9

where the constant c only depends only on R.

Lemma 4.1 shows that any e-Hellinger ball P.(I'y) in the space of k-GMs can be covered
by at most (%)Cd d-Hellinger balls for some C' = C(k, R). This result is uniform in I’y
and depends optimally on d but the dependency on the number of components £ is highly
suboptimal. Lemma 4.1 should be compared with the local entropy bound in [27] obtained
using a different approach than ours based on moment tensor. Specifically, [27, Example 3.4]
shows that for Gaussian location mixtures, the local bracketing entropy centered at Fr, is
bounded by Njj(5,Pc(I'o), H) < (5)?*4, for some constant C’ depending on Pr, and R.
This result yields optimal dependency on both d and & but lacks uniformity in the center of
the Hellinger neighborhood (which is needed for applying the theory of Le Cam and Birgé).

Given the local entropy bound in Lemma 4.1, the upper bound Ok(%) in the squared
Hellinger loss in Theorem 1.2 immediately follows by invoking the Le Cam-Birgé construc-
tion [13, Theorem 3.1]; see also [80, Lec. 18] for a self-contained exposition. For a high-
probability bound that leads to (1.12), see, e.g., [80, Theorem 18.3].

Before proceeding to the proof of Lemma 4.1, we note that the Le Cam-Birgé construction,
based on (exponentially many) pairwise tests, does not lead to a computationally efficient
scheme for density estimation. This problem is much more challenging than estimating the
mixing distribution, for which we have already obtained a polynomial-time optimal estimator
in Section 3. (In fact, we show in Section 4.4, estimation of the mixing distribution can be
reduced to proper density estimation both statistically and computationally.) Finding a com-
putationally efficient proper density estimate that attains the parametric rate in Theorem 1.2
for arbitrary k, or even within logarithmic factors thereof, is open. Section 4.3 presents some
partial progress on this front: We show that the estimator in Section 3 with slight modifi-
cations achieves the optimal rate of O(+/d/n) for 2-GMs and the rate of O((d/n)'/*) for
general k-GMs; the latter result slightly improves (by logarithmic factors only) the state of
the art in [2], but is still suboptimal.

Both the construction of the Hellinger covering for Lemma 4.1 and the analysis of density
estimation in Section 4.3 rely on the notion of moment tensors, which we now introduce.

4.1. Moment tensors and information geometry of Gaussian mixtures. We recall some
basics of tensors; for a comprehensive review, see [49]. The rank of an order-£ tensor T €
(R4)®* is defined as the minimum 7 such that 7" can be written the sum of r rank-one tensors,
namely [50]:

4.2) rank(7) £ min {r T = Zaiugl) R ® UZ@, ugj) eRY o, € R} ,
i=1

We will also use the symmetric rank [16]:

.
(4.3) rankS(T)émin{r:T:ZaiuZ@é, u; € RY, oy GR}.
=1

An order-/ tensor 1" is symmetric if T}, . j, =T; for all j1,...,j¢ € [d] and all per-

7(1)5eeesJ ()
mutations 7 on [¢]. The Frobenius norm of a tensor 7" is defined as || T|| » = /(T, T), where
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the tensor inner product is defined as (S, 7") = Zjl eje€ld] S ...ie i ... .- The spectral norm
(operator norm) of a tensor 7' is defined as

4.4) 17| £ max{(T, u1 @ug @--- @ug): |u;l]| =1,i=1,...,£}.

Denote the set of d-dimensional order-¢ symmetric tensors by S;(R?). For a symmetric ten-
sor, the following result attributed to Banach ([8, 25]) is crucial for the present paper:

(4.5) |T|| = max{[(T, u®*)| : [Ju]| = 1}.

For T' € Sy(R?), if ranky(7) < r, then the spectral norm can be bounded by the Frobenius
norm as follows [66]:>

(4.6) <ITI <7 p-

1
\/ﬁHTHF

For any d-dimensional random vector U, its order-{ moment tensor is

4.7 MU)2EU®---@U
(4.7) «(U) =E| ®é ® U],
times

which, by definition, is a symmetric tensor; in particular, M;(U) = E[U] and My(U —
E[U]) are the mean and the covariance matrix of U, respectively. Given a multi-index
i=U1,---,ja) € Zi, the jth (multivariate) moment of U

(4.8) m;(U) =E[Uj, ---Uj,]

is the jth entry of the moment tensor Mj;(U), with |j| £ 41 +...j4. Since moments are
functionals of the underlying distribution, we also use the notation M,(I") = M,(U) where
U ~T'. An important observation is that the moment of the projection of a random vector can
be expressed in terms of the moment tensor as follows: for any u € R,

me((X,u) = E[(X,u)"] = E[(X®, u®)] = (My(X),u®).

Consequently, the difference between two moment tensors measured in the spectral norm is
equal to the maximal moment difference of their projections. Indeed, thanks to (4.5),

(4.9) [ Me(X) — Me(Y)[| = IlSllllp Ime((X,u)) —me((Y,u))l.
ul|=1
Furthermore, if U is a discrete random variable with a few atoms, then its moment tensor
has low rank. Specifically, if U is distributed according to some k-atomic distribution I" =

Zle w;0,,, then

k
(4.10) My(T) = wip,
=1

whose symmetric rank is at most k.

The following result gives a characterization of statistical distances (squared Hellinger,
KL, or y2-divergence) between k-GMs in terms of the moment tensors up to dimension-
independent constant factors. Note that the upper bound in one dimension has been estab-
lished in [81] (by combining Lemma 9 and 10 therein).

3The weaker bound ||T|| > rt/2 IT|| , which suffices for the purpose of this paper, takes less effort
to show. Indeed, in view of the Tucker decomposition (4.23), combining (4.4) with (4.26) yields that ||T|| >

—0/2 —0/2
maxje e lojl >~ o]l p =27 .
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THEOREM 4.2 (Moment characterization of statistical distances). For any pair of k-
atomic distributions T, T" supported on the ball B(0, R) in RY, for any D € {H? KL, x?},
(4.11)

—4k NE 36k> NI
— < )< — .
(Ck) Jax || M (T) — My(I")||5; < D(Pp, Prv) < Ce Jax | M (T) — My(I") ||,

where the constant C' may depend on R but not k or d.

To prove Theorem 4.2 we need a few auxiliary lemmas. The following lemma bounds
the difference of higher-order moment tensors of k-atomic distributions using those of the
first 2k — 1 moment tensors. The one-dimensional version was shown in [81, Lemma 10]
using polynomial interpolation techniques; however, it is hard to extend this proof to mul-
tiple dimensions as multivariate polynomial interpolation (on arbitrary points) is much less
well-understood. Fortunately, this difficulty can be sidestepped by exploiting the relationship
between moment tensor norms and projections in (4.9).

LEMMA 4.3. Let U, U’ be k-atomic random variables in R%. Then for any j > 2k,
M;(U) — M;(U")|| <3 My(U) — My(U")|.
I245(0) = M) <87 e [IM(U) — Mi(0)]

PROOF.
IM;(U) = M;(U")]| = fﬁgﬁﬂh(@ﬁvﬁ m;({U',v))|

<y mal(U,0)) — me(U", o)
sup max |m v))—m

=7 ety e

(C) ] /

=3 My(U) — MU
max [[M(U) = Me(U)]

where (a) and (c) follow from (4.9), and (b) follows from [81, Lemma 10]. [

The lower bound part of Theorem 4.2 can be reduced to the one-dimensional case, which
is covered by the following lemma. The proof relies on Newton interpolating polynomials
and is deferred till Section 3 of the supplement [22].

LEMMA 4.4. Let v,~' be k-atomic distributions supported on [—R, R). Then for any
(2k — 1)-times differentiable test function h,
/ hd~ — / hd~'

where c is some constant depending only on k, R, and maxo<;<op_1 ||h¥ 2. (=r,R))- In the

particular case where h(x) = x' for i € 2k — 1],¢ > (Ck)™* for a constant C depending
only on R.

(4.12) H(y*N(0,1),~" « N(0,1)) > ¢

)

PROOF OF THEOREM 4.2. Since
(4.13) H*(P,Q) <KL(P||Q) < x*(P|IQ),

(see, e.g., [74, Section 2.4.1]), it suffices to prove the lower bound for H? and the upper
bound for x2.
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Let U~Tand U ~T', X ~ PP =T % N(0,1;) and X' ~ Pr» =T" % N(0,I;). Then
(0,X) ~ Pp, and (0, X’) ~ Pp,. By the data processing inequality,
(4.14) H(Pp, Pp/) > sup H(Ppe,Ppé).
gesi-1

Applying Lemma 4.4 to all monomials of degree at most 2k — 1, we obtain
(4.15)

H(Pr, Pr) 2 (CK) ™ sup max [me((6,0))=me((9,U)| = (CK)™* max |[My(U) = My(U")

fcSa-1 €§2I€— <2

for some constant C', where the last equality is due to (4.9). Thus the desired lower bound for
Hellinger follows from the tensor norm comparison in (4.6).

To show the upper bound for y2, we first reduce the dimension from d to 2k. Without loss
of generality, assume that d > 2k (for otherwise we can skip this step). Since both U and
U’ are k-atomic, the collection of atoms of U and U’ lie in some subspace spanned by the
orthonormal basis {v1,...,ver}. Let V = [vy,...,vo;] and let V| = [vg11,...,v4] consist of
orthonormal basis of the complement, so that [V, V| | is an orthogonal matrix. Write X = U +
Z, where Z ~ N(0,1;) is independent of U. Then V' X =VTU + VT Z ~vx N(0,I5;,) =
P,, where v = L(VTU) is a k-atomic distribution on R?*. Furthermore, V' X = V" Z ~
N(0,I;—o) and is independent of V' ' X. Similarly, (V' X", V' X") ~ P,y ® N(0, I;—a),
where v/ = L(V TU’). Therefore,

(Pl Pr) = ALV TX VXLV TX, VX)) =33 (P @ N (0, La—2k) | P @ N (0, Ia—24))

= X*(B[|P).

For notational convenience, let B=V U ~vand B =V U’ ~ V.
To bound x%(P,||P,), we first assume that E[B’] = 0. For each multi-index j =
(J1y---5Ja) € Zik, define the jth Hermite polynomial as

2k
(4.16) Hy(z) = ][ Hj (z:), =R
=1

which is a degree-|j| polynomial in z. Furthermore, the following orthogonality property is
inherited from that of univariate Hermite polynomials: for Z ~ N (0, Io),

(4.17) E[H;(Z2)Hy (Z)] = j'1=j3-

Recall the exponential generating function of Hermite polynomials (see [1, 22.9.17]): for
z,b €R, ¢p(x —b) = d(z) > ;50 H](.%)% It is straightforward to obtain the multivariate
extension of this result: -

Hj(x) 2 i 2%
¢2k($ - b) = ¢2k(13) Z THbil’ z,be R,
=1

jenzk

Integrating b over B ~ v, we obtain the following expansion of the density of P,:

2k ‘

Ji
115
i=1

m;(B)

H(z)
i

p(@) =Eléni(e - B)) = ém(e) ) =

jezzr

Similarly, p,(z) = ¢or(2) Zjezik jl!mj(B’ )Hj(z). Furthermore, by the assumption that

E[B'| =0and || B'|| <||U’|| < R almost surely, Jensen’s inequality yields
P () = doi(2)Elexp((B',z) — || B'|*/2)] > ¢or () exp(—R?/2).

)
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Consequently,

2 ) oR/2 x(Pu(fE) — pv(x))?

2 R2 2\¢
(;)e%e% max "Mg(B)—M@(BI)“§+67 Z (4];')
- >2k

(d) g2 (36k2)* 5
28 (e 3 O ) s -

—_——

< 36k2

— My(B))||”

where (a) follows from the orthogonality relation (4.17); (b) is by the fact that (|j|)! < j!(2k)H!
for any j € Z?f ; (c) follows from the tensor norm comparison inequality (4.6), since the
symmetric rank of My(B) — M;(B’) is at most 2k for all ¢; (d) follows from Lemma 4.3.
Finally, if E[B’] # 0, by the shift-invariance of y2-divergence, applying the following
simple lemma to p = E[B’] (which satisfies ||| < R) yields the desired upper bound. [

LEMMA 4.5.  For any random vectors X and Y and any deterministic 1 € R?,

4
(X = ) = MY =) < 3 (1 ) 1) = My

k=0

PROOF. Using (4.9) and binomial expansion, we have:

[Mo(X = p) = Me(Y = )| = P me((X,w) = (s w)) = me((Ysw) = (p,w))]-

L

< sup 5 () (00— ma(7: ) )

lull=1%"q
.
< 3 () 18000 = Bl
k=0
where in the step we used the Cauchy-Schwarz inequality. O

4.2. Local entropy of Hellinger balls. Before presenting the proof of Lemma 4.1, we
discuss the connection and distinction between our approach and the existing literature on
the metric entropy of mixture densities [32, 39, 40, 83, 58, 14, 70] and clarify the role of
the moment tensors. Both the previous work and the current paper bound the statistical dif-
ference between mixtures in terms of moment differences (through either Taylor expansion
or orthogonal expansion). For example, the seminal work [32] bounds the global entropy
of nonparametric Gaussian mixtures in one dimension by first constructing a finite mixture
approximation via moment matching, then discretizing the weights and atoms. The crucial
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difference is that in the present paper we directly work with moment parametrization as op-
posed to the natural parametrization (atoms and weights). As mentioned in Section 1.1, to
eliminate the unnecessary logarithmic factors and obtain the exact parametric rate in high
dimensions, it is crucial to obtain a tight control of the local entropy as opposed to the global
entropy, which relies on a good parametrization that bounds the Hellinger distance from
both above and below — see (1.13). This two-sided bound is satisfied by the moment tensor
reparametrization, thanks to Theorem 4.2, but not the natural parametrization. Therefore, to
construct a good local covering, we do so in the moment space, by leveraging the low-rank
structure of moment tensors.

PROOF OF LEMMA 4.1. Recall from Section 2 that N (e, A, p) the e-covering number of
the set A with respect to the metric p, i.e., the minimum cardinality of an e-covering set A,
such that, for any v € A, there exists v € A, with p(v,?) <e.

Let M ={M(I'): Pr € P.}, where P, is the Hellinger neighborhood of Pr,, M(T") =
(M (T),...,Mso_1(I")) consists of the moment tensors of I" up to degree 2k — 1. Let ¢}, =
/¢, and Ck = /C}; where ¢, 2 (Ck)~* and Cj, £ C"e30%” are the constants from Theo-
rem 4.2. To obtain a §-covering of P, we first show that it suffices to construct a ﬁ—covering

of the moment space M. with respect to the distance p(M, M") £ maxy<o—1 || My — M|
and thus

(4.18) N8, PE,H> < N(6/(2Ck), Me, p).
To this end, let A be the optimal / -covering of M, with respect to p, and we show that
={Pp:T' =argminp.p,cp, p(M(F’) M), M € N} is a §-covering of P.. For any Pr €

776, by the covering property of N, there exists a tensor M € N such that ng M(I)) <
20/ By the deﬁmtlon of N, there exists Px € N such that p(M(T'), M) < ¢ - Therefore,
p(M(T), M(I)) < C, and thus H (Pg, Pr) < § by Theorem 4.2.

Next we bound the right side of (4.18). Since I'y,I" are both k-atomic, it follows from
Theorem 4.2 that
4.19) M. CM(To) + {A:||Ag]|p < €/}, ranks(Ap) < 2k,VE < 2k — 1},

where A = (Aq,...,Ag_1) and Ay € Sp(R?). Let Dy = {Ap € Sp(RY) @ |Ay]|p <
€/c),ranks(Ay) < 2k}, and D =Dy X --- x Dgi_; be their Cartesian product. By mono-
tonicity,

2k—1
(4.20) N(5/(2C4), Me,p) < N(5/(2C}), D, p) < ] N(6/(2C3), De, -l )

=1
By Lemma 4.6 next,

2k—1 ol 2dk cC’,ge (2k)*
. ep) < )
(421) N(8/(2C1), Me, p) H <26k ) (2% 5)

for some absolute constant ¢. So we obtain, for constants C', C” that does not depend on d or

k, that
- ) 4dk? ;- , N\ (2k)%F
Ck*k 36k ¢ CkAk 36k ¢
/ < - -

- 4dk?+(2k)?*
. (C/k4k+1e36k2 e)

J
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LEMMA 4.6. Let T ={T € Sy(R?) : | T < ¢,ranks(T) < r}. Then, for any § < €/2,

cle\ " scent
@22) verin<(5) (5)

for some absolute constant c.

PROOF. For any T' € T, ranks(T) < r. Thus T'=>""_, aiviw for some a; € R and
v; € S91. Furthermore, ||T'|| » < e. Ideally, if the coefficients satisfied |a;| < € for all 7, then
we could cover the r-dimensional e-hypercube with an §-covering, which, combined with a
%—covering of the unit sphere that covers the unit vectors v;’s, constitutes a desired covering
for the tensor. Unfortunately the coefficients a;’s need not be small due to the possible can-
cellation between the rank-one components (consider the counterexample of 0 = v®¢ — v®?),

Next, to construct the desired covering we turn to the Tucker decomposition of the tensor 7.

Let u = (uy,...,u,) be an orthonormal basis for the subspace spanned by (v1,...,v,). In
particular, let v; = Z;:1 bijuj. Then
(423) T= >  ou @ 8u,
. . . _/_/
J=01,-50)Elr] s

=uj
where a5 = 22:1 a;b;j, - - - bj,. In tensor notation, 7" admits the following Tucker decompo-
sition
(4.24) T=ax1U---x,U

where the symmetric tensor o = (o) € S;(R") is called the core tensor and U is a r x d
matrix whose rows are given by w1, ..., u,.

Due to the orthonormality of (u1,...,u,), we have for any j,j’ € [r]’,
l
(4.25) u_]? UJ H Ug; s UJ 1{j:j’}'
=1

Hence we conclude from (4.23) that
(4.26) ledly =Tl -

In particular ||| < €. Therefore,

@27 TCTE{T=) aju;, @ @uj:|lallp < e (u, uj) =Ly
el

Let A be a J-covering of {a € S¢(R") : |||z < €} under ||| of size (5 <) for some
absolute constant ¢; let B be a »--covering of {(u1,...,u,) : (u;, u3> =1y J}} under the
maximum of column norms of size (%)% Let 7/ = {250 Gy, @ - ®Uj, 1 G € Ade
B} Next we verify the covering property.

Forany T' € T”, there exists T € T’ such that || — G| p < § 0 and max;<, ||u; — ]| < 256
Then, by the triangle inequality,
(4.28)

HT—THFSZ\%HI%®"'®% — i, @ @8, | p+|| D (5 — &)y, @ - @y,
j j r
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The second term is at most ||cc — &|| < 6/2. For the first term, it follows from the triangle
inequality that

(4.29)
l
_ y . . J
lujy © - @uj =5, ® -+ @ |l p <Y gy @0 @ (wy, =) @+ @y | p < o
i=1
Therefore, the first term is at most 2% | < 6/2. O

4.3. Efficient proper density estimation. To remedy the computational intractability of
the Le Cam-Birgé estimator, in this subsection we adapt the procedure for mixing distribution
estimation in Section 3 for density estimation. Let I" be the estimated mixing distribution as
defined in (3.4), with the following modifications:

* The grid size in (3.13) is adjusted to to ¢, = n~1/2. As such, in the set of k-atomic can-
didate distributions in (3.15), YV denotes an (e, ||-||; )-covering of the probability simplex
A*=1 and A denotes an (e, ||-||,)-covering the k-dimensional ball {z € R* : ||z||, < R}.

* In the determination of the best mixing distribution in (3.18), instead of comparing the
Wasserstein distance, we directly compare the projected moments on the directions over
an (€p, ||-||,)-covering N of Sk~

y=argminmax max |m,(v,) —m.(%)|,
y gv,eseeme[%fu\ r(Y9) — M (70)|

where ’yé denotes the projection of 4’ onto the direction 6 (recall (2.1)).

We then report Pp = [« N (0,1;) as a proper density estimate. By a similar analysis to

Remark 1, using those finer grids, the run time of the procedure increases to n°(*). The next
theorem provides a theoretical guarantee for this estimator in general £-GM model.

THEOREM 4.7.  There exists an absolute constant C' such that, with probability 1 — 6,

2k—1

d+ k2 log(k/5)\ /* | (¢ log(1/8)"s
Vn
PROOF. Recall the notation X,%,V, H, ~ defined in Section 3.3. By the triangle inequal-
ity,
(4.30) H(Pr,P;) < H(Pp,Pr,)+H(Pr,,P;) <H(Pr,Pr,)+ H(P,,P;).

H(Pr,Py) < C\/E<

n

For the first term, we have

(@) 1 (b) .
(4.31) H?*(Ppr,Pr,) <KL(Pp,Pr,) < 5Wg(r,rﬁ) < E|IZ =22,

where (a) follows from the convexity of the KL divergence (see [65, Remark 5]); (b) applies
Lemma 3.5.

Next we analyze the second term in the right-hand side of (4.30) conditioning on V. By
Theorem 4.2, (4.6), and (4.9), the Hellinger distance is upper bounded by the difference
between the projected moments:

(4.32) H(P,,P;) < e“" sup  max |m.(v9) —m.(30)|.
feSk—1re2k—1]

It follows from Lemma 1.5 of the supplement [22] that

, 2k R+
4. i (1) — mr(70)| € e
(4.33) min max, max [mr (75) — M (70) NG
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By (2.5) and (2.7) of the supplement [22], with probability 1 — 6/2,
2k—1

R (Ck?log(k/6)) =
4.34 r(Y0) —mr(v0)| < )
(4.34) max max |me(5p) = mr(30) /i

for an absolute constant C'. Therefore, by (4.33) and (4.34),

C'k*log(k/5)) 5 +(C'k)*
_ : N ey <
(4.35) minmax max Imr(vg) — me(F0)| < n ;

for an absolute constant C’ > C'. Note that the minimizer of (4.35) is our estimator 4. Con-
sequently, combining (4.34) and (4.35), we obtain

2 ((c%? log(k/5)) ™5 +(0'k)4k)
max Jex Imr(%9) — mar(70)| < NG :
Then it follows from Lemma 1.6 of the supplement [22] that
o (CMElog(k/9) "5 +(C" k)™

su max |m —-m < ,
QGSIRITE[Z]C*].] [my () r(F0)| < Jn

for an absolute constant C”'. Applying (4.32) yields that, with probability 1 — §/2,

2k—1

(e“"*log(1/4))

(4.36) H(P,, P;) < NG )
for an absolute constant C"”’. We conclude the theorem by applying Lemma 3.6, (4.31), and
(4.36) to (4.30). O

Compared with the optimal parametric rate Og(y/d/n) in Theorem 1.2, the rate
Ox((d/n)**) in Theorem 4.7 is suboptimal. It turns out that, for the special case of 2-
GMs, we can achieve the optimal rate using the same procedure with an extra centering step.
Specifically, using the first half of observations { X1, ..., X}, }, we compute the sample mean
and covariance matrix by

Ol 1
u:n;&, §=o (Xi-

Let & € R? be the top eigenvector of the sample covariance matrix S. Then we center and
project the second half of the observations by z; = (@, X;1,, — f1) for i € [n], which reduces
the problem to one dimension. Then we apply the one-dimensional DMM algorithm with
x1,...,T, and obtain y = Z?Zl wiaéi. Finally, we report Py with the mixing distribution

) Xi—p)" = 1Ia.

=

2
i=1
The next result shows the optimality of P;.

THEOREM 4.8.  With probability at least 1 — 6,
d+log(1/9)

H(Pr,P:) S :

n
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PROOF. Let I' = w16, + w2b,,, where ||11;|| < R,i = 1,2. Denote the population mean
and covariance matrix by y = Ep[U] and Z = Ep(U — u)(U — ) T, respectively. We have
the following standard results for the sample mean and covariance matrix (see, e.g., [57,
Eq. (1.1)] and Lemma 3.6):

. —_ d+log(1/d
@37) i~ pllo. 1S — =) < O(r)y THEL)
with probability at least 1 —§ /2. Let I = Z?Zl w;d
By the triangle inequality,

(4.38) H(Pp,Pr) < H(Pr,Prv) + H(Pr, Pr) + H(Pp, Pr).

We upper bound three terms separately conditioning on fi and 4. For the second term of
(4.38), applying the convexity of the squared Hellinger distance yields that

-~ 2
i —p)ipo AT =30 Wil 1, — it

2
H*(Pp, Pr) <> wiH? (N(ﬂﬁT(Mz‘ — 1) + i, La), N (@ (i — o) + ﬂ;Li))
i=1

2
la—aaT)(u—@)13 .
(4.39) :Zwi <226_ s > <lp — fl|3,
i=1

where we used e” > 1 + z. For the third term (4.38), note that conditioned on the (4, 1),
iid. -

2;' %Py where 5 = 312 wiS(a,p, )

subspace {04 + /i : 6 € R}. Thus

. Note that I and T are supported on the same affine

(4.40) H(P;,Pr)=H(Py, Py) < log(;/é)
with probability at least 1 — §/2, where the inequality follows from the statistical guarantee
of the DMM algorithm in [81, Theorem 3].

It remains to upper bound the first term of (4.38). Denote the centered version of I', T by
m, 7. Using p = wy 1 + wapg and wy + wy = 1, we may write ™ = w10 w,u + W20\, us
7 = W1 Onwy a0 u + W20_xnw,aaTus Where X = || — 2|2, and u 2 272 Then

1 —pall2
(4.41) H(Pr,Pr/) = H(P;, Py).

By Theorem 4.2, it is equivalent to upper bound the difference between the first three moment
2

tensors. Both 7 and 7’ have zero mean. Using w3 — w? = wy — w1, their covariance matrices
and the third-order moment tensors are found to be

E= 7r[UUT] = Nwjwouu ', T= EW[U‘X’?’] = Agwlwg(wl — wg)u®3,

2 =Ep[UU ] = Nwiwa(u, )20, T =En [U®3] = Mwiws(wy — ws) (u, 0)30%3,

Applying Theorem 4.2 and Lemma 4.9 below yields that H(Py, Pr) < ||S — Z||. The proof
is completed by combining (4.37) — (4.41). [

)

LEMMA 4.9.
IE=E|p+IT-T'|r SIS —E.

PROOF. Let o = A\2wyws and cos ) = (u,4). Since A < 1, we have
12— 2|2 = 0%(1 — cos?h) < o?sin? ),
1T —T"||% = N2 (w; — wa)?(1 — cos® ) < o?sin? 6.
IS—=

Since = = cuu ', by the Davis-Kahan theorem [19], sin < =", completing the proof.
O
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4.4. Connection to mixing distribution estimation. The next result shows that optimal
estimation of the mixing distribution can be reduced to that of the mixture density, both
statistically and computationally, provided that the density estimate is proper (a valid k-GM).
Note that this does not mean an optimal density estimate P, automatically yields an optimal

estimator of the mixing distribution I for Theorem 1.1. Instead, we rely on an intermediate
step that allows us to estimate the appropriate subspace and then perform density estimation
in this low-dimensional space.

THEOREM 4.10. Suppose that for each d € N, there exists a proper density estimator
P=P(X,...,Xy), such that for every T € Gy g and X1,..., X" Py,

(4.42) EH (P, Pr) < ci(d/n)"/?,

for some constant cy,. Then there is an estimator r of the mixing distribution I and a positive
constant C' such that

. d\ /4 1 /1\ T
(4.43) EWl(r,r)g<(Ck)’“/2\/a<n) + Ckoe™ <n> )

iid

PROQF OF THEOREM 4.10. We first construct the estimator I using X1,..., Xop ~ Pr.
Let P € Py, q be the proper mixture density estimator from { X };<, satisfying
(4.44) EH(P, Pr) < ci\/d/n,

for a positive constant ci, as guaranteed by (4.42). Since Pisa proper estimator, it can be
written P =T" x N (0, ;) for some I € Gk.d-

Let V € R¥* be a matrix whose columns form an orthonormal basis for the space spanned
by the atoms of IV H=VVT, and v =T'y,. Note that conditioned on v, {VTXZ-}Z-:,HL“.Q”
is an i.i.d. sample drawn from the £-GM P,,. Invoking (4.42) again, there exists an estimator

= Z?:l ﬁ)j%, € Gp. . such that
(4.45) EH(Py, Py) < cp\/k/n.

We will show that T' £ Yo = Z?:l W0y, ;, achieves the desired rate (4.43). Recall from
(3.19) the risk decomposition:

(4.46) Wi (D, T) <Wi(T,T ) + Wi(7,9).

Let ¥ =Epr[UU ] and ¥ = E,,i~[UU "] whose ranks are at most k. Then H is the pro-
jection matrix onto the space spanned by the top k eigenvectors of 3. It follows from Lemma

3.5 and the Cauchy-Schwarz inequality that W1 (I',T" ;) < 1/2k[|2 — 3)||2. By Lemma 4.4
and the data processing inequality of the Hellinger distance,

IZ—S[o= sup |ma(Ty) —ma(ly)| <Ck sup H(Pr,,Pr)<CyH(Pr,Pp),
feSd—1 feSa—1 0

where C, = (C k:)k for a constant C. Therefore, by (4.44), we obtain that

I
(4.47) EWi(D,Tyy) <) 2kChcy, (n> :
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We condition on V' to analyze the second term on the right-hand side of (4.46). By Lemma
3.1 and Lemma 1.1 of the supplement [22], there is a constant C” such that

Wi(7y,9) <k*? sup Wi(ve,7s) < C'k7/? sup Imy (o) — my(F9) |27
fesSk-1 0eSk—1 re[2k—1]

Again, by Lemma 4.4 and the data processing inequality, for any § € S¥~! and r € [2k — 1],
|m7“(79) - mr(’?@” <CpH (P%7P’Ye) <CyH (P‘/aP’Y) :
Therefore, by (4.45), we obtain that

o\ /2 T
(4.48) EW:(y,9) < C'k™? (Ckck <n> ) :
The conclusion follows by applying (4.47) and (4.48) in (4.46). ]

At the crux of the above proof is the following key inequality for £-GMs in d dimensions:
(4.49) W1(7,3) Ska H(Py, P/,

which we apply after a dimension reduction step. The proof of (4.49) relies on two crucial
facts: for one-dimensional k-atomic distributions ~, ¥,

(4.50) W1(7,%) Sk max_|mg(y) —me(5)]/ @0,
Le2k—1]

and

(4.51) (B [me(y) = me(9)| Sk H(Py, Py).

Then (4.49) immediately follows from Lemma 3.1 and (4.9).

Relationships similar to (4.49) are found elsewhere in the literature on mixture models,
e.g., [15, 39, 40, 38], where they are commonly used to translate a density estimation guar-
antee into one for mixing distributions. For example, [39, Proposition 2.2(b)] showed the
non-uniform bound W/ (v,4) < C(v)H (P, P;), where r is a parameter that depends on
the level of overfitting in the model; see [39, 40] for more results for other models such as
location-scale Gaussian mixtures. For uniform bound similar to (4.49), [38, Theorem 6.3]
showed Wg,f__ll (7,%) < llpy — p4ll, in one dimension.

Conversely, distances between mixtures can also be bounded by transportation distances
between mixing distributions, e.g., the middle inequality in (4.31) for the KL divergence.
Total variation inequality of the form TV (F x v, F x §) < Wi(~,4) for arbitrary ,~" are
shown in [65, Proposition 7] or [14, Proposition 5.3], provided that F' has bounded density.
See also [40, Theorem 3.2(c)] and [39, Proposition 2.2(a)] for results along this line.

S. Numerical studies. This section presents numerical experiments comparing the esti-
mator (3.4) to the classical EM algorithm. The EM algorithm is guaranteed only to converge
to a local optimum (and very slowly without separation conditions) [44], and its performance
depends heavily on the initialization chosen. It moreover takes a pass at the entire sample on
each iteration.

As opposed to the worst-case scenario considered in the minimax analysis, in the exper-
iments we consider fixed mixing distribution I' that does not depend on n. The empirical
results demonstrate that in certain cases, the proposed algorithm, while not scalable to large
k, can be a good alternative to EM in terms of both accuracy and speed. However, we reit-
erate that this algorithm, which is meant to show that the minimax rate can be achieved in
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time polynomial in n, is not practical even for modest values of k. The EM algorithm, while
hampered by its repeated accessing of all data points and the possibility of being derailed by
spurious local maxima, scales much better in k.

All simulations are run in Python. The DMM algorithm relies on the CVXPY [21] and
CVXOPT [5] packages; see Section 6 of [81] for more details on the implementation of
DMM. We also use the Python Optimal Transport package [24] to compute the d-dimensional
1-Wasserstein distance.

In all experiments, we set 0 = 1,d = 100, with n ranging from 10,000 to 200,000 in
increments of 10, 000. For each model and each value of n, we run 10 repeated experiments;
we plot the mean error and standard deviation of the error in the figures. We initialize EM
randomly, and our stopping criterion for the EM algorithm is either after 1000 iterations or
once the relative change in log likelihood is below 10~°. For the dimension reduction step
in the computation of (3.4), we first center our data then project onto the top £ — 1 singular
vectors. Thus when k = 2, we project onto a one-dimensional subspace and only run DMM
once, so the grid search of Algorithm 1 is never invoked. While sample splitting is used for
the sake of analyzing the estimator (3.4), in the actual experiments we forgo this step.

When k = 3, the data are projected to a 2-dimensional subspace after centering. In this
case, we need to choose W, N, the €, -nets on the simplex A*=1 and on the unit sphere
Sk=2_ respectively. Here WV is chosen by discretizing the probabilities and N is formed
by by gridding the angles « € [—7, 7| and using the points (cos«,sina). Note that here,
IW| < (C1/eni)* 1, |IN| < (C2/en k)" 2. For example, when n = 10000, 1/¢,, 1, = 3. In the
experiments in Fig. 2, we choose Cy = 1,Cy = 2.

In Fig. 1, we compare the performance on the symmetric 2-GM, where the sample is drawn
from the distribution %N(,u, 1) + %N(—,u, 1;). For Fig. 1(a), u = 0, i.e., the components
completely overlap. And for Fig. 1(b) and Fig. 1(c),  is uniformly drawn from the sphere of
radius 1 and 2, respectively. In Fig. 1(d), the model is Pr = iN(u, 1) + %N(—,u, I;) where
w is drawn from the sphere of radius 2. Our algorithm and EM perform similarly for the
model with overlapping components; our algorithm is more accurate than EM in the model
where [|11||, = 1, but EM improves as the model components become more separated. There
is little difference in the performance of either algorithm in the uneven weights scenario.

In Fig. 2, we compare the performance on the 3-GM model $N(y, 1) + $N(0,14) +
2N (—p, 1) for different values of separation ||||. In these experiments, we see the oppo-
site phenomenon in terms of the relative performance of our algorithm and EM: the former
improves more as the centers become more separated. This seems to be because in, for in-
stance, the case where 1 = 0, the error in each coordinate for DMM is fairly high, and this
is compounded when we select the two-coordinate final distribution. The performance of our
algorithm improves rapidly here because as the model becomes more separated, the errors in
each coordinate become very small. Note that since we have made the model more difficult
to learn by adding a center at 0, the errors are higher than for the k = 2 example in every
experiment for both algorithms.

In Fig. 3, we provide further experiments to explore the adaptivity of the estimator pro-
duced by the algorithm in Section 3. The settings are the same as in the previous experiments
except we choose a finer grid with parameter C; = 2 instead of C; = 1, for otherwise the
quantization error of the weights is too large.

In Fig. 3(a), we let the true model be exactly as in Fig. 1(c), but we run the algorithm
from Section 3 using k£ = 3. As in Fig. 2, DMM seems to improve more rapidly than EM as
n increases. But here, DMM has higher error than EM for small n. In Fig. 3(b), we let k = 3
and create a model without the symmetry structures of the models in previous experiments by
drawing the atoms uniformly from the unit sphere and the weights from a Dirichlet(1,1,1)
distribution. This model is more difficult to learn for both DMM and EM, but DMM still
outperforms EM in terms of accuracy.
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FIG 1. In the first three figures, Pp = %N(u,[d) + %N(fu,ld), for increasing values of ||p||o. In the final
figure, Pp = N (p. 1g) + §N (=, 1) where [|ull = 2.

Finally, we provide a table of the average running time (in seconds) for each experiment.
As expected, in the experiments in Fig. 1, the DMM algorithm is faster than EM. In the
experiments in Fig. 2, DMM manages to run faster on average than EM in the two more
separated models, Fig. 2(b) and Fig. 2(c). Also unsurprisingly, DMM is slower in the Fig. 2
experiments than those in Fig. 1, because grid search is invoked in the former. In the over-
fitted case in Fig. 3(a), DMM is much slower on average than EM, and in fact is slower on
average than DMM in any other experiment setup. In Fig. 3(b), where the model does not
have special structure, DMM nonetheless runs on average in time faster than for some of the
symmetric models in Fig. 2, and moreover again improves on the average run time of EM.

Experiment ‘ DMM EM

Fig. 1(a) | 0.114407 0.678521
Fig. 1(b) | 0.121561 1.163886
Fig. 1(c) | 0.206713  0.573640
Fig. 1(d) | 0.221704 0.818138
Fig. 2(a) | 1.118308 0.985668
Fig. 2(b) | 2.257503  2.582501
Fig. 2(c) | 2.179928 3.576998
Fig. 3(a) | 3.840112 1.350464
Fig. 3(b) | 1.907299  2.546508

TABLE 1
Running time comparison (in seconds).
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6. Discussion. In this paper we focused on the Gaussian location mixture model (1.1)
in high dimensions, where the variance parameter o> and the number of components k are
known, and the centers lie in a ball of bounded radius. Below we discuss weakening these
assumptions and other open problems.

Unbounded centers. While the assumption of bounded support is necessary for estimating
the mixing distribution (otherwise the worst-case 1W;-loss is infinity), it is not needed for
density estimation [2, 52, 7]. In fact, [2] first uses a crude clustering procedure to partition
the sample into clusters whose means are close to each other, then zooms into each cluster
to perform density estimation. For the lower bound, the worst case occurs when each cluster
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is equally weighted and highly separated, so that the effective sample size for each compo-
nent is n/k, leading to the lower bound of Q(%) On the other hand, the density estimation
guarantee for NPMLE in [32, 83, 70] relies on assumptions of either compact support or tail
bound on the mixing distribution.

Location-scale mixtures. 'We have assumed that the covariance of our mixture is known and
common across components. There is a large body of work studying general location-scale
Gaussian mixtures, see, e.g., [60, 39, 7]. The introduction of the scale parameters makes the
problem significantly more difficult. For parameter estimation, the optimal rate remains un-
known even in one dimension except for k = 2 [35]. In the special case where all components
share the same unknown variance o2, the optimal rate in one dimension is shown in [81] to
be n~1/(4k) for estimating the mixing distribution and n=/(2%) for o2, achieved by Lindsay’s
estimator [54]. Modifying the procedure in Section 3 by replacing the DMM subroutine with
Lindsay’s estimator, this result can be extended to high dimensions as follows (see Section 4
of the supplemental material [22] for details), provided that the unknown covariance matrix
is isotropic; otherwise the optimal rate is open.

THEOREM 6.1 (Unknown common variance). Assume the setting of Theorem 1.1, where
Pr =T x N(0,0%1y) for some unknown o bounded by some absolute constant C' and T €

A

Gk.,q- Given n i.i.d. observations from Pr, there exists an estimator (', &) such that

. d 1/4
60 ERED) S (L) AT, Bt o G/,
n
Furthermore, both rates are minimax optimal.

Number of components. This work assumes that the parameter k is known and fixed. Since
the centers are allowed to overlap arbitrarily, k is effectively an upper bound on the number
of components. If % is allowed to depend on n, the optimal W -rate is shown in [81, Theorem
5] to be @(blgol%) provided k = Q(lolgol%) <) including nonparametric mixtures. Extending
this result to the high-dimensional setting of Theorem 1.1 is an interesting future direction.

The problem of selecting the mixture order k has been extensively studied. For instance,
many authors have considered likelihood-ratio based tests; however, standard asymptotics for
such tests may not hold [37]. Various workarounds have been considered, including method
of moments [54, 17], tests inspired by the EM algorithm [53], quadratic approximation of
the log-likelihood ratio [55], and penalized likelihood [26]. A common practical method is
to infer k£ from an eigengap in the sample covariance matrix. In our setting, this technique
is not viable even if the model centers are separated, since the atoms may all lie on a low-
dimensional subspace. However, under separation assumptions we may infer a good value of
k from the estimated mixing distribution I' of our algorithm.

Efficient algorithms for density estimation. As mentioned in Section 1.2, for the high-
dimensional k£-GM model, achieving the optimal rate Oy (1/d/n) with a proper density esti-
mate in polynomial time is unresolved except for the special case of k = 2. Such a procedure,
as described in Section 4.3, is of method-of-moments type (involving the first three mo-
ments); nevertheless, thanks to the observation that the one-dimensional subspace of spanned
by the centers of a zero-mean 2-GM can be extracted from the covariance matrix, we can re-
duce the problem to one dimension by projection, thereby sidestepping third-order tensor
decomposition which poses computational difficulty. Unfortunately, this observation breaks
down for £-GM with k > 3, as covariance alone does not provide enough information for
learning the subspace accurately. For this reason it is unclear whether the algorithm in Sec-
tion 4.3 is capable to achieve the optimal rate of y/d/n and so far we can only prove a rate
of (d/ n)l/ 4 in Theorem 4.7. Closing this computational gap (or proving its impossibility) is
a challenging open question.
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Analysis of the MLE. A natural approach to any estimation problem is the maximum likeli-
hood estimator, which, for the k-GM model (1.6), is defined as fMLE = argmaxpeg, , Z?:l log pr(X;).
Although this non-convex optimization is difficult to solve in high dimensions, it is of interest
to understand the statistical performance of the MLE and whether it can achieve the optimal
rate of density estimation in Theorem 1.2.

A rate of convergence for the MLE is typically found by bounding the bracketing entropy
of the class of square-root densities; see, e.g., [77, 75]. Given a function class F of real-
valued functions on R¢, its e-bracketing number Npj(e) is defined as the minimum number
of brackets (pairs of functions which differ by € in Lo-norm), such that each f € F is sand-
wiched between one of such brackets. Suppose that the class F is parametrized by ¢ in some
D-dimensional space ©. For such parametric problems, it is reasonable to expect that the

bracketing number of F behaves similarly to the covering number of © as (%) oD (see, for
instance, the discussion on [75, p. 122]). Such bounds for Gaussian mixtures were obtained
in [58]. For example, for d-dimensional k-GMs, [58, Proposition B.4] yields the following
bound for the global bracketing entropy:

(6.2) log Nj(€) < kdlog %
€

Using standard result based on bracketing entropy integral (c.f. e.g. [75, Theorem 7.4]), this
result leads to the following high-probability bound for the MLE I'y,:

Py < ¢y Ploeldn)

n

(6.3) H(PI:ML,
which has the correct dependency on k, but is suboptimal by a logarithmic factor compared to
Theorem 1.2. It is for this reason that we turn to the Le Cam-Birgé estimator, which relies on
bounding the local Hellinger entropy without brackets, in proving Theorem 1.2. Obtaining a
local version of the bracketing entropy bound in (6.2) and determining the optimality (without
the undesirable log factors) of the MLE for high-dimensional GM model remains open.

Adaptivity. The rate in Theorem 1.1 is optimal in the worst-case scenario where the centers
of the Gaussian mixture can overlap. To go beyond this pessimistic result, in one dimen-
sion, [38] showed that when the atoms of I' form kg well-separated (by a constant) clusters
(see [81, Definition 1] for a precise definition), the optimal rate is .~/ (4(k=%0)+2) "interpo-
lating the rate n~/(#%=2) in the worst case (ko = 1) and the parametric rate n~/2 in the best
case (ko = k). Furthermore, this can be achieved adaptively by either the minimum distance
estimator [38, Theorem 3.3] or the DMM algorithm [81, Theorem 2].

In high dimensions, it is unclear how to extend the adaptive framework in [38]. For the
procedure considered in Section 3, by Lemma 3.5, the projection V obtained from PCA pre-
serves the separation of the atoms of I'. Therefore, in the special case of k = 2, if we first
center the data so that the projection v in (3.2) is one-dimensional, then the adaptive guar-
antee of the DMM algorithm allows us to adapt to the clustering structure of the original
high-dimensional mixture; however, if k£ > 2, Algorithm 1 must be invoked to learn the mul-
tivariate v, and it does not seem possible to obtain an adaptive version of Lemma 3.2, since
some of the projections may have poor separation, e.g. when all the atoms are aligned with
the first coordinate vector.

SUPPLEMENTARY MATERIAL

Supplement to ‘“Optimal estimation of high-dimensional Gaussian location mixtures”
(DOTI: ).
In this supplemental material, we present the proofs of several remaining technical lemmas.
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