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RATE-OPTIMAL GRAPHON ESTIMATION

By CHAO GAO, YU LU AND HARRISON H. ZHOU

Yale University

Network analysis is becoming one of the most active research
areas in statistics. Significant advances have been made recently on
developing theories, methodologies and algorithms for analyzing net-
works. However, there has been little fundamental study on optimal
estimation. In this paper, we establish optimal rate of convergence
for graphon estimation. For the stochastic block model with k clus-
ters, we show that the optimal rate under the mean squared error is
n~tlogk + k:2/n2, The minimax upper bound improves the existing
results in literature through a technique of solving a quadratic equa-
tion. When £ < y/nlogn, as the number of the cluster k grows, the
minimax rate grows slowly with only a logarithmic order n~!logk. A
key step to establish the lower bound is to construct a novel subset of
the parameter space and then apply Fano’s lemma, from which we see
a clear distinction of the nonparametric graphon estimation problem
from classical nonparametric regression, due to the lack of identifia-
bility of the order of nodes in exchangeable random graph models.
As an immediate application, we consider nonparametric graphon es-
timation in a Holder class with smoothness o. When the smoothness
a > 1, the optimal rate of convergence is n~'logn, independent of
a, while for a € (0, 1), the rate is n_ffifl, which is, to our surprise,
identical to the classical nonparametric rate.

1. Introduction. Network analysis [20] has gained cosiderable research
interests in both theories [7] and applications [51, 19]. A lot of recent work
has been focusing on studying networks from a nonparametric perspective
[7], following the deep advancement in exchangeable arrays [3, 30, 32, 14].
In this paper, we study the fundamental limits in estimating the underlying
generating mechanism of network models, called graphon. Though various
algorithms have been proposed and analyzed [10, 45, 52, 2, 9], it is not clear
whether the convergence rates obtained in these works can be improved, and
not clear what the differences and connections are between nonparametric
graphon estimation and classical nonparametric regression. The results ob-
tained in this paper provide answers to those questions. We found many
existing results in literature are not sharp. Nonparametric graphon estima-
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tion can be seen as nonparametric regression without knowing design. When
the smoothness of the graphon is small, the minimax rate of graphon esti-
mation is identical to that of nonparametric regression. This is surprising,
since graphon estimation seems to be a more difficult problem, for which
the design is not observed. When the smoothness is high, we show that the
minimax rate does not depend on the smoothness anymore, which provides
a clear distinction between nonparametric graphon estimation and nonpara-
metric regression.

We consider an undirected graph of n nodes. The connectivity can be
encoded by an adjacency matrix {4;;} taking values in {0,1}"*". The value
of A;j stands for the presence or the absence of an edge between the i-th
and the j-th nodes. The model in this paper is A;; = Aj; ~ Bernoulli(6;;)
for 1 < j < i <n, where

(1.1) 0;; = f(&, &), i#J€[n]

The sequence {&;} are random variables sampled from a distribution P¢
supported on [0, 1]”. A common choice for the probability P¢ is i.i.d. uniform
distribution on [0, 1]. In this paper, we allow P¢ to be any distribution, so
that the model (1.1) is studied to its full generality. Given {¢;}, we assume
{A;;} are independent for 1 < j < i < n, and adopt the convention that
Aj; = 0 for each i € [n]. The nonparametric model (1.1) is inspired by
the advancement of graph limit theory [37, 14, 36]. The function f(z,y),
which is assumed to be symmetric, is called graphon. This concept plays a
significant role in network analysis. Since graphon is an object independent
of the network size n, it gives a natural criterion to compare networks of
different sizes. Moreover, model based prediction and testing can be done
through graphon [35]. Besides nonparametric models, various parametric
models have been proposed on the matrix {6;;} to capture different aspects
of the network [28, 29, 44, 43, 24, 27, 1, 33].

The model (1.1) has a close relation to the classical nonparametric regres-
sion problem. We may view the setting (1.1) as modeling the mean of A;; by
a regression function f(&;, §;) with design {(&;,&;)}. In a regression problem,
the design points {(&;,&;)} are observed, and the function f is estimated
from the pair {(&;,&;), Aij}. In contrast, in the graphon estimation setting,
{(&,&;)} are latent random variables, and f can only be estimated from
the response {A;;}. This causes an identifiability problem, because without
observing the design, there is no way to associate the value of f(x,y) with
(x,y). In this paper, we consider the following loss function

1 .
s > (6 —0i)°

i,5€[n]
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to overcome the identifiability issue. This is identical to the loss function
widely used in the classical nonparametric regression problem with the form

. 2

53 (Fes) - f6s)

i,j€[n]
Even without observing the design {(&;,&;)}, it is still possible to estimate
the matrix {0;;} by exploiting its underlying structure modeled by (1.1).

We first consider {6;;} of a block structure. This stochastic block model,
proposed by [29], is serving as a standard data generating process in network
community detection problem [7, 47, 4, 31, 34, 8]. We denote the parameter
space for {6;;} by O, where k is the number of clusters in the stochastic
block model. In total, there are an order of % number of blocks in {6;;}. The
value of 0;; only depends on the clusters that the i-th and the j-th nodes
belong to. The exact definition of Oy, is given in Section 2.2. For this setting,
the minimax rate for estimating the matrix {6;;} is as follows.

THEOREM 1.1. Under the stochastic block model, we have

1 - k2 logk
inf sup E § — Z (03 — 055)° p =< —5 + el

0 0cOy n? n? n

i,j€[n]
forany 1 <k <n.

The convergence rate has two terms. The first term k2/n? is due to the
fact that we need to estimate an order of k? number of unknown parameters
with an order of n? number of observations. The second term n~!logk,
which we coin as the clustering rate, is the error induced by the lack of
identifiability of the order of nodes in exchangeable random graph models.
Namely, it is resulted from the unknown clustering structure of the n nodes.
This term grows logarithmically as the number of clusters k increases, which
is different from what is obtained in literature [10] based on lower rank
matrix estimation.

We also study the minimax rate of estimating {6;;} modeled by the re-
lation (1.1) with f belonging to a Hoélder class F, (M) with smoothness «.
The class Fo (M) is rigorously defined in Section 2.3. The result is stated in
the following theorem.

THEOREM 1.2.  Consider the Holder class Fo (M), defined in Section 2.3.
We have

2
1 N T af1 0 1
inf sup supE — E (6;; — eij)2 - {n ; <a<l,

A 2 logn
0 feFa(M)E~Pe n i,5€[n] 7% ) o> ]-7
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where the expectation is jointly over {A;;} and {&}.

The approximation of piecewise block function to an a-smooth graphon
f vields an additional error at the order of k~2% (see Lemma 2.1). In view
of the minimax rate in Theorem 1.1, picking the best k£ to trade off the
sum of the three terms k=2%, k?/n?, and n~!logk gives the minimax rate
in Theorem 1.2.

The minimax rate reveals a new phenomenon in nonparametric estima-
tion. When the smoothness parameter « is smaller than 1, the optimal rate
of convergence is the typical nonparametric rate. Note that the typical non-

parametric rate is N ~mta [49], where N is the number of observations and
d is the function dimension. Here, we are in a two-dimensional setting with
number of observations N = n? and dimension d = 2. Then the correspond-
ing rate is N~z = n_tfifl. Surprisingly, in Theorem 1.2 for the regime
a € (0,1), we get the exact same nonparametric minimax rate, though we
are not given the knowledge of the design {(&;,&;)}. The cost of not ob-
serving the design is reflected in the case with a > 1. In this regime, the
smoothness of the function does not help improve the rate anymore. The
minimax rate is dominated by n~!logn, which is essentially contributed by
the logarithmic cardinality of the set of all possible assignments of n nodes
to k clusters. A distinguished feature of Theorem 1.2 to note is that we do
not impose any assumption on the distribution P.

To prove Theorem 1.1 and Theorem 1.2, we develop a novel lower bound
argument (see Section 3.3 and Section 4.2), which allows us to correctly
obtain the packing number of all possible assignments. The packing number
characterizes the difficulty brought by the ignorance of the design {(&;, ;) } in
the graphon model or the ignorance of clustering structure in the stochastic
block model. Such argument may be of independent interest, and we expect
its future applications in deriving minimax rates of other network estimation
problems.

Our work on optimal graphon estimation is closely connected to a grow-
ing literature on nonparametric network analysis. For estimating the ma-
trix {6;;} of stochastic block model, [10] viewed {6;;} as a rank-k matrix
and applied singular value thresholding on the adjacency matrix. The con-
vergence rate obtained is \/k/n, which is not optimal compared with the
rate n~1logk + k?/n? in Theorem 1.1. For nonparametric graphon esti-
mation, [52] considered estimating f in a Holder class with smoothness
a and obtained the rate \/n=%/2logn under a closely related loss func-
tion. The work by [9] obtained the rate n~!logn for estimating a Lips-
chitz f, but they imposed strong assumptions on f. Namely, they assumed
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Lolx — y| < |g(x) — g(y)| < Li|z — y| for some constants Li, La, with
g(x) = fol f(z,y)dy. Note that this condition excludes the stochastic block
model, for which g(x) — g(y) = 0 when different z and y are in the same
cluster. Local asymptotic normality for stochastic block model was estab-
lished in [6]. A method of moment via tensor decomposition was proposed
by [5].

Organization. The paper is organized as follows. In Section 2, we state
the main results of the paper, including both upper and lower bounds for
stochastic block model and nonparametric graphon estimation. Section 3 is a
discussion section, where we discuss possible generalization of the model, re-
lation to nonparametric regression without knowing design and lower bound
techniques used in network analysis. The main body of the technical proofs
are presented in Section 4, and the remaining proofs are stated in the sup-
plementary material [15].

Notation. For any positive integer d, we use [d] to denote the set {1, 2, ..., d}.
For any a,b € R, let a Vb = max(a,b) and a A b = min(a,b). The floor
function |a] is the largest integer no greater than a, and the ceiling function
[a] is the smallest integer no less than a. For any two positive sequences
{an} and {b,}, a, < b, means there exists a constant C' > 0 independent
of n, such that C~b, < a, < Cb, for all n. For any {a;;}, {b;;} € R™™,
we denote the ¢3 norm by [lal| = />, jcn a%j and the inner product by
(a,b) = >, jcpn) @ijbij- Given any set S, [S| denotes its cardinality, and
I{z € S} stands for the indicator function which takes value 1 when z € S
and takes value 0 when x ¢ S. For a metric space (7, p), the covering number
N (e, T, p) is the smallest number of balls with radius € and centers in T to
cover T, and the packing number M(e, T, p) is the largest number of points
in T that are at least ¢ away from each other. The symbols P and E stand
for generic probability and expectation, whenever the distribution is clear
from the context.

2. Main Results. In this section, we present the main results of the
paper. We first introduce the estimation procedure in Section 2.1. The min-
imax rates of stochastic block and nonparametric graphon estimation are
stated in Section 2.2 and Section 2.3, respectively.

2.1. Methodology. We are going to propose an estimator for both stochas-
tic block model and nonparametric graphon estimation under Hélder smooth-
ness. To introduce the estimator, let us define the set Z,, , = {z : [n] — [k]}
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to be the collection of all possible mappings from [n] to [k] with some inte-
gers n and k. Given a z € Z,, the sets {z71(a) : a € [k]} form a partition
of [n], in the sense that Uae[k]z_l(a) = [n] and 271 (a) N z71(b) = & for any
a # b € [k]. In other words, z defines a clustering structure on the n nodes. It
is easy to see that the cardinality of Z,, j, is k™. Given a matrix {n;;} € R™*",
and a partition function z € Z, 1, we use the following notation to denote
the block average on the set z71(a) x z71(b). That is,

(2.1) Nab(2) = -1 ||z Z Z nij, fora#be k],

zez L(a) je2—1(b)

and when |z71(a)| > 1,

n = 1 i or a
(2.2) Naa(2) = |z*1(a)\(|z*1(a)| —1) 2-?5]-622:1(&) Nij,  f € [k].

For any Q = {Qu} € R¥** and 2 € Z, 1k, define the objective function

LQ,2)= ) > (Aij — Qu)*.

a,be[k] (i,5)€21(a) x 27 1(b)
i#]

For any optimizer of the objective function,

(2.3) (Q,2) € argmin  L(Q,z2),

QERFXk 2€Z,

the estimator of 6;; is defined as

(24) Z] _sz (4)» v>7,

and éij = éji for ¢ < j. Set the diagonal element by ém = 0. The proce-
dure (2.4) can be understood as first clustering the data by an estimated 2
and then estimating the model parameters via block averages. By the least
squares formulation, it is easy to observe the following property.

PROPOSITION 2.1.  For any minimizer (Q,é), the entries of Q has rep-
resentation

(2.5) Qab = Aap(2),
for all a,b € [k].



RATE-OPTIMAL GRAPHON ESTIMATION 7

The representation of the solution (2.5) shows that the estimator (2.4)
is essentially doing a histogram approximation after finding the optimal
cluster assignment Z € Z, j according to the least squares criterion (2.3).
In the classical nonparametric regression problem, it is known that a simple
histogram estimator cannot achieve optimal convergence rate for a > 1
[49]. However, we are going to show that this simple histogram estimator
achieves optimal rates of convergence under both stochastic block model and
nonparametric graphon estimation settings.

Similar estimators using the Bernoulli likelihood function have been pro-
posed and analyzed in the literature [7, 57, 52, 45]. Instead of using the like-
lihood function of Bernoulli distribution, the least squares estimator (2.3)
can be viewed as maximizing Gaussian likelihood. This allows us to obtain
optimal convergence rates with cleaner analysis.

2.2. Stochastic Block Model. 1In the stochastic block model setting, each
node i € [n] is associated with a label a € [k], indicating its cluster. The
edge A;; is a Bernoulli random variable with mean 6;;. The value of 6;; only
depends on the clusters of the i-th and the j-th nodes. We assume {6;;} is
from the following parameter space,

Or = {{9ij} € [0,1]"" :0;; =0, bij = Qap = Qpa

for (i,7) € 271 (a) x 271(b) for some Qu, € [0,1] and z € Zn’k}.

Namely, the partition function z assigns cluster to each node, and the value
of Qqp measures the intensity of link between the a-th and the b-th clusters.
The least squares estimator (2.3) attains the following convergence rate for
estimating {6;;}.

THEOREM 2.1.  For any constant C' > 0, there is a constant C' > 0 only
depending on C', such that

1 - k?  logk
nZ Z(9z‘j—9z'j)2éc(+ 2% >
]

K n2 n
NI

with probability at least 1 — exp(—C'nlogk), uniformly over 6 € Oy. Fur-
thermore, we have

n2 n

1 - k*  logk
sup B¢ — > (05 — 0;5)° §C1< + 2 )7

pco, | n? 4
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for all k € [n] with some universal constant Cy > 0.

Theorem 2.1 characterizes different convergence rates for k in different
regimes. Suppose k = n’ for some 6 € [0,1]. Then the convergence rate in
Theorem 2.1 is

n=2 k=1,
k*  logk -1 §=0,k>2,
(2.6) e =
n n n~*logn 0 €(0,1/2],
n~20-9) § e (1/2,1].

The result completely characterizes the convergence rates for stochastic
block model with any possible number of clusters k. Depending on whether
k is small, moderate, or large, the convergence rates behave differently.

The convergence rate, in terms of k, has two parts. The first part k?/n? is
called the nonparametric rate. It is determined by the number of parameters
and the number of observations of the model. For the stochastic block model
with & clusters, the number of parameters is k(k+1)/2 =< k? and the number
of observations is n(n + 1)/2 < n%. The second part n~!logk is called the
clustering rate. Its presence is due to the unknown labels of the n nodes. Our
result shows the clustering rate is logarithmically depending on the number
of clusters k. From (2.6), we observe that when k is small, the clustering
rate dominates. When £k is large, the nonparametric rate dominates.

To show that the rate in Theorem 2.1 cannot be improved, we obtain the
following minimax lower bound.

THEOREM 2.2. There exists a universal constant C > 0, such that

1 A k> logk
inf sup P — 01-—9¢<220<—|— ) > 0.8,
6 0cO, 2 ivgn]( J ]) n? n

and

K logk
S+ )
n n

1 .
inf sup E< — 0;: — 0;:)2 ZC(
0 6cOy, 7”L2 Z ( ! j)

for any k € [n].

The upper bound of Theorem 2.1 and the lower bound of Theorem 2.2
immediately imply the minimax rate in Theorem 1.1.
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2.3. Nonparametric Graphon FEstimation. Let us proceed to nonpara-
metric graphon estimation. For any i # j, A;; is sampled from the following
process,

(fl, ceey fn) ~ Pg, A”’(fl, 5]) ~ Bernoulli(eij), Where Hij = f(fl, 5])

For i € [n], Aji = 6; = 0. Conditioning on ({1, ...,&,), Aij is independent
across i,j € [n]. To completely specify the model, we need to define the
function class of f on [0,1]2. Since f is symmetric, we only need to specify
its value on D = {(z,y) € [0,1)? : £ > y}. Define the derivative operator by

oItk
@atony

and we adopt the convention Voo f(x,y) = f(x,y). The Holder norm is
defined as

vjkf<$7 y) =

Vinf(2,) — Vil @y
fln, = mox swp [Vpf(ey)lt max  sup S0 Vil @y
Jjt+k<l|la| zyeD Jtk=lo] (zy)£(z' y')eD (‘.f - ‘ + ‘y -y ‘)a @

The Hoélder class is defined by

Ha(M) ={|fllna <M : f(z,y) = f(y,z) for z >y},

where o > 0 is the smoothness parameter and M > 0 is the size of the class,
which is assumed to be a constant. When a € (0, 1], a function f € Hq (M)
satisfies the Lipschitz condition

(2.7) |flz,y) = fa' )] < M(Jlz —2'| + ly —¥'])%

for any (z,y), (2',y') € D. In the network model, the graphon f is assumed
to live in the following class,

FaM)={0< f<1:feH(M)}.

We have mentioned that the convergence rate of graphon estimation is es-
sentially due to the stochastic block model approximation of f in a Holder
class. This intuition is established by the following lemma, whose proof is
given in the supplementary material [15].

LEMMA 2.1.  There ewists 2* € Z,, 1, sastisfying,

=5 DD DI (M E) Melte (;)aM,

a,be [k] {17£]Z* (i)=a,z* (]):b}

for some universal constant C' > 0.
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The graph limit theory [37] suggests P¢ to be an i.i.d. uniform distribution
on the interval [0, 1]. For the estimating procedure (2.3) to work, we allow P¢
to be any distribution. The upper bound is attained over all distributions
P¢ uniformly. Combining Lemma 2.1 and Theorem 2.1 in an appropriate
manner, we obtain the convergence rate for graphon estimation by the least
squares estimator (2.3).

THEOREM 2.3. Choose k = (nwhl] Then for any C' > 0, there exists
a constant C > 0 only depending on C' and M, such that

1 A 20 ]
ﬁ Z (Qij — 92']‘)2 < C <Tl_a2+1 + Ogn) s

i,j€[n]

with probability at least 1 — exp(—C'n), uniformly over f € Fo(M) and Ps.
Furthermore,

1 A L
I R SRR ey A )
feEFa (M) P = n

for some other constant C1 > 0 only depending on M. Both the probability
and the expectation are jointly over {A;;} and {&}.

Similar to Theorem 2.1, the convergence rate of Theorem 2.3 has two

parts. The nonparametric rate n_a%l, and the clustering rate n~! log n. Note
that the clustering rates in both theorems are identical because n~! logn =
n~'log k under the choice k = [nﬁ] An interesting phenomenon to note
is that the smoothness index « only plays a role in the regime a € (0,1).
The convergence rate is always dominated by n~'logn when o > 1.

In order to show the rate of Theorem 2.3 is optimal, we need a lower
bound over the class F, (M) and over all P¢. To be specific, we need to show

(2.8) inf sup supE iz Z (B —0:;)2 p > C <n_a2f1 + logn) ;

0 feFa(M) P¢ i i n
for some constant C' > 0. In fact, the lower bound we obtained is stronger
than (2.8) in the sense that it holds for a subset of the space of probabilities
on {&;}. The subset P requires the sampling points {&;} to well cover the
interval [0,1] for {f(&,&;)}i e to be good representatives of the whole
function f. For each a € [k], define the interval

(2.9) U, = [a’;l Z) .
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We define the distribution class by

P = {IP’E : Pe (Allj < Z]I{& cU,} < )\QTn, for any a € [k:]) >1-— exp(—n‘;)} ,
i=1

for some positive constants A1, Ao and some arbitrary small constant § €
(0,1). Namely, for each interval U,, it contains roughly n/k observations.
By applying standard concentration inequality, it can be shown that the
i.i.d. uniform distribution on {¢;} belongs to the class P.

THEOREM 2.4. There exists a constant C > 0 only depending on M, «,
such that

1 A a 1
— > (bij—05)7°>C (n_&2+1 + Oin) > 0.8,

i,j€[n]

inf sup sup P
0 feFa(M)PeeP

and

1 A o« 1
inf sup sup E — E (0 — gij)2 >C (n_ o 4 ogn> ,
0 feFo(M)PeP n i n

where the probability and expectation are jointly over {A;;} and {&}.

The proof of Theorem 2.4 is given in the supplementary material [15].
The minimax rate in Theorem 1.2 is an immediate consequence of Theorem
2.3 and Theorem 2.4.

3. Discussion.

3.1. More General Models. The results in this paper assume symmetry
on the graphon f and the matrix {6;;}. Such assumption is naturally made
in the context of network analysis. However, these results also hold under
more general models. We may consider a slightly more general version of
(1.1) as

0i;; = f(&m;), 1<4,j<nm,
with {&} and {n;} sampled from P¢ and P, respectively, and the function f
is not necessarily symmetric. To be specific, let us redefine the Holder norm
|| - ||x., by replacing D with [0,1]? in its original definition in Section 2.3.
Then, we consider the function class

FL(M)={0<f<1:|flln. <M}

The minimax rate for this class is stated in the following theorem without
proof.
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THEOREM 3.1.  Consider the function class F., (M) with « > 0 and M >
0. We have

2a
1 A T atl 0 1
inf sup supES — E (63 — 0:)% b =< {n , <a<l,

2 logn
0 fo&(M) ENﬁé n i,jG[n] n « Z 17
n~1I'n

where the expectation is jointly over {A}, {&} and {n;}.

Similarly, we may generalize the stochastic block model by the parameter
space

oy = {{eij} € [0,1)™™ : 0;5 = Qup for (i,5) € 2, (a) x 25 (b)

with some Qqp € [0,1], 21 € Z,,, and 23 € ZmJ}-

Such model naturally arises in the contexts of biclustering [25, 41, 11, 39]
and matrix organization [18, 13, 17], where symmetry of the model is not
assumed. Under such extension, we can show that a similar minimax rate
as in Theorem 1.1 as follows.

THEOREM 3.2. Consider the parameter space @Z‘;ym and assume log k =<
logl. We have

1 A kl  logk logl
inf sup E{ — Z(eij_eij)Q o KL logk | logl
0 ocov™ nm ‘e nm m n

Jjem]

forany 1<k <mnand1l <l <m.

The lower bounds of Theorem 3.1 and Theorem 3.2 are directly implied
by viewing the symmetric parameter spaces as subsets of the asymmetric
ones. For the upper bound, we propose a modification of the least squares
estimator in Section 2.1. Consider the criterion function

LY™MQ,21,20) = Y > (Aij — Qav)*.

(a,b)ElkIX[I] (i,5) €27 (a) x 25 (b)

For any (Q, 21, 22) € ArGMUNGEREXL 21 € 2, 4 22€ Zpm L(Q, z1, z2), define the es-
timator of 0;; by

0ij = Qél(i)ﬁg(j)7 for all (4, j) € [n] x [m].
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Using the same proofs of Theorem 2.1 and Theorem 2.3, we can obtain the
upper bounds.

3.2. Nonparametric Regression without Knowing Design. The graphon
estimation problem is closely related to the classical nonparametric regres-
sion problem. This section explores their connections and differences to bring
better understandings of both problems. Namely, we study the problem of
nonparametric regression without observing the design. First, let us consider
the one-dimensional regression problem

Yi = f(éz) +zi, i€ [n]v
where {¢;} are sampled from some P¢, and z; are i.i.d. N(0,1) variables. A

nonparametric function estimator f estimates the function f from the pairs
{(&i,y;)}. For Holder class with smoothness «, the minimax rate under the

. 2 a
loss %Zie[n} <f(§1) - f(&)) is at the order of n~ a3 [49]. However, when

the design {&;} is not observed, the minimax rate is at a constant order. To
see this fact, let us consider a closely related problem

yi =0; + 2z, i€ ]n],

where we assume 6 € ©5. The parameter space O, is defined as a subset of
[0,1]™ with {6;} that can only take two possible values ¢; and ¢y. It can be
viewed as a one-dimensional version of stochastic block model. We can show
that

1 .
inf sup E ¢ — 0; — 0,)% p =< 1.
0 0€0, n g[;}

The upper bound is achieved by letting 6; = y; for each i € [n]. To see
the lower bound, we may fix ¢y = 1/4 and g2 = 1/2. Then the problem
is reduced to n independent two-point testing problems between N(1/4,1)
and N(1/2,1) for each ¢ € [n]. It is easy to see that each testing problem
contributes to an error at the order of a constant, which gives the lower
bound of a constant order. This leads to a constant lower bound for the
original regression problem by using the embedding technique in the proof
of Theorem 2.4, which shows that ©4 is a smaller space than a Holder class
on a subset of [n]. Thus, 1 is also a lower bound for the regression problem
without knowing design.

In contrast to the one-dimensional problem, we can show that a two-
dimensional nonparametric regression without knowing design is more in-
formative. Consider

yij = f(&, &) + 24, 1,7 € [n],
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where {{;} are sampled from some P¢, and z;; are i.i.d. N(0,1) variables.
Let us consider the Holder class HL, (M) = {f : ||f|lx, < M} with Holder
norm || - ||, defined in Section 3.1. When the design {¢;} is known, the

. 2
minimax rate under the loss # Zi,je[n] (f(fl, &) — (&, @)) is at the order

2a
of n = e+T. When the design is unknown, the minimax rate is stated in the
following theorem.

THEOREM 3.3.  Consider the Holder class HL,(M) for « > 0 and M > 0.
We have

1 A 2 -2
inf sup swpE{ 5 > (f(6n6) ~ £(6.)) x{ﬁgn ’ g<>01‘<1»

- 2
I feH, (M) Pe n i,5€[n]

n )
where the expectation is jointly over {A;;} and {&}.

The minimax rate is identical to that of Theorem 1.2, which demonstrates
the close relation between nonparametric graphon estimation and nonpara-
metric regression without knowing design. The proof of this result is similar
to the proofs of Theorem 2.3 and Theorem 2.4, and is omitted in the paper.
One simply needs to replace the Bernoulli analysis by the corresponding
Gaussian analysis in the proof. Compared with the rate for one-dimensional
regression without knowing design, the two-dimensional minimax rate is
more interesting. It shows that the ignorance of design only matters when
a > 1. For a € (0,1), the rate is exactly the same as the case when the
design is known.

The main reason for the difference between the one-dimensional and the
two-dimensional problems is that the form of {(&;,¢;)} implicitly imposes
more structure. To illustrate this point, let us consider the following two-
dimensional problem

yij = f(&j) + 2, 4,7 € [nl,

where &;; € [0,1]% and {&;;} are sampled from some distribution. It is easy to
see that this is equivalent to the one-dimensional problem with n? observa-
tions and the minimax rate is at the order of a constant. The form {(&;,&;)}
implies that the lack of identifiability caused by the ignorance of design is
only resulted from row permutation and column permutation, and thus it is
more informative than the design {&;;}.
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3.3. Lower Bound for Finite k. A key contribution of the paper lies in
the proof of Theorem 2.2, where we establish the lower bound k?/n? +
n~'logk (especially the n~!logk part) via a novel construction. To better
understand the main idea behind the construction, we present the analysis
for a finite & in this section. When 2 < k < O(1), the minimax rate becomes
n~!. To prove this lower bound, it is sufficient to consider the parameter
space O with k = 2. Let us define

1 1,4 c
_ 2 2 n
Q= l_|_L l\ﬁ )
2 NG 2

for some ¢ > 0 to be determined later. Define the subspace
T = {{0i;} € [0,1]™" : 0ij = Q.(5)s(;) for some z € Z,5} .

It is easy to see that T' C ©9. With a fixed @, the set T has a one-to-one
correspondence with Z, 2. Let us define the collection of subsets S = {S :
S C [n]}. For any z € Z,9, it induces a partition {z71(1),271(2)} on the
set [n]. This corresponds to {5, S¢} for some S € S. With this observation,
we may rewrite T as

T = {{ez-j} € 0,1 : 0;; = % for (4, 5) € (S x S) U (8¢ x S°),

b;; = % + % for (i,7) € (S x S°) U (S° x S), with some S € S}.
The subspace T characterizes the difficulty of the problem due to the ig-
norance of the clustering structure {S,S} of the n nodes. Such difficulty
is central in the estimation problem of network analysis. We are going to
use Fano’s lemma (Proposition 4.1) to lower bound the risk. Then, it is
sufficient to upper bound the KL diameter supy g D(Pg||Py) and lower
bound the packing number M (e, T, p) for some appropriate € and the met-
ric p(6,0") = n=1]|0 — ¢'||. Using Proposition 4.2, we have

sup D(Py||Pyr) < sup 81|60 — &'||> < 8c*n.
6,0’¢c

To obtain a lower bound for M(e, T, p), note that for 6,6’ € T associated
with S,5" € S, we have

9 2
n2p%(0,0') = %|SAS’] (n—|SAS')),
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where AAB is the symmetric difference defined as (A N B¢) U (A°N B).
By viewing |SAS’| as the Hamming distance of the corresponding indicator
functions of the sets, we can use the Varshamov-Gilbert bound (Lemma 4.5)
to pick Si, ..., Sy C S satisfying

1
o < I5ias;| < Zn for i # j € [N],

with N > exp(cin), for some ¢; > 0. Hence, we have

2

M(e,T,p) > N > exp(cin), with €2 = 86—
n

Applying (4.9) of Proposition 4.1, we have

2 2
inf sup P{ — 37 (B — 007 >t > 1o SNEIBZ g

6 6cO, n i,je[n] 32n cin

where the last inequality holds by choosing a sufficiently small c¢. Note that
the above derivation ignores the fact that 6; = 0 for i € [n] for the sake
of clear presentation. The argument can be easily made rigorous with slight
modification. Thus, we prove the lower bound for a finite k. For k growing
with n, a more delicate construction is stated in Section 4.2.

3.4. Application to Link Prediction. An important application of The-
orem 2.1 and Theorem 2.3 is link prediction. The link prediction or the
network completion problem [21, 38, 56] has practical significances. Instead
of observing the whole adjacency matrix, we observe {A;; : (i,7) € Q} for
some ) C [n] x [n]. The goal is to infer the unobserved edges. One example is
the biological network. Scientific study showed that only 80% of the molecu-
lar interactions in cells of Yeast are known [54]. Accurate prediction of those
unseen interactions can greatly reduce the costs of biological experiments.
To tackle the problem of link prediction, we consider a modification of the
constrained least square program, which is defined as

2n2

(3.1) min |02 -
€]

Z AijQij, s.t. 0 € O.
(4,9)€Q

The estimator § obtained from solving (3.1) takes advantage of the underly-
ing block structure of the network, and is an extension to (2.3). The number
éij can be interpreted as how likely there is an edge between ¢ and j. To ana-
lyze the theoretical performance of (3.1), let us assume the set 2 is obtained
by uniformly sampling with replacement from all edges. In other words, €2
may contain some repeated elements.
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THEOREM 3.4. Assume |Q|/n? > c for a constant ¢ € (0,1]. For any
constant C' > 0, there exists some constant C > 0 only depending on C’
and ¢ such that

k> logk
nzz ij — 0ij) Sc(ng—"_ n >7

i,j€[n

with probability at least 1 — exp(—C'nlogk) uniformly over 6 € Oy for all
k € [n].

The result of Theorem 3.4 assumes |Q2|/n? > c. For example, when || /n? =
1/2, we only observe at most half of the edges. Theorem 3.4 gives rate-
optimal link prediction of the rest of the edges. In contrast, the low-rank
matrix completion approach, though extensively studied and applied in lit-
erature, only gives a rate k/n, which is inferior to that of Theorem 3.4.

In the case where the assumption of stochastic block model is not natural
[48], we may consider a more general class of networks generated by a smooth
graphon. This is also a useful assumption to do link prediction. Using the

1
same estimator (3.1) with k = [neA1+1], we can obtain the error

_2a_ logn
_ < C 2a+1
LD (i 4 252,

i,5€[n]

with probability at least 1 — exp(—C’n) uniformly over f € F, (M) and P,
which extends Theorem 2.3. The proof of Theorem 3.4 is nearly identical to
that of Theorem 2.1 and is omitted in the paper.

3.5. Minimazx Rate for Operator Norm. The minimax rates in the paper
are all studied under the £5 norm, which is the Frobenius norm for a ma-
trix. It is also interesting to investigate the minimax rate under the matrix
operator norm. Recall that for a matrix U, its operator norm ||U||op is the
largest singular value.

THEOREM 3.5. For the stochastic block model Oy with k > 2, we have

inf sup E[0 — 0||
0 0cO,

Interestingly, the result of Theorem 3.5 does not depend on k as long
as k > 2. The optimal estimator is the adjacency matrix itself 8 = A,
whose bound under the operator norm can be derived from standard random
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matrix theory [50]. The lower bound is directly implied from Theorem 2.2
by the following argument,

inf sup EJ|9 — 6]12, > inf sup EJ|d - 6],
6 0

6 0€Oy 2
(3.2) > inf sup E||§ — 0|, > inf sup E[|§ — 0]]*.
0€O5 €Oy 6 0cO-

The first inequality is because ©9 is a smaller model than O for k > 2.
The second inequality is because of the fact that we can always project the
estimator into the parameter space without compromising the convergence
rate. Then, for 6,0 € O, 6 — 0 is a matrix with rank at most 4, and we have
the inequality |0 — 0|2 < 4]|0—6 |2, which gives the last inequality. Finally,
inf; supyce, E| 10 — 0|2 > n by Theorem 2.2 implies the desired conclusion.

Theorem 3.5 suggests that estimating 6 under the operator norm is not a
very interesting problem, because the estimator does not need to take advan-
tage of the structure of the space ©p. Due to recent advances in community
detection, a more suitable parameter space for the problem is O(8) N O,
where

@(,8) = {(9 — 97 = {9”} e [0, 1]n><" 10 = O,maxeij < ﬁ} .
ij

The parameter [ is understood to be the sparsity of the network because a
smaller 3 leads to less edges of the graph.

THEOREM 3.6. Forn~ ' < B<1 and k > 2, we have

inf sup E|f— QH?)p = inf sup E[f — Gng = fn.
0 0cO(B)NOy 0 6cO(B)

The lower bound of Theorem 3.6 can be obtained in a similar way by
combining the argument in (3.2) and a modified version of Theorem 2.2 (see
the supplementary material [15]). When 3 > n~!logn, the upper bound is
still achieved by the adjacency matrix, as is proved in Theorem 5.2 of [34].
For n=! < B < n~'logn, one needs to replace the rows and columns that
have high degrees by zeros in A, and the upper bound is achieved by this
trimmed adjacency matrix. This is recently established in [12].

3.6. Relation to Community Detection. Community detection is another
important problem in network analysis. The parameter estimation result es-
tablished in this paper has some consequences in community detection, espe-
cially for the results under the operator norm in Theorem 3.5 and Theorem
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3.6. Recent works in community detection [34, 12] show that the bound for
10 — HH(Q)p can be used to derive the misclassification error of spectral clus-

tering algorithm applied on the matrix 6. Recall that the spectral clustering
algorithm applies k-means to the leading singular vectors of the matrix 0.
Theorem 3.5 justifies the use of adjacency matrix as 6 in spectral clustering
because of its minimax optimality under the operator norm. Moreover, when
the network is in a sparse regime with n=! < 8 < n~!logn, [12] suggests
to use the trimmed adjacency matrix as 6 for spectral clustering. According
to Theorem 3.6, the trimmed adjacency matrix is an optimal estimator of 6
under the operator norm.

On the other hand, the connection between the minimax rates under
the ¢ norm and community detection is not that close. We illustrate this
point by the case when k = 2. Let us consider 6 € Oq, then 0;; = Q.(;).(j)
for some 2 x 2 symmetric matrix ) and z is the label function. Suppose
the within community connection probability is greater than the between
community connection probability by a margin of s. Namely, assume Q11 A
Q22 — Q12 > s > 0. Then, for the estimator éij = Qé(i)i(j) with error
# Zz‘,je[n](éij — 0;7) < €2, the number of mis-clustered nodes under 2 is
roughly bounded by O ((ne/s)?). This is because when two nodes that have
the same labels under z are clustered into different communities or when two
nodes belong to different communities are clustered into the same one, an
estimation error of O(s?) must occur. Conversely, bounds on community de-
tection can lead to an improved bound for parameter estimation. Specifically,
when (vQi A Qo — v@12)° > 20 logn and |2~ 1(1)] = |5-1(2)] = /2,
[42, 23] show that there exists a strongly consistent estimator of z in the
sense that the misclassification error is 0 with high probability. In this case,

the estimation error of # under the loss % 2oijen) (é” —0;;)? can be improved

to n~2 from n L.

Generally, parameter estimation and community detection are different
problems of network analysis. When {Qab}a,be[k] all take the same value, it
is impossible to do community detection, but parameter estimation would
be easy. Thus, good parameter estimation result does not necessarily imply
consistent community detection. General minimax rates of the community
detection problem are recently established in [55, 16].

4. Proofs. We present the proofs of the main results in this section.
The upper bounds Theorem 2.1 and Theorem 2.3 are proved in Section 4.1.
The lower bound Theorem 2.2 is proved in Section 4.2.
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4.1. Proofs of Theorem 2.1 and Theorem 2.3. This section is devoted
to proving the upper bounds. We first prove Theorem 2.1 and then prove
Theorem 2.3.

Let us first give an outline of the proof of Theorem 2.1. In the definition
of the class O, we denote the true value on each block by {Q7,} € [0, 1]¥*k
and the oracle assignment by 2* € Z, ;. such that 0;; = Q. (@0)2* (5) for any
i # j. To facilitate the proof, we introduce the following notation. For the
estimated 2, define {Qab} € [0, 1]**k by Qup = 0a,(2), and also define 9~ij =
Qé(i)g(j) for any i # j. The diagonal elements {5“} are defined as zero for
all i € [n]. By the definition of the estimator (2.3), we have

L(Q,2) < L(Q, 2"),
which can be rewritten as
(4.1) 16— Al* < 116 — 4]
The left side of (4.1) can be decomposed as
(4.2) ym—9W+a<é—ae—A>+Ha—Aw.
Combining (4.1) and (4.2), we have
(4.3) Hé—mF§2<é—aA—9>
The right side of (4.3) can be bounded as

@—@A—@ - @—@Aeﬂ»+@—&A—®

|é—m|<?_€,A—e>
16— 6]

- 4 ; 0—0
(4.5) +0W—MMHW—QM‘<W_9VA—0».

Using Lemma 4.1-4.3, the following three terms

@6 [16—4l, K?‘?,A_9>, KQ_H,A—eﬂ
|16 — 01| 116 — 6]

can all be bounded by C'\/k? + nlog k with probability at least 1-3 exp(—C’nlog k).
Combining these bounds with (4.4), (4.5) and (4.3), we get

IN

(4.4)

16 — 6]]> < C1 (K> + klogn),
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with probability at least 1 — 3 exp(—C’'nlogk). This gives the conclusion of
Theorem 2.1. The details of the proof is stated in the later part of the section.
To prove Theorem 2.3, we use Lemma 2.1 to approximate the nonparametric
graphon by the stochastic block model. With similar arguments above, we
get

16— 62 < ¢y (kQ +klogn + n%—?(a“)) :

with high probability. Choosing the best k gives the conclusion of Theorem
2.3.

Before stating the complete proofs, let us first present the following lem-
mas, which bound the three terms in (4.6), respectively. The proofs of the
lemmas will be given in the supplementary material [15].

LEMMA 4.1. For any constant C' > 0, there exists a constant C' > 0
only depending on C’, such that

16 — 0]| < C\/k2 +nlogk,

with probability at least 1 — exp(—C'nlogk).

LEMMA 4.2. For any constant C' > 0, there ewists a constant C' > 0
only depending on C', such that

‘<9~_9 ,A—9>
16 — 0|

with probability at least 1 — exp(—C'nlogk).

< Cy/nlogk,

LEMMA 4.3. For any constant C' > 0, there exists a constant C' > 0
only depending on C', such that

|<€—€,A_9>
110 — 6|

with probability at least 1 — exp(—C'nlogk).

< CVk?+nlogk,

PROOF OF THEOREM 2.1. Combining the bounds for (4.6) with (4.4),
(4.5) and (4.3), we have

116 — 011> < 2C|0 — 0]|\/k2 + nlogk + 4C? (k* + nlogk) ,

with probability at least 1 — 3exp(—C’nlog k). Solving the above equation,
we get X
16 —0])* < Cy (k* + nlogk),
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with probability at least 1—3 exp(—C’nlog k). This proves the high probabil-

ity bound. To get the bound in expectation, we use the following inequality
En~2[| — ]|

E (n7216 - 6PH{n 218 — 61> < &2}) +E (n %10 - 6]L{n %16 — 0]* > ¢}

IN

< E+P (n_zHé —0|]* > 62) < e + 3exp(—C'nlogk),

where €2 = (4 (2—2 + %) Since €2 is the dominating term, the proof is

complete. 0

To prove Theorem 2.3, we need to redefine z* and Q*. We choose z*
to be the one used in Lemma 2.1, which implies a good approximation
of {6;;} by the stochastic block model. With this z*, define @* by letting
Q% = Oup(z*) for any a,b € [k]. Finally, we define 0 = Q;(i)z*(j) for all
i # j. The diagonal elements 6}; are set as zero for all ¢ € [n]. Note that
for the stochastic block model, we have § = 6*. The proof of Theorem 2.3
requires another lemma.

LEMMA 4.4. For any constant C' > 0, there exists a constant C' > 0
only depending on C’, such that

‘<|IZ_Z*II’A_ 9> < C/nlogk,

with probability at least 1 — exp(—C'nlogk).

The proof of Lemma 4.4 is identical to the proof of Lemma 4.2, and will
be omitted in the paper.

Proor orF THEOREM 2.3. Using the similar argument as outlined in the
beginning of this section, we get

16 — 0% < 2<é—e*,A—9*>,
whose right side can be bounded as
<é 9 A— 9*>

- <é—é,A—9>+<é—9*,A—9>+<é—9*,e—a*>

. 00 . N 0 — 0
16— 0] <H,A—9> + (116811 +116 -0 H)’<~*,A—0>‘
16— o] 16 — 6]

+116 — 67[]]16 — 67|

IN
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To better organize what we have obtained, let us introduce the notation

L=0-6, R=16-6, B=l6-0¢1l

<H,A—9> , F= ‘<H,A—0>‘.
16— 0] 16 — 6|

Then, by the derived inequalities, we have

L? <2RE +2(L + R)F +2LB.
It can be rearranged as

L? <2(F + B)L +2(E + F)R.
By solving this quadratic inequality of L, we can get
(4.7) L? < max{16(F + B)*,4R(E + F)}.

By Lemma 2.1, Lemma 4.1, Lemma 4.3 and Lemma 4.4, for any constant
C' > 0, there exist constants C' only depending on C’, M, such that

) ) 1 anl )
B < Cn 72 , F“<Cnlogk,

R?> < C(k* +nlogk), E*><C(k*+nlogk),
with probability at least 1 — exp(—C’n). By (4.7), we have

1 anl
(4.8) L’ < <n2 <k2> + k% + nlog k‘)

with probability at least 1 — exp(—C’n) for some constant C;. Hence, there
is some constant Cy such that

1 o
ﬁ}j@%‘%y
i

IN

2
72([/2_1_32)
n

1\ k2 logk
C — i
2 <<k2> TR

with probability at least 1 — exp(—C’n). When « > 1, we choose k = [y/n],
and the bound is C3n~'logn for some constant C3 only depending on C’
and M. When a < 1, we choose k = (na%ﬂ Then the bound is C’4n_a27fl
for some constant Cj only depending on C’ and M. This completes the
proof. ]

IN
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4.2. Proof of Theorem 2.2. 'This section is devoted to proving the lower
bounds. For any probability measures P, Q, define the Kullback-Leibler di-

vergence by D(P||Q) = [ (log %) dP. The chi-squared divergence is defined
by x*(P||Q) = [ (%) dP — 1. To prove minimax lower bounds, we need the

following proposition.

PROPOSITION 4.1. Let (©,p) be a metric space and {Py : 6 € O} be a
collection of probability measures. For any totally bounded T' C ©, define the
Kullback-Leibler diameter and the chi-squared diameter of T by

dgy,(T) = sup D(By||Py), dy2(T) = sup x*(Py|[Py).
0.0'eT 0.0'cT

Then

_ dKL (T) + 10g2
log M(e,T,p) ’

} 1 dy2(T)

(4.9) i%f 228 Py {p2 (é(X), 9)

vV
| Mo
H/_/

—

>1- -
T M(e,T,p) M(e, T, p)’

A 62
(4.10) infsupPy {p2 <0(X),9> > —
0 0co 4

for any € > 0.

The inequality (4.9) is the classical Fano’s inequality. The version we
present here is by [53]. The inequality (4.10) is a generalization of the clas-
sical Fano’s inequality by using chi-squared divergence instead of KL di-
vergence. It is due to [22]. We use it here as an alternative of Assouad’s
lemma to get the corresponding in-probability lower bound. In this section,
the parameter is a matrix {6;;} € [0,1]"*". The metric we consider is

1
P(0,0) = — > (05— 6;)*.
i

Let us give bounds for KL divergence and chi-squared divergence under
random graph model. Let Py, denote the probability of Bernoulli(6;;). Given
6 = {6;;} € [0,1]"*", the probability Py stands for the product measure
®;,je[n) Po;; throughout this section.

PROPOSITION 4.2.  For any 0,0 € [1/2,3/4]"*™, we have
(4.11)

D(Py|[Py) <8 (05— 0;))*,  X*(Pyl|Py) <exp |8 (65 — ;)

iJ iJ



RATE-OPTIMAL GRAPHON ESTIMATION 25

The proposition will be proved in the supplementary material [15]. We
also need the following Varshamov-Gilbert bound. The version we present
here is due to [40, Lemma 4.7].

LEMMA 4.5. There exists a subset {w1, ...,wn} C {0,1} such that
A 9o d .
(4.12) pr(wi,wj) = [lwi —wjl[" = 7, forany i # j € [N],
for some N > exp (d/8).

PROOF OF THEOREM 2.2. By the definition of the parameter space Oy,
we rewrite the minimax rate as

1 .
inf sup P< — 01“—9“)2262

1 A
= inf sup sup P<¢ — O — Quiyuiy)? > €
0 Q=QTe[0,1]kxk €2, n? ;( Y 2()2())

If we fix a z € Z,,, it will be direct to derive the lower bound k2 /n2 for
estimating ). On the other hand, if we fix @) and let z vary, it will become
a new type of convergence rate due to the unknown label and we name
it as the clustering rate, which is at the order of n~!logk. In the following
arguments, we will prove the two different rates separately and then combine
them together to get the desired in-probability lower bound.

Without loss of generality, we consider the case where both n/k and k/2
are integers. If they are not, let k' = 2|k/2| and n’ = [n/k'|k’. By restrict-
ing the unknown parameters to the smaller class Q' = (Q')” e [0, 1]¥ ¥
and 2’ € Z, v, the following lower bound argument works for this smaller
class. Then it also provides a lower bound for the original larger class.

Nonparametric Rate. First we fix a z € Z, ;. For each a € [k], we define
2 Ya) = {(a — V)n/k +1,...,an/k}. Let Q = {0,1}¢ be the set of all binary
sequences of length d = k(k — 1)/2. For any w = {wap }1<b<a<i € 2, define
a k x k matrix Q¥ = (Q%)kxk by

(4.13)
1 1
4= Q=5+ P, forasbelh] and Qf =, forac k],
n

where c; is a constant that we are going to specify later. Define 6% = (%) xn
with 6 = Q‘;(i)z(j) for ¢ # j and 6% = 0. The subspace we consider is
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Ty = {6Y : w € Q} C Of. To apply (4.10), we need to upper bound
supg grer; X2 (Pgl|Per) and lower bound M(e, T1, p). For any 0v,0¥ € Ty,
from (4.11) and (4.13), we get

C(PoellPpr) = exp |8 Y (6% - 62)?

i,j€[n]

8n2 w W'
exp | 75 Z( o — Qi) | < exp(8¢ik?),
a,be[k]

(4.14)

IN

where we choose sufficiently small ¢; so that 65}, 0;"]-/ € [1/2,3/4] is satisfied.
To lower bound the packing number, we reduce the metric ,0(9“’,9“’/) to
pr(w,w’) defined in (4.12). In view of (4.13), we get
2 pw g’ 1 w w'\2 C% /
(4.15) po(0%,6°) > w2 Y @u-Q)’= EPH(WW)-
1<b<a<k

By Lemma 4.5, we can find a subset S C 2 that satisfies the following
properties: (a) |S| > exp (d/8) and (b) py(w,w’) > d/4 for any w,w’ € S.
From (4.15), we have

M(e,T1, p) > |S| > exp (d/8) = exp (k(k — 1)/16),

with €2 = %. By choosing sufficiently small ¢;, together with (4.14),
we get
1 . C1k?
(4.16) inf sup P{ — Y (05 — 0;5)> > —5— 5 > 0.9,
6 0Ty n ij n

by (4.10) for sufficiently large k with some constant C; > 0. When £ is not
sufficiently large, i.e. k < O(1), then it is easy to see that n~2 is always the
correct order of lower bound. Since n=2 < k%/n? when k < O(1), k?/n? is
also a valid lower bound for small k.

Clustering Rate. We are going to fix a () that has the following form
0 B

where B is a (k/2) x (k/2) matrix. By Lemma 4.5, when k is sufficiently
large, we can find {w1,...,wy/2} C {0, 1Y5/2 such that py(wa,ws) > k/8 for
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all @ # b € [k/2]. Fixing such {wy, ..., wy 2}, define B = (By, By, ..., By/2) by

letting B, = 5+ 1/ %wa for a € [k/2]. With such construction, it is easy
to see that for any a # b € [k/2],

coklogk
4.18 B, — Bp||* > =——=".
(418) 1Ba = BoJl* = 252
Define a subset of Z,, ;, by
Z = {z € Zup 27 Ha)| = % for a € [k],

2 Ha) = {(“_kl)” +1,., a}:} for a € [k/Q]} .

For each z € Z, define 6 by 67, = Q.;).(j) for ¢ # j and 6;; = 0. The
subspace we consider is Th = {6* : z € Z} C O,4. To apply (4.9), we
need to upper bound supy gep, D(Pg||Pg) and lower bound log M(e, T, p).

By (4.11), for any 0,6 € Ty,
(4.19) D(Py||Py) <8 (055 — 04;)* < 8n2cQ@ = 8cynlogk.
ij K

Now we are going to give a lower bound of the packing number log M (e, Ts, p)
with €2 = (calog k)/(48n) for the ¢z in (4.18). Due to the construction of B,
there is a one-to-one correspondence between T and Z. Thus, log M (e, Ts, p) =
log M(e, Z, p1) for some metric p; on Z defined by pi(z,w) = p(67,0%).
Given any z € Z, define its e-neighborhood by B(z,¢) = {w € Z : p1(z,w) <
e}. Let S be the packing set in Z with cardinality M(e, Z, p1). We claim
that S is also the covering set of Z with radius €, because otherwise there is
some point in Z which is at least € away from every point in .S, contradicting
the definition of M(e, Z, p1). This implies the fact U.csB(z,€) = Z, which
leads to

21 < 32 18G9 < 18] ma B(e. o).

Thus, we have

2]
max.cs |B(z,€)|

(4.20) M(e,Z.p1) = |S] =

Let us upper bound max.cs|B(z,¢€)| first. For any z,w € Z, by the con-
struction of Z, z(i) = w(i) when i € [n/2] and |z=!(a)| = n/k for each
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a € [k]. Hence,

1
p%(zv ’U)) > 5 Z (Qz(z)z(] Qw (Hw(y) )

1<i<n/2<j<n

1
= ﬁ Z Z Z (Qaz(j)_Qaw(j))2

n/2<j<n 1<a<k/2i€z~1(a)

1
= ﬁ Z HBZ(j w(j)”2

n/2<j<n

288 w(h) # 20,

>

where the last inequality is due to (4. 18) Then for any w € B(z,¢€), |{j :
w(j) # 2(4)}| < n/6 under the choice €2 = (colog k)/(48n). This implies

n 1
|B(z,€)| < <n/6>k < (6e)"PE"® < exp 4nlogk
Now we lower bound |Z|. Note that by Stirling’s formula,

(n/2)!
1= ta/m

By (4.20), we get log M (e, T, p) =log M(e, Z,p1) > (1/12)nlog k. Together
with (4.19) and using (4.9), we have

1 1
= — > —
R = OXP <2nlogk+0(nlogk¢)> > exp <3nlogk>.

. 02 Chlogk
4.21 f sup P —0;) > > 0.9,
(4.21) inf sup P 9 Z -

with some constant Co > 0 for sufficiently small co and sufficiently large k.
When £ is not sufficiently large but 2 < k < O(1), the argument in Section
3.3 gives the desired lower bound at the order of n=! =< n~!logk. When
kE=1,n"'logk = 0 is still a valid lower bound.

Combining the Bounds. Finally, let us combine (4.16) and (4.21) to get
the desired in-probability lower bound in Theorem 2.2 with C' = (Cl/\Cg) /2.
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For any 0 € ©, by union bound, we have

k> logk
nzz i~ 0i) 20(712+ n>

C1k? Cylogk

)2 1 )2 < Lalogr

= nQZ ij = 0ij)” < n2 nzz N n
Clkz 2 C'Qlogk

= n2Z i = 05)° 2 =5 22 i —0i)” = — =~ L

Taking sup on both sides, and using the fact sup, g (f(z)—i—g(Q)) = sup, f(2)+
supg 9(Q), we have

k*  logk
sup PP nzz ij = 0ij) —C<n2+ n)

0Oy,
C1k? Csylogk
> supP + sup P 2>7 -1
e nzZ CA = T2 born ni) i —0i)" 2 — 7

for any estimator . Plugging the lower bounds (4.16) and (4.21), we obtain
the desired result. A Markov’s inequality argument leads to the lower bound
in expectation. ]
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APPENDIX A: ADDITIONAL PROOFS

In this supplement, we prove Theorem 2.4, Lemma 2.1, Lemma 4.1, Lemma
4.2, Lemma 4.3, Proposition 4.2 and Theorem 3.6.

A.1. Proof of Theorem 2.4. We use the same idea as in the proof of
Theorem 2.2. First we are going to fix a P¢ € P and construct a subset of
Fo(M) to get the nonparametric rate n=2%/(@+1)_ Then we fix a f € Fo (M)
and let P¢ vary to get the clustering rate n~!logn. Since our target is the
sum of the two rates, it is sufficient to prove the nonparametric rate lower
bound for o € (0,1) and prove the clustering rate lower bound for o > 1.

Nonparametric Rate. We assume « € (0, 1) in this part. Consider the the
fixed design (&1, ...,&n) = (1/n,...,n/n). This can be viewed as a degenerated
distribution belonging to the set P. Then it is sufficient to lower bound

1 A 2 €2
(A.1) inf sup P — («91-]' —f(z'/n,j/n)) > — 5,
b fera.(m) | 1P HEET:L] 4
for €2 = cn_a%l with some ¢ > 0 to be determined later. This can be

viewed as a classical nonparametric regression problem, but with Bernoulli
observations. We are going to apply (4.9) in Proposition 4.1. Our lower
bound argument essentially follows the construction in [49, Sec 2.6.1]. To
facilitate the presentation, we introduce the following function

K(z,y) = (1 =2lz[)(1 = 2[yDI{|z| < 1/2, |y[ < 1/2}.

1
Let us take k = [¢yna+1]| for some constant ¢; > 0 to be determined later.
For any a,b € [k], define the function

(A.2) Pab(T,y) = LE"K <k$ —a+ %7 ky —b+ ;) .

By such construction, we have

PROPOSITION A.1. Assume o € (0,1). For some L > 0 depending on
a, M, the function (A.2) satisfies
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1. ¢ap(,y) € Ho(M).
2. Zi,je[n} <Z5(2lb(z/n,]/n) > L2n2k*2a*2/g.

The proposition will be proved in Appendix A.2. Let = {0, 1}¢ be the set
of all binary sequences of length d = k(k+1)/2. For any w = {wap }1<p<a<k €
), we define the function f*“ by

(A3)  fzy)=[W2) =5+ D wadwlry), for x>y

1<b<a<k

1
2

The subspace we consider is F/ = {f¥ : w € Q}. Since K is bounded and
the collection {¢gp} have disjoint supports and belong to H, (M), we have
F' C Fo(M) when M > 1. For the case M < 1, we may replace the 1/2 in
(A.3) by some sufficiently small number so that F' C F,(M) is still true.
We choose to use 1/2 so that the following analysis can be presented in a
cleaner way. To apply (4.9), we first upper bound sup; ¢ D(P||P;/). For any
f € F,denote f;; = f(i/n, j/n) and by our construction 1/4 < f;; < 3/4 for
sufficiently small L. Then from (4.11) in Proposition 4.2, for any f, f' € F’
we have

(Ad4)  DEIPp) <8 3 (fiy — f)? < 8Lk < 8L *nart.
1,j€[n]

Next, we lower bound the packing number of F'. For any f¢, f* € F', we
have

PUS) 2 o S ST (el )

i,j€[n] 1<b<a<k

1 S
= 2 Z (Wap — Wéb)z Z ¢§b(l/”a]/n)
1<b<a<k ijeln]
1
> LT P pn(w, ),
where we have used Proposition A.1 in the last inequality above, and the
distance py is defined in (4.12). By Lemma 4.5, we may choose a subset

S C Q such that |S| > exp (k:2/16) and py(w,w’) > k2/8 for any w #

W' € S. Then if we set €2 = cn” a+1 for some sufficiently small ¢, we have
log M(e, F',p) > k?/16. By (4.9), we get

€2

1
(A.5) inf sup Pq — > (05— f(i/n,j/n))* > = ¢ > 0.9,
0 reF | ™ 4
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by choosing sufficient large c;.

Clustering Rate. We assume « > 1 in this part. We are going to reduce
the problem to the clustering rate of stochastic block model. First we are
going to construct an f € F,(M) that mimics @ in the stochastic block
model. For some § € (0,1) to be specified later, define k = 2|[n’/2]. To
construct a function f € H,(M), we need the following smooth function
K (x) that is infinitely differentiable,

1 1

where Ci > 0 is a constant such that [ K(z)dz = 1. The function K is a
positive symmetric mollifier, based on which we define the following function

3/8

b= [ K- y)dy.
—3/8

The function ¢ () is called a smooth cutoff function. It can be viewed as the
convolution of K(z) and I{|z| < 3/8}. The support of ¥ (z) is [-1/2,1/2].
Since K (x) is supported on [—1/8,1/8] and the value of its integral is 1,
¥(x) is 1 on the interval [—1/4,1/4]. Moreover, the smoothness property of
K (z) is inherited by ¢(z). Recall the k x k matrix @ defined in (4.17), and
define

flay) = > <Qab—;)w(km—a—i—;)w(ky—b—i—;) +%.

a,be[k]

It is easy to verify that f € F,(M) as long as we choose sufficiently small §
depending on o > 1 and M > 1. The case M > 1 requires some modification
on the definition of Q,p, and is omitted in the paper. The definition of f
implies that for any a,b € [k],

F(2.y) = Qup,  when (z,y) € {a—3/4,a—1/4} » [b—3/4’b—1/4].

k k k k

Therefore, in a sub-domain, f is a piecewise constant function. To be specific,

define
k n(a —3/4) n(a—1/4
I=<U[(k/)7(k/q>ﬂW

a=1

The values of f(i/n,j/n) on (i,j) € I x I form a stochastic block model.
Let II,, be the set of all permutations on [n]. Define a subset by II/, = {0 €
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II,, : 0(i) =i for i € [n]\I}. In other words, any o € II], can be viewed as a
permutation on I. Note that for any permutation o € II/,, the degenerated
distribution

Po ((§15-.&) = (0(1)/n,...,o(n)/n)) =1

belongs to the set P. Then the minimax risk has lower bound

1 ~
inf sup sup Pq — Z (0 — 0;5)* > €
0 feFo(M)PecP n i jeln]

1 n 2
> inf max P 712‘%[:](9“f(a(i)/n,o(j)/n)) > ¢2
1,JE€EIN
A > inf pl L 0 ' ' ’s e
(A6) > infmax Py g 3 (0~ f(o(i)/n.0()/m)) = e

i,J€1

The form (A.6) is a case of stochastic block model with fixed @ and vary-
ing z. To see this, for any o € II), let us define z : I — [k] satisfying
2(i) = [n"Yko(i)] for each i € I. Then we collect all such z to form the
set Zry. For any i,j € I, as long as (i,j) € z7%(a) x 271(b), we have
0;; = f(o(i)/n,0(j)/n) = Qa. Using the same argument in the proof of
Theorem 2.2, we can get the same result of (4.21),

(A.7) inf max P % Z (éw - f(o(i)/n,a(j)/n))2 > 2% >0,

j o€elll n
0 n ijel

argument in the proof of Theorem 2.2 to combine (A.5) and (A.7), the proof
is complete.

with €3 = & lzgk > & lzg L for some cy,c3 > 0. Finally, applying the same

A.2. Proofs of Some Auxiliary Results.
PROOF OF LEMMA 2.1. Define z* : [n] — [k] by
(z)Na)={ie[n]: & e U},

for U, defined in (2.9). We use the notation n} = |(2*)~!(a)| for each a € [K]
and Z%, = {(u,v) : 2*(u) = a, z*(v) = b} for a,b € [k]. By such construction
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of z*, for i, j such that & € Uy, §; € Uy with a # b, we have

|f (& &) — ab( Ol

:]ﬂ@@y— Y )
(u v)EZY,
S o Y A E) - fln 8
a’b (u,w)eZr,

1 a
< —= > M(&-&ltlg - &)™
a’’b *

(u,w)EZY,

< O Mk (e,

The second inequality above is because of the Lipschitz condition (2.7) for

€ (0,1]. When « > 1, any function f € H,(M) satisfies (2.7) for a = 1.
Similar results also hold for the case a = b. Summing over a,b € [k], the
proof is complete. O

PROOF OF LEMMA 4.1. By the definitions of éij and éij, we have

~ ~ ~ ~ — —

Oi5 — 0ij = Qz()2(5) — Qz(3)2() = Aab(2) — Oan(2)

for any (i,7) € 2 %(a) x 271(b) and i # j. We also have 0;; — 0;; = 0 for any
€ [n]. Then

SN05-05?° < S |F )| |E o) (Aab(z) - éab(2)>2
] a,be(k]
(A.8) < Jnax Z ‘z a)| |z ()| (Aab(z) — éab(2)>2'
"k 4 belk]

For any a,b € [k] and z € Z,, 1, define n,, = ‘z‘l(a)‘ and Vgp(2) = ngmy (/_lab(z)—
_ 2
Gab(z)> . Then, (A.8) is bounded by

(A.9) max EVgy(2) + max Y ( — EVap(2 ))

ZEZ 2EZ,
"k 4 belk] "k abelk

We are going to bound the two terms separately. For the first term, when
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a # b, we have

1
EV(z) = ngE — E (Aij — 055)
al® ., 1
i€z 1(a),jez71(b)
1
= Var(A4;;) <1,
iy E ar(4;j) <

i€z=1(a),jez"1(b)

where we have used the fact that EA;; = 0;; and Var(A4;;) = 0;;(1—0;;) < 1.
Similar conclusions can be made for diagonal V,,(z) by using the definition
(2.2). Summing over a,b € [k], we get

(A.10) max Y EVa(2) < Cik?,
2E€Zn K
" a,belk]

for some universal constant C; > 0. By Hoeffding inequality [26] and 0 <
Ai; <1, for any t > 0 we have

1 t
— § 0. < _ )
P(Vab(z) > t) P g (Az] 02]) > p— < 2exp< 2t)

i€z~ 1(a),jE271(b)

Thus, Vu(2) (a # b) is a sub-exponential random variable with constant
sub-exponential parameter. Again, similar conclusions can be obtained for
diagonal Vg,(z). By Bernstein’s inequality for sub-exponential variables [50,
Prop 5.16], we have

Pl Y (Va(z) —EVip(2)) > t | <exp (-(12 min{]i,tD,

a,be(k]

for some universal constant Co > 0. Applying union bound and using the
fact that log |2, x| < nlogk, we have

12
P max Z (Vab(z) — EVab(z)) >t ] <exp (—Cg min {kzz’t} + nlog k) )
2E€EZn K
" a,belk]

Thus, for any C3 > 0, there exists Cy > 0 only depending on Cy and Cj,
such that

(A.11) max Z (Vap(2) = EVp(2)) < Cs (n log k + /nk?log k:)

€z,
ek belk]
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with probability at least 1 — exp(—Cynlog k). Plugging the bounds (A.10)
and (A.11) into (A.9), we obtain

Z(é” - éij)z < (C3+Ch) (k‘2 +nlogk + v/nk?log k:)

ij

IN

2(C3 + C1) (k* + nlogk)
with probability at least 1 — exp(—Cynlogk). The proof is complete. O

ProOF OoF LEMMA 4.2. Note that
Oij — 0ij = > Oap(DI{(i,5) € 27 (a) x 271 (D)} — ;5
a,belk]
is a function of the partition Z, then we have

Z L (Aij —0i5)| < max Z%’j(z)(Aij —0i5)|
i ) 20 — 0i5)? MR

where

i (2) o< D Bap(2)I{(i,5) € 27 (a) x 271 (b)} — 6

a,belk]

satisfies Zij 7ij(2)? = 1. By Hoeffding’s inequality [50, Prop 5.10] and union
bound, we have

P max Z%‘j(Z)(AZ‘j — 97«]) >t

ZeZn,k

IN

P [Dov(a)(Ay — 0iy)| >t
i

ZGZn,k
|2k exp(~C1t?)
exp(—C1t* + nlogk),

IN A

for some universal constant C; > 0. Choosing t « +/nlogk, the proof is
complete. 0

To prove Lemma 4.3, we need the following auxiliary result, whose proof
will be given after the proof of Lemma 4.3.
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LEMMA A.1. Let BC {a ER™VM: S a” < 1}. Assume for any a,b €
B,
a—b
(A.12) —— €B.
|la — ]|

Then, we have

sup Zalj (/. 7/] >t < N(1/27Ba H : H) exp(_CtQ)a

a€B i
for some universal constant C' > 0.

Proor or LEMMA 4.3. For each z € Z,, 1, define the set B, by

B, = {cij} : cij = Qup if (4,5) € 27 (a) x 271 (b) for some Qup, and Zc?j <1
j

In other words, B, collects those piecewise constant matrices determined by

z. Thus, we have the bound

Z Y = Y = (AU — 91]) < Zrenzax sup Z CZ] ij — z]
i /2245 (0ij — 0i5)° mk c€Bs 17y

Note that for each z € Z,, ,, B, satisfies the condition (A.12). Thus, we have

P | max sup cij(Aiyy —0:5)] >t

< Z P | sup Zcij(Aij—Gij) >t
z€EZ, & ceB. ij

< 3 N(12B 1)) ep(-r?),
ZEZnﬂk-

for some universal C; > 0, where the last inequality is due to Lemma A.1.
Since B, has a degree of freedom k2, we have N(l/Q, B.,|| ||) < exp(Cak?)

for all z € Z,, x, which is a direct consequence of covering number in RF
[46, Lemma 4.1]. Finally, by |Z, x| < exp(nlogk), we have

max sup ZCU i — i) >t < exp(—C’lt2 + Cyk? + nlog k).
2€EZn, k cEB, oy
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Choosing t? « k2 + nlog k, the proof is complete. O

PrROOF OF LEMMA A.1. Let B be a 1/2-net of B such that |B'| < N(l/Q,B, |-

H) and for any a € B, there is b € B’ satisfying

(A.13) lla —b)| < 1/2.
Thus,
(e A=0 < a=bA=0)l+|6.4-0)
< |‘<” A 9>‘+]<6,A—9>]
(A14) < ;iggua,A—wHub,A—eM,

where the inequality (A.14) is due to (A.13) and the assumption (A.12).
Taking sup and max on both sides, we have

sup ZQW i — U < 2ma>,< wa ij — U
GEB 7,] bGB

Using Hoeffding’s inequality [50, Prop 5.16] and union bound, the proof is
complete. 0

PROOF OF PROPOSITION 4.2. By definition,

0, 1—6;
D(Po||Py) = > (e)ij 1og(73 + (1= ) log 1— 9'.]‘>
ij

ij
i — 0;;)
= Z9']1— o)
< 82 (0: — 03,
ij

where we using the inequality logz < x — 1 for > 0 for the first inequality
and the fact that 1/4 < ¢}, < 3/4 for the second inequality. We then bound
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the chi-squared divergence in the same way,

(035 — 03;)°
2 _ v _

ij

< exp Zlog (1+8(60;5 — 92]-)2) -1
ij
< exp |8 Z(GU - %)2
]
The proof is complete. O

PROOF OF PROPOSITION A.1. By the definition of K (z,y), we have
K (z1,91) — K(22,92)| < 2|[w1] = |2[ [1 = 2[pa]] + 2{|y1] = |yal[ [1 — 2[z2]|
< 2(Jzr — 2| + y1 —v2]) -
For any (z1,41), (x2,y2) in the support of ¢4, we have
|Gab(1,y1) = Pap(x2,92)| < 2LE (Jor — 2| + |y1 — o)
< 2L (Jwy — 22| + ly1 — 12)7,

where we have used a € (0,1) and |z — @2| + |y1 — yo| < k=1 in the last
inequality. This means ¢q, € Hq(M) for some sufficiently small L. This
proves the first claim. For the second one, note that,

3 _ ki 1 kj 1
2 (s ; _ 121.— 20 Z 2
¢ab(z/n7]/n)—Lk K (—a—}—27n_b+2)7

n
1,j€[n] i,j€[n]
where
2
ki 1 kj 1 ki 11\?

2 _ _ = — — — _ —
ZK(n atg, b+2> > -2~ +2D :
ije(n] na-1) _; na
and

ki 11\? 2%k | (a—1/2)n
1-2|= —a+-|) = 1— =i —
n(a—;- 2 > n(a—;- ( n k
nlet) g ne nlel) cicne
2k \? n/2k 2k \?
= 4 1—22¢) >2 1—=22) dt=—
S (-5 = [ (-5 amg

0<t<

The proof is complete. ]
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A.3. Proof of Theorem 3.6. The upper bound is given in [34, 12].
It is sufficient to consider the lower bound. Without loss of generality, we
may assume 3 < 1/2. The case 8 > 1/2 can be treated as in the proof of
Theorem 2.2. Consider the set

T = {{eij} € [0,1]™" : 0, = B for (i,5) € (S x S) U (S° x 8°),

0 = B — @ for (i,7) € (S x S°) U (S° x S), with some S ES},

n

where S = {S: S C [n]} and ¢ € (0,1/2) is some constant to be determined
later. Since 3 > n~!, we must have T' C ©(S) and T is our least favorable
subset consisting of matrices with rank at most 2. The argument (3.2) implies
that

mf sup E||§ — t9||Op >inf sup E|f— HH?)p > infsupE||§ — 0||.

0 0co(p) 0 9cO(8)NO 6 0eT
Hence, it is sufficient to lower bound infjsupgycr E[|§ — 6], which will be
established similarly according to the argument in Section 3.3. Specifically,
using the argument in the proof of Proposition 4.2, we have

2

0ij — m 2
sup D(Py||Py:) < sup < 4c*n.
0,0'€T 09’ETZ 0;;(1—0;;)

Moreover, for the distance p(6,6') = n~!||§—¢’|| and any 6, 0’ € T associated
with S,5" € S, we have

2026

W20?(6,0) = ZL|SAS|(n — |SAS).

According to the argument in Section 3.3, this implies M(e, T, p) > N >
exp(cin) for some ¢; > 0 with €2 = ‘g—nﬁ. Finally, applying (4.9) of Proposition
4.1, we have the desired result by letting ¢ be sufficiently small.
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