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Abstract

Canonical correlation analysis (CCA) is an important multivariate technique

for exploring the relationship between two sets of variables which finds appli-

cations in many fields. This paper considers the problem of estimating the

subspaces spanned by sparse leading canonical correlation directions when the

ambient dimensions are high. We propose a computationally efficient two-stage

estimation procedure which consists of a convex programming based initializa-

tion stage and a group Lasso based refinement stage. Moreover, we show that our

procedure achieves optimal rates of convergence under mild conditions by deriv-

ing both the error bounds of the proposed estimator and the matching minimax

lower bounds. In particular, the computation of the estimator does not involve

estimating the marginal covariance matrices of the two sets of variables, and

its minimax rate optimality requires no structural assumption on the marginal

covariance matrices as long as they are well conditioned. The procedure yields

encouraging numerical results on simulated datasets, and its practical usefulness

is demonstrated by an application on a breast cancer dataset.
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1 Introduction

Canonical correlation analysis (CCA) [14] is one of the most classical and important

tools in multivariate statistics [1, 20]. For two centered random vectors X ∈ Rp and

Y ∈ Rm, CCA finds matrices U ∈ Rp×r and V ∈ Rm×r, such that the correlation

between the two low dimensional vectors U ′X and V ′Y are maximized. To be precise,

(U, V ) solves to the following program,

maximize Tr(L′ΣxyR), subject to L′ΣxL = R′ΣyR = Ir, (1)

where Σx = EXX ′,Σy = EY Y ′, and Σxy = EXY ′. Such technique is widely used in

various scientific fields to explore the relation between two sets of variables.

Recently, there is a growing interest in applying CCA to high dimensional data

analysis, where the dimensions p and m could be much larger than the sample size n.

In such regime, the classical CCA does not work because the singular value decom-

position method by [14] requires the invertibility of the marginal sample covariance

matrices, which is not true when p ∨ m > n. Motivated by genomics, neuroimaging

and other applications, sparsity assumptions are imposed on the leading canonical cor-

relation directions. This is called sparse canonical correlation analysis (SCCA), and

various estimation procedures for SCCA have been developed in the literature. See,

for example, [30, 31, 22, 13, 16, 27, 3, 28] for some recent methodological developments

and applications.

In addition to progress on methodology, the theoretical aspect of SCCA has also

been investigated in the literature. [9] showed that the (U, V ) pair that solves (1) can
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be identified as population parameter if we rewrite Σxy as

Σxy = Σx(UΛV ′ + U1Λ1V
′

1)Σy, (2)

where Λ = diag(λ1, ..., λr), Λ1 = diag(λr+1, ..., λp∧m) with λ1 ≥ λ2 ≥ ... ≥ λp∧m,

and the constraints U ′ΣxU = V ′ΣyV = Ir, U
′
1ΣxU1 = V ′1ΣyV1 = Ip∧m−r, U

′ΣxU1 =

V ′ΣyV1 = 0 are satisfied. When Λ1 = 0, this is called “multiple canonical pair” model,

and in this case, the cross-covariance Σxy has a low-rank structure. Let Su = supp(U)

and Sv = supp(V ) be the indices of nonzero rows of U and V . Then, SCCA means Su

and Sv have small cardinality. That is,

|Su| ≤ su and |Sv| ≤ sv. (3)

Under this model, in a recent work, [11] showed that the minimax rate for SCCA under

the loss function ‖Û V̂ ′ − UV ′‖2
F is

1

nλ2
r

(
r(su + sv) + su log

ep

su
+ sv log

em

sv

)
, (4)

under the assumption that λr+1 ≤ cλr for some sufficiently small c ∈ (0, 1) and some

mild regularity conditions. However, in [11], the upper bound is achieved by a com-

putationally infeasible and nonadaptive procedure, which requires the knowledge of

su and sv and exhaustive search of all possible subsets with the given cardinality. In

this paper, we raise a fundamental question: Is there a computationally efficient and

sparsity-adaptive method which can achieve the optimal rate?

We provide an affirmative answer to this question under the multiple canonical

pair model by proposing a two-stage estimation procedure called CoLaR, standing for

Convex programming with Lasso Refinement. In the first stage, we propose a convex

programming for SCCA based on a convex relaxation of a combinatorial program

studied in [11]. The convex programming can be efficiently solved by the Alternating

Direction Method with Multipliers (ADMM) algorithm [7]. Based on the output of
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the first stage, we formulate a sparse linear regression problem in the second stage to

improve the rate of convergence, and the final estimator Û and V̂ can be obtained via

a group-Lasso algorithm [33]. Under mild assumptions, we show that Û and V̂ recover

the column spaces of U and V with the desired rate of convergence in probability.

To be precise, for any matrix F , let PF denote the projection matrix onto its column

space. We show that for some constant C > 0,

‖PÛ − PU‖
2
F ≤ C

su(r + log p)

nλ2
r

,

‖PV̂ − PV ‖
2
F ≤ C

sv(r + logm)

nλ2
r

,

(5)

with high probability. The rate (5) is comparable to the minimax rate (4). To show

(5) is optimal, we provide a minimax lower bound for the subspace loss in Section 3.2.

The foregoing result gives new insights on the problem of SCCA. To the best of

our limited knowledge, [9] developed the first computationally efficient SCCA method

which can provably achieve minimax optimal rates. They considered the special case of

r = 1 and proposed an iterative thresholding method for estimating the sparse canon-

ical directions. However, their estimation procedure requires the structural knowledge

of the marginal inverse covariance matrices Σ−1
x and Σ−1

y and only achieves the optimal

rates of convergence when the estimation errors of Σ−1
x and Σ−1

y are dominated by those

of estimating the canonical directions. It is challenging to estimate Σ−1
x and Σ−1

y well

in a high-dimensional setting. On the other hand, [11] showed the minimax rates of

SCCA does not depend on the marginal covariance matrices as long as they are well-

conditioned, though the upper bounds were achieved by a combinatorial programming

which is computationally intractable. The result in the current paper complements

that in [11] and shows that, even with no structural knowledge about the marginal

covariance matrices, one can still obtain minimax rate optimal and sparsity-adaptive

estimators via computationally efficient algorithms for a wide range of parameter spaces

of interest.
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Connection to the literature The current paper is related to the recent develop-

ment on the sparse principal component analysis (SPCA) problem. For PCA, most

literatures assume a spiked covariance structure where Σ = V ′ΛV + Ip, with V ′V = Ir,

Λ = (λ1, ..., λr) and λ1 ≥ ... ≥ λr. Conceptually, this is analogous to the multiple

canonical pair model for SCCA considered in the current paper. For SPCA, John-

stone and Lu [15] proposed a diagonal thresholding estimator of the sparse principal

eigenvector which is provably consistent when r = 1 in the spiked covariance model.

A semidefinite relaxation of SPCA was proposed by [10], and was extended to the

multiple-rank case by [26] using the fantope projection idea. An iterative thresholding

scheme was developed by [19] for principal subspace estimation. A regression formula-

tion of SPCA was proposed in [8].

Organization The rest of the paper is organized as follows. In Section 2, we propose

our estimation procedure. Its statistical optimality is analyzed in Section 3, where

we present rates of convergence and the corresponding minimax lower bounds. In

Section 4 we demonstrate the competitive finite sample performance of our approach

by numerical experiments. The proofs of the main results are presented in Section 6

with some additional technical details deferred to Section 7.

Notation For a positive integer t, [t] denotes the index set {1, 2, ..., t}. For any set

S, |S| denotes its cardinality. For any event E, 1{E} denotes its indicator function.

For any number a, we use dae to denote the smallest integer that is no smaller than

a. For any two numbers a and b, let a ∨ b = max(a, b) and a ∧ b = min(a, b). For

a vector u, ||u|| =
√∑

i u
2
i , ||u||0 =

∑
i 1{ui 6=0} and ||u||1 =

∑
i |ui|. For any matrix

A = (aij)i∈[p],j∈[k], the i-th row of A is denoted by Ai·. For subsets J ⊂ [p] × [k] of

indices, we use notation AJ = (aij1{(i,j)∈J}). When J = J1 × J2 with J1 ⊂ [p] and

J2 ⊂ [k], we write AJ1J2 to stand for AJ1×J2 and write A(J1J2)c to stand for A(J1×J2)c .
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The notation AJ1∗ means AJ1×[k]. For any square matrix A = (aij), denote its trace

by Tr(A) =
∑

i aii. For two square matrices A,B, the relation A � B means B − A

is positive semidefinite. Moreover, let O(p, k) denote the set of all p × k orthonormal

matrices and O(k) = O(k, k). For any matrix A ∈ Rp×k, σi(A) stands for its i-th

largest singular value. The Frobenius norm and the operator norm of A are defined as

‖A‖F =
√
Tr(A′A) and ‖A‖op = σ1(A), respectively. The l1 norm and the nuclear norm

are defined as ||A||1 =
∑

ij |aij| and ‖A‖∗ =
∑

i σi(A), respectively. The support of A

is defined as supp(A) = {i ∈ [p] : ‖Ai·‖ > 0}. For any positive semi-definite matrix

A, A1/2 denotes its principal square root that is positive semi-definite and satisfies

A1/2A1/2 = A. The trace inner product of two matrices A,B ∈ Rp×k is defined as

〈A,B〉 = Tr(A′B). The constant C and its variants such as C1, C
′, etc. are generic

constants and may vary from line to line, unless otherwise specified.

2 Methodology

In this section, we introduce our methodology, CoLaR, for estimating the canonical

correlation matrices U and V . The estimation procedure is divided into two stages:

initialization and refinement. They are detailed out in Sections 2.1 and 2.2, respectively.

2.1 Initialization by Convex Programming

Suppose we have i.i.d. observations (Xi, Yi)
n
i=1 from some centered distribution, where

Xi ∈ Rp and Yi ∈ Rm, and let

Σ̂ =

 Σ̂x Σ̂xy

Σ̂yx Σ̂y

 =
1

n

n∑
i=1

Xi

Yi

[X ′i Y ′i

]
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be the joint sample covariance matrix. [11] showed that the solution to the following

optimization problem is optimal for sparse CCA:

maximize Tr(L′Σ̂xyR)

subject to L′Σ̂xL = R′Σ̂yR = Ir and |supp(L)| = su, |supp(R)| = sv.
(6)

However, (6) is not computationally feasible because solving it requires searching over

all su subsets of [p] and sv subsets of [m], and the computational cost grows exponen-

tially with the dimension of the problem. Moreover, (6) depends on the true sparsity

su and sv, and it is not adaptive, either.

This motivates us to consider the following convex relaxation of the program (6).

First, note that the objective can be written as

Tr(L′Σ̂xyR) =
〈

Σ̂xy, LR
′
〉
.

Thus, it is linear with respect to LR′. This suggests to treat the matrix LR′ as a single

object instead of optimizing over L and R separately. The constraints |supp(L)| =

su, |supp(R)| = sv implies that LR′ has at most susv nonzero entries. Relaxing the l0

norm by the l1 norm, we obtain the new objective function〈
Σ̂xy, F

〉
− ρ||F ||1, (7)

where F serves as a surrogate for LR′. To deal with the other constraints L′Σ̂xL =

R′Σ̂yR = Ir, note that they are equivalent to Σ̂
1/2
x L ∈ O(p, r) and Σ̂

1/2
y R ∈ O(m, r).

Let G = Σ̂
1/2
x LR′Σ̂

1/2
y = Σ̂

1/2
x F Σ̂

1/2
y . Since it is a product of two orthogonal matrices,

its operator norm is bounded by 1. Together with the fact that its rank is not more

than r, the nuclear norm is also bounded by r. Thus, it belongs to the following convex

set

{G : ‖G‖∗ ≤ r, ‖G‖op ≤ 1} . (8)
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Combining (7) and (8), we obtain the following convex relaxation of (6),

maximize
〈

Σ̂xy, F
〉
− ρ||F ||1,

subject to ‖Σ̂1/2
x F Σ̂1/2

y ‖∗ ≤ r,

‖Σ̂1/2
x F Σ̂1/2

y ‖op ≤ 1.

(9)

Intuitively, the solution to (9) should be a good estimator for UV ′.

A similar convex relaxation was proposed by [26] for sparse PCA. However, they

constrained the projection matrix onto the span of the leading eigenvectors to the

fantope {P : Tr(P ) = r, 0 � P � Ip}, which is a convex set of P . Note that such a

relaxation is not directly applicable here, since for the projection matrix P = GG′ =

Σ̂
1/2
x F Σ̂yF

′Σ̂
1/2
x of interest, the constraint Tr(P ) = Tr(Σ̂

1/2
x F Σ̂yF

′Σ̂
1/2
x ) = r is not

convex in F . The same is true for the projection matrix G′G. We propose a new

relaxation (8) to overcome this issue in the sparse CCA problem.

2.1.1 Implementation via ADMM

To implement the convex programming (9), we turn to the Alternating Direction

Method of Multipliers (ADMM) [7]. Note that (9) can be rewritten as

minimize f(F ) + g(G),

subject to Σ̂1/2
x F Σ̂1/2

y −G = 0,
(10)

where

f(F ) = −
〈

Σ̂xy, F
〉

+ ρ‖F‖1, (11)

g(G) =∞1{‖G‖∗>r} +∞1{‖G‖op>1}. (12)

Thus, the augmented Lagrangian form of the problem is

Lη(F,G,H) = f(F ) + g(G) +
〈
H, Σ̂1/2

x F Σ̂1/2
y −G

〉
+
η

2
‖Σ̂1/2

x F Σ̂1/2
y −G‖2

F. (13)
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Following the generic algorithm spelled out in Section 3 of [7], suppose after the k-th

iteration, the matrices are (F k, Gk, Hk), then we update the matrices in the (k+ 1)-th

iteration as follows:

F k+1 = argmin
F
Lη(F,Gk, Hk), (14)

Gk+1 = argmin
G
Lη(F k+1, G,Hk), (15)

Hk+1 = Hk + η(Σ̂1/2
x F k+1Σ̂1/2

y −Gk+1). (16)

The algorithm iterates over (14) – (16) till some convergence criterion is met. It is

clear that the update (16) for the dual variable H is easy to calculate. Moreover the

updates (14) and (15) can be solved easily and have explicit meaning in giving solution

to SCCA. We are going to show that (14) is equivalent to a Lasso problem. Thus,

this step targets at the sparsity of the matrix UV ′. The update (15) turns out to be

equivalent to a singular value capped soft thresholding problem, and it targets at the

low-rankness of the matrix Σ
1/2
x UV ′Σ

1/2
y . In what follows, we study in more details on

the updates for F and G.

First, we note that (14) is equivalent to

F k+1 = argmin
F

f(F ) +
〈
Hk, Σ̂1/2

x F Σ̂1/2
y

〉
+
η

2
‖Σ̂1/2

x F Σ̂1/2
y −Gk‖2

F

= argmin
F

η

2
‖Σ̂1/2

x F Σ̂1/2
y − (Gk − 1

η
Hk +

1

η
Σ̂−1/2
x Σ̂xyΣ̂

−1/2
y )‖2

F + ρ‖F‖1. (17)

Thus, it is clear that the update of F in (14) reduces to a standard Lasso problem as

summarized in the following proposition, which can be solved by standard software,

such as TFOCS [4]. Here and after, for any positive semi-definite matrix A with eigen-

decomposition A =
∑r

i=1 λiθiθ
′
i where r is the rank of A and the λi’s are the nonzero

eigenvalues with θi the associated eigenvectors, we define A−1/2 =
∑r

i=1 λ
−1/2
i θiθ

′
i.

Proposition 2.1. Let vec be the vectorization operation of any matrix and ⊗ the
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Kronecker product. Then vec(F k+1) is the solution to the Lasso problem

minimizex ‖Γx− b‖2
F +

2ρ

η
‖b‖1

where Γ = Σ̂
1/2
y ⊗ Σ̂

1/2
x and b = vec(Gk − 1

η
Hk + 1

η
Σ̂
−1/2
x Σ̂xyΣ̂

−1/2
y ).

Since each update of F is the solution of some Lasso problem, it should be sparse

in the sense that its vector l1 norm is well controlled.

Turning to the update for G, we note that (15) is equivalent to

Gk+1 = argmin
G

g(G)−
〈
Hk, G

〉
+
η

2
‖Σ̂1/2

x F k+1Σ̂1/2
y −G‖2

F

= argmin
G

η

2
‖G− (

1

η
Hk + Σ̂1/2

x F k+1Σ̂1/2
y )‖2

F

+∞1{‖G‖∗>r} +∞1{‖G‖op>1}

= argmin
G
‖G− (

1

η
Hk + Σ̂1/2

x F k+1Σ̂1/2
y )‖2

F

+∞1{‖G‖∗>r} +∞1{‖G‖op>1}. (18)

The solution to the last display has a closed form according to the following result.

Proposition 2.2. Let G∗ be the solution to the optimization problem:

minimize ‖G−W‖F

subject to ‖G‖∗ ≤ r, ‖G‖op ≤ 1.

Let the SVD of W be W =
∑m

i=1 ωiaib
′
i with ω1 ≥ · · · ≥ ωm ≥ 0 the ordered singular

values. Then G∗ =
∑m

i=1 giaib
′
i where for any i, gi = 1 ∧ (ωi − γ∗)+ for some γ which

is the solution to

minimize γ, subject to γ > 0,
m∑
i=1

1 ∧ (ωi − γ)+ ≤ r.

Proof. The proof essentially follows that of Lemma 4.1 in [26]. In addition to the fact

that the current problem deals with asymmetric matrix, the only difference that we

now have an inequality constraint
∑

i gi ≤ r rather than an equality constraint as in
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Algorithm 1: An ADMM algorithm for SCCA

Input:

1. Sample covariance matrices Σ̂x, Σ̂y and Σ̂xy,

2. Penalty parameter ρ,

3. Rank r,

4. ADMM parameter η and tolerance level ε.

Output: Estimated sparse canonical correlation signal Â.

1 Initialize: k = 0, F 0 = SVCST(Σ̂xy), G
0 = 0, H0 = 0.

repeat

2 Update F k+1 as in (14) (Lasso) ;

3 Update Gk+1 ← SVCST(η−1Hk + Σ̂
1/2
x F k+1Σ̂

1/2
y ) (SVCST) ;

4 Update Hk+1 ← Hk + η(Σ̂
1/2
x F k+1Σ̂

1/2
y −Gk+1) ;

5 k ← k + 1 ;

until max{‖F k+1 − F k‖F, ρ‖Gk+1 −Gk‖F} ≤ ε;

6 Return Â = F k.

[26]. The asymmetry of the current problem does not matter since it is orthogonally

invariant.

Here and after, we call the operation in Proposition 2.2 singular value capped soft

thresholding (SVCST) and write G∗ = SVCST(W ). Thus, any update for G results

from the SVCST operation of some matrix, and so it has well controlled singular values.

In summary, the convex program (9) is implemented as Algorithm 1.

2.2 Refinement by Sparse Regression

Let the optimizer be denoted by Â. Let the columns of the matrix U (0) collect the first

r left singular vectors of Â and the columns of V (0) collect the first r right singular
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vector of Â. In Section 3, we show that the associated projection matrices PU(0) and

PV (0) are consistent estimators of the subspace spanned by the columns of U and V

respectively. The convergence rate is susv log(p+m)
nλ2r

under the Frobenius loss. Compared

with the minimax rate (4), it is sub-optimal. The reason is that the program (9) solves

for Â, which estimates UV ′, and the sparsity of the matrix UV ′ is susv instead of su of

U and sv of V . To obtain the optimal convergence rate, we need a procedure directly

estimating U and V .

To motivate such procedure, let us introduce a basic fact of CCA. Let (X, Y ) have

the same distribution as (Xi, Yi). Consider the following least square problems

min
L∈Rp×r

E‖L′X − V ′Y ‖2
F, min

R∈Rm×r
E‖R′Y − U ′X‖2

F.

The solution is characterized by the following proposition.

Proposition 2.3. Under the CCA structure (2), the minimizers of the above least

square problems are UΛ and V Λ.

Proof. Since the objective is convex, the optimal L is achieved by equating the gra-

dient to zero, which leads to ΣxL = ΣxyV . By (2), we have ΣxyV = Σx(UΛV ′ +

U1Λ1V
′

1)ΣyV = ΣxUΛ. Since Σx is invertible, we have L = UΛ. The same argument

leads to R = V Λ.

The result shows that if we have V , then we may find UΛ by regressing V ′Y on

X. On the other hand, if we have U , we can also find V Λ by regressing U ′X on Y .

With the estimator U (0), V (0) obtained from the convex programming (9), we propose

the following sparse regression formulation of SCCA,

Û = argmin
L∈Rp×r

{
1

n

n∑
i=1

‖L′Xi − (V (0))′Yi‖2
F + ρu

p∑
j=1

‖Lj·‖

}
,

V̂ = argmin
R∈Rm×r

{
1

n

n∑
i=1

‖R′Yi − (U (0))′Xi‖2
F + ρv

m∑
j=1

‖Rj·‖

}
,

(19)
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where the penalty terms ρu
∑p

j=1 ‖Lj·‖ and ρv
∑m

j=1 ‖Rj·‖ encourages row-sparsity of Û

and V̂ . With simple algebra, (19) can be written only in terms of the sample covariance

matrix Σ̂,

Û = argmin
L∈Rp×r

{
Tr(L′Σ̂xL)− 2Tr(L′Σ̂xyV

(0)) + ρu

p∑
j=1

||Lj·||

}
,

V̂ = argmin
R∈Rm×r

{
Tr(R′Σ̂yR)− 2Tr(R′Σ̂yxU

(0)) + ρv

m∑
j=1

||Rj·||

}
.

(20)

The program (19) and its equivalent form (20) are essentially the group Lasso estimator

proposed by [33], and it can be efficiently solved by standard software developed by

[4]. We remark that it is critical to use the group Lasso penalty. If the naive l1 penalty

on the whole matrix is used, we will get a sub-optimal convergence rate.

3 Statistical Optimality

In this section, we show that the estimator proposed in Section 2 enjoys certain sta-

tistical optimality. The convergence rates of (9) and (20) are established in Section

3.1. A matching minimax lower bound is derived in Section 3.2. This shows that the

estimator (20) initialized by (9) is minimax rate optimal.

3.1 Convergence Rates

In this section, we establish statistical properties of (9) and (20). We consider the

multiple canonical pair model in [9], which corresponds to the CCA structure (2)-(3)

with Λ1 = 0. We define the parameter space F(p,m, su, sv, r, λr;M) for the covariance

by collecting all such Σ satisfying ‖Σx‖op ∨ ‖Σy‖op ∨ ‖Σ−1
x ‖op ∨ ‖Σ−1

y ‖op ≤M for some

absolute constant M > 0. Define Z ∈ Rp+m asX
Y

 = Σ1/2Z, (21)
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and assume Z is an isotropic sub-Gaussian vector. To be precise, define the sub-

Gaussian norm according to [24],

||Z||ψ2 = sup
||b||≤1

inf

{
ξ > 0 : E exp

∣∣∣∣b′Zξ
∣∣∣∣2 ≤ 2

}
.

The class of distribution of the vector (X ′, Y ′)′ we consider is defined as

P(p,m, su, sv, r, λr;M) =
{
P : (X ′, Y ′)′ ∼ P has representation (21),

with Σ ∈ F(p,m, su, sv, r, λr;M),

EZ = 0, ||Z||ψ2 ≤ 1
}
.

In what follows, we also use P to implicitly represent the product measure Pn.

For the program (9), recall that U (0) and V (0) are left and right singular vector

matrices of rank r of the optimum Â. The following theorem guarantees that the

column spaces of U (0) and V (0) consistently recover the column spaces of U and V

respectively.

Theorem 3.1. Assume that

susv log(p+m)

nλ2
r

≤ c, (22)

for some sufficiently small c ∈ (0, 1). For any constant C ′ > 0, there exist constants

C > 0 and γ > 0 only depending on M and C ′, such that when ρ ≥ γ
√

log(p+m)
n

,

‖Â− UV ′‖2
F ∨ ‖PU(0) − PU‖2

F ∨ ‖PV (0) − PV ‖2
F ≤ C

susvρ
2

λ2
r

,

with P-probability at least 1−exp
(
−C ′(su+log(ep/su))

)
−exp

(
−C ′(sv+log(em/sv))

)
for any P ∈ P(p,m, su, sv, r, λr;M).

The program (20) uses U (0) and V (0) from the output of (9). It is possible to

use other matrices. The following theorem guarantees the performance of (20) for an

arbitrary U (0), V (0), which are independent of Σ̂.

14



Theorem 3.2. Let Û , V̂ be solutions to the program (20) initialized with matrices

U (0), V (0) which are independent of Σ̂. Assume that

r + log p+ logm

n
≤ C1, (23)

for some constant C1 > 0. For any constant C ′ > 0, there exist positive constants

γu, γv, C only depending on M,C ′ and C1, such that when ρu ≥ γu

√
r+log p
n

and ρv ≥

γv

√
r+logm

n
,

‖PÛ − PU‖
2
F ≤ C

suρ
2
u

λ2
rσ

2
min(V ′ΣyV (0))

,

‖PV̂ − PV ‖
2
F ≤ C

svρ
2
v

λ2
rσ

2
min(U ′ΣxU (0))

,

with P-probability at least 1−exp
(
−C ′(r+log(p∧m))

)
for any P ∈ P(p,m, su, sv, r, λr;M).

Observe that Σ
1/2
x U ∈ O(p, r) and |supp(U)| ≤ su implicitly implies r ≤ su, and

similarly, r ≤ sv. Thus, the assumption (23) is implied by the assumption (22).

Note that as long as σmin(V ′ΣyV
(0)) and σmin(U ′ΣxU

(0)) are bounded away from

zero, the rate of convergence of Theorem 3.2 is comparable to the minimax rate

(4). This requires (U (0), V (0)) being not too bad. Since Theorem 3.1 guarantees that

(U (0), V (0)) output from (9) has good statistical performance, we may combine (9) and

(20). Let us split the sample into two halves, {(Xi, Yi)}dn/2ei=1 and {(Xi, Yi)}ni=dn/2e+1. Let

(U (0), V (0)) be the output from (9) using {(Xi, Yi)}dn/2ei=1 , and let (Û , V̂ ) be the output

of (20) using {(Xi, Yi)}dn/2ei=1 and initialized by (U (0), V (0)). Then, we have the following

result.

Theorem 3.3. Assume (22). For any C ′ > 0, there exist constants γ, γu and γv

depending only on c, C ′ and M such that if we set ρ = γ′
√

log(p+m)
n

, ρu = γ′u

√
r+log p
n

and ρv = γ′v

√
r+logm

n
for any γ′ ∈ [γ, C2γ], γ′u ∈ [γu, C2γu] and γ′v ∈ [γv, C2γv] for

some absolute constant C2 > 0, then there exists a constant C > 0 only depending on
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M,C ′, C2 and c in (22), such that

‖PÛ − PU‖
2
F ≤ C

su(r + log p)

nλ2
r

,

‖PV̂ − PV ‖
2
F ≤ C

sv(r + logm)

nλ2
r

,

with P-probability at least 1−exp
(
−C ′(su+log(ep/su))

)
−exp

(
−C ′(sv+log(em/sv))

)
−

exp
(
− C ′(r + log(p ∧m))

)
for any P ∈ P(p,m, su, sv, r, λr;M).

Remark 3.1. The rates su(r+log p)
nλ2r

and sv(r+logm)
nλ2r

are optimal according to Theorem

3.4. The group Lasso penalty in (20) plays an important role. If we simply use a Lasso

penalty, then we will obtain the rates rsu log p
nλ2r

and rsv logm
nλ2r

, which is clearly sub-optimal.

3.2 A Minimax Lower Bound

Note that the minimax rate (4) is for the loss function ‖Û V̂ ′ − UV ′‖2
F. It does not

directly imply that the rate obtained in Theorem 3.3 is optimal. We derive a matching

lower bound for the result in Theorem 3.3 under the desired projection loss.

Theorem 3.4. Assume r ≤ su∧sv
2

, and there exists some η ∈ (0, 1), such that λr ≤

1−η, su ≤ p1−η and sv ≤ m1−η. Then, there exist some constant C > 0 only depending

on M and η and an absolute constant c0 > 0, such that for any Û and V̂ , we have

sup
P∈P

P
(
‖PÛ − PU‖

2
F ≥ C

su(r + log p)

nλ2
r

∧ c0

)
≥ 0.8,

sup
P∈P

P
(
‖PV̂ − PV ‖

2
F ≥ C

sv(r + logm)

nλ2
r

∧ c0

)
≥ 0.8,

where P = P(p,m, su, sv, r, λr;M).

4 Numerical Results

In this section, we present numerical results that demonstrate the finite sample perfor-

mance of the proposed sparse CCA method on synthetic datasets. We consider four

simulation settings and focus on the multiple canonical pair case where r > 1.
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Implementation details In all numerical results reported in this section, we used

penalty level 0.55 ×
√

log(p ∨m)/n in the initialization stage, and set the ADMM

parameter η = 2 and tolerance ε = 10−4. In the refinement stage, we used five-

fold cross validation to select a common penalty parameter used in group Lasso. For

l = 1, . . . , 5, we use one fold of the data as the test sample (Xtest
(l) , Y

test
(l) ) and the other

four folds as the training sample (Xtrain
(l) , Y train

(l) ). For a particular choice of the penalty

parameter ρu = ρv = ρ, we apply the refinement algorithm on (Xtrain
(l) , Y train

(l) ) to obtain

estimates (Û(l), V̂(l)). Then we compute the sum of canonical correlations between

Xtest
(l) Û(l) and Y test

(l) V̂(l) to obtain CV(ρ). Among all the candidate penalty parameters,

we select the ρ value such that CV(ρ) is maximized. The candidate penalty values

used in the simulation below are {0.5, 1, 1.5, 2}×
√

(r + log(p ∨m))/n. We use all the

sample {(Xi, Yi)}ni=1 in both stages of the estimation procedure.

To demonstrate the competitive performance of the proposed SCCA method, we

compare it with the method proposed in [31] (denoted by PMA here and on). The

PMA is defined via the following optimization problem

maximize u′Σ̂xyv, subject to ||u|| ≤ 1, ||v|| ≤ 1, ||u||1 ≤ c1, ||v||1 ≤ c2.

The solution gives the first canonical pair û1, v̂1. The the same procedure is repeated

after Σ̂xy is replaced by Σ̂xy − (û′1Σ̂xyv̂1)û1v̂
′
1, and the solution is the second canonical

pair û2, v̂2. This process is repeated until ûr, v̂r is obtained. Note that the normalization

constraint ‖u‖ ≤ 1 and ‖v‖ ≤ 1 implicitly assumes that the marginal covariance

matrices Σx and Σy are identity matrices.

We used the R implementation of the method (PMA package in R) by the authors

of [31] and the penalty parameter is always selected by cross validation by using the

default settings.

Simulation settings In all four settings, we set p = m and Σx = Σy = Σ and

r = 2 with λ1 = 0.9 and λ2 = 0.8. Moreover, the nonzero rows of both U and V at
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{1, 6, 11, 16, 21}. The values at the nonzero coordinates are obtained from normalizing

(with respect to Σ) uniform random integers drawn from {−2, 1, 0, 1, 2}. The details

of the four settings are as follows:

1. Identity: We set Σ = Ip. Since the PMA approach implicitly assumes that both

Σx and Σy are identity matrices, this setting is to its favor.

2. Toeplitz: We set

Σij = 0.3|i−j|, i, j ∈ [p].

In other words, Σx and Σy are Toeplitz matrices.

3. SparseInv: We let Σ = Ω−1 with

Ωij = 1{i=j} + 0.5× 1{|i−j|=1} + 0.4× 1{|i−j|=2}, i, j ∈ [p].

In other words, Σx and Σy have sparse inverse matrices.

4. Dense: We let Σ = (σ0
ij/
√
σ0
iiσ

0
jj) where Σ0 = (σ0

ij) = Ip + Wp/20 with Wp a

random matrix generated from the Wishart distribution Wp(20, Ip).

Results Tables 1 – 4 report, in each of the four settings, the medians and the median

absolute deviations (MADs) of the estimation errors of the proposed method and of

the PMA method out of 100 repetitions for three different configurations of (p,m, n)

values. From the simulation results, our method consistently outperform the PMA

method by a large margin. It is worth noting that even in the Identity setting, which

should favor the PMA approach, our method still leads to much smaller estimation

errors. In the other three settings, the advantage of our method is more substantial.

Comparing the first and the second blocks in Tables 1 – 4, we see that for the same

settings, larger sample size leads to more accurate estimation. Comparing the second

and the third blocks in Tables 1 – 4, we see that for the same sparsity levels and
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(p,m, n) Method ‖PÛ − PU‖F ‖PV̂ − PV ‖F

(200, 200, 500) CoLaR 0.150 (0.025) 0.160 (0.029)

PMA 0.444 (0.054) 0.428 (0.055)

(200, 200, 750) CoLaR 0.110 (0.018) 0.120 (0.018)

PMA 0.353 (0.031) 0.334 (0.045)

(500, 500, 750) CoLaR 0.126 (0.021) 0.138 (0.021)

PMA 0.407 (0.187) 0.445 (0.246)

Table 1: Estimation errors (Identity): Median and MAD (in parentheses) in 100

repetitions.

the same sample sizes, the estimation errors are not too sensitive with respect to the

ambient dimension, which is consistent with the theoretical results in Section 3. Last

but not least, comparing the four tables, we find that the proposed method does not

seem to be too sensitive to the underlying covariance structure Σx and Σy. In summary,

the proposed method delivers consistent and competitive performance in all the three

covariance settings across all dimension and sample size configurations, and its behavior

agrees well with the theoretical results.

5 Real Data Example

To further demonstrate the potential application of the proposed method, we present its

result on a breast cancer dataset in [21]. The dataset records both the DNA methylation

and gene expression data for 99 breast cancer patients that belong to the “Luminal A”

subtype as determined in [21].

We first apply the same screening approach as in [9] to select 74 genes and 1600

methylation probes distributed on 22 chromosomes. To be specific, we applied a

marginal logistic regression with the disease-free status variable for each gene and each
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(p,m, n) Method ‖PÛ − PU‖F ‖PV̂ − PV ‖F

(200, 200, 500) CoLaR 0.146 (0.020) 0.159 (0.025)

PMA 0.627 (0.076) 0.581 (0.070)

(200, 200, 750) CoLaR 0.113 (0.021) 0.123 (0.016)

PMA 0.571 (0.042) 0.561 (0.068)

(500, 500, 750) CoLaR 0.133 (0.020) 0.139 (0.023)

PMA 0.597 (0.139) 0.586 (0.182)

Table 2: Estimation errors (Toeplitz): Median and MAD (in parentheses) in 100

repetitions.

(p,m, n) Method ‖PÛ − PU‖F ‖PV̂ − PV ‖F

(200, 200, 500) CoLaR 0.143 (0.019) 0.187 (0.033)

PMA 1.560 (0.046) 1.685 (0.072)

(200, 200, 750) CoLaR 0.106 (0.019) 0.143 (0.028)

PMA 1.567 (0.026) 1.701 (0.047)

(500, 500, 750) CoLaR 0.110 (0.016) 0.167 (0.035)

PMA 1.705 (0.023) 1.710 (0.061)

Table 3: Estimation errors (SparseInv): Median and MAD (in parentheses) in 100

repetitions.
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(p,m, n) Method ‖PÛ − PU‖F ‖PV̂ − PV ‖F

(200, 200, 500) CoLaR 0.171 (0.028) 0.198 (0.030)

PMA 1.031 (0.041) 0.894 (0.039)

(200, 200, 750) CoLaR 0.135 (0.019) 0.152 (0.022)

PMA 1.001 (0.029) 0.882 (0.048)

(500, 500, 750) CoLaR 0.135 (0.020) 0.164 (0.022)

PMA 1.025 (0.027) 0.803 (0.027)

Table 4: Estimation errors (Dense): Median and MAD (in parentheses) in 100 repeti-

tions.

methylation, respectively. The selected 74 genes and 1600 methylation probes have

p-values less than 0.01. To further control the ambient dimensions of the datasets, we

apply CoLaR to 74 genes and the methylation probes on each chromosome separately.

To remove false discovery, for each chromosome, we randomly select 66 out of the 99

patients as training set and the remaining 33 patients as test set. We apply CoLaR on

the training set to obtain estimates of U and V , and then project the test set on the

estimated canonical correlation directions to compute the canonical correlation on the

test set. Fig. 1 includes the boxplots of canonical correlations on test datasets based

on 25 random splits of the training and test datasets, where we applied CoLaR with

r = 1 and 0.5
√

log(p ∨m)/n and 0.5
√

(r + log(p ∨m))/n as penalty parameters in

the first and the second stages of the method.

From the boxplots, Chromosomes 2, 4, 10 and 19 have all 25 test data canonical

correlations greater than 0.2. Thus, we applied CoLaR with the foregoing specified

parameters to all the 99 samples on these four chromosomes. In Table 5, we report

for each of the four chromosomes the number of methylation probes after screening

and the five genes and methylation probes which have the largest absolute values

in the estimated canonical correlation direction vectors. We notice among the four
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Figure 1: Boxplots of canonical correlations on test datasets based on 25 runs.

genes, MBNL1, CCL15, MEOX2 and EMCN, at least three of them appear in all four

chromosomes. These genes are reported and studied by [5, 2, 17, 18] in the literature

of breast cancer research.

6 Proofs

In this section, we present proofs of the theorems in Section 3. Note that the proofs

of Theorem 3.1 and Theorem 3.2 are essentially independent. Thus, the same symbol

used in the proofs of Theorems 3.1 and 3.2 can represent different quantities. Proofs

of the technical lemmas used in this section are deferred to Section 7.

6.1 Proof of Theorem 3.1

Before stating the proof, let us introduce some notation and technical lemmas. Define

Ũ = U(U ′Σ̂xU)−1/2, Ṽ = V (V ′Σ̂yV )−1/2,

Ã = Ũ Ṽ ′, Λ̃ = (U ′Σ̂xU)1/2Λ(V ′Σ̂yV )1/2, A = UV ′.
(24)

The reason for defining these quantities is because Σ̂
1/2
x Ũ ∈ O(p, r) and Σ̂

1/2
y Ṽ ∈

O(m, r), which facilitates the proof. Due to the sparsity of U and V , the matrices
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Chromosome # probes Top genes / methylation probes

2 92 MBNL1, CCL15, MEOX2, EMCN, REEP2

cg02251243, cg07683388, cg09694782, cg26132737, cg22115977

4 53 PRKCH, MBNL1, MEOX2, CCL15, IL33

cg15919816, cg06663149, cg25986240, cg06059810, cg06767059

10 62 MEOX2, EMCN, THSD7A, IL33, CCL15

cg02859866, cg01088382, cg11612727, cg12627983, cg13846998

19 113 EMCN, MEOX2, IL33, MBNL1, NR0B1

cg00431565, cg05562817, cg24731702, cg19577671, cg27659109

Table 5: Top genes and methylation probes on Chromosomes 2, 4, 10 and 19.

Ũ , Ṽ , Ã, Λ̃ are good approximations to U, V,A,Λ. This is established rigorously in the

following lemma.

Lemma 6.1. Assume 1
n
(su + sv + log(ep/su) + log(em/sv)) ≤ C1 for some constant

c > 0. Then, for any C ′ > 0, there exists C > 0 only depending on C ′ such that

‖Ũ − U‖op ≤ C

√
1

n

(
su + log

ep

su

)
,

‖Ṽ − V ‖op ≤ C

√
1

n

(
sv + log

em

sv

)
,

‖Ã− A‖op ∨ ‖Λ̃− Λ‖op ≤ C

[√
1

n

(
su + log

ep

su

)
+

√
1

n

(
sv + log

em

sv

)]
,

with probability at least 1− exp(−C ′(su + log(ep/su)))− exp(C ′(sv + log(em/sv))).

Note that Lemma 6.1 also implies the existence of Ũ , Ṽ , Ã, Λ̃ by ensuring that

U ′Σ̂yU and V ′Σ̂yV are invertible with high probability (see Lemma 7.1). The next

lemma shows the matrix Ã, which serves as a surrogate of the truth A, is in the

feasible set of the program (9).
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Lemma 6.2. When Ã exists, we have

‖Σ̂1/2
x ÃΣ̂1/2

y ‖∗ = r and ‖Σ̂1/2
x ÃΣ̂1/2

y ‖op = 1.

The following lemma characterizes the curvature of the objective function. It is

comparable to Lemma 9 in [11]. The difference is that we allow a non-diagonal K and

a more general E.

Lemma 6.3. Let F ∈ O(p, r), G ∈ O(m, r) and K ∈ Rr×r with positive diagonal

elements {kll}rl=1. If E satisfies ‖E‖op ≤ 1 and ‖E‖∗ ≤ r, then

〈FKG′, FG′ − E〉 ≥ min1≤l≤r kll
2

‖FG′ − E‖2
F. (25)

The requirement on E in Lemma 6.3 are that ‖E‖op ≤ 1 and that ‖E‖∗ ≤ r, which

coincide with the two constraints in the program (9), respectively. Next, define

Σ̃xy = Σ̂xUΛV ′Σ̂y. (26)

The following lemma shows Σ̃xy is close to Σ̂xy uniformly over each entry.

Lemma 6.4. Assume r
√

log(p+m)
n

≤ C1 for some constant C1 > 0. Then, for any

C ′ > 0, there exists a constant C > 0 only depending on C1, C
′,M , such that

||Σ̂xy − Σ̃xy||∞ ≤ C

√
log(p+m)

n
,

with probability at least 1− (p+m)−C
′
.

Note that the assumption r
√

log(p+m)
n

≤ C1 is always implied by (22) because

r ≤ su ∧ sv. Finally, we need a lemma on restricted eigenvalue. For any p.s.d. matrix

B, define

φBmax(k) = max
||u||0≤k,u6=0

u′Bu

u′u
, φBmin(k) = min

||u||0≤k,u6=0

u′Bu

u′u
.

The following lemma is adapted from Lemma 14 in [11]. The original Lemma 14 in

[11] is stated for the Gaussian case. The result also applies to the sub-Gaussian case

with the same proof.
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Lemma 6.5. Assume 1
n

(
(ku ∧ p) log(ep/(ku ∧ p)) + (kv ∧m) log(em/(kv ∧m))

)
≤ C1

for some constant C1 > 0. Then, for any C ′ > 0, there exists a constant C > 0

only depending on C1, C
′,M , such that for δu(ku) =

√
(ku∧p) log(ep/(ku∧p))

n
and δv(kv) =√

(kv∧m) log(em/(kv∧m))
n

, we have

M−1 − Cδu(ku) ≤ φΣ̂x
min(ku) ≤ φΣ̂x

max(ku) ≤M + Cδu(ku),

M−1 − Cδv(kv) ≤ φ
Σ̂y

min(kv) ≤ φΣ̂y
max(kv) ≤M + Cδv(kv),

with probability at least 1 − exp
(
− C ′(ku ∧ p) log(ep/(ku ∧ p))

)
− exp

(
− C ′(kv ∧

m) log(em/(kv ∧m))
)
.

Now we are ready to state the proof of Theorem 3.1.

Proof of Theorem 3.1. The proof consists of three steps. In the first step, we are going

to derive a bound for ‖Σ̂1/2
x (Â−Ã)Σ̂

1/2
y ‖F. In the second step, we derive a cone condition

and use it to lower bound ‖Σ̂1/2
x (Â − Ã)Σ̂

1/2
y ‖F by a constant multiple of ‖Â − Ã‖F.

Finally, in the third step, we use Wedin’s sin-theta theorem [29] to show that the bound

for ‖Â− Ã‖F implies a bound for ‖PU(0) − PU‖F ∨ ‖PV (0) − PV ‖F.

Step 1. Recall Ã in (24). By Lemma 6.1, Ã is well-defined with high probability

and feasible with respect to the program (9) according to Lemma 6.2. Then, by the

definition of Â, we have〈
Σ̂xy, Â

〉
− ρ||Â||1 ≥

〈
Σ̂xy, Ã

〉
− ρ||Ã||1.

After rearrangement, we have

−
〈

Σ̃xy,∆
〉
≤ ρ
(
||Ã||1 − ||Ã+ ∆||1

)
+
〈

Σ̂xy − Σ̃xy,∆
〉
, (27)

where Σ̃xy is defined in (26), and ∆ = Â− Ã. For the first term on the right hand side

of (27), we have

||Ã||1 − ||Ã+ ∆||1 = ||ÃSuSv ||1 − ||ÃSuSv + ∆SuSv ||1 − ||∆(SuSv)c ||1

≤ ||∆SuSv ||1 − ||∆(SuSv)c ||1.
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For the second term on the right hand side of (27), we have
〈

Σ̂xy − Σ̃xy,∆
〉
≤ ||Σ̂xy −

Σ̃xy||∞||∆||1. Thus when

ρ ≥ 2||Σ̂xy − Σ̂xy||∞, (28)

we have

−
〈

Σ̃xy,∆
〉
≤ 3ρ

2
||∆SuSv ||1 −

ρ

2
||∆(SuSv)c ||1. (29)

Using Lemma 6.3 and the definition (24), we can lower bound the left hand side of (29)

as

−
〈

Σ̃xy,∆
〉

=
〈

Σ̂1/2
x UΛV ′Σ̂1/2

y , Σ̂1/2
x (Ã− Â)Σ̂1/2

y

〉
=

〈
Σ̂1/2
x Ũ Λ̃Ṽ ′Σ̂1/2

y , Σ̂1/2
x (Ã− Â)Σ̂1/2

y

〉
≥ 1

2
min
1≤l≤r

λ̃ll‖Σ̂1/2
x (Ã− Â)Σ̂1/2

y ‖2
F,

where λ̃ll is the (l, l)-th entry of Λ̃. Using Lemma 6.1 and the assumption (22), we

have

min
1≤l≤r

λ̃ll ≥ λr − ||Λ̃− Λ||∞ ≥ λr − ‖Λ̃− Λ‖op ≥
1

2
λr,

with high probability. Hence, we have

−
〈

Σ̃xy,∆
〉
≥ 1

4
λr‖Σ̂1/2

x ∆Σ̂1/2
y ‖2

F. (30)

Moreover, the right hand side of (29) can be upper bounded by

3ρ

2
||∆SuSv ||1 ≤

3
√
susv
2

ρ‖∆SuSv‖F.

Combining this with (30), we have

λr‖Σ̂1/2
x ∆Σ̂1/2

y ‖2
F ≤ 6

√
susvρ‖∆SuSv‖F, (31)

which completes the first step.

Step 2. Combining (29) and (30), we obtain the cone condition

||∆(SuSv)c ||1 ≤ 3||∆SuSv ||1. (32)
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Motivated by the argument in [6], let the index set J1 = {(ik, jk)}tk=1 in (Su × Sv)
c

correspond to the entries with the largest absolute values in ∆, and we define the set

J̃ = (Su × Sv) ∪ J1. Now we partition J̃ c into disjoint subsets J2, ..., JK of size t (with

|JK | ≤ t), such that Jk is the set of (double) indices corresponding to the entries of t

largest absolute values in ∆ outside J̃ ∪
⋃k−1
j=2 Jj. By triangle inequality,

‖Σ̂1/2
x ∆Σ̂1/2

y ‖F

≥ ‖Σ̂1/2
x ∆J̃Σ̂1/2

y ‖F −
K∑
k=2

‖Σ̂1/2
x ∆JkΣ̂1/2

y ‖F

≥
√
φΣ̂x

min(su + t)φ
Σ̂y

min(sv + t)‖∆S̃uS̃v
‖F −

√
φΣ̂x

max(t)φ
Σ̂y
max(t)

K∑
k=2

‖∆Jk‖F.

By the construction of Jk, we have

K∑
k=2

‖∆Jk‖F

≤
√
t
K∑
k=2

||∆Jk ||∞ ≤ t−1/2

K∑
k=2

||∆Jk−1
||1 ≤ t−1/2||∆(SuSv)c ||1

≤ 3t−1/2||∆SuSv ||1 ≤ 3

√
susv
t
‖∆SuSv‖F ≤ 3

√
susv
t
‖∆J̃‖F, (33)

where we have used the cone condition (32). Hence, we have the lower bound

‖Σ̂1/2
x ∆Σ̂1/2

y ‖F ≥ κ‖∆J̃‖F,

with

κ =

√
φΣ̂x

min(su + t)φ
Σ̂y

min(sv + t)− 3

√
susv
t

√
φΣ̂x

max(t)φ
Σ̂y
max(t). (34)

Taking t = c1susv for some sufficiently large constant c1 > 1, with high probabil-

ity, κ can be lower bounded by a positive constant κ0 only depending on M . To

see this, note that by Lemma 6.5, (34) can be lower bounded by the difference of√
M−1 − Cδu(2c1susv)

√
M−1 − Cδv(2c1susv) and 3c

−1/2
1

√
M + Cδu(c1susv)

√
M + Cδv(c1susv)

where δu and δv are defined as in Lemma 6.5. It is sufficient to show that δu(2c1susv),
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δv(2c1susv), δu(c1susv) and δv(c1susv) are sufficiently small to get a positive absolute

constant κ0. For the first term, when 2c1susv ≤ p, it is bounded by 2c1susv log(ep)
n

and

is sufficiently small under the assumption (22). When 2c1susv > p, it is bounded by

2c1susv
n

and is also sufficiently small under (22). The same argument also holds for the

other terms.

Together with (31), this brings the bound

‖∆J̃‖F ≤
C
√
susvρ

κ2
0λr

. (35)

By (33), we have

‖∆J̃c‖F ≤
K∑
k=2

‖∆Jk‖F ≤ 3

√
susv
t
‖∆J̃‖F ≤ 3c

−1/2
1 ‖∆J̃‖F. (36)

Summing (35) and (36), we have ‖∆‖F ≤ C
√
susvρ

λr
with high probability. According to

Lemma 6.4, we may choose ρ ≥ γ
√

log(p+m)
n

so that (28) holds with high probability.

Hence,

‖∆‖F ≤ C

√
susvρ

λr
, (37)

with high probability. This completes the second step.

Step 3. By Wedin’s sin-theta theorem [29], we have

‖PU(0) − PU‖F = ‖PU(0) − PŨ‖F ≤
C‖Â− Ã‖F

σr(Â)− σr+1(Ã)
,

where σr+1(Ã) = 0 because Ã is a rank-r matrix. Using Weyl’s inequality [12, p.449],

we lower bound σr(Â) by

σr(Â) ≥ σr(UV
′)− ‖Â− Ã‖op − ‖Ũ Ṽ ′ − UV ′‖op

≥ σr(UV
′)− ‖Â− Ã‖F − ‖Ũ Ṽ ′ − UV ′‖op.

Since Σ
1/2
x U ∈ O(p, r) and Σ

1/2
y V ∈ O(m, r), σr(UV

′) is at a constant level. By (37) and

Lemma 6.1, ‖Â− Ã‖F and ‖Ũ Ṽ ′−UV ′‖op are sufficiently small with high probability.
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Hence, σr(Â) is bounded below by a constant and

‖PU(0) − PU‖F ≤ C

√
susvρ

λr
.

The same bound holds for ‖PV (0) − PV ‖F by a similar argument. Finally, ‖Â − A‖F

can be bounded by the simple inequality

‖Â− A‖F ≤ ‖Â− Ã‖F +
√

2r‖Ũ Ṽ ′ − UV ′‖op,

where the first term is bounded by (37), and the second term is bounded by the desired

rate using Lemma 6.1 and the fact r ≤ su∧sv. Hence, ‖Â−A‖F ≤ C
√
susvρ

λr
. The proof

is complete by applying a union bound to all probabilistic argument we have made.

6.2 Proof of Theorem 3.2

Define

U∗ = UΛV ′ΣyV
(0), ∆ = Û − U∗. (38)

Note that ∆ is different from the one used in the proof of Theorem 3.1.

Lemma 6.6. Assume r+log p
n
≤ C1 for some constant C1 > 0. Then, for any C ′ > 0,

there exists a constant C > 0 only depending on C1, C
′,M , such that

max
1≤j≤p

||[Σ̂xyV
(0) − Σ̂xU

∗]j·|| ≤ C

√
r + log p

n
,

with probability at least 1− exp
(
− C ′(r + log p)

)
.

Proof of Theorem 3.2. Since the analysis for Û and V̂ are the same, we only state the

proof for Û . The proof consists of three steps. In the first step, we derive a bound

for Tr(∆′Σ̂x∆). In the second step, we derive a cone condition and use it to obtain a

bound for ‖∆‖F by arguing that Tr(∆′Σ̂x∆) upper bounds ‖∆‖F. In the third step, a

sin-theta theorem is applied to bound ‖PÛ − PU‖F by ‖∆‖F.
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Step 1. By definition of Û , we have

Tr(Û ′Σ̂xÛ)− 2Tr(Û ′Σ̂xyV
(0)) + ρu

p∑
j=1

||Ûj·||

≤ Tr((U∗)′Σ̂xU
∗)− 2Tr((U∗)′Σ̂xyV

(0)) + ρu

p∑
j=1

||U∗j·||.

After rearrangement, we have

Tr(∆′Σ̂x∆) ≤ ρu

p∑
j=1

(
||U∗j·|| − ||U∗j· + ∆j·||

)
+ 2Tr

(
∆′(Σ̂xyV

(0) − Σ̂xU
∗)
)
. (39)

For the first term on the right hand side of (39), we have

p∑
j=1

(
||U∗j·|| − ||U∗j· + ∆j·||

)
=

∑
j∈Su

||U∗j·|| −
∑
j∈Su

||U∗j· −∆j·|| −
∑
j∈Sc

u

||∆j·||

≤
∑
j∈Su

||∆j·|| −
∑
j∈Sc

u

||∆j·||.

For the second term on the right hand side of (39), we have

Tr
(

∆′(Σ̂xyV
(0) − Σ̂xU

∗)
)

≤
( p∑
j=1

||∆j·||
)

max
1≤j≤p

||[Σ̂xyV
(0) − Σ̂xU

∗]j·||,

where [·]j· means the j-th row of the corresponding matrix. When

ρu ≥ 4 max
1≤j≤p

||[Σ̂xyV
(0) − Σ̂xU

∗]j·||, (40)

we have

Tr(∆′Σ̂x∆) ≤ 3ρu
2

∑
j∈Su

||∆j·|| −
ρu
2

∑
j∈Sc

u

||∆j·||. (41)

Since
∑

j∈Su
||∆j·|| ≤

√
su
√∑

j∈Su
||∆j·||2, (41) can be upper bounded by

Tr(∆′Σ̂x∆) ≤
3
√
suρu
2

√∑
j∈Su

||∆j·||2. (42)
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This completes the first step.

Step 2. The inequality (41) implies the cone condition∑
j∈Sc

u

||∆j·|| ≤ 3
∑
j∈Su

||∆j·||. (43)

Let the index set J1 = {j1, ..., jt} in Scu correspond to the rows with the largest l2 norm

in ∆, and we define the extended support S̃u = Su ∪ J1. Now we partition S̃cu into

disjoint subsets J2, ..., JK of size t (with |JK | ≤ t), such that Jk is the set of indices

corresponding to the t rows with largest l2 norm in ∆ outside S̃u ∪
⋃k−1
j=2 Jj. Note that

Tr(∆′Σ̂x∆) = ‖n−1/2X∆‖2
F, where X = [X1, ..., Xn]′ ∈ Rn×p denotes the data matrix.

By triangle inequality, we have

‖n−1/2X∆‖F ≥ ‖n−1/2X∆S̃u∗‖F −
∑
k≥2

‖n−1/2X∆Jk∗‖F

≥
√
φΣ̂x

min(su + t)‖∆S̃u∗‖F −
√
φΣ̂x

max(t)
∑
k≥2

‖∆Jk∗‖F,

where for a subset B ⊂ [p], ∆B∗ = (∆ij1{i∈B,j∈[r]}), and∑
k≥2

‖∆Jk∗‖F ≤
√
t
∑
k≥2

max
j∈Jk
||∆j·|| ≤

√
t
∑
k≥2

1

t

∑
j∈Jk−1

||∆j·|| (44)

≤ t−1/2
∑
j∈Sc

u

||∆j·|| ≤ 3t−1/2
∑
j∈Su

||∆j·||

≤ 3

√
su
t

√∑
j∈Su

||∆j·||2 ≤ 3

√
su
t
‖∆S̃u∗‖F. (45)

In the above derivation, we have used the construction of Jk and the cone condition

(43). Hence,

‖n−1/2X∆‖F ≥ κ‖∆S̃u∗‖F,

with κ =

√
φΣ̂x

min(su + t) − 3
√

su
t

√
φΣ̂x

max(t). In view of Lemma 6.5, taking t = c1su for

some sufficiently large constant c1, with high probability, κ can be lower bounded by

a positive constant κ0 only depending on M . Combining with (42), we have

‖∆S̃u∗‖F ≤
C
√
suρu

2κ2
0

. (46)
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By (44)-(45), we have

‖∆(S̃u)c∗‖F ≤
∑
k≥2

‖∆Jk∗‖F ≤ 3

√
su
t
‖∆S̃u∗‖F ≤ 3c

−1/2
1 ‖∆S̃u∗‖F. (47)

Summing (46) and (47), we have ‖∆‖F ≤ C
√
suρ. According to Lemma 6.6, we may

choose ρu ≥ γu

√
r+log p
n

so that (40) holds with high probability. Hence,

‖∆‖F ≤ C

√
su(r + log p)

n
, (48)

with high probability. This completes the second step.

Step 3. By Wedin’s sin-theta theorem [29], we have

‖PÛ − PU‖F = ‖PÛ − PU∗‖F ≤
C‖Û − U∗‖F

σr(U∗)− σr+1(Û)
.

Since Û ∈ Rp×r, σr+1(Û) = 0. We lower bound σr(U
∗) by

σr(U
∗) ≥ C−1λrσmin(V ′ΣyV

(0)).

Since ‖Û − U∗‖F is upper bounded by (48), we have

‖PÛ − PU‖F ≤ C

√
suρu

λrσmin(V ′ΣyV (0))
,

with high probability. A similar argument gives

‖PV̂ − PV ‖F ≤ C

√
svρv

λrσmin(U ′ΣxU (0))
.

Hence, the proof is complete.

6.3 Proof of Theorem 3.3

To facilitate the proof, we need the following result.

Lemma 6.7 (Stewart and Sun [23], Theorem II.4.11). For any matrices F,G with

F ′F = G′G = Ir, we have

inf
W∈O(r,r)

‖F −GW‖F ≤ ‖FF ′ −GG′‖F.
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Proof of Theorem 3.3. It is sufficient to lower bound σmin(V ′ΣyV
(0)) and σmin(U ′ΣxU

(0))

by constants. Let V have singular value decomposition V = RDQ′. By Lemma 6.7

and Theorem 3.1, there exists a matrix W ∈ O(r, r), such that

‖V (0) −RW‖op ≤ ‖V (0) −RW‖F ≤ C

√
susv log(p+m)

nλ2
r

, (49)

with high probability. By Weyl’s inequality,

σmin(V ′ΣyV
(0)) ≥ σmin(V ′ΣyRW )− ‖V ′Σy(V

(0) −RW )‖op. (50)

Combining (49), (50) and the assumption (22), it is sufficient to lower bound σmin(V ′ΣyRW )

by a constant. Note that V ′ΣyRW = V ′ΣyV QD
−1W = QD−1W , and thus we have

σmin(V ′ΣyRW ) = σmin(QD−1W ) = σmin(D−1) = ‖V ‖−1
op ≥M−1/2.

Applying the same argument for σmin(U ′ΣxU
(0)), the proof is complete.

6.4 Proof of Theorem 3.4

The proof largely follows the proof of Theorem 3 in [11], though [11] considered a

different loss function from the current paper. Nonetheless, we spell out the details

below for the sake of completeness.

For any probability measures P,Q, define the Kullback-Leibler divergence byD(P||Q) =∫ (
log dP

dQ

)
dP. The following result is Lemma 7 in [11]. It gives explicit formula for

the Kullback-Leibler divergence between distributions generated by a special kind of

covariance matrices.

Lemma 6.8. For i = 1, 2, let Σ(i) =

 Ip λU(i)V
′

(i)

λV(i)U
′
(i) Im

 with λ ∈ (0, 1), U(i) ∈

O(p, r) and V(i) ∈ O(m, r). Let P(i) denote the distribution of a random i.i.d. sample

of size n from the Np+m(0,Σ(i)) distribution. Then

D(P(1)||P(2)) =
nλ2

2(1− λ2)
‖U(1)V

′
(1) − U(2)V

′
(2)‖2

F.
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The main tool for our proof is Fano’s lemma. The following version is adapted from

[32, Lemma 3].

Proposition 6.1. Let (Θ, ρ) be a metric space and {Pθ : θ ∈ Θ} a collection of

probability measures. For any totally bounded T ⊂ Θ, denote by M(T, ρ, ε) the ε-

packing number of T with respect to ρ, i.e., the maximal number of points in T whose

pairwise minimum distance in ρ is at least ε. Define the Kullback-Leibler diameter of

T by

dKL(T ) , sup
θ,θ′∈T

D(Pθ||Pθ′). (51)

Then

inf
θ̂

sup
θ∈Θ

Pθ
(
ρ2
(
θ̂(X), θ

)
≥ ε2

4

)
≥ 1− dKL(T ) + log 2

logM(T, ρ, ε)
. (52)

Proof of Theorem 3.4. Due to the symmetry of the problem, we consider the loss ‖PÛ−

PU‖2
F. The lower bound for the loss ‖PV̂ − PV ‖2

F has the same proof. The proof has

three steps. In the first step, we derive the part rsu
nλ2r

in the lower bound. In the second

step, we derive the other part su log p
nλ2r

. Finally, we combine the two results in the third

step.

Step 1. Let U0 =

Ir
0

 ∈ O(p, r) and V0 =

Ir
0

 ∈ O(m, r). For some ε0 ∈ (0,
√
r]

to be specified later, let

B(ε0) = {U ∈ O(p, r) : supp(U) ⊂ [su], ‖U − U0‖F ≤ ε0} .

and

T0 =

Σ =

 Ip λrUV
′

0

λrV0U
′ Im

 : U ∈ B(ε0)

 .

It is straightforward to verify that T0 ⊂ F . By Lemma 6.8,

dKL(T0) = sup
U(i)∈B(ε0)

nλ2
r

2(1− λ2
r)
‖U(1)V

′
0 − U(2)V

′
0‖2

F

= sup
U(i)∈B(ε0)

nλ2
r

2(1− λ2
r)
‖U(1) − U(2)‖2

F =
2nλ2

rε
2
0

1− λ2
r

.

(53)
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Here, the second equality is due to the definition of V0 and the third due to the definition

of B(ε0). We now establish a lower bound for the packing number of T0. For some

α ∈ (0, 1) to be specified later, let {Ũ(1), . . . , Ũ(N)} ⊂ O(p, r) be a maximal set such

that supp(Ũi) ⊂ [su], and for any i 6= j ∈ [N ],

‖Ũ(i)Ũ
′
(i) − U0U

′
0‖F ≤ ε0, ‖Ũ(i)Ũ

′
(i) − Ũ(j)Ũ

′
(j)‖F ≥

√
2αε0. (54)

Then by [8, Lemma 1], for some absolute constant C > 1,

N ≥
(

1

Cα

)r(su−r)
.

It is easy to see that the loss function ‖PU(i)
−PU(j)

‖2
F on the subset T0 equals ‖U(i)U

′
(i)−

U(j)U
′
(j)‖2

F. Thus, for ε =
√

2αε0 with sufficiently small α, logM(T0, ρ, ε) ≥ r(su −

r) log 1
Cα
≥ 1

2
rsu log 1

Cα
. Taking ε20 = c1

rsu
nλ2r

for sufficiently small c1, we have

inf
Û

sup
P∈P

P
(
‖PÛ − PU‖

2
F ≥

ε20
4

)
≥ 1−

2c1rsu
1−λ2r

+ log 2
1
2
rsu log 1

Cα

. (55)

Since λr is bounded away from 1, we may choose sufficiently small c0 and α, so that

the right hand side of (55) can be lower bounded by 0.9. This completes the first step.

Step 2. The part su log p
nλ2r

can be obtained from the rank-one argument spelled out in

[9]. To be rigorous, consider the following subset of parameter space:

T1 =

{
Σ =

 Ip λrUV
′

0

λrV0U
′ Im

 :U =

Ir−1 0

0 ur

 ,
ur ∈ Rp−r+1, ||ur|| = 1, |supp(ur)| ≤ su − r + 1

}
.

Restricting on the set T1, the loss function is

‖PU(i)
− PU(j)

‖2
F = ‖ur,(i)u′r,(i) − ur,(j)u′r,(j)‖2

F.

Let X = [X1 X2] with X1 ∈ Rn×(r−1) and X2 ∈ Rn×(p−r+1), and Y = [Y1 Y2] with

Y1 ∈ Rn×(r−1) and Y2 ∈ Rn×(m−r+1). Then it is further equivalent to estimating u1
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under projection loss based on the observation (X2, Y2), because (X2, Y2) is a sufficient

statistic for ur. Applying the argument in [9, Appendix G] and choosing the appropriate

constant, we have

inf
Û

sup
P∈P

P
(
‖PÛ − PU‖

2
F ≥ C

su log p

nλ2
r

∧ c0

)
≥ 0.9, (56)

for some constant C > 0. This completes the second step.

Step 3. For any P ∈ P , by union bound, we have

P
(
‖PÛ − PU‖

2
F ≥ ε21 ∨ ε22

)
≥ 1− P

(
‖PÛ − PU‖

2
F < ε21

)
− P

(
‖PÛ − PU‖

2
F < ε22

)
= P

(
‖PÛ − PU‖

2
F ≥ ε21

)
+ P

(
‖PÛ − PU‖

2
F ≥ ε22

)
− 1.

Taking supP∈P on both sides of the inequality, and letting ε21 = C1
rsu
nλ2r

in (55) and

ε22 = C2
su log p
nλ2r

∧ c0 in (56), we have

sup
P∈P

P
(
‖PÛ − PU‖

2
F ≥ ε21 ∨ ε22

)
≥ 0.9 + 0.9− 1 = 0.8.

Thus, the proof is complete.

7 Proofs of Technical Lemmas

In this section, we give proofs of the lemmas listed in Section 6. We first present an

auxiliary result.

Lemma 7.1. Assume 1
n
(su + sv + log(ep/su) + log(em/sv)) ≤ C1 for some constant

c > 0. Then, for any C ′ > 0, there exists C > 0 only depending on C ′ such that

‖U ′Σ̂xU − I‖op ∨ ‖(U ′Σ̂xU)1/2 − I‖op ≤ C

√
1

n

(
su + log

ep

su

)
,

‖V ′Σ̂yV − I‖op ∨ ‖(V ′Σ̂yV )1/2 − I‖op ≤ C

√
1

n

(
sv + log

em

sv

)
,

with probability at least 1− exp(−C ′(su + log(ep/su)))− exp(C ′(sv + log(em/sv))).
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Proof. Using the definition of operator norm and the sparsity of U , we have

‖U ′Σ̂xU − Ir‖op = ‖U ′(Σ̂x − Σx)U‖op

= sup
||v||=1

(Uv)′(Σ̂x − Σx)(Uv) ≤ ‖U‖2
op‖Σ̂xSuSu − ΣxSuSu‖op,

where ‖U‖2
op ≤ ‖Σ

−1/2
x ‖2

op‖Σ
1/2
x U‖2

op ≤ M and ‖Σ̂xSuSu − ΣxSuSu‖op is bounded by the

desired rate with high probability according to Lemma 13 in [11]. Notice Lemma 13

in [11] was stated in the Gaussian case, but its proof also works for the sub-Gaussian

case. Lemma 16 in [11] implies ‖(U ′Σ̂xU)1/2 − I‖op ≤ C‖U ′Σ̂xU − I‖op, and thus

‖(U ′Σ̂xU)1/2 − I‖op also shares same upper bound. The upper bound for ‖V ′Σ̂yV −

I‖op ∨ ‖(V ′Σ̂yV )1/2 − I‖op can be derived by the same argument. Hence, the proof is

complete.

Proof of Lemma 6.3. Denote F = [f1, ..., fr], G = [g1, ..., gr] and cj = f ′jEbj. By

‖E‖op ≤ 1, we have |cj| ≤ 1. The left hand side of (25) is

〈FKG′, FG′ − E〉 = 〈K, I − F ′EG〉 =
r∑
l=1

kll(1− cl) ≥ min
1≤l≤r

kll

r∑
l=1

(1− cl).

The right hand side of (25) is

min1≤l≤r kll
2

‖FG′ − E‖2
F

=
min1≤l≤r kll

2

(
‖FG′‖2

F + ‖E‖2
F − 2Tr(F ′EG)

)
≤ min1≤l≤r kll

2

(
Tr(F ′FG′G) + ‖E‖op‖E‖∗ − 2

r∑
j=1

cj

)
≤ min

1≤l≤r
kll

r∑
j=1

(1− cj).

This completes the proof.
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Proof of Lemma 6.1. According to the definition (24), we have

‖U − Ũ‖op ≤ ‖U‖op‖(U ′Σ̂xU)1/2 − I‖op‖(U ′Σ̂xU)−1/2‖op,

‖V − Ṽ ‖op ≤ ‖V ‖op‖(V ′Σ̂yV )1/2 − I‖op‖(V ′Σ̂yV )−1/2‖op,

‖Λ̃− Λ‖op ≤ ‖(U ′Σ̂xU)1/2 − I‖op‖Λ(V ′Σ̂yV )1/2‖op

+‖Λ‖op‖(V ′Σ̂yV )1/2 − I‖op,

‖Ã− A‖op ≤ ‖U‖op‖V − Ṽ ‖op + ‖Ṽ ‖op‖U − Ũ‖op.

Applying Lemma 7.1, the proof is complete.

Proof of Lemma 6.2. By the definition of Ũ , we have Ũ ′Σ̂xŨ = I, and thus Σ̂
1/2
x Ũ ∈

O(p, r). Similarly Σ̂
1/2
y Ṽ ∈ O(m, r). Thus,

‖Σ̂1/2
x ÃΣ̂1/2

y ‖op ≤ ‖Σ̂1/2
x Ũ‖op‖Σ̂1/2

y Ṽ ‖op ≤ 1. (57)

Now let us use the notation Q = Σ̂
1/2
x ÃΣ̂

1/2
y . Then, by the definition of Ã, we have

Q′Q = Σ̂
1/2
y V (V ′Σ̂yV )−1V ′Σ̂

1/2
y , and

Tr(Q′Q) = Tr((V ′Σ̂yV )−1(V ′Σ̂yV )) = r. (58)

Combining (57) and (58), it is easy to see that all eigenvalues of Q′Q are 1. Thus, we

have ‖Q‖∗ = r and ‖Q‖op = 1. The proof is complete.

Proof of Lemma 6.4. Using triangle inequality, ||Σ̂xy − Σ̃xy||∞ can be upper bounded

by the following sum,

||Σ̂xy − Σxy||∞ + ||(Σ̂x − Σx)UΛV ′Σy||∞

+||ΣxUΛV ′(Σ̂y − Σy)||∞ + ||(Σ̂x − Σx)UΛV ′(Σ̂y − Σy)||∞.

The first term can be bounded by the desired rate by union bound and Bernstein’s

inequality [25, Prop. 5.16]. For the second term, it can be written as

max
j,k

∣∣∣∣∣ 1n
n∑
i=1

(Xij[X
′
iUΛV ′Σy]k − EXij[X

′
iUΛV ′Σy]k)

∣∣∣∣∣ ,
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where Xij is the j-th element of Xi and the notation [·]k means the k-th element of

the referred vector. Thus, it is a maximum over average of centered sub-exponential

random variables. Then, by Bernstein’s inequality and union bound, it is also bounded

by the desired rate. Similarly, we can bound the third term. For the last term, it can be

bounded by
∑r

l=1 λl||(Σ̂x−Σx)ulv
′
l(Σ̂y−Σy)||∞, where for each l, ||(Σ̂x−Σx)ulv

′
l(Σ̂y−

Σy)||∞ can be written as

max
j,k

∣∣∣∣∣
(

1

n

n∑
i=1

(XijX
′
iul − EXijX

′
iul)

)(
1

n

n∑
i=1

(YikY
′
i vl − EYikY ′i vl)

)∣∣∣∣∣ .
It can be bounded by the rate log(p+m)

n
with the desired probability using union bound

and Bernstein’s inequality. Hence, the last term can be bounded by λ1r log(p+m)
n

. Under

the assumption that r
√

log(p+m)
n

is bounded by a constant, it can further be bounded

by the rate
√

log(p+m)
n

with high probability. Combining the bounds of the four terms,

the proof is complete.

Proof of Lemma 6.6. By the definition of U∗, we have ΣxyV
(0) = ΣxU

∗. Thus,

max
1≤j≤p

||[Σ̂xyV
(0) − Σ̂xU

∗]j·|| ≤ max
1≤j≤p

||[(Σ̂xy − Σxy)V
(0)]j·||+ max

1≤j≤p
||[(Σ̂x − Σx)U

∗]j·||.

Let us first bound max1≤j≤p ||[(Σ̂x − Σx)U
∗]j·||. Note that the sample covariance can

be written as

Σ̂x = Σ1/2
x

(
1

n

n∑
i=1

ZiZ
′
i

)
Σ1/2
x ,

where {Zi}ni=1 are i.i.d. sub-Gaussian vectors with ||Zi||ψ2 = 1. Let T ′j be the j-th row

of Σ
1/2
x , and then we have

[(Σ̂x − Σx)U
∗]j· =

1

n

n∑
i=1

(T ′jZiZ
′
iΣ

1/2
x U∗ − T ′jΣ1/2

x U∗).

For each i and j, define vector

W
(j)
i =

 T ′jZi

(U∗)′Σ
1/2
x Zi

 .
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Since T ′jZiZ
′
iΣ

1/2
x U∗ is a submatrix of W

(j)
i (W

(j)
i )′, we have

||[(Σ̂x − Σx)U
∗]j·|| ≤ ‖

1

n

n∑
i=1

(W
(j)
i (W

(j)
i )′ − EW (j)

i (W
(j)
i )′)‖op.

Hence, for any t > 0, we have

P
{

max
1≤j≤p

||[(Σ̂x − Σx)U
∗]j·|| > t

}
≤

p∑
j=1

P

{
‖ 1

n

n∑
i=1

(W
(j)
i (W

(j)
i )′ − EW (j)

i (W
(j)
i )′)‖op > t

}

≤
p∑
j=1

exp

(
C1r − C2nmin

{
t

‖W(j)‖op

,
t2

‖W(j)‖2
op

})
, (59)

where W(j) = EW (j)
i (W

(j)
i )′, and we have used concentration inequality for sample

covariance [25, Thm. 5.39]. Since ‖W(j)‖op ≤ C3 for some constant C3 only depending

on M , (59) can be bounded by

exp
(
C ′1(r + log p)− C ′2n(t ∧ t2)

)
.

Take t2 = C4
r+log p
n

for some sufficiently large C4, and under the assumption (23),

max1≤j≤p ||[(Σ̂x − Σx)U
∗]j·|| ≤ C

√
r+log p
n

with probability at least 1 − exp(−C ′(r +

log p)). Similar arguments lead to the bound of max1≤j≤p ||[(Σ̂xy−Σxy)V
(0)]j·||. Let us

sketch the proof. Note that we may write

[(Σ̂xy − Σxy)V
(0)]j =

1

n

n∑
i=1

(
T ′jZiY

′
i V

(0) − E(T ′jZiY
′
i V

(0))
)
.

Then, define

H
(j)
i =

 T ′jZi

(V (0))′Yi

 ,
and we have

max
1≤j≤p

||[(Σ̂xy − Σxy)V
(0)]j|| ≤ max

1≤j≤p
‖ 1

n

n∑
i=1

(H
(j)
i (H

(j)
i )′ − EH(j)

i (H
(j)
i )′)‖op.

Using the same argument, we can bound this term by C
√

r+log p
n

with probability at

least 1− exp(−C ′(r + log p)). Thus, the proof is complete.
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