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ABSTRACT
Motivation: Although many network inference algorithms
have been presented in the bioinformatics literature, no
suitable approach has been formulated for evaluating their
effectiveness at recovering models of complex biological
systems from limited data. To overcome this limitation,
we propose an approach to evaluate network inference
algorithms according to their ability to recover a complex
functional network from biologically reasonable simulated
data.
Results: We designed a simulator to generate data
representing a complex biological system at multiple
levels of organization: behaviour, neural anatomy, brain
electrophysiology, and gene expression of songbirds.
About 90% of the simulated variables are unregulated
by other variables in the system and are included simply
as distracters. We sampled the simulated data at inter-
vals as one would sample from a biological system in
practice, and then used the sampled data to evaluate the
effectiveness of an algorithm we developed for functional
network inference. We found that our algorithm is highly
effective at recovering the functional network structure
of the simulated system—including the irrelevance of
unregulated variables—from sampled data alone. To
assess the reproducibility of these results, we tested our
inference algorithm on 50 separately simulated sets of
data and it consistently recovered almost perfectly the
complex functional network structure underlying the sim-
ulated data. To our knowledge, this is the first approach
for evaluating the effectiveness of functional network
inference algorithms at recovering models from limited
data. Our simulation approach also enables researchers a
priori to design experiments and data-collection protocols
that are amenable to functional network inference.
Availability: Source code and simulated data are avail-
able upon request.
Contact: amink@cs.duke.edu; asmith@neuro.duke.edu;
jarvis@neuro.duke.edu
Keywords: Bayesian network; network inference al-
gorithm; model induction; model inference; automatic

discovery; simulation; complex system; systems biology;
evaluation framework; songbird; brain; gene expression;
electrophysiology; molecular neurobiology; functional
genomics.

INTRODUCTION
One major goal of functional genomics research is to take
large sets of biological data, usually correlational, and
elucidate functional interactions between elements in a
causal pathway or network. Such efforts have led to the
recent development and use of linear (D’haeseleer et al.,
1999), nonlinear (Weaver et al., 1999), target-regulator
pair (Arkin et al., 1997), Boolean (Liang et al., 1998;
Akutsu et al., 2000), and Bayesian (Friedman et al., 2000;
Hartemink et al., 2001) network inference algorithms
to predict biological pathways. Some of the predicted
functional interactions are biologically reasonable since
they can be corroborated by published findings in the
literature; some appear to be unreasonable. However, the
validity of the vast majority of predicted interactions is
difficult to assess because the interactions have not been
biologically tested. To test all of them experimentally
would involve multiple gene knockout studies or other
types of interventions. This could take decades, if not
several lifetimes, to accomplish for even a single com-
plex network, as there are currently no high-throughput
experimental resources for such an undertaking. Most
daunting are networks that predict hundreds to thousands
of biological interactions.

In an attempt to circumvent this problem, we developed
a new approach. We begin by creating a computer
simulation of a biological system in which we make
and know all the rules. We then run the simulation and
sample data from it, as one would sample data from a real
biological system. Finally, we present the sampled data to
algorithms that purport to discover underlying regulatory
network structure and evaluate their ability to recover
the original simulated network. In this manner, we can
test an algorithm’s accuracy, modify it when necessary,
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Fig. 1. Using simulation to evaluate functional network inference. Moving from left to right: We design an underlying structure for the
system that is simulated by BRAINSIM to produce continuously changing data. We sample from the simulated data as one would in
practice, discretize the sampled data, and then apply our network inference algorithm, NETWORKINFERENCE, to recover network structure.
Comparing the recovered structure with that provided to the simulator enables us to evaluate both our network inference algorithm and our
method of sampling data from the simulated system.

and help inform the design of real biological experiments
for use with the algorithm (Figure 1). Although such an
approach is not a complete substitute for intervention
experiments, it has the potential to save years of time
for functional genomics research, in part by helping to
design experiments and data-collection methodologies
to decipher the underlying mechanisms of biological
systems more accurately. This study presents the details
of this approach as developed for an integrative biological
project (Jarvis et al., 2002).

Our simulator, BRAINSIM, is modelled after the vocal
communication system of the songbird brain. Songbirds
are used because they have the rare trait of vocal learning,
the substrate for human language. This trait has been
most studied in songbirds, and thus they represent one
of the best animals for modelling complex brain and
behaviour functions. In addition, the songbird vocal
learning system is built upon the basic features of sensory
processing (hearing), motor processing (vocalizing), and
sensorimotor integration of the two. It has been studied
at the molecular, neural anatomical, electrophysiological,
and behavioural levels. Thus, discoveries with the song-
bird vocal system and our simulation are expected to be
applicable to a wide variety of systems.

Our functional network inference algorithm, called
NETWORKINFERENCE, uses Bayesian networks to model
complex biological systems like those governing vocal
learning in the songbird brain. The advantage of Bayesian
networks is that they capture conditional dependence
and independence between variables, and are capable of
incorporating information from multiple levels of analy-
sis. They also can model stochastic processes, which are
known to play a role in gene expression (McAdams and
Arkin, 1997). An additional feature of our NETWORK-
INFERENCE algorithm is that it can exploit time series
data to discover dynamic networks that capture cyclic
phenomena occurring in complex biological systems, like
feedback.

APPROACH
BRAINSIM design
BRAINSIM is written in C++ and models an animal’s
externally observable behaviour, electrophysiological
activity in distinct regions of the brain, and gene expres-
sion in each of these regions of the brain (Figure 2). In
the simulation we use in this paper, a bird exhibits a
behaviour, modelled to have two possible states, 0 or 1,
which are arbitrary for the purposes of the simulation, but
which we took to correspond to silence and singing. Each
bird also has five regions that make up its brain. Each
region has values for electrophysiological activity and the
expression levels of 100 genes. Electrophysiological ac-
tivity values range from 0–400 Hz, the range found when
measuring multi-unit action potentials with extracellular
electrodes (Hessler and Doupe, 1999). Absolute levels of
gene expression are modelled with values in the range
0–50 (arbitrary units).

In four of the five brain regions, hereafter called regu-
lated regions, activity was correlated with behaviour. For
two of the four regions, activity was low (0–100 Hz) when
behaviour was 0 and high (300–400 Hz) when behaviour
was 1. For the other two regions, this relationship was re-
versed. In the fifth region, activity was not correlated with
behaviour. This represents the possibility that behaviour
may correspond with increased activity in some regions
of the brain, suppressed activity in others, and be unre-
lated to activity in still others (Figure 2, middle). The reg-
ulatory network for each region involved only 10 of the
100 genes. Two genes were directly dependent on activ-
ity in the region, while the other eight formed a regulatory
network downstream of these two (Figure 2, bottom). We
included 90 extra unregulated genes as distracters to rep-
resent the highly likely possibility that only a small subset
of the measured genes will be involved in the network of
interest.

Starting values for all variables were initialized in
BRAINSIM. Behaviour began in state 0. Activity in
regulated regions began at a random low or high value
(ranges as above) to correspond with behaviour 0, and
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Fig. 2. Overview of BRAINSIM. A single data set produced by
BRAINSIM consists of six birds (top), each of which consists of
a behaviour and five brain regions (middle). Behaviour corresponds
with activity in regions 1 through 4, but not 5. All five brain regions
have the same regulatory network (bottom). Arrows from one node
to another in the regulatory network represent an influence of the
value of the upstream variable at one time step on the value of the
downstream variable at the next time step. A plus (+) next to the
arrowhead indicates a positive influence; a minus (−), a negative
influence.

activity in the unregulated region began at a random value
between 0 and 400. The initial level of gene expression
for a gene (across all regions) was called its ‘target’ value,
intended to correspond to its constitutive expression level.
This value was selected as a random value in the range 0–
10 for upregulated genes, 40–50 for downregulated genes,
and 0–50 for the 90 unregulated genes. The target values
for the 100 genes were saved in a text file to be read for
each run of BRAINSIM. Thus, the constitutive expression
level of each gene was the same for every bird across all
data sets throughout this study.

BRAINSIM then generated values for behaviour, activ-
ity, and gene expression at all subsequent time steps, mod-

elled to be approximately 1 minute apart. Values were cal-
culated based on their previous values and on any regu-
latory influences. Because in a biological system changes
in activity and behaviour occur on the order of millisec-
onds with respect to one another while regulatory influ-
ences on gene expression occur on the order of minutes,
behaviour and activity were modelled to change simulta-
neously (within a single time step). For a specified number
of time steps, behaviour remained at the same value, and
activity in the regulated regions was chosen to be a new
random high or low value each time step to correspond
with behaviour. When behaviour switched between 0 and
1, activity in regulated regions switched to a random value
from the opposite range. Activity in the unregulated region
was equal to its value in the previous time step plus or mi-
nus a random amount (from 0–100 Hz); this range was
chosen empirically to match experimentally observed pat-
terns of activity (Hessler and Doupe, 1999, and our own
lab).

Three influences summed to provide values for gene
expression from one time step to the next. First, all genes
had a returning function, where they added or subtracted
a constant amount (chosen to be 4) to move closer to
their original target levels. This represents degradation of
mRNA in the cell or return to constitutive transcription
after suppression. Second, the ten regulated genes adjusted
their values based on the levels of their regulators in the
previous time step. Upregulated genes added a proportion
(0.2) of their regulator’s expression level to their own,
and downregulated genes subtracted a proportion (0.2).
Thus, the higher the expression level of the regulator, the
larger its influence. Because activity had a larger range
than that of the genes, it was multiplied by the appropriate
scaling factor (1/8) before computing its influence on
the two genes that were directly dependent on it in the
region. The 90 unregulated genes added or subtracted
a random amount (from 0–5) to simulate regulation by
other unmeasured processes. Third, a random amount
(from 0–6) was added to or subtracted from each gene
to simulate stochasticity in gene expression. Finally,
computed expression levels were truncated to be in
the range 0–50. This represents the inability to have
negative levels of gene expression, and the likelihood of
a maximum transcription rate for each gene. As with
the dynamics of activity, the magnitudes of these gene
expression influences were chosen empirically to provide
biologically reasonable patterns of expression.

NETWORKINFERENCE design
The NETWORKINFERENCE algorithm takes a collection
of observed data as input and then searches for Bayesian
networks that are good at explaining the observed data
without unnecessary complexity, returning the best
Bayesian network, or networks, that it encounters during
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Fig. 3. Representing a regulatory network using a dynamic Bayesian
network. On the left is a cyclic regulatory network with three
elements. On the right is this same regulatory network but depicted
as a dynamic Bayesian network. All connections from the regulatory
network are shown from the controlling element in time t to the
controlled element in time t + �t .

its search. A Bayesian network is a model that captures
probabilistic relationships among variables in the form
of a graph; nodes in the graph correspond to observed
variables and directed edges (links) in the graph mean that
the child node is conditionally dependent on the parent
node. Unlike a number of other modelling frameworks,
Bayesian networks permit stochastic, combinatorial, and
nonlinear relationships among variables, enabling them
to represent, at the level of conditional dependence,
many phenomena that we observe in complex biological
systems. In addition, the probabilistic nature of Bayesian
networks enables them to handle noisy data gracefully.
Although static Bayesian networks are limited to acyclic
directed graphs, dynamic Bayesian networks can be used
to model cyclic behaviours that emerge temporally, like
feedback (Figure 3). We designed NETWORKINFERENCE

in a manner that is capable of searching for dynamic
Bayesian networks from temporal data.

The scoring metric employed by NETWORKINFER-
ENCE is the widely used Bayesian scoring metric (BSM).
Under the BSM, the score of a Bayesian network is
defined as the log probability of the network given the ob-
served data. Any principled scoring metric must balance a
network’s ability to explain observed data with its ability
to do so simply: scoring metrics with a penalty for unnec-
essary complexity are able to guard against the over-fitting
of network models to observed data. The BSM includes
an inherent penalty for unnecessary complexity and thus
higher scores are given to networks with a better ability to
explain observed data simply; the score of one network is
higher than the score of another if and only if it is better
at explaining the observed data simply. Furthermore, the
difference between the scores for any two networks leads
to a direct statistical significance measure for determining
how strongly one should be preferred over the other. In
the presence of complete data, the BSM for a discrete
Bayesian network can be computed exactly in closed

form (Cooper and Herskovits, 1992). Bayesian network
methods have previously been applied in the context of
genetic regulatory network modelling (Hartemink et al.,
2001; Friedman et al., 2000), but, to our knowledge, this
is the first application to modelling complex systems at
multiple biological levels of organization beyond genetic
regulation.

Identifying the highest-scoring network for an arbitrary
set of observed data has been shown to be NP-complete
under the BSM (Chickering, 1996); as a result, an exhaus-
tive search would be futile and we must instead consider
heuristic search strategies. In previous work (Hartemink,
2001; Hartemink et al., 2002), we compared the per-
formance of a number of heuristic search strategies
and observed that simulated annealing (Kirkpatrick et
al., 1983) consistently found higher scoring networks
than other methods. Consequently, our implementation
of NETWORKINFERENCE, written in C, searches for
high-scoring networks in the space of Bayesian networks
by simulated annealing (with extensions for reanneal-
ing to avoid becoming trapped in local maxima). Our
implementation also allows the user to modify the prior
over network structures by specifying sets of links that
are required to be present or required to be absent. For
example, this mechanism allows NETWORKINFERENCE

to search for dynamic Bayesian networks by disallowing
links that flow backwards in time.

RESULTS
Data generation, sampling
We used BRAINSIM to generate data for six birds for
200 time steps each, switching between the two behaviour
states every 50 time steps. We considered this a single data
set. Analysis of BRAINSIM output revealed that activity
in regulated regions remained high or low, but varied
considerably within those subranges, while activity in the
unregulated region wandered randomly throughout the
whole range, sometimes making large jumps. Regulatory
influences were propagated through all ten regulated genes
in the network while the remaining 90 genes moved
randomly. Noticeable time lags were observed in response
to regulation, and the speed of response to increase of a
regulator was not necessarily the same as the response
to decrease of a regulator. Panel (a) of Figure 4 shows
a graphical depiction of a small, representative sample
of such BRAINSIM output. It can be seen that increased
activity (top trace) is followed by upregulation of gene
1 (second trace from top) with a slight time lag. When
activity drops, gene 1 then returns to hover near its target
level, also with a slight time lag. Gene 10 (third trace
from top) is at the terminus of the regulatory network
and is downregulated by its regulator (whose trace is not
shown). Its downregulation occurs considerably later than
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Fig. 4. BRAINSIM output, sampling, and discretization. (a) Values
for activity and the expression of genes 1, 10, and 12 for one run
of BRAINSIM in one region. The region displayed in the Figure
is positively correlated with behaviour (behaviour 0 translates to
low activity and behaviour 1 to high activity; behaviour graph not
shown). (b) Data sampled every 5 time steps, beginning at time 45,
from the simulation for the values depicted in panel (a). (c) Quartile
discretized values for the sampled data in panel (b).

the response of gene 1 to activity, showing how regulatory
effects are propagated through the network over time.
The relaxation of gene 10’s downregulation does not even
occur until just before behaviour is ready to switch back to
state 1. Gene 12 (bottom trace) is one of the 90 unregulated
genes in the region and can be seen to wander randomly
in a wide range but without respect to activity or the other
genes shown. These traces (and others not shown) suggest
that BRAINSIM generates biologically reasonable data as
output.

To sample data from this system as one would sample
data in an actual experiment, we started sampling just
before the bird began to sing (just before behaviour
switched to 1) and continued every 5 time steps while
the bird sang, as the bird stopped singing (as behaviour
switched to 0), and while the bird was silent. In all,
21 samples were taken from the 200 time point series,
spanning one full cycle of singing and silence (panel
(b) of Figure 4). Thus, while BRAINSIM generated data
for each time step, we sampled the data at intervals,
getting only periodic slices of the system, resulting in
considerable loss of information. As is the case in a
typical animal experiment, although changes in behaviour,
electrophysiological activity, and gene expression occur
continuously, a researcher usually is able to sample data
only at occasional points and must draw conclusions from
these limited data.

We chose to sample every 5 time steps based upon
the intuition that the time interval between samples
should match the intervals at which the phenomena of
interest unfold. For example, approximately 5 minutes
are required for mRNA transcripts to be exported from
the nucleus, be translated into proteins, and return to the
nucleus to have a regulatory effect on the transcription of
other genes. Thus, time series of mRNA expression levels
are taken at intervals of at least 5 minutes. Similarly, in
our simulation, the effect of a regulator on its target was
0.2 in each time step, corresponding to a full effect over
the course of 5 time steps.

Data discretization
When using discrete Bayesian networks, the number of
possible values for each variable should be as small as rea-
sonably possible for computational reasons. This requires
that we discretize the data sampled from BRAINSIM. Dis-
cretization can result in information loss if important vari-
ation is lost; however, it also has the benefit of making
the data more robust by smoothing out uninformative ran-
dom noise. We chose to use four values for discretization
to balance among these pressures. Behaviour already had
only two states and was thus left unchanged. The differ-
ent activity and gene expression values were discretized to
four levels using quartile discretization: the lowest 25% of
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values were labelled state 1, the next highest 25% were la-
belled state 2, the next 25% were labelled state 3, and the
highest 25% were labelled state 4. The final discretization
is shown for representative variables in panel (c) of Fig-
ure 4. This sampled and discretized data, several times re-
moved from the output generated by BRAINSIM, are pro-
vided as input to NETWORKINFERENCE.

Functional network recovery
To recover the underlying structure of the system, we
applied NETWORKINFERENCE in two stages. First, we
determined the regulatory network of the genes and
activity in all five regions. Second, we examined all
five regions in relation to behaviour of the bird, using
activity as the best summarizing value for each region.
We then constructed the whole system by merging these
two structures together at the activity nodes for each
region. Our reason for breaking the problem into stages
is as follows. Because gene regulation occurs relatively
slowly, on the order of our sampling interval, we used
NETWORKINFERENCE to recover a dynamic Bayesian
network in the first stage, expecting expression levels at
one time point to have an influence on levels at the next
sampled time point. In contrast, changes in behaviour and
activity occur simultaneously, relative to our sampling
interval, so we would not expect behaviour at one sampled
time point to be directly related to activity at the next
sampled time point. Thus, in the second stage, we used
NETWORKINFERENCE to recover a static Bayesian model
representing dependence between variables at an instant in
time.

To test the robustness of NETWORKINFERENCE in both
stages, we applied it to 50 separate data sets generated
from the same structure, one at a time. By examining the
reproducibility of the results for independent inference
tasks on the same underlying structure, we can provide
approximate measures of confidence for results obtained
when examining a single data set collected from an actual
biological experiment.

First stage: brain region regulatory network recovery
For the first stage, we considered each brain region to
be a sample of the regulatory network under different
conditions. To recover a dynamic Bayesian network, we
created nodes for activity and the expression of all 100
genes in both time t and time t + �t . Our 21 samples
of data were therefore converted to 20 paired samples of
data (for example, activity at time t paired with activity
at time t + �t). Since we simulated six birds with five
brain regions each, this resulted in a data matrix of
600 observations for 202 variables. We mandated links
from a variable at time t to itself at time t + �t . To
enforce recovery of a valid dynamic Bayesian network,
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Fig. 5. Brain region regulatory network recovery. Links from the
recovered structures of all 50 runs of NETWORKINFERENCE. The
percentage of structures that had a particular link is noted next to
that link. Links in 94% or more of the recovered structures are
solid; links in 6% or fewer are dashed; no links appeared with
an intermediate frequency. Note that this figure does not represent
a Bayesian network. Rather, it is a projection of the dynamic
Bayesian network structures produced by NETWORKINFERENCE

onto a graphical representation of BRAINSIM’s regulatory network
(such a projection is depicted for a simple cycle in Figure 3.

we disallowed links within the same time period and links
from a node in time t + �t backwards to a node in time t .

The first stage was run for each data set for 1 hour on
a 1 GHz Pentium III CPU running Linux. NETWORKIN-
FERENCE searched an average of 8.5 million structures
(range 8.1–8.7 million) and found its best scoring structure
within the first 1.7 million structures on average (range
0.5–8.4 million). All 50 runs of NETWORKINFERENCE on
separate data sets were highly effective at recovering the
brain region regulatory network structure of the simulated
system (Figure 5). They all correctly identified activity and
the 10 regulated genes as being involved in a network, and
correctly identified the remaining 90 genes as being unre-
lated to anything else in the data set. The ability to clas-
sify variables as being unrelated derives from the inherent
penalty for complexity in the Bayesian scoring metric. Of
the 50 recovered structures, 43 were identical, recovering
10 of the 11 links in the regulatory network; the remaining
7 structures had one or two incorrect links, but always be-
tween elements correctly belonging to the regulatory net-
work. This resulted in a mean(±SE) recovery of 89±0.1%
for the 11 correct links, with 98 ± 0.1% of the links in the
recovered structures corresponding to a link in the original
regulatory network.
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explanation for the link-jumping is presented in the text.

One link was consistently not recovered: from gene 3 to
gene 6. In the simulation, gene 3 and gene 5 controlled
gene 6 in a coordinated fashion, with the lower expression
level of the pair serving as the limiting factor in the
regulation of gene 5. In examining the simulation output
across the data sampling period, we found that gene 5 had
a lower expression level than gene 3 in 89 ± 0.2% of the
cases, while gene 3 was lower than gene 5 in only 9±0.2%
of the cases. Thus gene 5 nearly always served as the
effective regulator. Consequently, NETWORKINFERENCE

identified a dependence between gene 5 and gene 6, but
not between gene 3 and gene 6, because such a link did
not explain a sufficient quantity of the data to overcome
the BSM’s inherent penalty for complexity. We verified
that this was the case by calculating that the score for the
‘correct’ BRAINSIM network was lower (worse) than the
best scoring structure found by NETWORKINFERENCE for
all 50 data sets. Thus, the functional network inference
algorithm was not flawed but rather, the data did not
fully ‘exercise’ the links in the underlying structure.
This reveals that when one variable is frequently the
limiting regulator, other ‘unexercised’ regulators may not
be identified.

To assess our intuitive choice of matching the sampling
interval to the dynamics of the system, we next took
samples every 10 time steps, a time interval twice as long
as the one we believed matched the system, and compared
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Fig. 7. Brain-behaviour network recovery. Links from proposed
solutions of all 50 runs of NETWORKINFERENCE. Percentage of
solutions with each link is noted next to that link. A full picture
of the system can be obtained by merging the results of the two
recovery stages together at the activity nodes for each region. Thus,
the regulatory network, as recovered in Figure 5, is represented in
each region here.

NETWORKINFERENCE’s ability to recover the functional
network. To keep the number of data points consistent,
we took the same number of data points across the same
transitions; this required the simulator to run twice as long.
We repeated the inference task for 25 different data sets,
and although the correct nodes were again completely
recovered in each case, we found only a mean recovery of
27±0.3% of the 11 correct links, with 30±0.4% of links in
the recovered structures corresponding to a correct link in
the regulatory network (Figure 6). An additional 62±0.4%
of the links in the recovered structures were off by one
node; that is, they connected two genes in the network that
should have been separated by a single node (for example,
connecting gene 6 to gene 8, when the correct network
connects gene 6 to gene 7 and then to gene 8). Thus, the
larger sampling interval often skipped over connections,
confirming that the sampling interval can have a dramatic
effect on the ability to recover a network. One must sample
at intervals that are small enough to capture the dynamic
phenomena of interest in the system.

Second stage: brain-behaviour network recovery For the
second stage, we presented NETWORKINFERENCE with
data representing bird behaviour and discretized activity
in the five regions for each of the 21 sampled points.
For the six birds, this produced a data matrix of 126
observations for 6 variables, a relatively trivial problem.
However, when more than two behaviours are observed
and when these behaviours may depend combinatorially
on activity in different brain regions which themselves
may interact with one another, this stage could become as
difficult as the first one (if not more so). The second stage
was run for each data set for about 10 minutes on a 1 GHz
Pentium III CPU running Linux. NETWORKINFERENCE
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searched an average of 8.0 million structures (range 4.1–
8.9 million), finding its best scoring structure within the
the first 3.3 million on average (range 50 000–8.7 million).

Of the 50 runs of NETWORKINFERENCE on different
data sets, 47 correctly identified only the activities of the
four regulated regions and behaviour as related; the other
3 added an extra link between behaviour and the activity
of the unregulated region. All 50 had links between only
activity in the regions and behaviour, and none among
the five activities. Thus, there was 100% recovery of the
4 correct links (between behaviour and activity in the 4
regulated regions), and a mean of 99 ± 0.7% of links
in the recovered structures corresponding to correct links
(Figure 7). For the 3 runs whose solutions had links to
the fifth unregulated area, the ‘correct’ structure scored
lower (worse) than the best scoring structure found by
NETWORKINFERENCE. Thus, these sampled data sets
likely had spurious correlations of behaviour with the
randomly wandering activity that the algorithm correctly
identified as existing.

DISCUSSION
In this report, we show that it is possible to evaluate and
thus develop functional inference network algorithms for
elucidating complex biological systems in reasonable
time by using realistically simulated data. This approach
requires two main phases: development of a realistic
simulation and development and testing of an inference
algorithm. The fact that we simulated the underlying
system, and not just the data points provided to the algo-
rithm, meant that we could also examine various methods
for sampling the system to provide input to the algorithm.
Such a simulation and network inference testing approach
differs from previous methods in testing functional
network algorithm effectiveness for a number of reasons.
First, we generate biologically reasonable data rather
than data from a Bayesian network. This means there is a
mismatch between the system generating the data and the
framework used to model the system, which is far more
realistic. Second, our data has multiple distracters and is
forced to cope with significant information loss, as might
be expected in an actual experiment. Third, the algorithm
is capable of handling the temporal data produced by the
simulator using dynamic Bayesian networks, enabling
modelling of biological feedback loops that are difficult
to represent with standard (static) Bayesian networks.
A dynamic representation can also help reveal possible
causal relationships. Fourth, we infer networks involving
multiple levels of biological complexity and not just
networks limited to gene regulatory pathways.

It was remarkable that NETWORKINFERENCE dis-
played both high recovery fidelity and high robustness on
the simulated data, even in the presence of over 90 noisy

distracter variables, like unrelated genes and activity.
This has been a worrisome aspect of high-throughput
bioinformatics research because gene expression arrays
and electrophysiological experiments produce noisy data
and often measure many variables that are unrelated to
the biological systems of interest. It appears that inference
algorithms may be able to sort out the noise and dis-
tracters from the specific regulatory network of interest.
The inclusion of noisy unrelated genes is especially useful
in testing these methods because when conducting our
experiments we will not know a priori which are the
genes whose levels are being regulated. Similarly, at the
level of brain-region organization, one of the regions
passed to the algorithm generated data for the same 100
genes as the other regions but its electrophysiological
activity level was independent of the bird’s behaviour.
An additional interesting find was that although the
simulator generated continuous data, when those data
were sampled, discretized, and passed to the inference
algorithm for learning, NETWORKINFERENCE was forced
to cope with information loss. The inference algorithm
did not have access to all the output of the simulation,
but instead only occasional time points like those that
can be reasonably gathered in experiments today. The
data were then discretized, producing even greater loss of
information. Yet, NETWORKINFERENCE provided high
recovery success on these limited data, demonstrating that
functional network inference algorithms hold promise
for revealing mechanisms underlying complex biological
systems.

A benefit of our simulation and recovery testing ap-
proach is that it helps us understand how we should
collect data before performing a biological experiment.
This is likely one of the most powerful features of our
approach. For example, tests confirmed our intuition that
we need to sample data on the same time scale as that
on which functional responses occur. By examining the
effect of sampling at non-uniform intervals and varying
the number of subjects tested, we will be able to design
biological experiments that produce the most pertinent
data for our network inference method. We expect to col-
lect gene expression and electrophysiological data from
brain regions with known anatomical connectivity, from
animals in different behavioural states, such as silence,
hearing, singing alone, and singing to a companion (Jarvis
et al., 2002).

There are still a great number of limitations of our
approach. First, BRAINSIM models the songbird brain at
a very simple level. Future work will be necessary to
develop the simulator such that it includes more complex
gene regulatory networks, anatomical connectivity, refined
electrophysiological activity, etc. Second, we tested only
one type of inference algorithm here, and one that needs
discretized data. Other algorithms may be more effective
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when the system becomes more complex. Third, final
verification of our approach will require at least a minimal
set of biological intervention experiments. Nevertheless,
our approach appears to hold promise for both validating
and developing inference algorithms and for use and
development of advances in experimental design.
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