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Abstract

The mgjor goa of computational biology is to derive regulatory interactions between genes from
large-scale gene expression dataand other biological sources. There have been many attemptsto
reach this goal, but the field needs more research before we can claim that we have reached a
complete understanding of reverse engineering of regulatory networks. One of the aspects that
have not been considered to a great extent in the development of reverse engineering approaches
is combinatorial regulation. Combinatorial regulation can be obtained by the presence of modular
architectures in regulation, where multiple binding sites for multiple transcription factors are
combined into modular units.

When modelling regulatory networks, genes are often considered as “black boxes’, where gene
expression level isan input signal and changed level of expression is the output . We need to shed
light on reverse engineering of regulatory networks by modelling the gene “boyes” at a more
detailed level of information, e.g., by using regulatory elements as input to gene boxes as a
complement to expression levels. Another problem in the context of inferring regulatory
networksisthe difficulty of validating inferred interactions because it is practically impossible to
test and experimentally confirm hundreds to thousands of predicted interactions. Therefore, we
need to develop an artificial network to evaluate the developed method for reverse engineering.

One of the major research questions that will be proposed in this work is: Can we reverse

engineer the cis-regulatory logic controlling the network organised by modular units?

Thiswork isaiming to give an overview of possible research directionsin this field as well asthe
chosen direction for the future work where more research is needed. It also gives a theoretical
foundation for the reverse engineering problem, where key aspects are reviewed.

Keywords genetic regulatory networks; artificia network reverse engineering, modular
architecture;

1 Introduction

In computational biology thereis agreat interest inunderstanding the regul atory mechanisms that
control gene expression. Understanding how genes communicate in the networks of regulatory
interactions is a step towards understanding the regulation of gene expression. Knowledge about
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regulation can in turn help us gain insightsinto diseases since many diseases are characterised by
abnorma gene expression.

The advent of microarray technology, which allows us to measure expression levels of tens of
thousands of genes simultaneously, has opened up new opportunities for identifying biologicaly
plausible regulatory interactions between genes. Gene expression data from microarrays is used
to construct expression profiles, which is often done by putting together expression levels from
different eperimental conditions, or time intervals. Similarities and differences between he
expression profiles, as well as changes in expression levels, provide important insights into
regul atory relationships.

A common assumption in earlier studies is that genes that share similar expression profiles, and
thereby act similarly during a time course, are functionally related and may also be involved in
the same regulatory mechanism. Therefore, clustering techniques, which congtitute the first
generation of expression analysis techniques, have been used for structuring expression datainto
co-expressed groups of genes . The second generation of techniques relies uponintegrating other
data sources with expression data. Identification of co-expression is now a prelude for further
analysis, like scanning promoter sequences for regulatory elements (Zhu and Zhang, 2000),
modelling metabolic pathways (Fellenberg and Mewes, 1999), etc.

Recent research has emphasi sed reverse engineering of regulatory networks from gene expression
data It relies on the following assumption: Given enough data on gene expression levels, it is
possible to infer how genes are regulated. The ultimate long-term goal is to answer the question
“what controlling mechanism caused the behaviour that we can observe in gene expression
profiles?” However, we need to expand the definition of reverse engineering to encompass other
types of hiological data, especially when it comes to the more complex examples of gene
regulation. This brings us to the third generation of analysis techniques which rely on
integration of various data sources but also take into consideration more complex aspects of
genetic regulation, such asthe modular and combinatoria nature of regulatory elements.

In this report, we aim to show how far the research has come in the area of extracting regulatory
networks. We will also address the question “What is needed in order to extract biologicaly
plausible networks?’ The emphasis will be on the second and third generation of analysis took,
with special foaus on the regulation aspects that need further investigation. In section 2, we
review some of the key concepts of regulatory networks. Section 3 describes the problem being
studied in this work. Section 4 describes the second generation of analysis techniques including
information sources that can be useful in the context of deriving regulatory networks. Section 5
describes the third generation of analysis techniques, and finally section 6 gives indications of
what isleft todoin the future work.

2 Key aspects of regulatory networks

In this chapter, the necessary concepts connected to regulatory networks that constitute the
foundation for this work will be introduced.



2.1 Genetic vs. regulatory networks

There is a broad spectrum of different ways to descri be genetic networks. This section will start
with a description of genetic networks in a broad sense, which will gradually be narrowed down
so that more specific aspects of genetic networks can be brought out.

Theterm genetic network can be defined as “an association of many genes which interact with
each other in cascades or parallel pathways and achieve a specific function or various functions
through such interactions' (Noveen et al., 1998, pp 378). Furthermore, Neveen et al. (1998) refer
to the interactions between genesin anetwork as away of direct or indirect adjustment of genes’
expression or function. The adjustment of gene expression occurs through stimulation or
inhibition of transcription, translation or through post-translational modifications. This definition
isbroad in the sense that it allows regulatory interactions to occur a all levels of control of gene
expression.

Wagner (2001) provides a similar definition where the focus is on gene activity, which might
include changes in gene expression on the mMRNA or protein level (methylation state,
phosphorylation state, or alternative splicing). According to Wagner (2001), a genetic network
consists of agroup of genesin which individual genes can change the activity of other genes.

The advent of microarray technologies have led to more specified definitions of genetic
networks, which are more suitable to reflect the level of data generated from large-scale
microarray experiments, i.e. the transcriptome level. D’ haeseleer (2000) used a model of gene
networks that represents a higher-level of regulation consisting of regulatory interactions between
genes rather than detailed biochemical mechanisms, as described in previous definitions This
definition of gene networks is very narrow compared to the previous definitions since it only
alows mRNA levelsto reflect regulatory interactions.

A common representation of regulatory networks that reflects D’ haeseleer’s definition is shown
in figure 1 where connections with arrows represent activation and flat-end connections represent
inhibition of gene expression. Connections in the network can be assigned weights that denote
the strength of activation/inhibition. In this representation, only the transcriptional state, i.e. the
amount of mRNA, is considered to be an activation/inhibition factor. This definition is not
complete, since we know that the post-transcriptiona level is as significant for the genetic
network as the transcriptome level. The implicit assumption that has been used in most gene
expression studies is that there is a high correlation between the level of mRNA and the
corresponding amount of protein produced in acell, which is not aways correct. Many important
interactions occur at post-transcriptional levels of regulation, which can beinvolved in control of
any of the many stages between gene transcription and the translation of corresponding mRNA in
the cytoplasm (Latchman, 1998). Such data can not be observed in microarray experiments. A
study performed by Hatzimanikatis and Lee (1999) shows that nonlinear stability analysis of
continuous models of gene expression proves that describing models of gene networks requires
information on boththe mMRNA and protein level.

In spite of those disadvantages, we should not underestimate the imp ortance of the regulation at
the transcriptional level. Hence, while waiting for efficient technology for development of large-
scale protein chips, we will restrict this work to the regulatory interactions that occur on the
transcriptional level.



Figure 1: Representation of genetic network.

Even when we narrow down the definition of genetic networks to only consider regulation at the
transcriptional level, using only gene expression data is not sufficient to derive regulatory
interactions. There is still a need for integration with other information sources to derive
regul atory networks. Those sources are reviewed in section 4.

2.2 Theroleof regulatory elements

A central point of gene expression control is regulation of transcription initiation. This process
can be explained as co-operation between cis- and trans acting regulatory elements. Simply
stated, transacting transcription factors bind to cis-acting regulatory elements in upstream
regions of the gene which either enhance or inhibit transription. In the next sections, the role of
regul atory elementswill be explained.

2.2.1 Transcription factors

The presence of transcription factoss in regulatory networks is necessary, due to their important
role to bind cis-regulatory elements, which in turn affects the initiation of transcription and
thereby the gene expression level. The second generation of expression analysis took has been
focused on extracting regulatory networks by identifying potential cis-regulatory elements, which
in turn could be coupled to corresponding transcription factors. Those approaches tend to draw an
idealised picture of the problem of identifying regulatory elements. In previous work (Tavazoie et
a., 1999; Hughes at a., 2000; Zhang, 1999; Brazma et al., 1998) this poblemis described as a
matter of finding a set of putatively “co-regulated” genes according to similar shapes of their
expression patterns. In their upstream regions they should also share a set of common
transcription factor binding sites (TFbs), which n turn can help deriving the connection to
transcription factors.

Identifying this connection to transcription factors, which play a major role in regulatory
networks, is not as simple as it seems. There are some difficulties that are reviewed in this
section.



Regulatory regions that are involved in transcriptional control of eukaryotic genes often contain
several TFbs. The hopeisthat the TFbs point towards transcription factors that play akey role in
the transcriptional regulation of the corresponding gene. However, several problems make it
difficult to define connections to transcription factorsin genetic networks by studying expression
data (“grouping genes by expression”) and selecting over-represented oligonucleotides which are
treated as putative TFbs. One of these problems, as stated in Pedersen et a. (1999), is that TFbs
can bind severa different members of a family of transcription factors. The opposite case is also
usual, i.e. “there can be great variability in the binding sites of a single factor, and the nature of
the allowable variations is not well understood” (Sinha and Tompa, pp 1, 2000). In SCPD (a
promoter database of the baker's yeast) for example, for 200 genes there are 203 binding sites
which are in single copy, 69 in two copies, 19 in three copies, 9 in four, 3 in five and 1 in six
(Zhu and Zhang, 1999). An example of the complexity of a regular network is the sea urchin
Endol6 gene where the upstream region contains at least 33 TFbs which are organised in
modular units(Yuh et al., 1998).

Another difficulty is that the choice of which transcription factor will bind sometimes depends on
the availability of transcription factors for binding in a given cell type. The complexity increases
even more if we take into consideration that a kinding site might never be bound if some
segquence elements that must be recognised correctly by the transcriptional mechanism are not
present under certain conditions when the geneis transcribed (Pedersen et a., 1999).

Current approaches of analysis of promoter regions of co-expressed genes to find significant
regulatory motifs that correspond to putative TFbs are not sufficient to make the pieces of the
regulatory network puzzle fit together. Additional sources to locate regulatory regions have been
proposed, like phylogenetic footprinting for example (Ficket and Wasserman, 2000).

2.2.2Binding sites
As mentioned before, transcription factors play a major role in the control of gene transcription.
They are proteins which interact with different classes of DNA targets (TFbs) and with each

other. For the purpose of thiswork, only the most usual classes of binding sites will be described
here.

The core promoter elements are placed immediately upstream of the transcription start site. One
of the best characterised core promoter elements is the TATA element which is usually located
25 bp upstream of the transcription start site (Nikolov and Burley, 1997). The TATA box is
involved in directing RNA polymerase |l to begin transcription and it works most efficiently
together with promoter proximal elements (Griffiths et al., 1996). Promoter proximal elements
can be placed anywhere between 50-200 bp upstream of the start site. The CCAAT box is an
example of a proximal element (Griffiths et al., 1996). Those elements typicaly affect the
efficiency of transcription initiation. Enhancer elements can be found very far from the
transcription initiation site in either direction and they can greatly increase the transcription rate.
Similarly, repressors can inhibit the transcription rate. Those regulatory sites, which are located
on the DNA molecule and bound by trans-acting proteins in order to control expression, are also
called cis-regulatory elements. Hence, the interplay between trans- and cis-acting el ements isan
important molecular mechanism which influences the gene expression patterns we observein e.g.
microarray experiments.



The idea of linking genomic sequence and expression data by associating transcription factor
binding sites with expression profiles of groups of genesisvery well established.

2.3 Coregulation

The term coregulation is very widely used in gene expression studies due to the assumption that
coregulated genes should be members of the same regulatory network. A general idea of
coregulation is following: Groups of genes which are subjected to regulation by the same
transcription factor (“master switch”) or participate in same regulatory pathway are coregulated.
There are also many special cases of coregulation that do not follow this definition strictly (see
section 2.4). In this chapter, we will highlight different contexts of using theterm coregulation.

Some studies imply that genes which share similar patterns of expression (coexpressed genes)
during a time course should also be coregulated. Coregulation between a pair of genes is also
claimed if genes share a significant number of regulatory elements. However, mexpressed genes
which do not share regulatory elements may be indirectly coregulated, i.e. subjected to regulation
of, as Yanai et al. (2002) state, a “master controller” which governs more than one regulatory
element.

Another common description of coregulation model refers to proximity of the genes at the
chromosome. A phenomenon that exemplifies this coregul ation model isthat amethyl transferase
gene is found adjacent to a restriction enzyme gene along the chromosome, in al known
occurrences (Yana et a., 2002). An explanation of this type of coregulation is that both genes
need to be switched on at the same time for the defence system to work satisfactorily, which is
facilitated by the proximity of those two genes. In prokaryotes, there are sets of genes that are
known to be transcribed together and strongly coregulated. These sets of genes that are
transcribed together into MRNA to betranslated to proteins are known as operons.

A similar “proximity based” mechanism of coregulation in eukaryotes is explained in Kel-
Margoulis et al. (2002). They state that specific combinations of transcription factor binding sites
located in a close proximity to each other, also called “composite clusters’ play a key role in co-
ordinating regulation. This “cluster”- or “modular” - based reasoning, which often relies on
synergistic binding of adjacent transcription factors and depends on the order and spacing of the
binding sites, is not taken into account by today’ s methods for identifying regul atory networks.

McGuire and Church (2000) refer to coregulation in terms of presence of significant regulatory
motifs within the set of genes being coregulated (regulon).

It is important to distinguish coregulation from coexpression because coexpression can occur
purely by coincidence while coregulation is the consequence of acommon molecular mechanism
(Werner, 2001).

2.4 Modularity

In this section, a specific type of gene regulation, based onthe combinatorial nature of regulation,
will be discussed. It is often referred to asthe modular organisation of gene regulation dueto the
fact that several transcription factor binding sites, which are organised in functional units called
modules, play a crucia role in gene transcription (Klingenhoff et al., 2000). The traditional



approaches of analysing microarray data do not explicitly address this modular nature of

regulation.

Pilpel et a. (2001) discussed that the basic idea behind the modular approach is that transcription
factors can be considered as “words’ which can be compiled to “sentences’ to regulate gene

expression. In nore detailed, it means that genes can consist of subelements of the DNA

sequence, each of which can execute a certain regulatory function. Transcription of agene canfor
example depend on which combination of modules is involved in regulation, so that same gene
can be expressed in one condition and repressed in another. Each subelement is referred to as a
regulatory module and contains multiple target sites for DNA binding factors (Yuh et a., 1998).

This problem has been actualised with the enormous flow of expression data generated from
microarrays All attempts to identify regulatory networks by combining regulatory elements and
expression data have revesled more difficult problems, like identifying the synergistic effect of
transcription factors, for example. This means identifying a combination of regulatory elements
that control the gene expression pattern. Still, there is a lack of methods for reverse engineering
of regulatory networks which take into consideration such more complex aspects of regulation.
This is probably due to the fact that it takes many years of experimental work to verify cis-
regulatory systems which are characterised by modular architectures. Examples where we can
find this type of regulatory system include the sea urchin Endol16 system (Yuh et al., 1998) and
cis-regulatory modules involved in pattern formation in the Drosophila genome (Berman et a.,
2002).

In spite of the experimental evidence that cis-regulatory information is organised into modular
units in higher eukaryotes, ve are still mostly using traditional computational methods for
modelling genes. A gene is often considered as a “black box” where the gene expression level is
an input signal and changed level of expression is the output. Figure 2 is an example of modular
regulation which shows how the input and output of the “gene box” can vary depending on
circumstances of transcription. We need to shed light on reverse engineering of regulatory
networks by braking down information going in to the gene boxinto more detailed units of
information, e.g., by using regulatory elements as input to the genebox as a complement to
expression levels.

As mentioned before, we can find avery well studied example of modularity in the seaurchin
Endo16 regulatory system. Two different regulatory effects in Endol6 are illustrated in figure 2.
A general pattern of modularity is described in following hypothetical example. Assume that
transcription factor (TF) A alone induces transcription to 60 % of the maximum value. Assume
aso that TF B does not stimulate expression when it acts individually. On the other hand, when
A and B act synergistically, they induce expression at the maximum rate. Hence, their synergistic
effect is different from the simple sum of their individual effects. In this case, binding sites for
TFs A and B can form a module, which is a functional unit that can regulate expression in
different stages and acts autonomously. Now assume that there isa TF C which together with TF
B represses transcription. Hence, different combinations result in different effects on gene
transcription.

Consider the example illustrated in figure 2 where module A communicates the output of all
upstream modules to the core transcription apparatus. In figure 2A, it is shown how modules



CDEF repress the gene. Figure 2B shows how synergism with modules B and G enhance the
expression of the genein later development.
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Figure 2: The figure gives an example of modular architecture.

This example shows, as Yuh et a. (1998) refer to, part of genomic cis-regulatory logic for sea
urchin gene Endol6. Cis-regulatory bgic means, in other words, regulatory programming code
specified in cisregulatory DNA sequence, which mediate complex developmental patterns of
expression.Examplein figure 2 is a part of large regulatory network described in Davidson et a.
(2002) where Endo16 gene is the most closely examined part. It took the last two decades of
molecular studies to partly crack this code, or at least provide a wealthy of data that allow
researchers to crack the regulatory network that controls the specification of endoderm and
mesoderm in sea urchin embryo. It is important to stress that deriving of this cis-regulatory
network was a result of interplay of multiple approaches. An integration of experimental
embryology, in situ hybridisation, knock out experiments, comp arative sequence analysis has
resultedin predictions of cis-regulatory binding sites for each gene in the network, which are then
tested with classical cis-regulatory analysis using artificial reporter constructs (Brown et a.,
2002).

2.5 Artificial regulatory network

An important aspect in developing methods for reverse engineering of regulatory networks is
testing of the validity of developed methods How can we decide whether a method has
succeeded to reverse engineer the regulatory network from data the source we used? This
question was also addressed by Smith et al. (2002). They propose developing a simulated
biological system in which all regulatory rules are known, and running various simulations to



generate data from the system. We can then apply various reverse engineering algorithms on
simulated data to recover the original underlying network. In this way, the accuracy of the
methods for reverse engineering can be tested and, if necessary, modified to obtain a better
agreement tothe original network. In Smith et a. (2002), a simulator was developed to generate
data at multiple levels of organisation: behaviour, neural anatomy, brain electrophysiology, and
gene expression of songbirds. The reverse engineering agorithm, called Networklnference,
which uses a Bayesian network to model the system that govern vocal learning in the songhbird
brain, provided high recovery success on the simulated data.

Gene regulation has also been frequently modelled with Boolean networks. In Boolean networks,
the state of each gene can bedefined as either on or off. As discussed before, gene regulation has
acombinatorial nature, which can be reduced to wiring diagrams (Somogy i and Sniegoski, 1996).
Each element in the wiring diagram uses a logical or Boolean rule to conpute its value based on
the values of the other elementsit is connected to (se figure 3).

A C
Input Output
XY zZ|X Y Z
X Y Z 0O 0 010 O O
0O 0 110 1 O
0 1 0|11 0 O
0O 1 110 1 1
1 0 0]J]0O0 1 O
X' Y' Z' 1 0 1]0 1 1
1 1 0|1 1 1
1 1 1911 1 1
B
X' =Y
Y'=XorZ
Z'=(Xand Y)or (Yand Z) or (Xand 2)

Figure 3: An example Boolean network. A) Wiring diagram, B)
Logica rules, C) State transition table, where the input

corresponds to state a timet and the output correspondsto state
atime t+1.

Liang et a. (1998) show an example Boolean network model representing a proximal genetic
network, which is also given in figure 3. 3A) shows the wiring diagram, where connections
between elements (genes) correspond to regulatory links and the rulesin 3B) govern the results of
regulatory interactions given a set of input values. 3C) shows the state transition table, where the
input corresponds to state at timet and the output corresponds to stete at timet+1.



Testing the algorithms for deriving network structure from state transition measurements requires
knowledge of the original network, which we often do not possess when it comes to hiological
systems, such as gene regulation. As Liang et al. (1998) state, we can use Boolean networks to
simulate some conditions from the “living” regulatory networks, such as size, connectivity etc.
and analyse how our reverse engineering agorithms succeed with the background of those
varying assumptions. However, if we consider more complex regulation examples, such as
regulation of Endol6, discussed in section 2.4, where ordering and various combinations of cis-
regulatory elements affects the regulation, we realise that we need more biologically plausible
rules for generating transition states. Those rules can for example be based on data sources that
could influence gene regulation. Some of those sources are reviewed in chapter 4.

3 Problem and main resear ch questions

Many biological processes of interest (eg., diseases, cellular differentiation during development
etc.) are controlled by complex interactions over time between hundreds of genes. Furthermore,
each gene can be involved in multiple functions. Given the fact that thousands of genes are
involved in determining the functional state of an organism, the task of identifying underlying
genetic networksis very difficult.

For that reason, large-scale gene expression measurements from microarray experiments have
been seen as a possibility to anadyse many genes behaviour a a transcriptiona level
simultaneously and hopefully discover interesting gene interactions. The question that many gene
expression studies address is: “Given the amount of gene expression data representing genes

behaviour over a time period, what can we deduce about the underlying regulatory network of
interactions that caused that behaviour?’ This problem is also called the reverse engineering
problem. The goal with reverse engineering is tolearn about the structure and the dynamics of the
regulatory network only from the measurements/observations of the network, i.e. microarray
data Hence, no detailed information about the structure of the system should be introduced to the
reverse engineering algorithm

However, this definition has been criticised due to the fact that microarray datado not provide al
information necessary to derive the underlying network. The source of information which is not
observable in microarray experiments isthe regulation occurring at the post-transcriptional level .
Many important regulatory interactions occur at the post-transcriptional level of regulation,
which inturn can be involved in control of any of the many stages between gene transcription
and the translation of corresponding mRNA (Latchman, 1998). According to a study performed
by Hatzimanikatis and Lee (1999), nonlinear stability analysis of continuous models of gene
expression proves that describing models of gene networks requires information on both mMRNA
and protein level. It has been shown earlier in other studies (D’ haeseleer, 2000; Szalasi, 2001)
that reverse engineering of the complete network is still not possible, due to the lack of gene
expression data. Although those datasets usually are veay large, they are large aong the wrong
dimension, i.e. they usually consist of many variables (genes) but few measurements for each
variable.

Other examples that stress the need for additional information are regulatory networks that

govern modular architecture (see example in section 2.4). To be ale to understand the
relationships between the modular architecture of regulation and the resulting patterns of gene
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expression data, networks need to be fed with information about cis-regulatory elements, i.e. the
possible ways of combining them and ordering among different modules.

The discussion above brings us to one important aspect for further research, namely forward
modelling. It means that we build a regulatory architecture of interacting elements based on, for
example, expert-based input (Szallasi, 2001). Such in silico regulatory networks can be used to
generate as much time-series data as we need so that we can avoid the dimensionality problem.
Since we set up all the rules of regulation, it is easy to verify the derived connections against the
original ones (see section 2.5).

Another aspect that isworth consideration when developing algorithms for reverse engineering is
validity testing of the devel oped methods. We need to be able to answer following question: How
can we measure that our algorithm performed well in deriving regulatory connections? In many
biological systems, including regulatory networks, we do not have detailed knowledge of the
underlying connections. For example, even if we work with the expression data generated from,
what we believe is a “known” regulatory network we can never be sure that all regulatory
connections in the network are already found or that the identified connections are correct.
Assume that we have identified the connection A— C, i.e. gene A activates gene C. We can,
later on, discover that this resulted from along range of interactions, e.g. A represses D and in the
absence of D, gene G is transcribed and its product finally activates gene C. Unfortunately, it
would be too time consiming to experimentally verify every connection that has been derived by
the algorithm. On the other hand, it is hard to claim effectiveness of the algorithm if connections
can not be verified. This issue motivates also forward modelling of regulation, where we set up
al rulesfor regulation, which allows usto verify the obtained results.

During the past years, expression analysis methods have mostly been concerned with finding
similarities in gene expression profiles, which can help discovering genes tha act in a co-
regulated manner and may share the same regulation mechanism. That is why statistical methods
like clustering have become basic tools in the field of gene expression analysis. The most
frequently used clustering techniques in gene expression analysis are hierarchical clustering
(Eisen et al., 1998), SOMs (Tamayo et a., 1999) and K-means clustering (Soukas et a., 2000).
The problem with this assumption made in most clustering studies is however that regulation can
be both convergent (similar expression patterns, different control regions) and divergent (similar
control regions, but their joint action is such that the effect on expression is different) (Altman
and Raychaudhuri, 2001), which sometimes makes the use of clustering algorithms and
expression data insufficient as information source for identifying genes that share common
regulatory mechanisms. There is a great interest in combining expression profiles with important
knowledge such as gene function, regulatory elements, sequence information, since the clustering
approach does not take full advantage of those information sources.

Thed iscussion above gives the background for the following research questions:

What is an appropriate way to incorporate modular architecture in forward modelling of
regulatory networks?

Isit possible to reverse engineer regulatory networks including modular information from
time series of expressiondata sampled from the model?

1



Which information sources are useful to combine with gene expression analysis in order
to model biologically plausible regulatory network?

Wheat is an appropriate way of combining those information sources?

Those research questions need to be answered to be able to meet the main goal, which is defined
asfollows:

Develop a procedure for identifying putative regulatory networks which encompasses the
whole chain from the forward modelling to reverse engineering and validation of regulatory

networks by combining gene expression profiles with additional biological information
Sour ces.

4 The second gener ation of analysistechniques

The goal of this project is to develop the analysis method for identifying geneto-gene
relationships with an integrated approach, i.e. integrate different levels of information sources.
The approach is intended to save as a mechanism for deriving interesting hypotheses about
relationships between genes that can guide further experimental investigation. The long-term
goa is to determine biologically plausible genetic networks of regulation. One of the
mechanisms that the approach will be applied on is freezing tolerance in oats. Due to the
multigenetic nature of the freezing tolerance, which implies a complex behaviour determined by
multiple genes, the problem of identifying interactions between regulatory genes should be
approached with bioinformatics methods. In this chapter, section 4.1 describes the basic idea that
the approach will be built on and possible information sources that will be integrated. Section 4.2
describes some specific statistical and computational techniques that can be useful in this work,
and finally section 4.3 describes the methods to be used to test the significance of the achieved
results.
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Figure 4: Information sourcesthat could be useful in inferring gene-to-gene rel ationships.

4.1 Possible infor mation sour ces

Gerstein and Jansen (2000) discern two parts of expression anaysis, namely the “internal” and
“external” part. In the internal part, the numerical structure of datais analysed with for instance
SOM, hierarchical clustering, PCA etc without taking into consideration other sources of
biological information, like protein function or structure. Instead, the relating of expression data
to other, external sources of biological information is done in the externa part of expression
andysis. One of the important steps in this work is to choose external information sources that
will be suitable for the intended purpose of the work, i.e. to identify networks of gene
interactions. For this purpose, some previously used sources and some proposed sources that
could be useful will be reviewed.

4.1.1 Regulatory sequence elements

In previous work, there are some examples of systematic use of external sources to improve
deriving of regulatory mechanisms.

In van Helden et al. (2000), regulatory sequence analysis has been applied on clusters of co-
expressed genes. The question that van Helden et al. (2000) deal with is"is there any underlying
mechanism that causes that genes belonging to the same cluster act in a coordinated fashion with
respect to transcriptional response?’ The answer to this question needs a search for transcription
factorsthat might act simultaneously on the genes bel onging to the same cluster. The approachis
based on analysing upstream sequences to discover shared DNA motifs, which could correspond
to regulatory elements, also called cis-acting elements. Potential cis-acting elements are then
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matched against databases of known transcription factors, which yield putative transcription
factor binding sites that could correspond b cis-acting elements. This approach seems to be
useful in suggesting very likely putative regulatory elements, when small clusters are analysed.
However, it is less sensitive when large gene clusters are analysed, since larger clusters (>50
genes) are less likely to be regulated by a single transcription factor (van Helden et al., 2000).
This fact can be utilized to build predictive methods for regulatory elements, which control gene
expression at the transcriptional level. Hereby, systematic mapping of those elements can be an
important step towards determination of the genetic network architecture.

Similar explorations of transcriptional regulatory networks based on clusters of co-expressed
genes have been done by Tavazoie et al. (1999), Hughes at a. (2000), Zhang (1999), Brazma et
a. (1998) etc. A method called AlignACE has been frequently applied for this purpose. The
method returns a series of DNA binding motifs for unspecified transcription factors by searching
the regions upstream of the translational start site. Since this method has proven to uncover a set
of new regulons (sets of co-regulated genes), and their cis-regulatory elements (Tavazoie, 1999),
it seems like a suitable source to consider in the integrated approach that will be taken in this
work.

Combining regulatory sequence analysis with expression analysis, means, smply stated, that we
start from the “big picture” consisting of gene expression profiles that determine the functional
state of the cell through innumerable regulatory and other ongoing interactions between genes
and gene products. Further, we seek to break down this picture to smaller manageable elements
(regulatory elements) that can explain the “big picture”.

4.1.2 Homologous gene networks

The second information source consists of known regulatory networks in the species that are
related to the organism being studied. We know that many regulatory networks are conserved
across the species and we can utilise comparative methods to identify corresponding networks in
the studied organism. Noveen et al. (1998) state that genetic networks are under tight
evolutionary constraints not to change their circuitry (the way they interact) and function. Since
gene networks often act in cooperation with other networks, any changes that imply disruption of
the network’s function may lower the fitness of an individual (Noveen et al., 1998). That is why
genetic networks usually are stable and have conserved interactions during evolution and

speciation. Furthermore Noveen et a. (1998) discuss the concept of homologous gene networks
where the members of two networks have similar gene structure and ways of interaction. There
are two types of homologous gene networks: paralogous and orthologous gene networks.
Paral ogous networks can be found in individuals of the same species, while orthol ogous networks
can be found in individuals of different species. The networks of gene interactions that are
conserved across several species are also called “modules’. Van Dassow and Munro (1999)
suggest that evolution often proceeds by modifying the relationships between modules
(conserved genetic networks), instead of operating on isolated genes. For the purpose of this
work, it can be useful to map the conserved interactions across the different organisms to apply
this knowledge on the studied mechanism.

The term phylogenetic footprinting (Fickett and Wasserman, 2000), which seems to be closely
related to the information source described in this section, has also been suggested as a useful
source to be coupled with expression data for unravelling higher order organization in the

regulatory language.
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4.1.3 Expression profiles

The third information source consists of large scale gene expression measurements. Many
computational techniques for inferring genetic networks have emerged as a result of the flood of
data generated from simultaneous gene expression measurements (often by using microarray
technology), where gene expression is quantified as mMRNA levels. The expectation is that by
comparing complex expression pdterns, it will be possible to decipher the regulatory network
responsible for the behaviour that can be monitored in patterns. However, it is important to be
aware of the limitations of microarray gene expression data. First of all, transcripts that are
present at low levels, which are likely to include transcription factors, may not be detected by
microarray experiments. Cross-hybridisation is another problem, where a target transcript
hybridizes to incorrect probes of sufficient similarity. Lastly, since mRNA levels are used as
indicators of gene activity, it is often assumed that there is a significant correlation between the
amount of mMRNA and the amount of the protein corresponding to mRNA. However, there is
evidence that this correlation can vary depending on the type of protein. Microarrays also do not
reflect post-transcriptional modifications, which is yet another reason why we should have a
combined approach in order to enhance our confidence in hypotheses about gene interactions.

4.1.4 Phylogenetic profiles

The fourth information source concerns phylogenetic profiles. Phylogenetic profiles can be
constructed as a string with n entries, each one bit, where n denotes the number of genomes. The
presence of the homologs to a given gene in the ng, genome is marked with an entry of unity,
while the absence of homolog is marked with a zero on the ny, position (Pellegrini et a., 1999).
Genes can then be clustered based on the similarity of their phylogenetic profiles, which
according to Pellegrini et d. (1999) results in clusters of genes that should be functionally
associated to each other. Links or associations between genes can be derived according to clusters
of profilesand criteriafor linking profiles and determining similarity can vary from linking genes
with exactly the same profiles to linking genes whose profiles differ at for instance one or two
entries. There is aso conflicting evidence regarding the hypothesis that genes with similar
profiles among different genomes exhibit similar function. For instance, DNA polymerases and
ribosomal proteins can be found in all genomes, but there is no functional association between
them neither are they involved in the same process. Hence, such profiles are less informative for
the intended purpose of identifying associations between genes. However, this information could
be useful for identifying genesthat are necessary and sufficient to maintain cell existence.

4.2 Integrating different sour ces of infor mation

The main idea with the project is to develop a method that integrates different levels of gene
information sources. homology (using prior knowledge about gene-gene association in other
organisms and apply the knowledge on the organism being studied), phylogenetic profiles and
gene expression, sequence regulatory elements etc., as figure 4illustrates.

One way of building hypothetical interactions between genes is to start from prior knowledge
about genetic interactions and homology matching. Theoretically, this can be done by comparing
genes across several genomes and build profiles for each pair of genes that reflect gene-to-gene
relationships in different genomes. This information could be used to select the more conserved
interactions, i.e. interactions that are represented in several species and also to analyse which
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interactions are unique for an organism. Gradually, we can build interactions that include more
remote genes by adding genes that are coupled to a certain gene via a third gene. Rules for
merging several genesin anetwork of interactions must be carefully determined.

Another way would be to use only expression profiles and build hypothetical networks by
clustering genes with significantly high correlation of expression profiles. The reason for
selecting subsets of genesthat are highly correlated with each other isthat it is often assumed that
genes that share the same functional class should be co-ordinately regulated at the level of
transcription under the condition tested.

The third information source that figure 4 shows concerns phylogenetic profiles (Pellegrini et al.,
1999). Genes can then be clustered based on the similarity of their phylogenetic profiles, which
according to Pellegrini et d. (1999) results in clusters of genes that should be functionally
associated to each other. This method can be used to predict the function of the unknown protein.

An integrated approach means using both phylogenetic profiles and correlated expression to
generate hypotheses about interactions between genes. Hopefully, those profiles will providea
clue about linkage between genes.

How can we know that the inferred interactions are reliable, i.e. biologically plausible? In order
to validate the interactions, we can use at least two sources of biological information to infer the
interactions and validate against the third source (see figure 5). Hence, the hypothetical networks
generated from gene expression and phylogenetic profiles can be validated against “trusted”

networks that are generated from the known interactions, also called homologous networks.
Likewise, we can do this procedure the other way around, i.e. start from the known interactions
(homologous networks) between genes and their phylogenetic profiles that reflect evolutionary
history and generate general patterns of gene expression, i.e. how genes are expected to behave
onthe transcriptional level over atime period.

Genetic networks Genetic networks
based on gene based onphylo-

expression Validate geneticprofiles

Homologous
networks

Figure 5: Validation procedure of inferred genetic networks of interactions.
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If the agreement between the networks obtained from different sources is significantly high, this
method can be used to make predictions about which genes can possibly interact with each other,
which inturn can give us aclue about the functional roles of genes.

4.3 Specific methods

This section will describe different methods that concern each of the information sources
described in the previous section. The existing integrative approaches for inferring genetic
networks will be discussed as well asinitial ideas of the integrative approach that will be applied
in thiswork.

4.3.1 Correlation-based approach

There are different ways to express similarity between objects, but most often we use various
distance and correlation measures. Observation of correlation between variables has been used in
biology for a long time. Simple correlation coefficients (Pearson) reveals linear relationships
between genes based on their expression profiles, i.e. it shows if mMRNA concentrations co-vary
linearly with the time or experimental condition. In D'haeseleer et al. (1998; 1999), Rearson
correlation has been applied to static gene expression patterns, and associations between genes
have been derived based on significantly correlated expression patterns. Other correlation
measures, like Rank correlation for detection of non-linear but tight relationships between
variables has also been used for identification of relationships between genes (D'haeseleer et a.,
1999). Another similarity measure used in the gene expression analysis is Euclidean distance
between patterns of gene expression, which is closely related to positive linear correlation. In
terms of gene regulation, significantly high positive or negative correlation between gene A and
B can mean the following: gene A regulates gene B, gene B regulates gene A, both genes are
regulated by athird gene C (genes are co-regulated), both genes regulate third gene C, or it can
happen by accident.

Jackknife correation

One problem with linear correlation is its sensitivity to outliers. Sometimes, two expression
patterns can be totally unrelated in all but one time point and still be highly correlated (Heyer et
a., 1999). Removal of the outlier in such a case would show completely insignificant correlation.
Such outliers can be the result of experimental error. Heyer et a. (1999) suggest jackknife
correlation for making the correlation approach more robust to single outliers and reduce false
positives, i.e. pairs of genes with dissimilar curves of expression that are highly scored by the
similarity measure. Assume that we have two expression profiles consisting of N data points,
where each data point corresponds to an experimental condition c. For c¢=1 to N, the ch
observation is deleted, correlation is calculated and c is increased with 1. Correlation is then
recalculated with the restored values and observation c+1 deleted. As a result of all calculated
correlations between a pair of expression profiles, jackknife is the minimal correlation (Heyer et
a. 1999). This measure is not only advantageous for reducing the sensitivity to outliers but also
in situations where some genes exhibit similar expression patterns in some condition but not in
others. The jackknife correlation process can be implemented systematically or randomly
deleting data points for various conditions to find subsets where genes act in a significantly
correlated manner with respect to their profiles.
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Time-delayed correlation

Another problem regarding analysis of simple correlation of expression patternsis that it is not
able to capture time-shifted relationships between genes, such as cascadelike regulation
mechanisms, which are very common. Calculating time-delayed correlation between variablesfor
all pairs of different lags can discover such relationships (CBCG, white paper).

The limitation of both time-shifted and linear correlation measures is that neither of those
measures is able to capture non-linear relationships between variables.

Linear correlation of dynamic gene expression

There are also different ways of representing expression patterns, i.e. the static and dynamic way,
asintroduced in (Reis et al., 2001). Static expression patterns have been used most frequently and
refer to simple temporal gene expression patterns (Exp time1, EXPtime2s EXPiimes) that consist of the
expression level for each time point. Dynamic gene expression (Reis et al., 2001) refers to the
rate of the change in expression level over atime course (EXp timez2 - EXPtimer, EXP times -BEXP time2)-
The motivation for using dynamic gene expression is that the dynamics can reveal in which way
the expression level of one gene leads to change inthe expression level of other gene.

Reis et a. (2001) also applied a linear correlation coefficient as a measure of association of

dynamic gene expression profiles. The genetic networks obtained from this method are called
relevance networks. Simply stated, a matrix of pairwise gene to gene associations based on linear
correlation is calculated anda statistically significant threshold level of association is determined.
This level is obtained by permuting the origina data set according to the following: the
distribution of gene expression valuesis preserved, but the link between the expression value and
the particular time point or experimental condition is broken. After the matrix has been
permutated a large number of times and the similarity/association score recalculated each time,
the maximum association value obtained from permutationsis used to set the minimum threshold
value for selecting significant association inthe original unpermutated data set. All connections
weaker than this threshold are removed, leaving only significantly correlated genes that are
interconnected in rel evance networks.

4.32 Graph theoretical approach based on genetic perturbations

Wagner (2001) developed a method for reconstructing interactions in gene networks from the
effects of genetic perturbations on gene activity. Gene activity is according to Wagner (2001)
more than just gene expression, which differs from many other definitions that refer to gene
expression, i.e. whether a gene is expressed or not, as mRNA or as protein. Other examples of
regulators of gene activity we might consider are phosphorylation and methylation. Wagner
(2001) brings an important point concerning using correlation coefficient as described in section
4.3.1. T he problem with approaches using correlation coefficientisthat correlation only can point
to regulatory interactions between genes, and not infer them. Wagner (2001) tries to solve this
problem, i.e. resolve the causa structure of a genetic network. For this purpose, large-scale
perturbation data has been used, in form of mutations, overexpresson, deletion and inhibition of
genes or gene products. Wagner (2001) used a directed graph consisting of nodes (representing
genes) and directed edges (representing causal regulatory interactions between genes) to
represent genetic network. From this graph, two lists have been generated: adjacency list which
for each gene G lists al other genes that are directly influenced by gene G and accessibility list
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which for each gene G lists all genes that are accessible from gene G, i.e. all genes that are
affected by perturbation of gene G. The problem that is addressed is to reconstruct the network
structure from its accessihility list for large networks of thousands of genes. Limitation of the

approach isthat it is only possible to resolve acyclic graphs, i.e. graphs without cycles.

5 Thethird generation of analysistechniques

5.1 Combining gene expression with regulatory motifs

Common strategies for identifying sequence motifs that are potential transcription factor binding
sites have been focused on a “cluster by expression” approach, where clusters with similar
expression patterns are identified and their transcription control regions are examined to find
shared sequence motifs.

In Chiang et al. (2001), the relationship between expression and sequence data has been

evaluated with Genome Mean Expression Profiles (GMEP). This approach assumes that the
expression pattern of genes that contain the motif with transcriptional information in their TCR
(transcriptional control region) should exhibit non-random behaviour that reflects the activity of
the transcription factor. On the contrary, one should not expect the gene expression profiles of the
group of the genesto deviate significantly from the entire population if their motifs do not encode
transcriptional information.

This hypothesis is tested with GMEP which is calculated for each motif as a mean of al

expression profiles of genes containing this motif. The Genome Mean Expression Profile is
defined as (Chiang et al. 2001):

dgG
a Wmg* EgC (1)
GMEP(m); = ggl s
o
a Wmg
9

where G isaset of genesthat contain the motif m, Egcisexpression level of gene g in condition
¢, and Wing is the number of occurrences of motif m in the genome sequence of the gene's

nominal transcription control region.
The starting point for computing GMEP is matrix M where each row denotes a gene and each

column denotes the experimental condition. Each entry Egn,c, denotes then expression level mof
geneg in condition n.
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Conditionc
Emci Eaic s Egit
Egc: | Egco . EgoCn
Geneg Egc1 Egsco ... EQgst
Egnc | EgnG ... EgmGa

Table 1: Matrix M where each cell Egmn represents the
expression level of gene min conditionn.

Motifs in the alphabet { A, C, G, T} are counted and motifs have afixed length L. For each L and
matrix M containing expression values (see table 1), a matrix F (4 x c) is computed where c is
the number of experimental conditions. In matrix F each row corresponds to the GMEP of a
single motif (seetable 2).

Conditionc
GMEPM, GMEPmMC, .. GMEPmMc,
GMEPMpC1 GMEPMCo . GMEPmycn
Motif | GMEPMgC; GMEPMgC, . GMEPmMsC,
m [ GMEPmuc, GMEPMyc2 . GM EPnmycn
GMEPMsc, GMEPNyC,
GMEPmMy¢; GMEPm,"c, GMEPmM,c,

Table 2: Matrix F where each cell denotes GMEP of motif min conditionc

The question that we may ask is. can GMEP enhance the effect of gene expression profiles so
that the clusters based on simultaneous use of GMEP and expression profiles could contain genes
that act in a significantly co-regulated manner. This can be tested by clustering the expression
profiles with most significant GMEP compared to clustering with the GMEP which is randomly
drawn from population.

6 Futurework

In this report, we reviewed important aspects of regulatory networks, such as coregulation,
modularity etc. with focus on the difficulties that have not been considered to a great extent in
today’s modelling approaches. We also reviewed information sources that can be used to group
genes based on their regulatory properties. Those sources can be useful for developing an
artificial regulatory network.

Some problems associated with the term coregulation and approaches for identifying regulatory
networks have been highlighted. This review identifies important problems, which need further
research. The problems and research question are mentioned earlier. Here, they will be
summarised:



- Today's methods for moddling genetic networks are simplified and do not take into
account the “modular” context of regulation and synergistic binding of TFs. This needsto
be incorporated in future methods. Important approaches that are worth further
consideration are phylogenetic footprinting and phylogenetic profiling, which can help
identifying TF binding specificities, for example.

- Given the data from different sources that can help identifying regulatory properties and
connections between genes (genetic network), what is the best way of using those sources
in forward modelling?

- Inimportant issue in developing an artificial model, where all rules are known, is to use
information about cis-regulatory elements and their way of clustering to build the
modules. This is a prerequisite for understanding the relationship between the modular
architecture and expression pattern.

- Vdidationof the derived interactionsis very important, i.e. we need to ask the question of
whether we can we use two of the mentioned sources to derive regulatory information and
validate against the third source. The question “Are those two sources good predictors of
the third source?’ needsquantitative measures of prediction quality.
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