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Abstract 

The major goal o f computational biolo gy is to derive regulatory interactions between genes from 
large-scale gene expression data and other biological sources. There have been many attemp ts to 
reach this goal, but the field needs more research before we can claim that we have reached a 
complete understanding of reverse engineering of regulatory networks. One of the aspects  that 
have not been considered to a great extent in the development of reverse engineering approaches 
is combinatorial regulation. Combinatorial regulation can be obtained by the presence of modular 
architectures in regulation, where multiple binding sites for multiple transcription factors are 
combined into modular units. 

When modelling regulatory networks, genes are often considered as “black boxes”, where gene 
expression level is an input signal and changed level of expression is the output . We need to shed 
light on reverse engineering of regulatory networks by modelling the gene “boxes” at a more 
detailed level of information, e.g., by using regulatory elements  as input to gene boxes as a 
complement to expression levels . Another problem in the context of inferring regulatory 
networks is the difficulty of validating inferred interactions because it is practically impossible to 
test and experimentally confirm hundreds to thousands of predicted interactions. Therefore, we 
need to develop an artificial network to evaluate the developed method for reverse engineering. 
One of the major research questions that will be proposed in this work is: Can we reverse 
engineer the cis-regulatory logic controlling the network organised by modular units? 

This work is aiming to give an overview of possible research directions in this field as well as the 
chosen direction for the future work where more research is needed. It also gives a theoretical 
foundation for the reverse engineering problem, where key aspects are reviewed. 

Keywords: genetic regulatory networks; artificial network; reverse engineering; modular 
architecture;  

 

 
1 Introduction 
In computational biology there is a great interest in understanding the regulatory mechanisms that 
control gene expression. Understanding how genes communicate in the networks of regulatory 
interactions is a step towards understanding the regulation of gene expression. Knowledge about 
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regulation can in turn help us gain insights into diseases since many diseases are characterised  by 
abnormal gene expression. 

The advent of microarray technology, which allows us to measure expression levels of tens of 
thousands of genes simultaneously, has opened up new opportun ities for identifying biologically 
plausible regulatory interactions between genes. Gene expression data from microarrays is used 
to construct expression profiles, which is often done by putting together expression levels from 
differen t  experimental conditions, or time intervals . Similarities and differences between the 
expression  profiles, as well as changes in expression levels, provide important insights into 
regulatory relationships. 

A common assumption in earlier studies is that genes that share similar expression profiles, and 
thereby act similarly during a time course, are functionally related and may also be involved in 
the same regulatory mechanism. Therefore, clustering techniques, which constitute the first 
generation of expression analysis techniques, have been used for structuring expression data into 
co-expressed groups of genes . The second generation of techniques relies upon integrating other 
data sources with expression data. Identification of co-expression is now a prelude for further 
analysis, like scanning promoter sequences for regulatory elements (Zhu and Zhang, 2000), 
modelling metabolic pathways (Fellenberg and Mewes, 1999), etc.  

Recent research has emphasised reverse engineering of regulatory networks from gene expression 
data. It relies on the following assumption: Given enough data on gene expression levels, it is 
possible to infer how genes are regulated. The ultimate long-term goal is to answer the question 
“what controlling mechanism caused the behaviour that we can observe in gene expression 
profiles?” However, we need to exp and the definition of reverse engineering to encompass other 
types of biological data, especially when it comes to the more complex examples of gene 
regulation. This brings us to the third generation  of analysis  techniques which rely on 
integration of various data sources but also take into consideration more complex aspects of 
genetic regulation, such as the modular and combinatorial nature of regulatory elements. 

In this report, we aim to show how far the research has come in the area of extracting regulatory 
networks. We will also address the question “What is needed in order to extract biologically 
plausible networks?” The emphasis will be on the second and third generation of analysis tools, 
with special focus on the regulation aspects that need further investigation. In section 2, we 
review some of the key concepts of regulatory networks. Section 3 describes the problem being 
studied in this work. Section 4 describes the second generation of analysis techniques  including 
information sources that can be useful in the context of deriving regulatory networks. Section 5 
describes the third generation of analysis techniques, and finally section 6 gives indications of 
what is left to do in  the future work.  

2 Key aspects of regulatory networks 
In this chapter, the necessary concepts connected to regulatory networks that constitute the 
foundation for this work will be introduced. 
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2.1 Genetic vs. regulatory networks  
There is a broad spectrum of different ways to describe genetic networks. This section will start 
with a description of genetic networks in a broad sense, which will gradually be narrowed down 
so that more specific aspects of genetic networks can be brought out.  

The term genetic network can be defined as “an association of many genes which interact with 
each other in cascades or parallel pathways and achieve a specific function or various functions 
through such interactions" (Noveen et al., 1998, pp 378). Furthermore, Neveen et al. (1998) refer 
to the interactions between genes in a network as a way of direct or indirect adjustment of genes’ 
expression or function. The adjustment of gene expression occurs through stimulation or 
inhibition of transcription, translation or through post-translational modifications. This definition 
is broad in the sense that it allows regulatory interactions to occur at all levels of control of gene 
expression. 

Wagner (2001) provides a similar definition where the focus is on gene activity, which might 
include changes in gene expression on the mRNA or protein level (methylation state, 
phosphorylation state, or alternative splicing). According to Wagner (2001), a genetic network 
consists of a group of genes in which individual genes can change the activity of other genes.  

The advent of microarray technologies have led to more specified definitions of genetic 
networks, which are more suitable to reflect the level of data generated from large-scale 
microarray experiments, i.e. the transcriptome level. D’haeseleer (2000) used a model of gene 
networks that represents a higher-level of regulation consisting of regulatory interactions between 
genes rather than detailed biochemical mechanisms , as described in previous definitions. This 
definition of gene networks is very narrow compared to the previous definitions since it only 
allows mRNA levels to reflect regulatory interactions. 

A common representation of regulatory networks that reflects D’haeseleer’s definition is shown 
in figure 1 where connections with arrows represent activation and flat-end connections represent 
inhibition of gene expression. Connections in the network can be assigned weights that denote 
the strength of activation/inhibition. In this representation, only the transcriptional state, i.e. the 
amount of mRNA, is considered to be an activation/inhibition factor. This definition is not 
complete, since we know that the post-transcriptional level is as significant for the genetic 
network as the transcriptome level. The implicit assumption that has been used in most gene 
expression studies is that there is a high correlation between the level of mRNA and the 
corresponding amount of protein produced in a cell, which is not always correct. Many important 
interactions occur at post-transcriptional levels of regulation, which can b e involved in control of 
any of the many stages between gene transcription and the translation of corresponding mRNA in 
the cytoplasm (Latchman, 1998). Such data can not be observed in microarray experiments. A 
study performed by Hatzimanikatis and Lee (1999) shows that nonlinear stability analysis of 
continuous models of gene expression proves that describing models of gene networks requires 
information on both the mRNA and protein level. 

In spite of those disadvantages, we should not underestimate the imp ortance of the regulation at 
the transcriptional level. Hence, while waiting for efficient technology for development of large-
scale protein chips, we will restrict this work to the regulatory interactions that occur on the 
transcriptional level. 
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Figure 1: Representation of genetic network. 

Even when we narrow down the definition of genetic networks to only consider regulation at the 
transcriptional level, using only gene expression data is not sufficient to derive regulatory 
interactions. There is  still a need for integration with other information sources to derive 
regulatory networks. Those sources are reviewed in section 4. 

2.2 The role of regulatory elements  
A central point of gene expression control is regulation of transcription initiation. This process 
can be explained as co-operation between cis- and trans- acting regulatory elements. Simply 
stated, trans-acting transcription factors bind to cis-acting regulatory elements in upstream 
regions of the gene, which either enhance or inhibit transcription. In the next sections, the role of 
regulatory elements will be explained. 

2.2.1 Transcription factors 
The presence of transcription factors in regulatory networks is necessary, due to their important 
role to bind cis-regulatory elements, which in turn affects the initiation of transcription  and 
thereby the gene expression level. The second generation of expression analysis tools has been 
focused on extracting regulatory networks by identifying potential cis-regulatory elements, which 
in turn could be coupled to corresponding transcription factors. Those approaches tend to draw an 
idealised picture of the problem of identifying regulatory elements. In previous work (Tavazoie et 
al., 1999; Hughes at al., 2000; Zhang, 1999; Brazma et al., 1998) this problem is described as a 
matter of finding a set of putatively “co-regulated” genes according to similar shapes of their 
expression patterns. In their upstream regions they should also share a set of common 
transcription factor binding sites (TFbs), which in turn can help deriving the connection to 
transcription factors. 

Identifying this connection to transcription factors, which play a major role in regulatory 
networks, is not as simple as it seems. There are some difficulties that are reviewed in this 
section. 
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Regulatory regions that are involved in transcriptional control of eukaryotic genes often contain 
several TFbs. The hope is that the TFbs point towards transcription factors that play a key role in 
the transcriptional regulation of the corresponding gene. However, several problems make it 
difficult to define connections to transcription factors in genetic networks by studying expression 
data (“grouping genes by expression”) and selecting over-represented oligonucleotides which are 
treated as  putative TFbs. One of these problems, as stated in Pedersen et al. (1999), is that TFbs 
can bind several different members of a family of transcription factors. The opposite case is also 
usual, i.e. “there can be great variability in the binding sites of a single factor, and the nature of 
the allowable variations is not well understood” (Sinha and Tompa, pp 1, 2000). In SCPD (a 
promoter database of the baker’s yeast) for example, for 200 genes there are 203 binding sites 
which are in single copy, 69 in two copies, 19 in three copies, 9 in four, 3 in five and 1 in six 
(Zhu and Zhang, 1999). An example of the complexity of a regular network is the sea urchin 
Endo16 gene where the upstream region contains at least 33 TFbs which are organised in 
modular units (Yuh et al., 1998). 

Another difficulty is that the choice of which transcription factor will bind sometimes depends on 
the availability of transcription factors for binding in a given cell type. The complexity increases 
even more if we take into consideration that a binding site might never be bound if some 
sequence elements that must be recognised correctly by the transcriptional mechanism are not 
present under certain conditions when the gene is transcribed (Pedersen et al., 1999). 

Current approaches of analysis of promoter regions of co -expressed genes to find significant 
regulatory motifs that correspond to putative TFbs are not sufficient to make the pieces of the 
regulatory network puzzle fit together. Additional sources to locate regulatory regions have been 
proposed, like phylogenetic footprinting for example (Ficket and Wasserman, 2000). 

2.2.2 Binding sites 
As mentioned before, transcription factors play a major role in the control of gene transcription. 
They are proteins which interact with different classes of DNA targets (TFbs) and with each 
other. For the purpose of this work, only the most usual classes of binding sites will be described 
here.  

The core promoter elements are placed immediately upstream of the transcription start site. One 
of the best characterised core promoter elements is the TATA element which is usually located 
25 bp upstream of the transcription start site (Nikolov and Burley, 1997). The TATA box is 
involved in directing RNA polymerase II to begin transcription and it works most efficiently 
together with promoter proximal elements (Griffiths et al., 1996). Promoter proximal elements 
can be placed anywhere between 50-200 bp upstream of the start site. The CCAAT box is an 
example of a proximal element (Griffiths et al., 1996). Those elements typically affect the 
efficiency of transcription initiation. Enhancer elements can be found very far from the 
transcription initiation site in either direction and they can greatly increase the transcription rate. 
Similarly, repressors can inhibit the transcription rate. Those regulatory sites, which are located 
on the DNA molecule and bound by trans-acting proteins in order to control expression, are also 
called cis-regulatory elements. Hence, the interplay between trans- and cis-acting elements is an 
important molecular mechanism which influences the gene expression patterns we observe in e.g. 
microarray experiments. 
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The idea of linking genomic sequence and expression data by associating transcription factor 
binding sites with expression profiles of groups of genes is very well established.  

2.3 Coregulation 
The term coregulation is very widely used in gene expression studies  due to the assumption that 
coregulated genes should be members of the same regulatory network. A general idea of 
coregulation is following: Groups of genes which are subjected to regulation by the same 
transcription factor (“master switch”) or participate in same regulatory pathway are coregulated. 
There are also many special cases of coregulation that do not follow this definition strictly (see 
section 2.4). In this chapter, we will highlight different contexts of using the term coregulation. 

Some studies imply that genes which share similar patterns of expression  (coexpressed genes) 
during a time course should also be coregulated . Coregulation between a pair of genes is also 
claimed if genes share a significant number of regulatory elements. However, coexpressed genes 
which do not share regulatory elements may be indirectly coregulated, i.e. subjected to regulation 
of, as Yanai et al. (2002) state, a “master controller” which governs more than one regulatory 
element. 

Another common description of coregulation model refers to proximity of the genes at the 
chromosome. A phenomenon that exemplifies this coregulation model is that a methyl transferase 
gene is found adjacent to a restriction enzyme gene along the chromosome, in all known 
occurrences (Yanai et al., 2002). An explanation of this type of coregulation is that both genes 
need to be switched on at the same time for the defence system to work satisfactorily, which is 
facilitated by the proximity of those two genes. In prokaryotes, there are sets of genes that are 
known to be transcribed together and strongly coregulated. These sets of genes that are 
transcribed together into mRNA to b e translated to proteins are known as operons. 

A similar “proximity based” mechanism of coregulation in eukaryotes is explained  in Kel-
Margoulis et al. (2002). They state that specific combinations of transcription factor binding sites 
located in a close proximity to each other, also called “composite clusters” play a key role in co-
ordinating regulation. This “cluster”- or “modular”- based reasoning, which often relies on 
synergistic binding of adjacent transcription factors and  depends on the order and spacing of the 
binding sites, is not taken into account by today’s methods for identifying regulatory networks. 

McGuire and Church (2000) refer to coregulation in terms of presence of significant regulatory 
motifs within the set of genes being coregulated (regulon). 

It is important to distinguish coregulation from coexpression because coexpression can occur 
purely by coincidence while coregulation is the consequence of a common molecular mechanism 
(Werner, 2001). 

2.4 Modularity 
In this section, a specific type of gene regulation, based on the combinatorial nature of regulation , 
will be discussed. It is often referred to as the modular organisation of gene regulation due to the 
fact that several transcription factor binding sites, which are organised in functio nal units called 
modules, play a crucial role in gene transcription (Klingenhoff et al., 2000). The traditional 
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approaches of analysing microarray data do not explicitly address this modular nature of 
regulation. 
Pilpel et al. (2001) discussed that the bas ic idea behind the modular approach is that transcription 
factors can be considered as “words” which can be compiled to “sentences” to regulate gene 
expression. In more detailed, it means that genes can consist of subelements of the DNA 
sequence, each of which can execute a certain regulatory function . Transcription  of a gene can for 
example depend on which combination of modules is  involved in regulation, so that same gene 
can be expressed in one condition and repressed in another. Each subelement is referred to as a 
regulatory module and contains multiple target sites for DNA binding factors (Yuh et al., 1998). 

This problem has been actualised with the enormous flow of expression data generated from 
microarrays. All attempts to identify  regulatory networks  by combining regulatory elements and 
expression data have revealed  more difficult problems, like identifying the synergistic effect of 
transcription factors, for example. This means identifying a combination of regulatory elements 
that control the gene expression pattern . Still, there is  a lack of methods for reverse engineering 
of regulatory networks which take into consideration such more complex aspects of regulation. 
This is probably due to the fact that it takes many years of experimental work to verify  cis-
regulatory systems which are characterised by modular architectures. Examples where we can 
find this type of regulatory system include the sea urchin Endo16 system (Yuh et al., 1998) and 
cis-regulatory modules involved in pattern formation in the Drosophila  genome (Berman et al., 
2002). 

In spite of the experimental evidence that cis-regulatory information is organised into modular 
units in higher eukaryotes, we are still mostly  using traditional comp utational methods for 
modelling genes. A gene is often considered  as a “black box” where the gene expression level is 
an input signal and changed level of expression is the output. Figure 2 is an example of modular 
regulation which shows how the input and output of the “gene box” can vary depending on 
circumstances of transcription. We need to shed light on reverse engineering of regulatory 
networks by braking down information going in to the gene box into more detailed units  of 
information, e.g., by using regulatory elements as input to the gene box as a complement to 
expression levels. 

As mentioned before, we can find a very well studied example of modularity in the sea urchin 
Endo16 regulatory system. Two different regulatory effects in Endo16 are illustrated in figure 2. 
A general pattern of modularity is described in following hypothetical example. Assume that 
transcription factor (TF) A alone induces transcription to 60 % of the maximum value. Assume 
also that TF B does not stimulate expression when it acts individually. On  the other hand, when 
A and B act synergistically, they induce expression at the maximum rate. Hence, their synergistic 
effect is different from the simple sum of their individual effects. In this case, binding sites for 
TFs A and B can form a module, which is a functional unit that can regulate expression in 
different stages and acts autonomously. Now assume that there is a TF C which together with TF 
B represses transcription. Hence, different combinations result in different effects on gene 
transcription. 

Consider the example illustrated in figure 2 where module A communicates the output of all 
upstream modules to the core transcription apparatus. In figure 2A, it is shown how modules 
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CDEF repress the gene. Figure 2B shows how synergism with modules B and G enhance the 
expression of the gene in later development. 
 
 

 

Figure 2: The figure gives an example of modular architecture. 

This example shows, as Yuh et al. (1998) refer to, part of genomic cis-regulatory logic for sea 
urchin gene Endo16 . Cis-regulatory logic means, in other words, regulatory programming code 
specified in cis-regulatory DNA sequence, which mediate complex developmental patterns of 
expression. Example in figure 2 is a part of large regulatory network described in Davidson et al. 
(2002) where Endo16  gene is the most closely examined part. It took the last two decades of 
molecular studies to partly crack this code, or at least provide a wealthy of data that allow 
researchers to crack the regulatory network that controls the specification of endoderm and 
mesoderm in sea urchin embryo. It is important to stress that deriving of this cis-regulatory 
network was a result of interplay of multiple approaches. An integration of experimental 
embryology, in situ hybridisation, knock out experiments, comp arative sequence analysis has 
resulted in predictions of cis-regulatory binding sites for each gene in the network, which are then 
tested with classical cis-regulatory analysis using artificial reporter constructs  (Brown et al., 
2002). 

2.5 Artificial regulatory network 
An important aspect in developing methods for reverse engineering of regulatory networks is 
testing of the validity of developed methods. How can we decide whether a method has 
succeeded to reverse engineer the regulatory network from data the source we used? This 
question was also addressed by Smith et al. (2002). They propose developing a simulated 
biological system in which all regulatory rules are known, and running various simulations to 
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generate data from the system. We can then apply various reverse engineering algorithms on 
simulated data to recover the original underlying network. In this way, the accuracy of the 
methods for reverse engineering can be tested and, if necessary, modified to obtain a better 
agreement to the original netwo rk. In Smith et al. (2002), a simulator was developed to generate 
data at multiple levels of organisation: behaviour, neural anatomy, brain electrophysiology, and 
gene expression of songbirds. The reverse engineering algorithm, called NetworkInference, 
which uses a Bayesian network to model the system that govern vocal learning in the songbird 
brain, provided high recovery success on the simulated data. 

Gene regulation has also been frequently modelled with Boolean networks. In Boolean networks, 
the state of each gene can be defined as either on or o ff. As discussed before, gene regulation has 
a combinatorial nature, which can be reduced to wiring diagrams (Somogy i and Sniegoski, 1996). 
Each element in the wiring diagram uses a logical or Boolean rule to compute its value based on 
the values of the other elements it is connected to (se figure 3). 

X Y Z X' Y' Z'
0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 1 0 0
0 1 1 0 1 1
1 0 0 0 1 0
1 0 1 0 1 1
1 1 0 1 1 1
1 1 1 1 1 1

X' = Y
Y' = X or Z
Z' = (X and Y) or (Y and Z) or (X and Z)

A C

X ZY

X Y Z' ''

B

Input Output

  
Figure 3: An example Boolean network. A) Wiring diagram, B) 
Logical rules, C) State transition table, where the input 
corresponds to state at time t and the output corresponds to state 
at time t+1. 

Liang et al. (1998) show an example Boolean network model representing a proximal genetic 
network, which is also given in figure 3. 3A) shows the wiring diagram, where connections 
between elements (genes) correspond to regulatory links and the rules in 3B) govern the results of 
regulatory interactions given a set of input values. 3C) shows the state transition table, where the 
input corresponds to state at time t and the output corresponds to state at time t+1. 
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Testing the algorithms for deriving network structure from state transition measurements requires 
knowledge of the original network, which we often do not possess when it comes to biological 
systems, such as gene regulation. As Liang et al. (1998) state, we can use Boolean networks to 
simulate some conditions from the “living” regulatory networks, such as size, connectivity etc. 
and analyse how our reverse engineering algorithms succeed with the background of those 
varying assumptions. However, if we consider more complex regulation examples, such as 
regulation of Endo16 , discussed in section 2.4, where ordering and various combinations of cis-
regulatory elements affects the regulation, we realise that we need more biologically plausible 
rules for generating transition states. Those rules can for example be based on data sources that 
could influence gene regulation. Some of those sources are reviewed in chapter 4.  

3 Problem and main research questions 
Many biological processes of interest (e.g., diseases, cellular differentiation during development 
etc.) are controlled by complex interactions over time between hundreds of genes. Furthermore, 
each gene can be involved in multiple functions. Given the fact that thousands of genes are 
involved in  determining the functional state of an organism, the task of identifying underlying 
genetic networks is very difficult. 

For that reason, large-scale gene expression measurements from microarray experiments have 
been seen as a possibility to analyse many genes’ behaviour at a transcriptional level 
simultaneously and hopefully discover interesting gene interactions. The question that many gene 
expression studies address is : “Given the amount of gene expression data representing genes’ 
behaviour over a time period, what can we deduce about the underlying regulatory network of 
interactions that caused that behaviour?” This problem is also called the reverse engineering 
problem. The goal with reverse engineering is to learn about the structure and the dynamics of the 
regulatory network only  from the measurements/observations of the network, i.e. microarray 
data. Hence, no detailed information about the structure of the system should be introduced to the 
reverse engineering algorithm. 

However, this definition has been criticised due to the fact that microarray data do not provide all 
information necessary to derive the underlying network. The source of information which is not 
observable in microarray experiments is the regulation occurring at the post-transcriptional level. 
Many important regulatory interactions occur at the post-transcriptional level of regulation, 
which in turn can be involved in control of any of the many stages between gene transcription 
and the translation of corresponding mRNA (Latchman, 1998). According to a study performed 
by Hatzimanikatis and Lee (1999), nonlinear stability analysis of continuous models of gene 
expression proves that describing models of gene networks requires information on both mRNA 
and protein level. It has been shown  earlier in other studies (D’haeseleer, 2000; Szallasi, 2001) 
that reverse engineering of the complete network is still not possible, due to the lack of gene 
expression data. Although those datasets usually are very large, they are large along the wrong 
dimension, i.e. they usually consist of many variables (genes) but few measurements for each 
variable. 

Other examples that stress the need for additional information are regulatory networks that 
govern modular architecture (see example in section 2.4). To be able to understand the 
relationships between the modular architecture of regulation and the resulting patterns of gene 
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expression data, networks need to be fed with information about cis-regulatory elements, i.e. the 
possible ways of combining them and ordering among different modules. 

The discussion above brings us to one important aspect for further research, namely forward 
modelling. It means that we build a regulatory architecture of interacting elements based on, for 
example, expert-based input (Szallasi, 2001). Such in silico regulatory networks can be used to 
generate as much time-series data as we need so that we can avoid the dimensionality problem. 
Since we set up all the rules of regulation, it is easy to verify the derived connections against the 
original ones (see section 2.5). 

Another aspect that is worth consideration when developing algorithms for reverse engineering is 
validity testing of the developed methods. We need to be able to answer following question: How 
can we measure that our algorithm performed well in deriving regulatory connections? In many 
biological systems, including regulatory networks, we do not have detailed knowledge of the 
underlying connections. For example, even if we work with the expression data generated from, 
what we believe is a “known” regulatory network we can never be sure that all regulatory 
connections in the network are already found or that the identified connections are correct. 
Assume that we have identified the connection A C, i.e. gene A activates gene C. We can, 
later on, discover that this resulted from a long range of interactions, e.g. A represses D and in the 
absence of D, gene G is transcribed and its product finally activates gene C. Unfortunately, it 
would be too time consuming to experimentally verify every connection that has been derived by 
the algorithm. On the other hand, it is hard to claim effectiveness of the algorithm if connections 
can not be verified. This issue motivates also forward modelling of regulation, where we set up 
all rules for regulation, which allows us to verify the obtained results. 

During the past years, expression analysis methods have mostly been concerned with finding 
similarities in gene expression profiles, which can help discovering genes that act in a co-
regulated manner and may share the same regulation mechanism. That is why statistical methods 
like clustering have become basic tools in the field of gene expression analysis. The most 
frequently used clustering techniques in gene expression analysis are hierarchical clustering 
(Eisen et al., 1998), SOMs (Tamayo et al., 1999) and K-means clustering (Soukas et al., 2000). 
The problem with this assumption made in most clustering studies is however that regulation can 
be both convergent (similar expression patterns, different control regions) and divergent (similar 
control regions, but their joint action is such that the effect on expression is different) (Altman 
and Raychaudhuri, 2001), which sometimes makes the use of clustering algorithms and 
expression data insufficient as information source for identifying genes that share common 
regulatory mechanisms. There is a great interest in combining expression profiles with important 
knowledge such as gene function, regulatory elements, sequence information, since the clustering 
approach does not take full advantage of those information sources. 

The d iscussion above gives the background for the following research questions: 

• What is an appropriate way to incorporate modular architecture in forward modelling of 
regulatory networks? 

• Is it possible to reverse engineer regulatory networks including modular information from 
time series of expression data sampled from the model? 
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• Which information sources are useful to combine with gene expression analysis in order 
to model biologically plausible regulatory network? 

• What is an appropriate way of combining those information sources? 

Those research questions need to be answered to be able to meet the main goal, which is defined 
as follows: 

Develop a procedure for identifying putative regulatory networks which encompasses the 
whole chain from the forward modelling  to reverse engineering and validation of regulatory 
networks by combining gene expression profiles with additional biological information 
sources. 

4 The second generation of analysis techniques 
The goal o f this project is to develop the analysis method for identifying gene-to-gene 
relationships with an integrated approach, i.e. integrate different levels of information sources. 
The approach is intended to serve as a mechanism for deriving interesting hypotheses about 
relationships between genes that can guide further experimental investigation. The long-term 
goal is to determine biologically plausible genetic networks of regulation. One of the 
mechanisms that the approach will be applied on is freezing tolerance in oats. Due to the 
multigenetic nature of the freezing tolerance, which implies a complex behaviour determined by 
multiple genes, the problem of identifying interactions between regulatory genes should be 
approached with bioinformatics methods. In this chapter, section 4.1 describes the basic idea that 
the approach will be built on and possible information sources that will be integrated. Section 4.2 
describes some specific statistical and computational techniques that can be useful in this work, 
and finally section 4.3 describes the methods to be used to test the significance of the achieved 
results. 
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Figure 4: Information sources that could be useful in inferring gene-to-gene relationships. 

4.1 Possible information sources 

Gerstein and Jansen (2000) discern two parts of expression analysis, namely the “internal” and 
“external” part. In the internal part, the numerical structure of data is analysed with for instance 
SOM, hierarchical clustering, PCA etc without taking into consideration other sources of 
biological information, like protein function or structure. Instead, the relating of expression data 
to other, external sources of biological information is done in the external part of expression 
analysis. One of the important steps in this work is to choose external information sources that 
will be suitable for the intended purpose of the work, i.e. to identify networks of gene 
interactions. For this purpose, some previously used sources and some proposed sources that 
could be useful will be reviewed. 

4.1.1 Regulatory sequence elements 

In previous work, there are some examples of systematic use of external sources to improve 
deriving of regulatory mechanisms. 

In van Helden et al. (2000), regulatory sequence analysis has been applied on clusters of co-
expressed genes. The question that van Helden et al. (2000) deal with is "is there any underlying 
mechanism that causes that genes belonging to the same cluster act in a coordinated fashion with 
respect to transcriptional response?” The answer to this question needs a search for transcription 
factors that might act simultaneously on the genes belonging to the same cluster. The approach is 
based on analysing upstream sequences to discover shared DNA motifs, which could correspond 
to regulatory elements, also called cis-acting elements. Potential cis-acting elements are then 
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matched against databases of known transcription factors, which yield putative transcription 
factor binding sites that could correspond to cis-acting elements. This approach seems to be 
useful in suggesting very likely putative regulatory elements, when small clusters are analysed. 
However, it is less sensitive when large gene clusters are analysed, since larger clusters (>50 
genes) are less likely to be regulated by a single transcription factor (van Helden et al., 2000). 
This fact can be utilized to build predictive methods for regulatory elements , which control gene 
expression at the transcriptional level. Hereby, systematic mapping of those elements can be an 
important step towards determination of the genetic network architecture. 

Similar exploration s of transcriptional regulatory networks based on clusters of co -expressed 
genes have been done by Tavazoie et al. (1999), Hughes at al. (2000), Zhang (1999), Brazma et 
al. (1998) etc. A method called AlignACE has been frequently applied for this purpose. The 
method returns a series of DNA binding motifs for unspecified transcription factors by searching 
the regions upstream of the translational start site. Since this method has proven to uncover a set 
of new regulons (sets of co -regulated genes), and their cis-regulatory elements (Tavazoie, 1999), 
it seems like a suitable source to consider in the integrated approach that will be taken in this  
work.  

Combining regulatory sequence analysis with expression analysis, means, simply stated, that we 
start from the “big picture” consisting of gene expression profiles that determine the functional 
state of the cell through innumerable regulatory and other ongoing interactions between genes 
and gene products. Further, we seek to break down this picture to smaller manageable elements 
(regulatory elements) that can explain the “big picture”.  

4.1.2 Homologous gene networks 

The second information source consists of known regulatory networks in the species that are 
related to the organism being studied. We know that many regulatory networks are conserved 
across the species and we can utilise comparative methods to identify corresponding networks in 
the studied organism. Noveen et al. (1998) state that genetic networks are under tight 
evolutionary constraints not to change their circuitry (the way they interact) and function. Since 
gene networks often act in cooperation with other networks, any changes that imply disruption of 
the network’s function may lower the fitness of an individual (Noveen et al., 1998). That is why 
genetic networks usually are stable and have conserved interactions during evolution and 
speciation. Furthermore Noveen et al. (1998) discuss the concept of homologous gene networks, 
where the members of two networks have similar gene structure and ways of interaction. There 
are two types of homologous gene networks: paralogous and orthologous gene networks. 
Paralogous networks can be found in individuals of the same species, while orthologous networks 
can be found in individuals of different species. The networks of gene interactions that are 
conserved across several species are also called “modules”. Van Dassow and Munro (1999) 
suggest that evolution often proceeds by modifying the relationships between modules 
(conserved genetic networks), instead of operating on isolated genes. For the purpose of this 
work, it can be useful to map the conserved interactions across the different organisms to apply 
this knowledge on the studied mechanism.  

The term phylogenetic footprinting (Fickett and Wasserman, 2000), which seems to be closely 
related to the information source described in this section, has also been suggested as a useful 
source to be coupled with expression data for unravelling higher order organization in the 
regulatory language. 
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4.1.3 Expression profiles 

The third information source consists of large scale gene expression measurements. Many 
computational techniques for inferring genetic networks have emerged as a result  of the flood of 
data generated from simultaneous gene expression measurements (often by using microarray 
technology), where gene expression is quantified as mRNA levels. The expectation is that by 
comparing complex expression patterns, it will be possible to decipher the regulatory network 
responsible for the behaviour that can be monitored in patterns. However, it is important to be 
aware of the limitations of microarray gene expression data. First of all, transcripts that are 
present at low levels, which are likely to include transcription factors, may not be detected by 
microarray experiments. Cross-hybridisation is another problem, where a target transcript 
hybridizes to incorrect probes of sufficient similarity. Lastly, since mRNA levels are used as 
indicators of gene activity, it is often assumed that there is a significant correlation between the 
amount of mRNA and the amount of the protein corresponding to mRNA. However, there is 
evidence that this correlation can vary depending on the type of protein. Microarrays also do not 
reflect post-transcriptional modifications, which is yet another reason why we should have a 
combined approach in order to enhance our confidence in hypotheses about gene interactions.  

4.1.4 Phylogenetic profiles  

The fourth information source concerns phylogenetic profiles. Phylogenetic profiles can be 
constructed as a string with n entries, each one bit, where n  denotes the number of genomes. The 
presence of the homologs to a given gene in the nth genome is marked with an entry of unity, 
while the absence of homolog is marked with a zero on the nth position (Pellegrini et al., 1999). 
Genes can then be clustered based on the similarity of their phylogenetic profiles, which 
according to Pellegrini et al. (1999) results in clusters of genes that should be functionally 
associated to each other. Links or associations between genes can be derived according to clusters 
of profiles and criteria for linking profiles and determining similarity can vary from linking genes 
with exactly the same profiles to linking genes whose profiles differ at for instance one or two 
entries. There is also conflicting evidence regarding the hypothesis that genes with similar 
profiles among different genomes exhibit similar function. For instance, DNA polymerases and 
ribosomal proteins can be found in all genomes, but there is no functional association between 
them neither are they involved in the same process. Hence, such profiles are less informative for 
the intended purpose of identifying associations between genes. However, this information could 
be useful for identifying genes that are necessary and sufficient to maintain cell existence.  

4.2 Integrating different sources of information 

The main idea with the project is to develop a method that integrates different levels of gene 
information sources: homology (using prior knowledge about gene-gene association in other 
organisms and apply the knowledge on the organism being studied), phylogenetic profiles and 
gene expression, sequence regulatory elements etc., as figure 4 illustrates. 

One way of building hypothetical interactions between genes is to start from prior knowledge 
about genetic interactions and homology matching. Theoretically, this can be done by comparing 
genes across several genomes and build profiles for each pair of genes that reflect gene-to-gene 
relationships in different genomes. This information could be used to select the more conserved 
interactions, i.e. interactions that are represented in several species and also to analyse which 
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interactions are unique for an organism. Gradually, we can build interactions that include more 
remote genes by adding genes that are coupled to a certain gene via a third gene. Rules for 
merging several genes in a network of interactions must be carefully determined. 

Another way would be to use only expression profiles and build hypothetical networks by 
clustering genes with significantly high correlation of expression profiles. The reason for 
selecting subsets of genes that are highly correlated with each other is that it is often assumed that 
genes that share the same functional class should be co -ordinately regulated at the level of 
transcription under the condition tested. 

The third information source that figure 4 shows concerns phylogenetic profiles (Pellegrini et al., 
1999). Genes can then be clustered based on the similarity of their phylogenetic profiles, which 
according to Pellegrini et al. (1999) results in clusters of genes that should be functionally 
associated to each other. This method can be used to predict the function of the unknown protein. 

An integrated approach means using both phylogenetic profiles and correlated expression to 
generate hypotheses about interactions between genes. Hopefully, those profiles will provide a 
clue about linkage between genes. 

How can we know that the inferred interactions are reliable, i.e. biologically plausible? In order 
to validate the interactions, we can use at least two sources of biological information to infer the 
interactions and validate against the third source (see figure 5). Hence, the hypothetical networks 
generated from gene expression and phylogenetic profiles can be validated against “trusted” 
networks that are generated from the known interactions, also called homologous networks. 
Likewise, we can do this procedure the other way around, i.e. start from the known interactions 
(homologous networks) between genes and their phylogenetic profiles that reflect evolutionary 
history and generate general patterns of gene expression, i.e. how genes are expected to behave 
on the transcriptional level over a time period. 

 

 
 
Figure 5: Validation procedure of inferred genetic networks of interactions. 
 

Genetic networks 
based on gene 
expression 

Genetic networks 
based on phylo-
genetic profiles  

Homologous 
networks 

Validate 



 17 

If the agreement between the networks obtained from different sources is significantly high, this 
method can be used to make predictions about which genes can possibly interact with each other, 
which in turn can give us a clue about the functional roles of genes. 

4.3 Specific methods 

This section will describe different methods that concern each of the information sources 
described in the previous section. The existing integrative approaches for inferring genetic 
networks will be discussed as well as initial ideas of the integrative approach that will be applied 
in this work.  

4.3.1 Correlation-based approach  

There are different ways to express similarity between objects, but most often we use various 
distance and correlation measures. Observation of correlation between variables has been used in 
biology for a long time. Simple correlation coefficients (Pearson) reveals linear relationships 
between genes based on their expression profiles, i.e. it shows if mRNA concentrations co-vary 
linearly with the time or experimental condition. In D'haeseleer et al. (1998; 1999), Pearson 
correlation has been applied to static gene expression patterns, and associations between genes 
have been derived based on significantly correlated expression patterns. Other correlation 
measures, like Rank correlation for detection of non-linear bu t tight relationships between 
variables has also been used for identification of relationships between genes (D'haeseleer et al., 
1999). Another similarity measure used in the gene expression analysis is Euclidean distance 
between patterns of gene expression, which is closely related to positive linear correlation. In 
terms of gene regulation, significantly high positive or negative correlation between gene A and 
B can mean the following: gene A regulates gene B, gene B regulates gene A, both genes are 
regulated by a third gene C (genes are co -regulated), both genes regulate third gene C, or it can 
happen by accident. 

Jackknife correlation  

One problem with linear correlation is its sensitivity to outliers. Sometimes, two expression 
patterns can be totally un related in all but one time point and still be highly correlated (Heyer et 
al., 1999). Removal of the outlier in such a case would show completely insignificant correlation. 
Such outliers can be the result of experimental error. Heyer et al. (1999) suggest  jackknife 
correlation for making the correlation approach more robust to single outliers and reduce false 
positives, i.e. pairs of genes with dissimilar curves of expression that are highly scored by the 
similarity measure. Assume that we have two expression profiles consisting of N data points, 
where each data point corresponds to  an experimental condition c. For c=1 to N, the cth 
observation is deleted, correlation is calculated and c is increased with 1. Correlation is then 
recalculated with the restored values and observation c+1 deleted. As a result of all calculated 
correlations between a pair of expression profiles, jackknife is the minimal correlation (Heyer et 
al. 1999). This measure is not only advantageous for reducing the sensitivity to outliers, but also 
in situations where some genes exhibit similar expression patterns in some condition but not in 
others. The jackknife correlation process can be implemented systematically or randomly 
deleting data points for various conditions to find subsets where genes act in a significantly 
correlated manner with respect to their profiles. 
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Time-delayed correlation 

Another problem regarding analysis of simple correlation of expression patterns is that it is not 
able to capture time-shifted relationships between genes, such as cascade-like regulation 
mechanisms, which are very common. Calculating time-delayed correlation between variables for 
all pairs of different lags can discover such relationships (CBCG, white paper). 

The limitation o f both time-shifted and linear correlation measures is that neither of those 
measures is able to capture non-linear relationships between variables. 

Linear correlation of dynamic gene expression 

There are also different ways of representing expression patterns, i.e. the static and dynamic way, 
as introduced in (Reis et al., 2001). Static expression patterns have been used most frequently and 
refer to simple temporal gene expression patterns (Exp time1, Exp time2, Exp time3) that consist of the 
expression level for each time point. Dynamic gene expression (Reis et al., 2001) refers to the 
rate of the change in expression level over a time course (Exp time2 - Exp time1, Exp time3 -Exp time2). 
The motivation for using dynamic gene expression is that the dynamics can reveal in which way 
the expression level of one gene leads to change in the expression level o f other gene. 

Reis et al. (2001) also applied a linear correlation coefficient as a measure of association of 
dynamic gene expression profiles. The genetic networks obtained from this method are called 
relevance networks. Simply stated, a matrix of pairwise gene to gene associations based on linear 
correlation is calculated and a statistically significant threshold level of association is determined. 
This level is obtained by permuting the original data set according to the following: the 
distribution of gene expression values is preserved, but the link between the expression value and 
the particular time point or experimental condition is broken. After the matrix has been 
permutated a large number of times and the similarity/association score recalculated each time, 
the maximum association value obtained from permutations is used to set the minimum threshold 
value for selecting significant association in the original unpermutated data set. All connections 
weaker than this threshold are removed, leaving only significantly correlated genes that are 
interconnected in relevance networks. 

4.3.2  Graph theoretical approach based on genetic perturbations 

Wagner (2001) developed a method for reconstructing interactions in gene networks from the 
effects of genetic perturbations on gene activity. Gene activity is according to Wagner (2001) 
more than just gene expression, which differs from many other definitions that refer to gene 
expression, i.e. whether a gene is expressed or not, as mRNA or as protein. Other examples of 
regulators of gene activity we might consider are phosphorylation and methylation . Wagner 
(2001) brings an important point con cerning using correlation coefficient as described  in section 
4.3.1. The problem with approaches using correlation coefficient is that correlation only can point 
to regulatory interactions between genes, and not infer them. Wagner (2001) tries to solve this 
problem, i.e. resolve the causal structure of a genetic network. For this purpose, large-scale 
perturbation data has been used, in form of mutations, overexpression, deletion and inhibition of 
genes or gene products. Wagner (2001) used a directed graph consisting of nodes (representing 
genes) and directed edges (representing causal regulatory interactions between genes) to 
represent genetic network. From this graph, two lists have been generated: adjacency list which 
for each gene G lists all other genes that are directly influenced by gene G and accessibility list 
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which for each gene G lists all genes that are accessible from gene G, i.e. all genes that are 
affected by perturbation of gene G. The problem that is addressed is to reconstruct the network 
structure from its accessibility list for large networks of thousand s of genes. Limitation of the 
approach is that it is only possible to resolve acyclic graphs, i.e. graphs without cycles. 

5 The third generation of analysis techniques 

5.1 Combining gene expression with regulatory motifs  

Common strategies for identifying sequence motifs that are potential transcription factor binding 
sites have been focused on a “cluster by expression” approach, where clusters with similar 
expression patterns are identified and their transcription control regions are examined to find 
shared sequence motifs. 
In Chiang et al. (2001), the relationship between expression and sequence data has been 
evaluated with Genome Mean Expression Profiles (GMEP). This approach assumes that the 
expression pattern of genes that contain the motif with transcriptional information in their TCR 
(transcriptional control region) should exhibit non-random behaviour that reflects the activity of 
the transcription factor. On the contrary, one should not expect the gene expression profiles of the 
group of the genes to deviate significantly from the entire population if their motifs do not encode 
transcriptional information. 
This hypothesis is tested with GMEP which is calculated for each motif as a mean of all 
expression profiles of genes containing this motif. The Genome Mean Expression Profile is 
defined as (Chiang et al. 2001): 
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where G is a set of genes that contain the motif m, Egc is expression level of gene g in condition 
c, and mgw  is the number of occurrences of motif m in the genome sequence of the gene’s 

nominal transcription control region. 
 
The starting point for computing GMEP is matrix M where each ro w denotes a gene and each 
column denotes the experimental condition. Each entry Egmcn denotes then expression level m of 
gene g  in condition n. 
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Condition c 

Eg1c1 Eg1c2 … Eg1cn 
Eg2c1 Eg2c2 … Eg2cn 
Eg3c1 Eg3c2 … Eg3cn 
… … … … 

Gene g 

Egm c1 Egm c2 … Egmcn 
 

Table 1: Matrix M  where each cell Egmn represents the 
expression level of gene m in condition n. 

Motifs in the alphabet {A, C, G, T} are counted and motifs have a fixed length L. For each L and 
matrix M containing expression values (see table 1), a matrix F (4L x c) is computed where c is 
the number of experimental conditions. In matrix F each row corresponds to the GMEP of a 
single motif (see table 2). 
 
 
 

Condition c 
GMEPm1c1 GMEPm1c2 … GMEPm1cn 
GMEPm2c1 GMEPm2c2 … GMEPm2cn 
GMEPm3c1 GMEPm3c2 … GMEPm3cn 
GMEPm4c1 GMEPm4c2 … GMEPm4cn 
GMEPm5c1 GMEPm5c2 … … 
… … … … 

Motif 
m 

GMEPm4
Lc1 GMEPm4

Lc2 … GMEPm4
Lcn 

 

Table 2: Matrix F where each cell denotes GMEP of motif m in condition c 

The question that we may ask is: can GMEP enhance the effect of gene expression profiles so 
that the clusters based on simultaneous use of GMEP and expression profiles could contain genes 
that act in a significantly co-regulated manner. This can be tested by clustering the expression 
profiles with most significant GMEP compared to clustering with the GMEP which is randomly 
drawn from population. 

6 Future work 
In this report, we reviewed important aspects of regulatory networks, such as coregulation, 
modularity etc. with focus on the difficulties that have not been considered to a great extent in 
today’s modelling approaches. We also reviewed information sources that can be used to group 
genes based on their regulatory properties. Those sources can be useful for developing an 
artificial regulatory network.  

Some problems associated with the term coregulation and approaches for identifying regulatory 
networks have been highlighted. This review identifies important problems, which need further 
research. The problems and research question are mentioned earlier. Here, they will be 
summarised: 
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- Today’s methods for modelling  genetic networks are simplified and do not take into 

account the “modular” context of regulation and synergistic binding of TFs. This needs to 
be incorporated in future methods. Important approaches that are worth further 
consideration are phylogenetic footprinting and phylogenetic profiling, which can help 
identifying TF binding specificities, for example. 

- Given the data from different sources that can help identifying regulatory properties and 
connections between genes (genetic network), what is the best way of using those sources 
in forward modelling? 

- In important issue in developing an artificial model, where all rules are known, is to use 
information about cis -regulatory elements and their way of clustering to build the 
modules. This is a prerequisite for understanding the relationship between the modular 
architecture and expression pattern. 

- Validation of the derived interactions is very important, i.e. we need to ask the question of 
whether we can we use two of the mentioned sources to derive regulatory information and 
validate against the third source. The question “Are those two sources good predictors of 
the third source?” needs quantitative measures of prediction  quality. 
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