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The purpose of this note is to explain the derivations of the mathematical results in the paper.  Much of
the reasoning follows similar lines and uses similar techniques to those presented in full detail in the
earlier paper [1].   Here we will draw freely upon results and arguments from that paper, and some of
those arguments will be sketched in a less rigorous way here.

One of the principal conceptual messages of the results discussed here about the simple graph models is
that a seemingly rather severe form of population subdivision can still be compatible with recent common
ancestors.  In these simple models, the population is divided up into subpopulations that exchange
migrants very infrequently.  We assume some small fixed number of migrant individuals per generation;
for example, that number could be just one migrant per generation, of even smaller.

The model begins with a connected graph G  consisting of G  nodes, which we will refer to here as
“islands,” with a constant population size of /n G  on each island.  This is a discrete-time model with
time measured in generations.  We could choose to call an arbitrary generation 0t = , and then t
increases by 1 whenever time proceeds forward by one generation.  Each individual lives on a particular
island (the individual’s “home island”) in a particular generation.  We will use the notation ( , , )I t i m  to
refer to individual number m  on island i  in generation t .  

Each individual has two parents in the previous generation.  The two parents are chosen independently,
both according to the following probabilistic process.  There is a “migration probability” which we will
denote by nµ .  With probability nµ , an individual’s parent is chosen from a different island from the
home island of the individual, in which case the parent’s island is equally likely to be any of the neighbors
of the individual’s home island (where neighbors are determined by the edges in the graph G ).  With
probability 1 nµ−  an individual’s parent is chosen from the same island as the individual.  In either case
– whether chosen from the individual’s home island or a neighboring island – the parent is taken to be
uniformly distributed, that is, equally likely to be any of the /n G  individuals on the chosen island in the
previous generation.   In other words, to choose a parent of individual ( 1, , )I t i m+ , we would first
choose a random index m′  uniformly distributed over the set {1,2, , }nG…  and then with probability

1 nµ−  take the parent to be ( , , )I t i m′ , and with probability nµ , choose an island j  randomly from
among the neighbors of i  and take the parent to be ( , , )I t j m′ .  For each individual, two parents are
chosen in this way.

We call an individual a migrant if at least one of that individual’s parents is from an island other than the
individual’s home island.  (It might be more natural to call the parent the migrant, but we will retain this
terminology here as it has been convenient.)  

Here we take the migration probability nµ  to be of order 1/n  by letting c  be a constant and taking
/n c nµ = .  With the idea of modeling a strongly subdivided population, we are letting the migration rate

have a very small order of magnitude.  For example, we could choose c  so that the expected number of
migrants in the whole population is just 1 per generation.  Or we could choose c  one tenth as large, which
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would model a situation in which in a span of ten generations just one migrant is expected in the whole
population.  

As defined in the paper, a common ancestor of a given set of individuals is an individual who is an
ancestor of everyone in the set.  For example we will speak of a common ancestor of everyone on a
particular island at a particular time, or the whole population at a particular time.  We use “CA” as an
abbreviation for common ancestor.  nT  is the number of generations back to the most recent common
ancestor (MRCA) of the population.  nU  is the number of generations back to the “IA point,” the most
recent generation in which all current individuals have identical ancestors.

We will use standard notation related to orders of magnitude and asymptotic behavior as n → ∞ :  

• ( )( ) ( )f n o g n=  means ( ) 0
( )
f n
g n

→  as n → ∞ , 

• ( )( ) ( )f n O g n=  means ( )
( )
f n
g n

 is bounded, 

• ( ) ( )f n g n  means that both ( )( ) ( )f n O g n=  and ( )( ) ( )g n O f n=  hold, and

• ( ) ( )f n g n∼  means ( ) 1
( )
f n
g n

→  as n → ∞ .  

For notational convenience we will omit writing the obvious “greatest-integer” type functions that are
needed in order to round real numbers into integers, such as in the phrase “in generation

( ) 2(1 ) 1 logt D nε ζ= − + + .”

Statements of Results

We are given a connected graph G  and define the distance ( , )d i j  to be the number of edges in a shortest
path joining i  and j .  This definition is extended to sets of nodes by considering shortest paths joining
some node of one set to some node of the other set.  That is, for sets of nodes A  and B  we define
( , ) min{ ( , ) : , }d A B d i j i A j B= ∈ ∈ , and as a special case, for a set of nodes A , we define

{ }( , ) min ( , ) :d A j d i j i A= ∈ .

The radius of G  is min{max ( , )}
i k

R d i k
∈ ∈

=
G G

, and a node i  is called a center of G  if max ( , )
k
d i k R

∈
=

G
.  Let

( )C G  denote the collection of all centers of G .  The diameter of G  is max{max ( , )}
i k

D d i k
∈ ∈

=
G G

.

We assume throughout that 0R > ; the case 0R =  (that is, G  has just one node) was treated in [1].

For ( )i C∈ G , let iS  be a set of minimal size that consists of neighbors of node i  and satisfies
max ({ } , ) 1i
j
d i S j R

∈
∪ = −

G
.  Define iH  to be the number of nodes in iS ,  ( 1)/i i iH H∆ = − , and

( )
min i
i C∈

∆ = ∆
G

.  Note 0 1≤ ∆ < .

The results are asymptotic, with the number of islands and the graph fixed,  and n  tending to infinity.
We use “ lg ” to denote the base-2 logarithm.
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Theorem 1:  
( ) lg

nT
R n+ ∆

 converges in probability to 1 as n → ∞ .

Theorem 2:  Let 0.7698ζ ≈  be as defined in Theorem 2 of [1].  
( )ζ+ +1 lg

nU
D n

 converges in

probability to 1 as n → ∞ .

To attempt a quick and very rough explanation of the theorems in a nutshell: the main idea of Theorem 1
is that every lgn  generations, the set of nodes occupied by descendants of any given individual expands
to include all of its neighbors.  One can imagine this as a set that expands like clockwork, with a clock
that ticks once every lgn  generations. At time 0 the set starts out including only one node.  With each
tick of the clock, the set expands to encompass all neighbors of nodes currently in the set. Applying this
idea to the individuals on a center node of a graph of radius R gives the essence of the result: in roughly R
ticks of the clock, or lgR n  generations, this set of nodes expands to include the whole graph.  Similar
comments apply to give a rough explanation of Theorem 2 – at least why the diameter appears.  The
longest path in the graph is of length D .  So after the clock ticks about D  times, everyone who is
destined to become a CA of the full population should have done so.  

A few more remarks about the results are in order here.  First, the reason that the process behaves much
like a regularly ticking clock is related to the fact that the distribution of nT  is concentrated around lg n ,
with little variability.  Second, as in the case where G  has one node [1], at the IA point about 80 percent
of the population in the structured model consists of common ancestors of everyone in the population
today and the lineages of the remaining 20 percent have gone extinct.  The derivation will also show that
as n  increases MRCAs are increasingly likely to be found in center nodes of the graph -- in particular, in
nodes i  that minimize iH .

Examples

In the graph shown at right, 2R = , and the center node 3 has 3H =
neighbors 2, 4, and 6, such that the set 3 {3,2, 4, 6}S =  lies within 1 1R − =
of each node, that is, 3max ( , ) 1 1

j G
d S j R

∈
= − = .  So here,

( 1)/ 2/ 3H H∆ = − = , and 2
3(2 ) lgnT n+∼ .  Since the diameter of this

graph is 4, we have (5 ) lgnU nζ+∼ .

For another example, consider the 11-node graph at right.  For this graph, the
radius is 3R =  and the centers are nodes 1, 2, 5, 6, 7, 8, and 9.  It turns out that
each of the centers i  has 2iH = .  For example, node 1 has 1 {2, 5}S = ; in fact
every node is within 1 2R − =  of the set {2, 5} .  Node 6 has 6 {2, 7}S = ; every
node is within 2 of the set {2, 6, 7} .  For this graph, 2H = , 1

2∆ = , and
1
2(3 ) lgnT n+∼ .  The diameter of this graph is 4; for example, (3,11) 4d = .

Therefore, (5 ) lgnU nζ+∼ .
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In a complete graph having 1G >  nodes, each pair of nodes is joined by an edge.  Such a graph has
radius 1R =  and diameter 1D = .  Also, for each i  the set iS  is simply {1, , } { }G i−… , so that

1iH G= − , ( 2)/( 1)i G G∆ = − − , and ( 2)/( 1)G G∆ = − − .  Thus, (1 ( 2)/( 1)) lgnT G G n+ − −∼ ;
for example, for 2G =  we have lgnT n∼ , for 3G =  we have 1

2(1 ) lgnT n+∼ , and for 5G =  we
have 3

4(1 ) lgnT n+∼ .  The result for nU  is (2 ) lgnU nζ+∼ .

More on Simulations and Approximations

The above theorems give the main term of asymptotic results of the form ( ) lg( )nT R n+ ∆∼  as n → ∞ ,
for example, which do not distinguish among various possible explicit forms for the lower order effects.
For example, the statements ( ) lg( ) 2.7nT R n+ ∆ +∼  and ( ) lg( ) 8.3nT R n+ ∆ −∼ , which differ by
having different additive offsets, would both be consistent with the theorem.  However, we can find some
simple formulas that agree with the asymptotic results in the theorems, make intuitive sense, and provide
rather good approximations to the simulation results.  Defining G  as above to be the number of nodes in
the graph, if we use the approximations ( ) lg( / )nT R n G+ ∆∼   and  ( 1.77) lg( / )nU D n G+∼ , we get
the following predicted values for the simulation results in Table 1 and Table 2.

Predictions for Table 1 using the formula ( ) lg( / )nT R n G+ ∆∼ :

n=1000 2000 4000 8000 16000
One node 10.0 11.0 12.0 13.0 14.0
Three fully-connected nodes 13.4 14.9 16.4 17.9 19.4
Five fully-connected nodes 14.7 16.4 18.2 19.9 21.7
Ten-node graph in Figure 1 19.9 22.9 25.9 28.9 31.9

Predictions for Table 2 using the formula ( 1.77) lg( / )nU D n G+∼ :

n=1000 2000 4000 8000 16000
One node 17.6 19.4 21.2 22.9 24.7
Three fully-connected nodes 24.8 27.6 30.4 33.1 35.9
Five fully-connected nodes 23.2 26.0 28.8 31.5 34.3
Ten-node graph in Figure 1 45.0 51.7 58.5 65.3 72.1

Comparing these predictions to the actual simulation results in Table 1 and Table 2 of the paper, we see
that the agreement is quite good, with the predictions capturing the main features of the simulation results.

More Terminology, Head Starts and the Idea of Delta

To introduce convenient terminology for some ideas that were introduced in [1] and are helpful here, let
us say that a given individual 1 1 1( , , )I t i m  is established on a given island 2i  in a given generation 2t  if
the number of descendants of 1 1 1( , , )I t i m  on island 2i  in generation 2t  is greater than  2lg ( )n .  We say

1 1 1( , , )I t i m  is established in generation 2t  (without reference to a particular island 2i ) if 1 1 1( , , )I t i m  is
established on some island in generation 2t .   We say an individual is in jeopardy in a given generation if
that individual is not established on any island in that generation and is also not extinct in that generation. 
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The idea is that an individual who is not in jeopardy at a given time is either already extinct, which means
he has no surviving descendants at that time, or established, which means that his number of descendants
is large enough to assure that it is very unlikely that the individual will become extinct in the future.  That
is, individuals who are not in jeopardy are either extinct or are very likely to become CA’s.  We say an
individual is destined to become established, a CA, and so on, if these events will occur for that individual
in the future.

Let us say that a “head start” has been completed for a center island i  as soon as some individual on
island i  has migrant descendants who have become established on each of the islands in some set iS
consisting of neighbors of node i  and satisfying max ({ } , ) 1i

j
d i S j R

∈
∪ = −

G
.  We will express the time at

which some individual from island i  becomes a CA of the whole population as the sum of the time
required to complete a head start for i  and the additional time required to complete the process of
becoming a CA after completing the head start.

Proposition H:  For a center island i , the time required to complete a head start is lgi n∆∼ .  That is, for
0 1α< < , as n → ∞ , the probability that at least one individual from island i  has completed a head
start by time lgnα  converges to 0 if iα < ∆  and converges to 1 if iα > ∆ .

To verify the proposition, consider the individuals on island i  at time 0.   Those individuals fall into a
number of categories, defined in terms of the number of descendants those individuals have at time

lgnα .  As shown in [1], a fraction of nearly 1 0.8ρ− ≈  of those individuals will have become
established by time lgnα , with their descendants having grown geometrically to reach a size of

lg2 n nα α= .  Most of the remaining individuals will have become extinct, and a few will be in
between (including that small set of people who might remain in jeopardy, depending on the value of α ).
Consider one of these established individuals who has a number of descendants whose order of magnitude
is nα .  Each of these descendants has probability 1/n  of being a migrant to a neighboring island.  So
the probability that the individual has migrant descendants on each of the iH  neighboring islands in the

“head start” set iS  is ( 1)( / ) i iH Hn n nα α −= .  Consequently, the expected number of individuals who

have migrant descendants on each of the iH  neighboring islands in iS  by time lgnα  is 1 ( 1) iHn α+ − .
Therefore, if 1 ( 1) 0iHα+ − < , that is, ( 1)/i i iH Hα < ∆ = − , then the expected number of individuals
having completed a head start by time lgnα  converges to 0, so that the probability that any of the n
individuals on island i  has completed a head start by time lgnα  converges to 0 as n → ∞ .  On the
other hand, if 1 ( 1) 0iHα+ − > , that is, iα > ∆ , then the expected number of individuals who have
completed a head start by time lgnα  grows to infinity as n → ∞ .  From this, together with a
demonstration of asymptotic pairwise independence among the events that different individuals complete
a head start by time lgnα  (along lines similar to the proofs of Lemmas 19 and 20 of  [1]), it follows that
the probability that at least one individual has completed a head start by time lgnα  converges to 1.

Lower bound in Theorem 1

Recall we call a given individual a migrant if either parent of that individual lived on an island other than
the given individual’s home island.  Note that since all of our results concern time spans that are only
order lgn , there are only order lgn  migrants in total.
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Proposition L:  Let s  be a positive integer and let 0ε > .  The probability that there exists an individual
at a given time 0t  who has any descendant on an island at distance s  steps away from that individual’s
home island within (1 )( 1) lgs nε− −  generations approaches 0 as n → ∞ .   

To see this, note that if there is such an individual 0 0 0( , , )I t i m , then there must be a path of islands

0 1 si i i→ → →  and a chain 1 1 1 2 2 2( , , ), ( , , ), , ( , , )s s sI t i m I t i m I t i m…  of migrant descendants of

0 0 0( , , )I t i m , with each ( , , )k k kI t i m  being a descendant of 1 1 1( , , )k k kI t i m− − − , and ( , , )k k kI t i m  having a
parent from island 1ki − .  We know nothing particular about 1t  except that 1 0 0t t− > (for example, it is
likely that we could find individuals at time 0t  who have a migrant child, so that we could have

1 0 1t t− = ) .  However, for each 2k ≥ , we claim that with probability approaching 1, none of the
differences 1k kt t −−  will be less than (1 ) lgnε− .  In fact, with probability approaching 1, no migrant up
to a time of order lgn  can have any further migrant descendants within (1 ) lgnε−  generations.  That is,
the probability that there exist times lgt t s n′< <  satisfying (1 ) lgt t nε′ − ≤ −  and there exist migrant
individuals ( , , )I t i m  and ( , , )I t i m′ ′ ′  with ( , , )I t i m′ ′ ′  being a descendant of ( , , )I t i m  approaches 0 as
n → ∞ .  The reason for this is that for any given individual, the probability of having a migrant
descendant within (1 ) lgnε−  generations is of order n ε− , so that since there are only order lgn
migrants in total up to time lgs n , the probability of some migrant having a migrant descendant within
(1 ) lgnε−  generations is ( lg )O n nε− , which converges to 0.  

Lower bound:  For 0ε > , we have ( ){ }(1 ) lg 1nP T R nε≥ − + ∆ →  as n → ∞ .

To prove this, fix a node 0i .  We want to show that the probability that some individual on 0i  becomes a
CA within ( )(1 ) lgR nε− + ∆  generations approaches 0.  We will assume 0i  is a center of the graph.
This is the more involved case; we omit the similar but easier proof for a node that is not a center of the
graph.  

Recall we say that a head start has been completed when some individual has descendants who are
established on each island in a set of islands that is within a distance of 1R −  from every node of the
graph.  Let τ  denote the time required for some individual living on 0i  at time 0 to have completed a
head start.  That is, before time τ , no individual on 0i  has completed a head start.

Let 0 (1 ) lgt nε= − ∆ .  We have

( ){ } ( ){ }0 0(1 ) lg { } { } (1 ) lgn nP T R n P t P t T R nε τ τ ε⎡ ⎤≤ − + ∆ ≤ ≤ + > ∩ ≤ − + ∆⎣ ⎦ .

By Proposition H, 0{ }P tτ ≤  approaches 0 as n → ∞ .

Next we want to show that the probability of the event ( ){ }0{ } (1 ) lgnt T R nτ ε> ∩ ≤ − + ∆  converges
to 0.  For convenience, let 0(0, ,1)I i  denote whichever of the individuals on island 0i  at time 0 becomes a
CA the fastest (if there is a tie, choose one arbitrarily).  Let A denote the set of islands reached by the
descendants of 0(0, ,1)I i  by time 0t .  Let j  be an island such that ( , )d A j R= ; we know we can find
such a j  whenever 0tτ > .  We observe that for both events 0{ (1 ) lg }t nτ ε> = − ∆  and
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( ){ }(1 ) lgnT R nε≤ − + ∆  to occur it must be the case that at least one of the following two events
occurs: 

(1)  There exist i A∈  and m  such that individual 0( , , )I t i m  has a descendant on island j  within
(1 )( 1) lgR nε− −  generations

(2)  The remaining time, after the first migrant descendant of some individual on island 0i  reaches island
j , required for some individual on 0i  to become a CA of j , is at most (1 ) lgnε−  generations.  In other
words, some set of migrants to island j  “collectively” become a common ancestor of island j  within
(1 ) lgnε−  generations, in the sense that there is a set of migrants

1 1 2 2{ ( , , ), ( , , ), , ( , , )}K KI u j m I u j m I u j m…  with 1 2 Ku u u≤ ≤ ≤  such that the union of their sets of
descendants at time 1 (1 ) lgu nε+ −  is everyone on j .  That is, 

{ }

{ }

1
1

1

descendants of ( , , ) on island  at time (1 ) lg

    ( (1 ) lg , , ) : 1 / .

K

k k
k

I u j m j u n

I u n j m m n G

ε

ε
=

+ −

= + − ≤ ≤

∪

By Proposition L and because ( , )d A j R= , the probability of the event in (1) approaches 0 as n → ∞ .

For the event in (2) to occur, clearly at least one migrant to island j  must have at least order /(lg )n n
descendants within (1 ) lgnε−  generations, since there are a total of only order lgn  migrants to island j
within the time span relevant to the desired result.  But the proof of Proposition 15 of [1] shows that the
probability that a migrant can have order /(lg )n n  descendants within (1 ) lgnε−  generations is very
small – in fact, it is of order ( )po n−  for all p .  So taking the union over the order lgn  migrants still
gives a probability of ( lg )po n n− , which approaches 0.
 

Upper bound in Theorem 1 

Proposition U:  Suppose an individual (0, , )I i m from island i  is established on island j  in a given
generation t , and let 0ε > .  Then, with probability that approaches 1 as n → ∞ ,  by generation

(1 ) lgt nε+ + , individual (0, , )I i m  will be a CA of island j  and will be established on each island
neighboring island j .

Arguments from the upper bound in Theorem 1 of [1] applied to this setting show that with probability
approaching 1, within (1 /2) lgnε+  generations, (0, , )I i m  will become a CA of island j .  And within
an additional ( /2) lgnε  generations [in fact in (lg )o n  generations], among the descendants of (0, , )I i m
will also be migrants who have become established on each island neighboring j .  In fact, there are 1
migrants each generation, and each migrant is destined to become established with a probability that
approaches 1 0.8ρ− ≈ , so that it takes only (1)O  generations for migrants who are destined to become
established to reach each island neighboring j .  Furthermore, with probability approaching 1, each
migrant who is destined to become established will in fact do so within a time that is only

(lg lg ) (lg )O n o n= . 
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Upper bound:  For each 0ε > , we have ( ){ }(1 ) lg 1nP T R nε≤ + + ∆ →  as n → ∞ .

Let *i  be an island achieving the minimum in the definition 
( )

min i
i C∈

∆ = ∆
G

 and let *S  denote *iS .  By

Proposition H, within (1 ) lgnε+ ∆  generations, some individual *(0, , )I i m  on island *i  will become

established on each island in the set **{ }i S∪ .    Next, by induction, applying Proposition U repeatedly,

we see that within an additional (1 ) lgk nε+  generations, individual *(0, , )I i m   will have become a CA

of all islands whose distance from **{ }i S∪  is less than k, and will be established on all islands whose

minimum distance to **{ }i S∪  is equal to k.  In particular, since all islands are within a distance of

1R −  from **{ }i S∪ , it follows that by generation (1 ) lg ( 1)(1 ) lgn R nε ε+ ∆ + − + , individual
*(0, , )I i m  will have become established on all islands in the graph.  From here, an additional (1 ) lgnε+

generations suffices to complete the process, making *(0, , )I i m  a CA of all islands. 

Lower bound in Theorem 2

Let 0.7698ζ ≈  be as defined in Theorem 2 of [1].

Lower bound:  For each 0ε > ,  ( ) 2{ (1 ) 1 log } 1nP U D nε ζ≥ − + + →   as n → ∞ .

Let islands 0i  and 1i  be separated by a distance of D from each other, and define
( )1 2(1 ) 1 logt D nε ζ= − + + .  We claim that with probability approaching 1, there are individuals

0 0(0, , )I i m  and 1 1 1( , , )I t i m  such that 0 0(0, , )I i m  is not extinct at time 1t  and 0 0(0, , )I i m  is not an
ancestor of 1 1 1( , , )I t i m .  In other words, the claim is that with probability approaching 1, at time 1t , there
is an individual 0 0(0, , )I i m  on island 0i  who is not extinct but is not yet a CA of island 1i .  By [1], we
know that there are many (i.e. a number that approaches infinity as n → ∞ ) individuals living on island
0i  at time 0 who, at time (1 ) lgnε ζ− , are destined to become CA’s but are not yet established and also

have no descendants on any island other than 0i .  Let 0 0(0, , )I i m  be one of these individuals.  Now we
just need to show that with probability approaching 1, it will take more than ( )(1 ) 1 lgD nε− +
generations for 0 0(0, , )I i m  to become a CA of island 1i .  This follows from Proposition L, from the same
reasoning as used earlier to establish the lower bound in Theorem 1.

Upper bound in Theorem 2 

Proposition U2:  The probability that an individual who is established on a given island fails to become a
CA of that island within (1 ) lgnε+  additional generations is (1/ )o n .  

This follows from minor modifications of the analogous result in [1].  The same arguments work because
this statement concerns the number of descendants of a given individual on just a single island.  The only
issue to check here is that the result is not changed by those few individuals per generation who may have
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a child on a different island; it turns out that this makes no important change in the behavior of the
process of counts of descendants of a given individual on a single island.

Upper bound:  For 0ε > ,  ( ) 2{ (1 ) 1 log } 1nP U D nε ζ≤ + + + →   as n → ∞ .

Let 0 δ ε< < .

Establishment Stage: From [1], we know that within (1 ) lgnδ ζ+  generations, everyone (that is, all
individuals (0, , )I i m  on all islands at time 0) is out of jeopardy – either extinct or established.  

Let us call the individuals (0, , )I i m  who become established the “original established individuals.”  The
remaining individuals from time 0 are all extinct at the end of the Establishment Stage.

To complete the proof we show that with probability approaching 1, the original established individuals
will all become CA’s of the full population within ( )(1 )( 1) lg lgD n o nδ+ + +  additional generations.
We have 1D +  additional stretches of (1 ) lgnδ+  generations to work with.  

Growth Stage 0:  We wait until all established individuals have become CA’s of their own islands. 

Proposition U2 implies that with probability approaching 1, Growth Stage 0 requires less than
(1 ) lgnδ+  generations.  After Growth Stage 0 is completed, we begin Migration Stage 1. 

Migration Stage 1:  We monitor migrants and wait until we have seen, for each edge of the graph and for
both directions along that edge, a migrant along that edge in that direction, with that migrant being
established on the destination island.  

Migration Stage 1 is readily seen to take only (lg )o n  generations.  In fact, the time required to collect a
full set of migrants who are destined to become established on the destination island (but have not yet
become established) has a distribution that is easily upper bounded by a geometric decay, so this time
contributes just (1)O  to Migration Stage 1.  Then, the additional time required for those migrants who are
destined to become established actually to become established is just (lg lg ) (lg )O n o n= . 

At the end of Migration Stage 1, each of the original established individuals is a CA of his home island
and has become established on each island within a distance of 1 from his home island.

Growth Stage 1:  We wait until the established migrants found during Migration Stage 1 all have become
CA’s of their islands.

Just as with Growth Stage 0, with probability approaching 1, Growth Stage 1 takes less than (1 ) lgnδ+
generations.  At the end of Growth Stage 1, each of the original established individuals has become CA of
each island within a distance of 1 from his home island.  We continue to define Migration and Growth
Stages in the same way, inductively.

Migration Stage k :  After the end of Growth Stage 1k − , we begin monitoring migrants and wait until
we have seen, for each edge of the graph and for both directions along that edge, a migrant along that
edge in that direction, with that migrant being established on the destination island.  
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Growth Stage k :  We wait until the established migrants found during Migration Stage k  have all
become CA’s of their islands.

As above, with probability approaching 1, Migration Stage k  takes (lg )o n  generations and Growth Stage
k  takes less than (1 ) lgnδ+  generations.  At the end of Growth Stage k , each of the original established
individuals has become CA of each island within a distance of k  from his home island.  

Since each island is within a distance of D  from every other island, it follows that at the end of Growth
Stage D , each of the original established individuals is a CA of the full population.  With probability
approaching 1, the total time taken for this to occur is less than (1 ) lgnδ ζ+  for the Establishment Stage,
plus (1 ) lgnδ+  for Growth Stage 0, plus ( )(1 ) lg (lg )D n o nδ+ +  for Migration Stage 1, Growth Stage
1, …, Migration Stage D , and Growth Stage D .   That is, as n  approaches infinity,

( ){ (1 ) lg (1 ) lg (1 ) lg (lg ) } 1nP U n n D n o nδ ζ δ δ≤ + + + + + + → .  Since δ ε< , this implies
{ (1 )( 1 ) lg } 1nP U D nε ζ≤ + + + → .  
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