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ABSTRACT 

A Markov model of evolution of characters on a phylogenetic tree consists of a 
tree topology together with a specification of probability transition matrices on the 
edges of the tree. Previous work has shown that, under mild conditions, the tree 
topology may be reconstructed, in the sense that the topology is identifiable from 
knowledge of the joint distribution of character states at pairs of terminal nodes of 
the tree. Also, the method of maximum likelihood is statistically consistent for 
inferring the tree topology. In this article we answer the analogous questions for 
reconstructing’the full model, including the edge transition matrices. Under mild 
conditions, such full reconstruction is achievable, not by using pairs of terminal 
nodes, but rather by using triples of terminal nodes. The identifiability result 
generalizes previous results that were restricted either to characters having two 
states or to transition matrices having special structure. The proof develops matrix 
relationships that may be exploited to identify the model. We also use the identifia- 
bility result to prove that the method of maximum likelihood is consistent for 
reconstructing the full model. 

1. INTRODUCTION 

Evolutionary relationships among species are commonly conceptual- 
ized in terms of an “evolutionary tree.” Statistical approaches to phy- 
logeny reconstruction use observations on the terminal nodes of the 
tree to estimate parameters of a model of the evolutionary process. The 
class of Markov models on evolutionary trees has proved to be a useful 
compromise between biological realism and analytical tractability. Such 
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a Markov model consists of a tree topology together with a specification 
of probability transition matrices on the edges of the tree. The topology 
summarizes in a qualitative sense certain aspects of the evolutionary 
relationships, such as which species are the most closely related. Quan- 
titative information about such matters as the timing of the speciation 
events and the rates of evolution is contained in the edge transition 
matrices. Thus, the problem of inferring these matrices is of consider- 
able scientific interest. 

Previous work on the theory of the general Markov model has shown 
that under mild conditions, the tree topology may be reconstructed in 
the sense that the topology is identifiable from knowledge of the joint 
distribution of character states at the terminal nodes of the tree. Also, 
the method of maximum likelihood has the statistical property of 
consistency for inferring the tree topology. However, the analogous 
questions for reconstructing the full model, including the edge transi- 
tion matrices, have remained unresolved. 

This article shows that under some mild conditions on the transition 
matrices, such full reconstruction is achievable. The proof develops 
matrix relationships that may be exploited to identify the model. In 
addition, we show as a consequence of the identifiability result that the 
method of maximum likelihood is consistent for reconstructing the full 
model. 

The general class Markov models contains as special cases the most 
popular and most studied models in phylogeny construction. For exam- 
ple, the models of Cavender [l], Jukes and Cantor 121, Kimura [3], and 
Tajima and Nei [4], among others, are all Markov models that contain 
different numbers of parameters in their edge transition matrices. In 
the case of DNA sequence data, the general Markov model can accom- 
modate 12 parameters per edge transition matrix. This general Markov 
model was studied by Barry and Hartigan [5], who introduced a distance 
measure whose use has been increasing steadily. As data sets become 
larger, the simpler Markov models often do not achieve an adequate fit, 
and more general models are required, as pointed out by Rzhetsky and 
Nei [6]. 

The issue addressed by identifiability is whether or not the inference 
problem is well posed, in the following sense. A set of data consists of 
observations of character states at the terminal nodes of the tree; 
character states at the internal nodes are hidden from view. The 
question is whether or not such observations at the terminal nodes 
potentially contain enough information to reveal the details of the 
internal structure of the Markov model. We hope that the model is 
revealed more and more accurately as the sample size increases, so we 
ask whether we would in fact know the model precisely if we were given 
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an “infinite sample.” Having such a hypothetical sample would mean 
having exact knowledge of the joint distribution of character states at 
the terminal nodes. Thus, our question is whether knowledge of this 
joint distribution is sufficient to determine the model; if so, we say the 
model is identifiable. Identifiability fails if two different models (differ- 
ing in topology or edge transition matrices or both) give rise to the same 
joint distribution of character states at the terminal nodes; in this case 
there would be no hope of using data to distinguish between those two 
models. 

Identifiability of the tree topology from the distribution of character 
states at terminal nodes was established by Chang and Hartigan [7]; it 
was also found independently by Steel, Hendy, and Penny [8, 91. This 
work is reviewed in Section 3. Previous results on the identifiability of 
the full model, including the edge transition matrices, were obtained by 
Pearl and Tarsi [lo]. Their results were limited to the case of two-state 
characters; the general case of a finite state space requires somewhat 
more elaborate methods. We give a general, unified treatment that 
identifies the rows of the edge transition matrices as eigenvectors of 
certain matrices that can be formed from joint distributions of triples of 
terminal nodes. In this level of generality certain conceptual issues 
appear that do not arise for two-state characters. For example, whereas 
in the case of two-state characters conditions on the determinants of 
the transition matrices are sufficient to establish identifiability, this is 
not so in the general case. A related complication is that in the general 
case it becomes useful to deal with classes of matrices that are not 
closed under multiplication. In the two-state case it is sufficient to 
consider the class of matrices that have a positive determinant, which is 
closed under multiplication. 

In view of the nature of DNA, the case of four-state characters is of 
particular interest for phylogenetic analysis. Here Steel, Hendy, and 
Penny [8, 91 have obtained the most general identifiability results to 
date, using the Hadarmard inversion technique introduced by Hendy 
1111. However, these results are limited to models incorporating strong 
symmetry assumptions. The most general model they considered for 
four-state characters is a generalized Kimura 3ST model, in which each 
edge transition matrix is a member of the three-parameter family of 
transition matrices of the form 

‘1-a-b-c a b \ 
l-a-b-c C E 

: l-a-b-c a 
\ C i a l-a-b-c/ 



54 JOSEPH T. CHANG 

Although they create the analytic simplifications exploited by Hadamard 
inversion, the symmetries assumed by restricting the general lZparame- 
ter family of 4 x 4 Markov transition matrices to such a three-parameter 
family do not allow the modeling of known biological phenomena such 
as nonuniformities in frequencies of the four nucleotides. 

An important part of the foundation for this work is Paul Lazarsfeld’s 
development of latent structure analysis, begun around 1950 and de- 
scribed in detail by the book of Lazarsfeld and Henry [12]. The idea of 
latent structure analysis is to model observed random variables as 
conditionally independent outcomes, given the state of an unobserved 
“latent” variable. Thus, to identify the parameters in a star phylogeny 
may be viewed as a problem of latent structure analysis. We give a 
short, self-contained development involving simple matrix manipula- 
tions inspired by the treatment of Lazarsfeld, although they seem 
somewhat simpler and they apply to random variables taking any finite 
number of values. One feature here that appears to be novel is a 
perturbation argument that proves the general case by first handling a 
special case where a certain matrix has distinct eigenvalues. 

A feature special to the star phylogeny estimation problem that is not 
present in general latent structure problems is that the number of 
classes (or “states”) is the same for each of the observed, as well as the 
latent, variables; for example, for DNA data there are four latent 
classes: A, C, G, T. One mathematically convenient implication of this 
special structure is that we work entirely with square matrices. In this 
problem the latent classes have a more definite meaning than is typical 
in other uses of latent structure analysis in the social sciences, for 
example, where the latent classes may have no particular interpretation, 
at least initially, and one might try to give them an interpretation after 
looking at the values of the fitted parameters. This difference has a 
burdensome aspect: whereas typically in latent structure analysis one 
might not be concerned with giving correct labels to the states of the 
hidden random variable, in phylogeny estimation this becomes 
important. 

A statistical estimation method is said to he consistent if the esti- 
mated quantity is certain to converge to the true quantity as the number 
of observations used in forming the estimate tends to infinity. Felsen- 
stein 1131 sparked the considerable and continuing interest in the issue 
of consistency in phylogenetic analysis with his striking observation that 
the popular method of parsimony is not consistent for estimating the 
tree topology over the class of Markov models. 

For models of the type we are considering, identifiability considera- 
tions are the principal difficulty in establishing the consistency of 
maximum likelihood. Claims have appeared (e.g., [14]), without proof, 
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that maximum likelihood is consistent for estimating the tree topology. 
Symptoms of the resulting unsatisfactory state of affairs include explic- 
itly stated doubts in the literature (e.g., chapter 5 of [15]) as to whether 
consistency of the maximum likelihood topology estimate has been 
established and, indeed, whether or not it is true. Such issues deserve a 
careful treatment. In fact, the identifiability results required to establish 
consistency have not been in place until recently ([7-91) for the problem 
of topology estimation and until the present article for the estimation of 
the full model. In Section 5 we apply the identifiability result from 
Section 4 to prove the consistency of the maximum likelihood estima- 
tors of the edge transition matrices. 

2. MARKOV MODELS ON TREES: DEFINITIONS AND 
NOTATION 

Let T denote a finite set of taxa; this is typically the set of current 
species whose phylogenetic history we wish to infer. A tree, defined as a 
connected graph without cycles, consists of nodes and edges. The degree 
of a node is the number of edges incident to the node. Nodes of degree 
one are terminal nodes, and nodes of higher degree are internal nodes. 
Thus, S may be partitioned into a union S = T u N of the set T of 
terminal nodes and the set N of nonterminal nodes; the notational 
overlap between the two uses of T is intentional, because each taxon in 
T is identified with a terminal node in the graph. The terminal nodes 
are labeled by names of taxa in T. We assume that speciation events 
occur at internal nodes, so that the tree has no nodes of degree 2. 
Internal nodes may have degree 3 or greater; a node of degree d 
corresponds to the splitting of one species into d - 1 species. An edge 
e E E may be thought of as a subset e = {r, s) containing two distinct 
nodes r, s E S. These edges are undirected, so that {s, ~1 = {r, s}; this is 
consistent with conceptualizing an edge as a set of two nodes rather 
than an ordered pair of nodes. 

Let %’ denote a finite set of character states, and let C denote IFI, 
the cardinality of @Y. For example, @’ might be the set of four nu- 
cleotides. The evolution of a character is modeled as a random process, 
as follows. For each s E S there is a corresponding random variable X, 
taking values in ‘Z’; for example, X, might identify the nucleotide 
occupying a particular site in the DNA of a representative of species s. 
Let n’(e) denote the marginal distribution of X,, that is, n”(i) = 
P{X, = i} for i E ‘Z’. We assume that {X, : s E S} is a Markov random 
field on S; which means that for each s E S, the conditional distribution 
of X, given all of the other values {X,: r f s) is the same as the 
conditional distribution of X, given just the values (X, : {r, s) E E} at the 
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“neighbors” of s. For each edge {r,s} there are two C x C edge 
transition matrices PrS and PSr whose entries are given by 

P’“(i,j)=P{X,=jIX,=i); 

these conditional probabilities are well defined if the marginal probabil- 
ities r’(i) are all positive. 

This completes the description of the probabilistic model for the 
evolution of a single character X. To model n characters for each 
species, the standard assumption-usually made grudgingly for the sake 
of simplicity-is that distinct characters are independent and identically 
distributed (iid); that is, X’, . . . , X” are iid, where each Xi = (Xi : s E S) 
is a Markov random field on 9: 

For each character Xi, we observe the states Xi = <Xt : t E T) at the 
terminal nodes, but not the states Xh = <Xi : s E N) at the nonterminal 
nodes. The statistical problem is to use the observations X;, . . ., X;! at 
the terminal nodes to infer the tree topology and the edge transition 
matrices. Inference of the edge transition matrices is the main problem 
considered in this article. Before turning to this problem in Section 4, in 
Section 3 we briefly review a result on the identification of the topology. 

3. IDENTIFIABILITY OF THE TOPOLOGY 

For future reference, in this section we review a result found by 
Chang and Hartigan [7] and, independently, by Steel et al. [8]. This 
result states that, under mild conditions, the tree topology is identifiable 
in the general Markov model from the joint distribution of states at the 
terminal nodes. In fact, much less information than the full joint 
distribution of (X, : t E T) is required. It turns out that knowing the 
joint distributions of pairs of terminal nodes <X,, XJ for t, u E T is 
sufficient to determine the topology. 

To formalize the notion of identifying a topology, we define an 
equivalence relation for evolutionary tree topologies as follows. Let 
q = (S,, E,) and y2 = (S,, E2) be trees with the same set of terminal 
nodes T. We say that S; and S, are equivalent if there is a bijective 
“relabeling” function p : S, + S, such that p(t) = t for all t E T and 
E, = {{ p(r), &>}:{I-, s) E E,}. That is, the topologies S; and S, are 
equivalent if they are the same up to a possible relabeling of nontermi- 
nal nodes. 

PROPOSITION 3.1 

Consider a family of Markov models satisfying the following conditions: 

1. The edge transition matrices are invertible and not equal to a permu- 
tation matrix. 
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2. There is a node r with r’(i) > 0 for each i E 59, that is, each 
character state has posiiive marginal probability at r. 

Then the topology is identifiable from the joint distributions of character 
states at pairs of terminal nodes. That is, if two models in the family induce 
the same pairwise distributions of character states at their terminal nodes, 
then the topologies of those two models must be equivalent. 

Proposition 3.1 follows by combining a result of Buneman [16] with 
the fact that the function 

f{r,s} = -logdetP’“-1ogdetP”’ 

is additive, in the following sense. For a function f defined on subsets of 
S consisting of two nodes, we say that f is additive if fIr,s> = 
c eE path(r,s)f(e) f or each r, s E S. Here “path{r, s)” denotes the set of 
edges on the path joining the nodes r and s; this is empty if r = s. 
Buneman [16] showed that the values of an additive function on pairs of 
terminal nodes determine the topology of the tree, as well as the 
function on all pairs of nodes. Thus, knowledge of the function f is 
sufficient to determine the topology. The function f is clearly deter- 
mined by the joint distribution of pairs of terminal nodes. The log 
determinant was first used as a measure of distance by Barry and 
Hartigan [5] and by Cavender and Felsenstein [17]. 

4. IDENTIFIABILITY OF THE FULL MODEL 

4.1. PAIRWSE DISTRIBUTIONS DO NOT DETERMINE THE FULL MODEL 

Although knowledge of the joint distributions of pairs of terminal 
nodes determines the tree topology, it is only in certain restricted 
classes of Markov models incorporating symmetry assumptions that 
such pairwise distributions are enough to determine the full model. 
That is, in the general class of Markov models, we will see that pairwise 
distributions do not determine the edge transition matrices PrS for 
{r, s} E E. 

In fact, as shown by the next proposition, examples of this phe- 
nomenon can be found in the smallest nontrivial case: a tree with three 
terminal nodes T = (a, b,c} and one nonterminal node N = {m), say. 
The result is illustrated in Figure 1. Let 1 denote a vector of ones. 

PROPOSITION 4.1 

Consider a Markov model 1Fp having marginal probability vector T m at 
node m and edge transition matrices Pm’ for s = a, b, c. Let R be an 
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invertible matrix satisfying the conditions 

JOSEPH T. CHANG 

1. Rl = 1, 
2. the matrices R- ‘Pm’ and P”“R have nonnegative entries for s = a, b, 

c, as does the vector ?r” := rrmR, and 
3. RTI’ImR is a diagonal matrix. 

Then the Markov model p having marginal probability vector ii” at node 
m and edge transition matrices pm’ = R-‘PmS for s = a, b, c has the same 
pairwise d$ibutions over the terminal nodes as P does; that is, [Fp(XS = i, 
X,=j)=NX,=i, X,= ‘} f J or each i, j E %? and each pair of terminal 
nodes s, t E {a, b, c}. 

Proof First note that the specification of a marginal probability 
vector 7rm at node m and edge transition matrices Pma, Pmb, and Pm’ 
determines the full joint distribution of a Markov random field {X,, X,, 
X,, X,), and, in particular, edge transition matrices Pam, Pbm, and 
P cm. For example, observing that 

and defining the diagonal matrices 

IIS=diag(rr”(l),...,~“(C)) forSES, 

we see that 

n=pam = ( nmpma)T = (pm~)~nm, 

or 

P a* = (flu) -‘( pma)*ryy (1) 

For s ~{a, b, c}, we-have +” = +mPmS = v’, so that the marginal 
distributions of P and P agree on the terminal nodes. Therefore, as 
indicated in Figure 1, the proof becomes a matte; of verifying that the 
reversed transition matrices pSrn in the model P are given by PSm = 
P”“R, since it would then follow that the conditional distributions 
PSr = PsmPmr = pSmpm’ = PSI agree for the pair of taxa s, t E {a, b, c}. 
Writing RT KI”R = diag(v), say, the assumed conditions give 

v = lT( RTIImR) = (Rl)*II”R = lTnmR = mmR = km, 
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b’ 

a 
Zm- nmR 

C 

b’ 
FIG. 1. Two different Markov models that have the same pairwise joint distribu- 

tions on the terminal nodes. 

so that in fact RTII”R = fim. Using this, we obtain 

pm = (fp) -l(pms)Tfim by the relation (1) 

=(rI~)-‘(R-‘P”“)T(RTrImR) 

=(rIS)-‘(Pm”)TII”R 

=(PSm)R again by (1) 

as desired. W 

It is easy to find such examples; in fact, two character states are 
enough. For example, if T”’ = C.5 .5), 

PmS=PSm=( 1;: 1;:) forsE{a,b,c}, 

and 

R= .75 .25 
- .161438 1.161438 

then 

, 
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and 

fim = Rrn”R = -RrR 1 .29428 0 = 
2 0 .70572 

= diag{ (.5 .5) R} = diag( r”R) 

satisfy all of the conditions in the proposition. 
Notice that, although the joint distributions of character states at 

pairs of terminal nodes are identical under P and @’ in this example, the 
full joint distribution of character states (X,, X,, XC> under P and @ 
are different. For example, 

P’{ X, = 0, X, = 0, XC = 0} = (.5)( .75)3 f (.5)( .25)3 = .21875, 

but 

@‘{X, = 0, X, = 0, XC = 0} = (.29428)( .11285)3 + (.70757)( .6614)3 

= .23287. 

Thus, although the two models P and p cannot be distinguished on the 
basis of the joint distributions they give to pairs of terminal nodes, they 
can be distinguished by the joint distributions they give to the full set of 
terminal nodes. The next section will show that this is a general 
phenomenon. 

4.2. DISTRIBUTIONS OF TRIPLES DETERMINE THE FULL MODEL 

In this section we show that under quite general conditions, two 
different Markov models can be distinguished by the joint distributions 
that they assign to their terminal nodes. In fact, the magic number is 3: 
joint distributions of triples of terminal nodes are enough to determine 
the full model. 

The conditions guaranteeing that the edge transition matrices can be 
recovered involve the following concept. 

DEFINITION 

We say that a class of matrices A is reconstructiblefiom rows if for 
each M E A and each permutation matrix R =k I, we have RM E A. 

That is, .H is reconstructible from rows if a matrix in 4 is uniquely 
determined from its (unordered) set of rows: given this set, we can 
determine which row is the top row, which is second, and so on. For 
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example, here is one simple but useful class &matrices that is recon- 
structible from rows. 

EXAMPLE 

We say that a square matrix P satisfies the condition diagonal largest 
in column (DLC) if P(j, j) > P(i, j) for all i # j. Clearly, the class of 
matrices satisfying the DLC condition is reconstructible from rows: if a 
matrix satisfies DLC, then no nontrivial row permutation of that matrix 
can also satisfy DLC. 

THEOREM 4.1 

Suppose that the evolutionary tree has no nodes of degree 2. Assume 
that there is a node m such that 7r”(i) > 0 for all i E @7. Assume also that 
for each edge {r, s), the transition matrix Prs is invertible, Prs is not a 
permutation matrix, and Prs E A, where J is a class of matrices that is 
reconstructible fram rows. Then the full model is identi$able. That is, the 
topology and all of the transition matrices are uniquely determined by the 
joint distribution of character states at the terminal nodes of the tree. 

We begin the proof of the theorem by considering the case of three 
terminal nodes in the next lemma. The general case will then be treated 
by an induction argument. 

LEMM4 4.1 

Consider a Markov model on a tree with three terminal nodes T = {a, 
b, c) and a single nonterminal node N = {m). Suppose that r”‘(i) > 0 for 
all i E F’, that the edge transition matrices are invertible, and that the 
matrix Pmb is a member of a class .H that is reconsttuctible from rows. 
Then the full model is identifiable. 

NOTATION 

For a matrix P, let Pi. and ej denote the ith row and jth column, 
respectively. 

Proof of Lemma 4.1. We present the proof first under the assump- 
tion that the matrix Pm’ has a column whose entries are distinct from 
each other. That is, suppose there is a y E {l,.. . ,C) such that 
P’Yk, y) # P”“(1, y) for all k # 1. 

Our assumptions imply that all of the marginal distributions nS must 
be positive; indeed, because &” is positive by assumption and each 
column of the invertible matrix Pms must contain at least one positive 
entry, it follows that each entry of 7~’ = 7r”‘Pms must be positive. In 
particular, since 7~“ is positive, the conditional probabilities P’{X, = y, 
Xb = j I X, = i) are well defined; they are uniquely determined by the 
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joint distribution of LX,, X,, XJ These conditional probabilities s 

~{X,=y,X,=jIX,=i} 

= C ~{X,=k,X,=y,Xb=jIXa=i} 

=;:~~X~=klX,=i)xP(X,=ylX,=k,X,=i) 
k 

x[FD{X,=jIX,=r,X,=k,X,=i}, 

which, by the Markov property, is the same as 

~(Xc=y,Xb=jIXo=i)=~P”m(i,k)PmC(k,y)Pmb(k,j). 
k 

Written in matrix form, defining a matrix Pab,y by 

this becomes 

P ab,y = P”“diag( Py’) Pmb. 

Thus, multiplying by (Pob)-’ =(Pmb)m’(Pum)-l, we obtain 

(pab) -‘P&y = (Pmb)-ldiag(P.~c)Pmb. (2) 

Let G denote the matrix (Pab)-lPab,y, and observe that G is deter- 
mined by the joint distribution of CX,, X,, X,). The identity (2) is an 
eigenvalue-eigenvector decomposition of G. In particular, the eigenval- 
ues of G are the entries in the column Pyc, which are distinct, by 
assumption. Writing these eigenvalues as A,, . . . , A,, there are C corre- 
sponding linearly independent eigenspaces A,, . . . , A, defined by hi = 
(VT: vTG = hivT), and each such subspace is one-dimensional. The set 
of eigenspaces {A,, . . . , A,) is uniquely determined by G. Because the 
rows PIYb,..., Ppb form a basis of eigenvectors of G, each such row 
must belong to one of the eigenspaces, and each eigenspace must 
contain one of the rows. So each subspace hi contains a unique vector 
~,r that satisfies the normalization condition vT1 = 1, and we have the 
equality {UT ,..., z.J~)={P~Y~ ,..., PRb} as sets. Thus, because the set of 
normalized eigenvectors (UT,. . . , v,‘} is determined by G, the set of rows 
of Prnb is determined by G. Therefore, by the assumption that Pmb E A, 
the matrix Pmb itself is determined by G and, hence, by the joint 
distribution of CX,, X,, XJ. 
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Having recovered the matrix Pmb, we may deduce the marginal 
probabilities 7r m = 7rb(Pmb)-’ and hence also the transition matrix 
Pbm =(IIb)-l(Pmb)TIIm. At this point we further obtain Pmc = 
(Pbm)-‘Pbc and, similarly, all of the remaining transition matrices. 

It remains to prove the result without the assumption that Pmc has a 
column with distinct entries. We want to show that, under the assumed 
conditions, there is still only one choice of the matrix Pmb that can lead 
to the given joint distribution for <X,, Xb, XJ Using the assumed 
invertibility of Pmc, it is easy to see that there exists an invertible 
transition matrix Q such that PmcQ.I has distinct entries. Consider the 
model produced by adding a new node d and a new edge {c, d) to the 
given model, taking the transition matrix Pcd to be Q. The joint 
distribution of (X,, X,, X,) is uniquely determined from that of (X,, 
x,, X,) by 

~{X,=i,Xb=j,Xd=z}=CIFD{X,=i,Xb=j,X,=k}Q(k,l). 
k 

Clearly Pmd = P”“Q is invertible, T’ = rrcQ has positive entries (as z-’ 
has positive entries and the invertible matrix Q cannot have a column 
of zeroes), and Pdm =(IId)-‘(Pmd)TJIm is invertible. Thus, as the 
matrix .Pmd has a column with distinct entries, we may apply what we 
have just shown to the model for (X,, X,, Xd) to conclude that the 
matrix Pmb is uniquely determined. That is, if there were two different 
models with two different matrices Pmb that both give the same 
distribution for (X,, X,, X,), then there would be two different models 
having two different matrices Pmb that both give the same distribution 
for (X,, X,, X,>, which we know is not possible. ??

Proof of Theorem 4.1. The proof is by induction on the number of 
terminal nodes. There is a nonterminal node m, say, that is joined to at 
least two terminal nodes; this follows from the “pigeonhole principle” 
in conjunction with the simple observation that the number of terminal 
nodes must be greater than the number of nonterminal nodes. The 
degree of m is at least 3, so there are two cases. 

Case 1. The degree of m is greater than 3. (See Figure 2.) The idea is 
to strip off one of the terminal nodes attached to m; the induction 
hypothesis may then be applied, because the remaining tree will still 
have no nodes of degree 2. So by induction we will know the model for 
this remaining tree. For the details, let a and b be terminal nodes 
joined to m. From the given tree Y= (S, E), strip off the node a and 
the edge {m, a}, leaving the tree 9’ = (S’, E’), where S’ = S -{a) and 
E’ = E -{{m, a}). Clearly the tree 9’ satisfies all of the conditions in 
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the theorem, so that by the induction hypothesis we know all of the 
matrices P” for {r, s) E E’. Thus, we need show only that we may 
determine the matrices Pm” and Pam. But this is easy: for example, 
P ma = (pbm)-lpbo, pbm is known by the induction hypothesis, and Pbn 
is known by the assumption that we know the joint distribution on the 
terminal nodes of 9: 

Case 2. The degree of m is 3. (See Figure 3.) Assuming that the 
number of terminal nodes in 9 is greater than 3 (since otherwise we are 
done by Lemma 4.1), there are exactly two terminal nodes, say a and b, 
joined to m. Let c be any terminal node other than a or b. Then clearly 
the submodel for (X,, X,, X,, X,> satisfies the conditions of Lemma 
4.1. Therefore, we can deduce the matrices Pm’, Pam, Pmb, and Pbm. 

If we stripped off just one of the nodes a and b, we would be left 
with a node m of degree 2, which would hinder the application of the 
induction hypothesis. So strip off both a and b, getting the tree 
S’=(S’, E’), where S'=T'UN', T'=TU(m}-{a, b), N’=N-{m), 
and E’ = E -{(m, a), {m, b}}. By the induction hypothesis, we will be 
done if we can show that we know the joint distribution of the vector X, 
say, of character states at the terminal nodes of .Y’. 

Let V denote the terminal nodes of Y other than m, that is, 
V= T’-(m) = T -{a, b}. We use the notation X, for the vector of 
character states (X, : t E J-9 at the nodes of I/. Let us consider fixing X, 
at some arbitrary states xv, say. Then, to complete the induction, our 
goal is to show that we can determine the function 

Define a C x C matrix F by 

FIG. 2. Case 1 of the proof of Theorem 4.1. 
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7 7' 

FIG. 3. Case 2 of the proof of Theorem 4.1. 
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observe that F is known from the joint distribution of states at the 
terminal nodes of 9: We have 

F(j,k)=CP{X,=x,,X,=i,X,=j,x,=k} 

= i (p(i)P”“(i,i)P”“(i,k). 

Written in matrix 
this becomes 

so that 

form, defining the matrix @ = diagC q~(l), . . . , q(C)), 

( Pm”)T@P”b = F, 

Thus, as F, Pm’, and Pmb are all known, so is @. This completes the 
proof. ??

We conclude this section with remarks about the conditions of the 
theorem. 

1. For characters that may take more than two states, conditions 
about determinants are not sufficient for identifiability. To see this, 
consider the case of three terminal nodes, as in Proposition 4.1, and 
take 

0 1 0 0 

R= 1 1 0 0 
0 0 0 
0 0 1 0 i 1’ 

0 

for example. Then clearly replacing 7~ m by ii” = mmR and replacing 
pmi by jimi = Rpmi for i = u, b, c gives a model with exactly the same 
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joint distribution of terminal nodes (X,, X,, X,), but with different 
probability transition matrices; this modification simply corresponds to 
interchanging labels of character states at the internal node. Note that 
because de@) = 1, none of the determinants of the transition matrices 
is changed by this multiplication. In the case C = 2 of binary characters, 
the set of probability transition matrices with positive determinants is 
reconstructible from rows; in fact it is the same as the set of transition 
matrices satisfying the DLC condition. This does not extend to higher 
values of C, because for C > 2 there are nontrivial permutation matri- 
ces that have determinant 1. 

2. Another example of interest is the class of transition matrices that 
arise from continuous-time Markov chains, that is, matrices of the form 
P = eQ, where Q&j) z 0 for i f j and Ql = 0. As 

det( eQ) = eTrace(Q) > 0, 

this class is reconstructible from rows in the case of C = 2. However, for 
C > 2, this class is not reconstructible from rows. For example, if 

and 

then 

.332507 .334986 .332507 
.332507 .334986 = exp( 0)) 

.334986 .332507 .332507 

where 

3.2092 .7908 

.7908 - 4 

3. Extra care was taken in the proof to accommodate classes of 
matrices that are reconstructible from rows but not closed under 
multiplication. Such classes include a number of cases of interest; for 
instance, the previous example shows that the class DLC is not closed 



MARKOV MODELS ON EVOLUTIONARY TREES 67 

under multiplication, as, clearly, exp@/n) satisfies the DLC condition 
for sufficiently large IZ, whereas exp@) = [exp@/n)]” does not satisfy 
the DLC condition. Thus, it is fortunate that we need only assume the 
reconstructibility from rows condition for edge transition matrices and 
do not need it to hold for transition matrices over paths, which are 
products of edge transition matrices. This was made possible by proving 
Lemma 4.1 under the assumption that just one of the edge transition 
matrices is in a class that is reconstructible from rows. 

4. The theorem could be generalized by allowing, for each pair I, 
s E S, a different class of matrices Jr, that is reconstructible from rows. 
Also, because the proof of the Lemma 4.1 required only one of the edge 
transition matrices to be reconstructible from rows, the conditions of 
the theorem could be further weakened. 

5. The condition Prs # Z avoids trivialities. Without it, even the 
topology is not identifiable; for example, a star phylogeny with four 
terminal nodes could also be considered to be any of the three possible 
bifurcating topologies with an internal branch having the identity matrix 
as its transition matrix. 

6. The invertibility condition plays a similar role; noninvertibility 
corresponds to infinite distance. For a trivial example, if the edge 
transition matrices leading to the terminal nodes were 

for t ET, 

then the character states at the terminal nodes would be independent 
coin flips and neither the topology nor the edge transition matrices 
would be identifiable. 

7. The condition that the marginal distribution be positive at some 
node m (and hence at all nodes, as observed in the proof of Lemma 4.1) 
is required in order to have the transition matrices uniquely deter- 
mined. For example, if the probability r’(i) of state i at node r were 
zero, then the ith row of any matrix Prs for s E S could be changed 
arbitrarily with no effect on the joint distribution. 

8. The prohibition on nodes of degree 2 is clear. For example, if 
node s has exactly two neighbors r and t, it is not possible to identify 
the matrices P” and Psr individually; one can hope only to identify 
their product. 

9. The DLC condition seems scientifically more appealing than 
the analogous diagonal largest in row (DLR) condition would be. 
For example, nonuniformities in base compositions of DNA are well 
known-the nucleotides are generally not well modeled as having 
probability .25 each. If a process has a stationary distribution that is not 
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uniform, then the transition matrix for any sufficiently long edge would 
not satisfy the DLR condition. However, transition matrices that do not 
satisfy the DLC condition seem biologically implausible. 

5. RECONSTRUCTION FROM DATA: CONSISTENCY OF 
MAXIMUM LIKELIHOOD 

The previous identifiability result says that the true model may be 
inferred from the probability distribution of character states at the 
terminal nodes. In the actual inference problem, what we are given is 
not this distribution, but rather some data, which we assume constitute 
a sample of IZ independent observations from the unknown distribution. 
The method of maximum likelihood estimates the true model by the 
Markov model that maximizes the probability of the observed data. 
Methods for computing maximum likelihood estimators in phylogenetic 
estimation are discussed in 1181 and [191. 

An estimator is said to be consistent if it is certain to converge to the 
true quantity as the sample size grows. More formally, given a 
parametrized family of distributions {Ps : 8 E O}, let X,, X,, . . . be 
independent and identically distributed observations from PO. For each 
n let 6,, be an estimator; 0, is a function of (X,,.. ., X,1. We say that 
the sequence G1, &, . . . is consistent if P,{lim, 4m & = 13) = 1 holds for 
all 0. 

Identifiability is a key prerequisite for consistency. The idea is this: if 
identifiability failed to hold, that is, if there were two different Markov 
models in the class under consideration that produced the same joint 
distribution on the observed nodes, then we could not distinguish 
between those models on the basis of the observed data, so that no 
method could be sure to converge to the correct model. Here we use 
the identifiability result from the previous section to show that, under 
mild conditions, maximum likelihood can consistently recover the full 
Markov model. 

For simplicity, let us assume that the true topology is bifurcating, or 
“nondegenerate,” in the terminology of Bandelt and Dress 1201. Other- 
wise, there are a number of points of view that one could take. For 
example, if our definition of consistency requires a correct estimate of 
the topology for all sufficiently large sample sizes (as well as having 
estimated transition probabilities that approach the true values), then 
maximum likelihood cannot be consistent when the true model is 
degenerate, because the likelihood will be maximized by some nonde- 
generate model for arbitrarily large sample sizes. On the other hand, we 
could modify the definition of consistency by defining an appropriate 
metric on the space of all models, including those that are degenerate. 
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The idea would be to consider a degenerate model (i.e., a “multifurcat- 
ing model”) to be equivalent to a number of different nondegenerate 
topologies with identity transition matrices (i.e., zero branch lengths) on 
the appropriate branches. Then the multifurcating model may be de- 
fined to be close to any nondegenerate model whose topology is the 
same as, and whose edge transition matrices are close to, any of the 
models equivalent to the multifurcating model. For example, a nonde- 
generate model on four taxa with a very short internal branch would be 
considered to be close to a star phylogeny. With this type of metric, it 
can be shown using the result that follows that maximum likelihood is 
consistent. 

In addition to assuming that the true topology is nondegenerate, we 
assume the following conditions on the edge transition matrices. Two of 
these are as before: for each {r, s} E E, the transition matrix P” is not 
a permutation matrix and det(P’9 # 0. We also use a slight strengthen- 
ing of the reconstructibility from rows condition. For the definition, it is 
useful to consider a C X C matrix as a point in C2-dimensional Eu- 
clidean space, so that notions such as the closure A? of a set of matrices 
A are defined in an obvious way. 

DEFINITION 

We say that a set of matrices A? is strongly reconstructiblefrom rows 
if, for each M E A and each permutation matrix R # I, we have 
RA465.2. 

EXAMPLES 

The DLC class is strongly reconstructible from rows. To construct an 
artificial example of a class A that is reconstructible from rows but not 
strongly reconstructible from rows, let DSC denote the class of transi- 
tion matrices whose diagonal entries are the smallest in their respective 
columns, and define 

A’ = {M : Mij rational for all i, j and A4 satisfies DLC} 

u {M : Mjj irrational for all i, j and A4 satisfies DSC} . 

Formally, let us think of the unknown parameter 13 as a vector 
consisting of the tree topology (which could be specified by a 
number-e.g., “topology #7”-ranking the topology in a list of all 
bifurcating topologies), the marginal probabilities at some specified 
node, and the entries in the edge transition matrices, given in some 
specified order. Because we are considering only bifurcating topologies, 
so that each tree has the same number of edges, the parameter space 0 
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is a subset of a single Euclidean space. Notions such as the closure of a 
set of models or parameter values are defined accordingly. 

To state the main consistency result, let X, =(X, : t E T) and X, = 
(X, : t E N) denote the character states at the terminal and nonterminal 
nodes, respectively. We assume that X, X’, X2,. . . are independent 
and identically distributed, where Xi = <Xi, XL>. 

THEOREM 5.1 

Let {PO : 8 E 0) be a class of Markov models on trees that have a @ed 
set of terminal nodes. Suppose that the models satisfy each of the following 
conditions: 

1. Each tree has a nondegenerate topology. 
2. The marginal distribution I? is positive at some node s. 
3. The edge transition matrices are invertible, not equal to a permutation 

matrix, and belong to a class of matrices J that is strongly reconstructible 
from rows. 

Then the method of maximum likelihood consisten$y recovers the topology 
and the edge transition matrices. That is, letting 0, &note the maximum 
likelihood estimate based on n independent observations X;, . . . , X;! of 
character states at the terminal nodes of the tree, we have 

F&i -+easn+m}=l forallOE@. 

The theorem will be established using the next lemma, which is a 
customized variant of the fundamental consistency result of Wald [21]. 
One issue it deals with is the fact that, although the parameter space 0 
is bounded, it is not closed. For example, identity matrices are not 
allowed as edge transition matrices, whereas matrices that are arbitrar- 
ily close to the identity are allowed. Also conditions for reconstructibil- 
ity from rows, such as DLC, may involve strict inequalities, which do not 
specify closed sets. 

LEMMA 5.1 

Let Z be a finite set and let {gO :j E 0) be a family of probability 
distributions on Z, where the closure 0 of 0 is a compact subset of a 
metric space. Let X,, X,, . . . be independent and identically distributed 
random variables (or vectors) with probability distribution PO, for some 
BO E 0. Assume the identifiability condition 

90Z90, foreach tIE@with eze,. 
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Suppose that for each x ~2 the function 8 - 9&x) is continuous on e, 
and let c?~ = 6,$X,,..., X, > maximize the log likelihood Cy_, log 9&Xi) 
ouer 8 E $5. Then LPO,(Ga + 0,) = 1. 

Sketch of Proof: Let 8, E 0, and consider any open neighborhood 
N(8,) of 8a; we want to show that with probability 1, we have 6,, E Me,,) 
for sufficiently large n. Let L denote the log likelihood function. Using 
the identifiability condition, positivity of the Kullback-Leibler distance, 
and continuity, for each 0 E e distinct from BO, there is an open 
neighborhood N(e) of 8 with Ee, sup{L(e’): 8’ E N(e)) < E,OLt$,). So 
by the strong law of large numbers, with 90,-prob_ability 1, 0, will 
eventually lie outside iV( t9). Using compactness of 0 - N(8,), take a 
finite collection el,. . . , dk such that u i”;. 1 N(ei) covers @ - N(8,). So 
with probability 1, 6,, eventually stays outside the set @ - A?&,), that is, 
within the neighborhood N(8,), as desired. m 

The statement of this lemma was tailored for simplicity and conve- 
nience in the particular setting of phylogenetic inference from discrete 
characters. Certain technical considerations required in Wald’s general 
treatment become trivial in the case of discrete probability mass func- 
tions, as considered here. For example, one of Wald’s conditions re- 
quires that the expected value of the supremum of the log likelihood 
over the parameter space be finite. This is automatic here-for a 
probability mass function the log likelihood is never greater than zero. 
The existence of a maximum likelihood estimator is not an issue here 
either because the maximum of the continuous log likelihood function 
over the compact set %? must be attained. 

Proof of Theorem 5.1. We apply Lemma 5.1 with Z= ‘@I and with 
g0 taken to be the distribution of the states of the terminal nodes under 
lPO, that is, 9@(A) = n”,(Xr E A} for A G 5@‘I. By the lemma, the proof 
will be completed by showing that if 8, E 0 and 8 E B with 8 # &,, 
then P0 # go,. Equivalently, letting 6J0 E 0 and 8 E e, and assuming 
that the measures lF’0)Bo and P0 induce the same joint distributions on the 
terminal nodes, we want to show that in fact 0 = 0,. Let {P,‘” : r, s E Sl 
and { Prs : r, s E S) be the transition matrices between pairs of nodes in 
models 8, and 8, respectively. Our assumptions imply that Pi” = Pru 
for terminal nodes t and u. It follows that, because we have also 
assumed that the edge transition matrices P? are invertible for edges 
{t, s] E E,, the same must be true of the edge transition matrices Prs 
for {r, s) E E-a product of transition matrices is invertible if and only 
if each of the matrices is invertible. Next, because the topologies of 
models 8, and 8 are bifurcating and P,‘” is not a permutation for each 
edge {r, s} E E, by assumption, it is easy to see that Prs is not a 
permutation for each edge (r, s} E E. For example, if an edge transition 
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matrix P" were a permutation matrix, then we could produce a model 
that is equivalent to 8 by coalescing the nodes r and s, eliminating the 
branch (r, s) from the topology (creating a multifurcation), and modify- 
ing some edge transition matrices in an obvious way. The resulting 
model would have no branches of length 0, a topology that is different 
from that of 8,,, but pairwise joint distributions on terminal nodes that 
are the same as those of 8,, which would contradict Proposition 3.1. 
Thus, although we required only that f3 be in the closure B rather than 
0, the assumption that p’&Xr E a} = pOD,,cXr E a) in fact implies that the 
model t9 still satisfies det Prs z 0 and Prs is not a permutation for all 
edges (r, s} E E. By Proposition 3.1 we conclude that the topologies of 
models 8, and 0 are the same, so our problem is to show that the 
corresponding edge transition matrices are the same. This follows from 
the same inductive reasoning as was used in the proof of Theorem 4.1; 
we need only check that the same reasoning can still be carried through 
under the weaker assumption that 8 E 8. For example, when we strip 
off an edge (m, a}, say, as in the proof of Theorem 4.1, we conclude just 
as before that we can recover the sets of rows of the matrices P,"" and 
Pm“ and these must be the same; the only question is the ordering of 
those rows. That is, we must rule out the possibility that Pm' is a 
nontrivial row permutation of PO"". However, because the edge transi- 
tion matrices of the models 8, and 8 are members of .N and 2, 
respectively, the required conclusion follows from the assumption that 
the class _.N is strongly reconstructible from rows. The rest of the 
reasoning in case 2 of the proof also carries through without difficulty, 
as we have established that the edge transition matrices Prs are 
invertible. ??
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