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ABSTRACT 

A fundamental problem in reconstructing the evolutionary history of a set of 
species is to infer the topology of the evolutionary tree that relates those species. A 
statistical method for estimating such a topology from character data is called 
consistent if, given data from more and more characters, the method is sure to 
converge to the true topology. A number of popular methods are based on modeling 
the evolution of each character as a Markov process along the evolutionary tree. The 
standard models further assume that each character has in fact evolved according to 
the same Markov process. This homogeneity assumption is unrealistic; for example, 
different types of characters are known to experience substitutions at different rates. 
Certain distance and maximum likelihood methods for topology estimation have 
been shown to be consistent under the homogeneity assumption. Here we give 
examples showing that these methods can fail to be consistent when the homogene- 
ity assumption is relaxed. The examples are very simple, requiring only four taxa, 
binary characters, and characters that evolve at two different rates. 

1. INTRODUCTION 

One of the basic aims of a phylogenetic study of a set of species is to 
infer the tree topology that most accurately summarizes the evolution- 
ary relationships among those species. Markov models of character 
changes have been well studied and extensively used in analyzing 
character data such as DNA sequences. A simplifying assumption that 
has typically been made is that each character evolves according to 
precisely the same Markov model. In particular, this "homogeneity 
assumption" incorporates the assertion that, at any given point in the 
e v o l u t i o n a r y  t ree ,  all  o f  the  d i f f e r en t  cha rac t e r s  evolve  at  t he  s a m e  rate .  
Unfortunately, this assumption is known to be very unrealistic. At one 
extreme, a character might be so essential to the functioning of the 
organism that no change in the character could survive. Such characters 
are called "invariable," and we could describe the rate of evolutionary 

MATHEMATICAL BIOSCIENCES 134:189-215 (1996) 
© Elsevier Science Inc., 1996 
655 Avenue of the Americas, New York, NY 10010 

0025-5564/96/$15.00 
SSDI 0025-5564(95)00172-7 



190 J.T. CHANG 

change of such characters as zero. On the other hand, there are 
characters that can experience certain changes without producing any 
modification in any expressed amino acid sequence. Such characters, 
which may include characters in noncoding regions as well as the third 
codon positions in coding regions, are free to change at a relatively 
rapid rate. 

It might be said that a close enough look at reality inevitably renders 
all standard statistical assumptions unrealistic. Our task then becomes 
to assess the harm that can come from making such assumptions. A 
fundamental statistical criterion in judging the adequacy of an inference 
method is that of consistency. A tree topology reconstruction method is 
said to be consistent under an assumed model of evolution if, when 
given more and more characters generated according to the assumed 
model, the reconstructed topology is certain to converge to the correct 
topology. Some commonly used distance methods and maximum likeli- 
hood methods are consistent under Markov models having homoge- 
neous evolution across characters. The purpose of this paper is to 
present examples that show that these methods may fail to be consistent 
even under very simple models that allow for rate variation across 
characters. 

Markov models have a significant history in phylogeny reconstruc- 
tion, and they continue to play an important role. For example, the 
models of Jukes and Cantor [1], Cavender [2], Kimura [3], Barry and 
Hartigan [4], and many others are all Markov models, allowing different 
numbers of variable parameters in their probability transition matrices. 
We will not attempt a detailed review of this field here, as several 
excellent accounts are available: the articles [5-7] are recommended for 
an overview of Markov models and other methods in phylogeny recon- 
struction, as are the textbooks [8, 9] for more general background. The 
Markov assumption, roughly speaking, asserts that character changes 
are independent in different branches of the tree. This has been viewed 
as an appealing compromise, giving theoretical and computational 
tractability while remaining relatively palatable scientifically. We will 
have more to say about the nature and suitability of the Markov 
assumption in the discussion in Section 6. 

As mentioned above, however, the homogeneity assumption that 
each character evolves according to the same Markov model is wor- 
risome. Beginning with the work of Fitch and Margoliash [10], a sub- 
stantial literature has developed evidence for rate variation across 
characters as well as statistical approaches for taking such rate variation 
into account. A recent and convincing statement of evidence is provided 
by Shoemaker and Fitch [11], whose study may be consulted for further 
references. A variety of statistical models and methods for incorporat- 
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ing rate heterogeneity have been proposed recently; these include the 
work of Churchill et al. [12], Jin and Nei [13], Kelly and Rice [14], 
Lundstrom et al. [15], Sidow et al. [16], and Yang [17]. 

It is natural to ask how necessary it is to go to the effort of 
developing and using such techniques. If we use standard methods 
developed for models that assume homogeneous evolution across char- 
acters, how can we be led astray when the assumption is false? One 
form of deception that has been established is a systematic bias in the 
estimation of branch lengths; see Fitch and Margoliash [10] and Kelly 
and Rice [14]. In this paper we focus on another fundamental question: 
Can we consistently recover the tree topology? We present examples 
showing that distance and maximum likelihood methods that are consis- 
tent for the homogeneous Markov model can fail to be consistent when 
rates of evolution vary across characters. Our aim is to establish the 
existence of the phenomenon and give some understanding of it without 
extensive analytic calculations or computer simulations. A more exten- 
sive analysis of issues such as conditions under which the phenomenon 
occurs and how common it might be will be left for later work. 

The distance method of Barry and Hartigan [4] is consistent for the 
homogeneous Markov model; see Chang and Hartigan [18]. Cavender 
and Felsenstein [19] gave a numerical example that showed that their 
closely related method may be inconsistent when different characters 
evolve at different rates. In Section 4 we show that in fact the presence 
of invariable characters is enough to admit examples for which the 
methods of Barry and Hartigan [4] and Cavender and Felsenstein [19] 
become inconsistent. Thus, the present work may be considered a 
continuation of the observation of Cavender and Felsenstein. 

Not surprisingly, the maximum likelihood method of Felsenstein [20], 
is consistent for the homogeneous Markov model. One would anticipate 
this since, as shown by Wald [21], a maximum likelihood method 
developed for a given family of distributions is usually (that is, subject to 
mild regularity conditions) consistent when used for that family. In 
Section 5 we show that the maximum likelihood method of [20] may be 
inconsistent when invariable characters or more general forms of rate 
heterogeneity are present. 

The study of the statistical consistency of topology reconstruction 
methods in phylogenetic analysis was launched in 1978 by Felsenstein's 
[22] demonstration that the popular parsimony method of Farris et al. 
[23] and Fitch [24] is not consistent under a simple Markov model. 
Felsenstein introduced the phrase "positively misleading" to convey the 
idea that as the number of observed characters grows to infinity, the 
tree topology chosen by the parsimony method may actually converge 
with probability 1 to an incorrect topology. Saying that a method is 
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positively misleading is logically stronger than saying it is inconsistent: 
The failure of an estimator to converge to the true topology does not 
imply that the estimator converges to an incorrect topology-it might not 
converge at all. All of the examples of inconsistency below will actually 
be positively misleading in this sense. 

The recent studies of Tateno et al. [25] and Kuhner and Felsenstein 
[26] used simulation to investigate the performance of phylogenetic 
methods when substitution rates vary across sites. These are extensive 
studies that make progress toward quantifying the extent to which rate 
heterogeneity degrades the accuracy of several methods. 

Bull et al. [27] considered the closely related question of whether or 
not heterogeneous data sets should be combined before analysis. They 
studied the parsimony method, examining both consistency and effi- 
ciency. With regard to consistency, they tried combining characters 
generated by two Markov models, one of which causes parsimony to be 
inconsistent. Calling the characters generated by the two models "con- 
sistent" and "inconsistent," they found that if the proportion of incon- 
sistent characters in the mixture is sufficiently high, the combined data 
set can cause parsimony to be inconsistent. Expressed in this language, 
the examples below show that for the distance and maximum likelihood 
methods under investigation, it is in fact possible to combine two data 
sets, both of which are consistent, into a mixture that is inconsistent. 

We are testing the performance of these methods on mixtures of 
Markov models, whereas the methods were originally derived by think- 
ing about pure Markov models. Thus, it is not altogether surprising that 
the methods might be inconsistent under these circumstances. However, 
it does not seem obvious that they should do so either. In particular, all 
we ask of the methods is that they identify the tree topology, which is a 
rather minimal request in terms of detailed information; one might 
reasonably harbor some hope for the methods to be able to do this 
much. After all, even though we allow rates and branch lengths to vary 
across characters, we assume that all characters evolve according to one 
common tree topology. If each character contributes some information 
about the tree topology that they all share, it seems reasonable to hope 
that as more and more characters accumulate, the data could reveal to 
us the common topology with more and more certainty. The examples 
below show that the distance and maximum likelihood methods under 
consideration cannot reliably extract that information from the data. 

2. TREES AND MARKOV MODELS 

Throughout this paper, we make use of the simple subclass of 
Markov models considered by Cavender [2]. We consider four taxa, 
called A, B, C, and D; these are the species whose evolutionary history 
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we wish to infer. Characters are binary, taking states in the the set {0,1}. 
Different characters are assumed to evolve independently, with the 
same probabilistic behavior. Therefore, to specify a model for a collec- 
tion of characters, it is sufficient to say how the model describes the 
evolution of a single character. 

Accordingly, consider a single character possessed by the four taxa. A 
Markov model for the evolution of that character is described by a tree. 
A tree consists of nodes and branches. Each external node (node of 
degree 1) of the tree corresponds to one of the the taxa; typically the 
taxa are current species observable today, while internal nodes (nodes 
of degree greater than 1) correspond to unobserved ancestral species. 
On each branch the character switches states at the times of a Poisson 
process with a rate q that may depend on the branch. That is, q may be 
different for different branches of the tree but is a constant over any 
given branch: q = q(branch). Thus, the expected number v of character 
changes on a branch is given by the product 

v(branch) = q(branch) × t(branch),  

where t(branch) is the time elapsed over the branch. We will think of v 
as a "branch length," and in diagrams the branch lengths drawn will be 
intended to indicate the values of v on the corresponding branches. 

The Poisson processes governing the character changes in different 
branches of the tree are assumed to be independent. This implies the 
familiar Markov property, which says that the probability distribution of 
the character state at a given node, conditional on the character states 
at all of the other nodes in the tree, depends only on the character 
states at nodes that are joined to the given node by a branch. 

Having specified the probability transition structure that governs how 
a character changes, we complete the description of a Markov model by 
specifying a marginal distribution at some point along the tree. We 
assume throughout the paper that P{X  a = 0} = 1 /2  = P { X  A = 1}. To- 
gether with the assumed probability transition structure, this implies 
that P{X  I = 0} = 1 /2  = P{X  I = 1} for all species / in the tree. 

A Markov model is determined by the topology and the branch 
lengths of the corresponding tree. More precisely, when we speak of 
"the topology of the tree," we mean the topology of the tree together 
with the labels on the terminal nodes of the tree, as discussed formally 
in section 2 of [18]. Notice that one of the three species B, C, or D is 
topologically closest to A, in the sense that it is connected to A by a 
path consisting of two branches, while the remaining two species are 
joined to A by paths of three branches. We specify a topology by saying 
which one of the species B, C, or D is topologically closest to A, 
denoting the three corresponding topologies by JAB, YAC, and ~ o .  
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Fio. 1. Three possible tree topologies for four taxa. 

Examples of trees in these three topologies are illustrated in Figure 1. 
More formally, the space of Markov models we consider may be 

parametrized as follows. The parameter space O consists of elements 0 
of the form 

0 = (closestA, v A , uB, Vc, vo, Vint) E {B,C,D} × [0,oo] 5, 

where the first component, closest A, specifies the tree topology by 
telling which species is topologically closest to A; the next four compo- 
nents give the lengths of the four branches that lead to the four external 
species A, B, C, and D; and the final component, Pint, gives the length 
of the internal branch. Note that we require branch lengths to be 
nonnegative. Also, we allow them to take on the value oo; the resulting 
compactness of the parameter space will be convenient in Section 5. 
Now the topology ~ B may be defined as a subset of O by 

B = { 0 ~ O: closest~ = B}, 

with analogous definitions for the topologies ~ c  and o,~ o. These 
definitions are illustrated in Figure 2. 

A 
B 

l g / 

0.5 

C 

FIo. 2. Illustrating the parametrization of Markov models. Here 0 = (C, 1.2,1.5, 
1.0,0.7,0.5) ~ JAc. 
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Since observed data consist of character states for the taxa A, B, C, 
and D, the feature of a probability model that is of most direct concern 
to us is the joint probability distribution that the model gives to the 
character vector (XA, Xs, Xc, Xo). For a Markov model 0 ~ O, let Po 
denote the joint distribution of (X A, X B, X c, X D) induced by the model 
0. 

If P is a joint distribution for (XA, XB, Xc, Xo), we abuse notation 
by writing, for example, "P ~ A B "  to mean "P = Po for some 0 ~ B - "  
Note that in this sense the three topologies intersect in the "star 
phylogeny"; for example, if 0 ~ A B  has Vin t ~-0, then we could also 
write Po ~ c  and Po ~AD" 

We have described a branch in terms of its "branch length" u. An 
important alternative quantity that characterizes the probabilistic be- 
havior of a character on a branch is the probability that the character 
changes across the branch. We use the letter p (perhaps with subscripts 
and so on) throughout this paper to denote this sort of probability. The 
relationship between p and v is simple: p is the probability that the 
number of character changes-which has a Poisson distribution with 
mean u on a branch of length u - -  is odd, which is 

p( l , )  = ½ ( 1 -  e-ZV). (2.1) 

Note that p(v) = 0 when v = 0, and p(u) attains its maximum value of 
1/2 when v =oo. 

The methods for estimating tree topologies in Markov models that 
we will discuss include distance methods and maximum likelihood. 
Maximum likelihood, although computationally by far the more de- 
manding of the two methods, is conceptually straightforward, finding 
the Markov model P~ that gives the data the highest probability. The 
desired tree topology^is estimated by the topology of the maximum 
likelihood estimator 0. Note that the method entails estimating the 
branch lengths of the tree in addition to the topology of the tree. 

To describe the measure of distance used in the distance methods, 
suppose that two species A and B are related by the transition matrix 
P(A, B)= (Pii(A, B)), whose (i,j)th entry is the conditional probability 
P{XB = jlS,4 = i}. Barry and Hartigan [4] and Cavender and Felsenstein 
[19] independently introduced the distance measure 

d(A,  B) = - (1/2)logdet P ( A ,  B). (2.2) 

Since probability transition matrices multiply along a path in a Markov 
model, the corresponding determinants also multiply, so their loga- 
rithms add. Thus, the function defined by Equation (2.2) is additive in 
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Markov models: If I is a species along the path from A to B, then 
d(A,B) = d(A, I)+ d(I, B). 

To specialize to the case of binary characters, consider a binary 
character in two species A and B. Whether or not the model is 
Markovian-and we use this extra generality later when we consider 
mixtures of Markov models-we may write down a transition matrix 
P(A, B). Suppose this matrix is of the form 

0 1 

P(A,B)= 0 ( l - P 1  p 1-pP ) '  

so that p may be interpreted as the probability that A and B differ in 
that character. Then, by definition, the distance from species A to 
species B is 

d(A,B) = - 21ogdet P ( A , B )  = - ½ l o g [ ( 1 -  p)2_ pZ] 

= - ½1og(1-2p).  (2.3) 

Note that in the case where the species A and B are joined in a 
Markov model by a branch (or a path) of length v, by substituting the 
expression (2.1) for p in (2.3), we see that the distance from A to B 
reduces to the branch length v. 

3. RATE HETEROGENEITY 

Toward the goal of modeling heterogeneous evolution across charac- 
ters, we wish to relax the assumption that all characters evolve accord- 
ing to a fixed Markov model Po. A mixture of Markov models assumes 
that there is a probability distribution Q on the set of Markov models @ 
and that each character evolves according to its own randomly chosen 
Markov model drawn from the distribution Q. That is, such a mixture 
model P gives an event F the probability 

P( F) = fo ~ o P°( F)Q( dO )" 

We model rate heterogeneity across characters by assuming that char- 
acters evolve independently according to such a mixture of Markov 
models. 

Figure 3 depicts a gradation in generality of classes of models, from 
special to general. Row 1 shows an example of a homogeneous Markov 
model. Here the trees governing the evolution of different characters all 
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FIG. 3. Models with homogeneous and heterogeneous rates. Row 1: Homoge- 
neous evolution across characters. Row 2: A mixture of two rates. One of the rates is 
positive; the other is zero, which corresponds to invariable characters. Row 3: A 
distribution of rates, "similar" trees. Row 4: General heterogeneous model. 

have precisely the same set of branch lengths, so the trees are geometri- 
cally identical. One might also consider this to be a trivial case of the 
mixture model; here the mixing distribution Q places probability 1 on a 
single model 0. Row 4 is intended to depict a general mixture of 
Markov models, in which Q spreads its mass over a variety of models 0 
contained in some fixed topology. Here  each character evolves accord- 
ing to the topology ~ ,  but each character is allowed to have its own 
arbitrary set of  edge lengths. Intermediate  between the two extremes 
represented by rows 1 and 4 lie a variety of levels of generality for the 
mixing distribution Q. The third row depicts an example f rom a class of 
models that allows a certain structured sort of heterogeneity; this class 
was also considered by [14,28]. Here  the trees for different characters 
are geometrically "similar": the sets of branch lengths may differ, but 
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only by proportionality constants. Continuing to specialize further, row 
2 depicts an example of the class of models considered by [12, 29] that is 
a very small subclass of the class of models in row 3. Here  either a 
character is invariable or it evolves according to a single Markov model 
Po, say. This is a subclass of the mixtures of "similar" models, because 
the invariable site model may be described in any topology by the 
branch lengths vA = v8 = Vc = VD = vim ----- O, SO that the invariable site 
model is similar to Po. Since the mixing distribution Q places probabil- 
ity on only two models, the invariable site model and Po, this is in fact a 
rather modest generalization of the homogeneous Markov model of row 
1. However, we will show that even under this restricted sort of model 
of heterogeneous evolution across characters, one can produce exam- 
ples where estimation of the tree will be in error if we mistakenly 
assume homogeneous Markov evolution across characters. 

4. INCONSISTENCY OF DISTANCE METH O D S  

4.1. THEORY 

Define 

d(A, B) = - ¼1ogdet{ P ( A ,  B)P(B, A)} 

= -¼(logldete(A,B)]+logldete(B,A)l), (4.4) 

with - log(0)  defined to be ~; the equality of the two forms of the 
definition follows from the simple observation that the two determi- 
nants det P(A, B) and det P(B, A) must have the same sign. We think 
of d(A, B) as the true distance between A and B. Given data X 1 . . . .  , X"  
for n characters, we estimate the transition matrix P(A,B) in the 
obvious way by the empirical transition matrix ft,(A, B) defined by 

n k Ek=,{X~ = i ,  Xn k = j } .  
( p n ( a ' B ) ) i , j =  Ek=,{X~=i} n k ' 

this is undefined if the denominator is zero. To avoid bothersome 
concerns about division by zero, let us assume that  P{X 1 = i} > 0 for all 
species I and character states i; this will be the case for all of  the 
examples we study in this paper, which in fact have P{X I = 0} = 1 / 2  = 
P{X I = 1}. Then by the strong law of large numbers, 

n k n-l~k=l{Xj=i, x k = j }  P{XA=i, XB=j} 
-, 

- ix--, f Y k = i }  p{xa=i} n ~k= l [ Z X A  

=(P(Z,B))i ,y 
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with probability 1 as n--,oo. We estimate the true distance d(A,B) by 
the empirical distance d,(A,B), defined by replacing the transition 
matrices in definition (4.4) by the corresponding empirical transition 
matrices, so that 

dn(A,B) = - ¼1ogdet{/~( A,B)]~,( B, A)}. (4.5) 

The definitions in (4.4) and (4.5) are slightly modified versions of 
those of Barry and Hartigan [4] and Cavender and Felsenstein [19]. One 
of the modifications is symmetrization, which was also discussed in 
[18,30,31]. The function d gives a distance; in fact, it is an additive 
function on the nodes of the tree, in the sense that d(A, B) = d(A, I)+ 
d(I, B) whenever I is a node on the path between A and B. One aspect 
of our definitions differs slightly from previous definitions, which de- 
clare the true and empirical .distances undefined if the corresponding 
probability transition matrices have negative determinant. In practice, it 
is reasonable to regard a transition matrix having negative determinant 
as a signal that caution may be in order because transition matrices 
arising from typical continuous-time Markov process models will have 
positive determinant. However, for our purposes, we have adopted 
definitions that are always meaningful whether the determinants are 
positive or negative. This is mathematically convenient; for example, it 
guarantees that dn(A,B)--* d(A,B) with probability 1 even when 
d(A, B) = o~. 

In the case of four taxa, Cavender and Felsenstein [19] proposed 
choosing the tree topology as follows. Suppose that the six empirical 
distances among the four taxa I, J, K, and L satisfy the relation 

d~( l ,J)  + d.( K ,L  ) < min[ d . ( I , K )  + d.( J,L ),d.( I ,L ) + d.( J ,K)]  . 
(4.6) 

Then the method chooses the topology oq~t J. If there is not a unique 
minimum among the three sums in (4.6), but rather two or more of 
those sums are tied, the method is indifferent between the correspond- 
ing tied topologies. Since the empirical distances converge to the true 
distances with probability 1 as n --* % it is easy to see what is involved in 
generating an example for which the method of Cavender and Felsen- 
stein is inconsistent. It would be sufficient, for example, to find a model 
having the topology ~ B  whose true distances satisfy 

d( A,C) + d( B,D) < min[ d( A,B) + d( C,D),d( A,D) + d( B,C)]. 
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The distance method of Barry and Hartigan [4] applies to any 

number of taxa. To describe it for four taxa, let d and d n denote the 
vectors whose components list the true and empirical distances between 
the various pairs of taxa, so that 

d = ( d ( A , B ) , d ( C , D ) , d ( A , C ) , d ( B , D ) , d ( A , D ) , d ( B , C ) ) ,  

and similarly for a~=. For a given Markov model 0, let d(O) denote the 
vector of six pairwise distances under 1;'o. For simplicity of exposition, 
suppose for the remainder of the description of this method that the 
true distances are all finite, so that d ~ [0, ~)6. Although generally there 
will be no Markov model 0 such that d(O)=d= exactly, Barry and 
Hartigan [4] propose finding a Markov model 0 whose distances d(O) 
give a best fit to d= in the least squares sense. They then estimate the 
unknown tree topology by the topology of this best-fitting Markov 
model. More formally, for a given topology ~,, define 

and let ~ :  [0 ,~)  6 ~ ~r  3- denote the projection into ~ :  defined by 

119:x - xll = min{lly - xll: y ~ ~ } ,  

where I1"11 denotes the usual Euclidean norm in ~6.  Thus, 9: -d  n is the 
distance vector that gives the closest fit to the empirical distances d n 
over all distance vectors generated by nonnegative branch lengths in 
the tree topology ~.. The topology estimate ~ is chosen to minimize 
lid= - 9jdnl l  over choices of ~.. 

Since ~ is continuous, the convergence d= ~ d of the empirical 
distances to the true distances as n ~ ~ implies that 

lid= - gTd=ll --, lid - ~ d l l  with probability 1. 

Thus, a sufficient condition for the method of Barry and Hartigan to be 
inconsistent may be stated as follows. Denote the true topology by .9" 
and the true distance vector by d. Suppose there is a topology ~ such 
that 

lid - ~ , d l l  < lid - ~ :d l l .  

Then, under the assumed model P, the distance method gives an 
inconsistent estimate of the tree topology; in fact, P ( ~  ~ 3"} --, 1. 

The next result is special enough to be proved easily but general 
enough for the purposes of this paper. It tells how to find the best-fit- 



E V O L U T I O N A R Y  T R E E  T O P O L O G Y  R E C O N S T R U C T I O N  201 

ting topology called for by the above condition for inconsistency, given 
distances that satisfy certain relations. 

LEMMA 4.1 

Suppose that the six pairwise distances among the four species I, J, K, 
and L are finite and satisfy the relations 

d ( I , J ) + d ( K , L )  
2 < d ( I , K ) = d ( J , L ) < ~ d ( I , L ) = d ( J , K ) .  

Then the best least-squares fit to the given distances has topology 5~tj, with 
branch lengths 

V I = Vj = l d ( I , J ) ,  v K = v L =½d(K,L) ,  

and 

~[d(I,K), , . , + d ( I , L ) - d ( I , J ) - d ( K , L ) ] ,  ,~>0.  b'in t = 

The above remarks may be used to give conditions for both of the 
distance methods we have discussed to be inconsistent. The following 
simple sufficient condition will be used in our examples. 

PROPOSITION 4.2 

If  a model having the topology ~A 8 has true distances satisfying d( A, B) 
= d(C,D), d (A ,D)  = d(B,C), and 

d ( A , C )  + d( B ,D)  < min{ d( A , B )  + d( C, D) ,d (  A,  D) + d( B ,C)} ,  

then both the methods of Barry and Hartigan [4] and Cavender and 
Felsenstein [19] will be inconsistent for that model. 

4.2. EXAMPLE WITH TWO NONSIMILAR TREES 

If we allow ourselves the generality depicted in row 4 of Figure 3, 
that is, general heterogeneous models with no "similarity" restriction, it 
is easy to display a simple and intuitively clear example of inconsistency. 
Suppose each character has probability 1 /2  of evolving according to the 
two trees in Figure 4, where the v values are shown on the edges. The 
branch lengths are expressed in terms of a parameter e, which we will 
usually think of as a small number. The particular form of the function 
1 / 6  is not important; the purpose of specifying a particular functional 
form was simply to have a concrete example with just one free parame- 
ter. Likewise, again for concreteness, we consider mixtures of two 
models, each having probability 1/2. The same sort of phenomena 
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FIG. 4. Example of inconsistency. Characters evolve according to the two "non- 
similar" trees shown with probability 1/2 each. 

would be exhibited by more general mixing probabilities; there is 
nothing special about the value 1/2. 

The idea is simply this. In the mixture, the pair A and C will be 
separated by a rather short distance, since the inclusion of Tree 1 in the 
mixture causes P{X A 4= X c} to be less than 1/2. Similarly, the pair B 
and D will be equally close. However, all four other pairs are separated 
by a large distance in both Tree 1 and Tree 2 and hence also in the 
mixture. The topology compatible with these requirements is ~9'~A c, which 
is different from the true topology~R. 

More formally, considering the pair of species A and C, for example, 
we have 

P{X A *  X c [Tree 1} = p ( 3 e )  

and 

(2) 
P{X A * X c [Tree 2}= p - ~ + e  , 

where the function p(.) is as in (2.1). Thus, letting Pn denote the 
probability that the characters Xt and X+ differ in two species I and J, 
we have 

PAC l p ( 3 6 )  + 1 2 
= -~p( -~+e)  

1 1 (1 - e -(4/~+2~)) = ~ - ( 1 -  e-6~) + ~- 

1 3 =~-+~e+O(e 2) 
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as 6 ~ 0. Using the relation (2.3) to convert this probability back to a 
distance yields 

d ( A , C )  = - ½log(1 - ½ - 36 + O ( 6 2 ) )  = ½log2 + 3z + O ( 6 2 ) .  

By symmetry, d(B,D)=d(A,C). The remaining four distances are 
obvious: for example, d(A,B) is clearly 1 / 6  + 6, as A and B are 
separated by a path of that length in both Tree 1 and Tree 2. Thus, we 
see that 

d(A,C) = d(B,D) = ( 1 / 2 ) 1 o g 2 + 3 6  + O ( 6 2 ) ,  

d(A,B)  = d(C,D) = 1//6 + 6, 

d( A,D) = d( B,C) = 1 / 6  + 2 6 .  

From this, by Proposition 4.2, we conclude that the distance methods 
are inconsistent on this example for small enough 6 > 0. The best 
fitting model given by Proposition 4.1 is shown, up to terms of order 6, 
in Figure 5. 

How small does 6 have to be in order to get inconsistency? Not 
particularly small: the boundary between consistency and inconsistency 
is at e = 0.628 (so that 1 / 6  = 1.592). In fact, for 6 = 0.628 (see the 
middle row of Table 1), the mixture has distance 2.220 separating each 
of the four pairs (A,B), (C,D), (A,C), and (B,D) and distance 2.848 
for the two pairs (A,  D) and (B,C). In that case the distance methods 
are indifferent between the correct tree topology JAB and the incorrect 
topoIogy~AC. When 6 > 0.628 (e.g., see the bottom row of Table 1), the 
mixture distances are ordered as 

d( A,B) =d(C,O) < d( A,C) =d( B,D) < d( A,D) =d( B,C), 

A B 

~ o s  2 x# - Ol2)los 2 - (312), 2 
+ (312)( (i14)io8 

2 + (s12)~ (Xl4)los 2 + ( 3 1 2 ) ~  

c D 

FIG. 5. The Markov model that gives the best fit in the example of Figure 4. 
Branch lengths are given up to terms of order e. 
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TABLE 1 

Consistency in the Example of Figure 4 

J. T. CHANG 

d(A, B), d(A, C), d(A, D), Best-fitting 
d(C, D) d(B, D) d(B, C) topology 

0.600 2.267 2.140 2.867 ~AC 
0.628 2.220 2.220 2.848 ~AB orJAc 
0.650 2.188 2.282 2.838 ~B  

For the example of Figure 4, the distance methods are inconsistent 
when e < 0.628 and consistent when e > 0.628. 

so that the methods choose the correct topology ~AB. On the other 
hand, when e < 0.628 (e.g., see the top row of Table 1), the mixture 
distances satisfy 

d( A ,C)  = d( B,D)  < d( A ,B )  = d( C,D) < d( A , D )  =d( B,C),  

so that the methods choose the incorrect topology ~ c .  Thus, the 
distance method is "positively misleading" when e < 0.628. 

4.3. EXAMPLE WITH INVARIABLE CHARACTERS 

The previous example provided a transparent example of how we can 
be fooled by evolution that is heterogeneous across characters. How- 
ever, it incorporated rather artificial, biologically implausible behavior: 
a character state was likely to be shared by either the species pair 
(A,C) or the pair (B, D) but not by both pairs. This section presents an 
example that strains credulity much less severely, requiring only that 
some characters be invariable. More generally, it will be easy to see that 
the same phenomenon can be exhibited if some characters evolve very 
slowly compared to others. 

We begin by examining the effect of invariable sites on distances. 
Throughout this section and the next, let r be a number strictly between 
0 and 1. Consider two species A and B. Suppose that sites are 
invariable with probability r, and that, with the remaining probability 
1 -  r, species A and B are separated by a branch of length ~, (or, 
equivalently, a sequence of branches of total length v). What is the 
distance d(A, B) in the mixture? Since the species are separated by a 
distance of zero with probability r and a distance of ~, with probability 
1 - r, it is natural to hope that the answer might be (1 - r)v.  However, 
this speculation is false; in fact, its failure contains the root of the 
difficulties rate heterogeneity can cause for the distance methods. As 
has been observed by Fitch and Margoliash [10], Kelly and Rice [14], 
and others, distance measures that provide reliable estimates of num- 
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bers of substitutions in homogeneous rate models generally give under- 
estimates when substitution rates vary across sites. In our setting, we 
have 

P{ X A 4: XB} = P { X  A * XB Isite invariable}P{site invariable} 

+ P { X  A 4: X B I site variable}P{ site variable} 

-- 0 +  (1 - r)e{x,~ ~ XB Isite variable} 

= ½ ( 1 -  r ) ( 1 -  e -2~ ) ,  

where the last equality uses (2.1). Therefore,  by (2.3), the distance 
dmix(lU) between A and B in the mixture is 

dmix(/)) = -- ½ l o g [ 1 - 2 P { X  A ~ XB} ] = - ½1og[r + (1 - r ) e -2 ~ ] .  (4.7) 

Jensen's inequality implies that dmix(V)< ( 1 -  r )v  for all v > 0. For 
small v, we have d m i x ( V ) " , ( 1 - r ) v ,  so that the "natural guess" of 
( 1 - r ) v  is nearly correct. On the other hand, as v---)~, we have 
dmix(V) --) - (1/2)log r < ~. Thus, since the expected number of changes 
in the mixture model is indeed (1 - r)v,  we see that the distance dmix(P) 
always underestimates the expected number of changes, with the under- 
estimation being slight when v is small and severe when v is large. The 
function dmi x is strictly concave, so that 

ldmix(2/ . ,  ) < dmix(12) (4.8) 

for all v > 0. 
For an example of inconsistency, suppose that each character has 

probability r of being invariable and probability 1 - r  of evolving 
according to the Markov model P, illustrated in Figure 6, where v is a 

c C 

B D 

A C 
B D 

e ~v 

FIG. 6. Illustrating the ingredients in the definition of the probability P~x as the 
mixture (1 - r)P~ + rPin v. 
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A C 

d 

B D 

P0 
FIG. 7. The probability Po from Proposition 4.3. 

J. T. CHANG 

fixed positive branch length. Denote this mixture model by P~ix; that is, 
Pmix = ( 1 -  r)P, + rPin v. We will show that if e > 0 is chosen small 
enough, then the distance methods are inconsistent when the characters 
are generated from the true distribution Pmix" 

We begin toward the goal of analyzing the probability Pn~ix for small 
positive e by first considering the case e = 0. The next result says that 
the mixture model P°ix yields distances that agree exactly with those in 
the Markov model Po illustrated in Figure 7. In fact, we will see in the 
next section that e°ix and Po agree not only in their pairwise distances 
but also in their full joint distributions of character states of taxa. 

PROPOSITION 4.3 

For each u e [0, oo], the Markov model Po described in Figure 7 has 
distances between taxa that coincide exactly with those from the probability 
P ° i x  . 

Proof. Direct verification. Notice that the branch length dmix(U)- 
(1/2)dmix(2 u) is positive, by (4.8). • 

THEOREM 4.4 

There exists ~ > 0 such that the distance methods of [4] and [19] are 
inconsistent when the true model is the mixture Pm~ix = (1 -- r ) P, + rPi, v. 

Proof. This follows simply by continuity considerations. Letting d" 
denote the distance vector of the model Pmix for e >/0, we have d" ~ d o 
as s ~ 0. The symmetries d ~ ( A , B ) =  d ' ( C , D )  and d ' ( A , D ) =  
d ' ( B , C )  for all s >i 0 follow from the specification of the models P~ix. 
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Thus, since 

½[ d°( A,C) + d°( B,D)] < d°( A,B) = d°( C,D) 

= d ° ( A , D )  = d ° ( B , C ) ,  

clearly the sufficient conditions of Proposition 4.2 are satisfied by the 
models P~ix for small enough e > 0. • 

Finally, as in the previous section, we consider how small e must be 
in order to cause inconsistency. Here,  the answer depends on r and v. 
The distance methods are positively misleading when 

dmix(3e ) + dmix(2V + e)  < 2dmix(V + e ) .  

For example, suppose that the probability of invariable characters is 
r = 1/2.  Then for v = 1, a numerical calculation shows that the inconsis- 
tency condition becomes e < 0.337. From a Taylor expansion of the 
logarithm, we can see that for large v the boundary separating inconsis- 
tency from consistency is at e ~ v/2, whereas for small v the boundary 
is at e ~ v2/2. Thus, when v is large, e need not be small to cause 
inconsistency; in fact, inconsistency occurs when e is about half as large 
as v. On the other hand, when v is very small, e must be much smaller 
still to force inconsistency. This makes qualitative sense: When the 
distances in P, are small, the "underest imation" phenomenon discussed 
after (4.7) is only slight, so it is more difficult for this effect to 
undermine consistency. 

5. MAXIMUM L I K E L I H O O D  

For an optimist, the demonstrations of the previous section would 
not eliminate all hope that maximum likelihood might consistently 
estimate the tree topology. Presumably, maximum likelihood can, in 
some sense, "make use of more of the information in the data" than 
distance methods can. For example, distance methods are restricted to 
doing calculations with marginal distributions of pairs of taxa, while 
maximum likelihood can use the joint distribution of all taxa. Unfortu- 
nately, however, the same simple examples presented in the previous 
section can be shown to cause maximum likelihood to be inconsistent. 
In this section we will discuss the example with invariable sites in detail. 

An intuitive outline of the reasoning is as follows. We imagine that 
we are observing a sequence of characters from the mixture model Pmix, 
which has the topology ~A 8" Proposition 5.2 will show that the model 
P°ix induces precisely the same distribution of terminal character states 
as does the model Po depicted in Figure 7, which has the topoIogyJAC. 
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From this it follows that for small e > 0, the distribution of data 
generated from the model P~x is nearly the same as that from the 
model Po. Thus, in this sense, assuming that e is sufficiently small, it 
turns out that there is a pure Markov model Po in the incorrect 
topoIogyJAc that is closer to P,~ix than any pure Markov model in the 
true topoIogygAB is. Proposition 5.1 formalizes the notion that this will 
cause the maximum likelihood estimator to fail to belong to the true 
topology with probability 1 for sufficiently large sample sizes. 

To begin, we state without proof the following simple variation of 
similar results established by Wald [21]; the proof follows the method of 
Wald. 

PROPOSITION 5.1 

Suppose the random variables X1, S 2 . . . .  taking values in a finite set gg" 
are independent and identically distributed with probability distribution P, 
and let {Po: 0 ~ 19} be a family of  probability distributions on ~:. Let 
On = On(X1 . . . . .  Xn) maximize E~= 1log Po(Xi) over 0 ~ 19. Suppose that J 
is a compact subset o f  19, the function 0 ~ Po(x) is continuous for all x, 
and 

sup ~ P ( x ) l o g P o ( x  ) < sup Y ' . P ( x ) l o g P o ( x  ). 
0 ~ 3 -  x 0 ~ ®  x 

Then P{ On ~ Jeventual ly} = 1; that is, there is a random variable N, finite 
with probability 1, such that O n q~ J~ for all n >1 N. 

Note that the family {Po: 0 ~ 19} need not contain the true distribu- 
tion P that generated the data. This will be important because we will 
be taking 19 to be the set of Markov models described in Section 2, 
whereas the true distribution will be a mixture of the type described in 
Figure 6. Also observe that since we have allowed branch lengths to 
take on the value oq the tree topologies ~ B ,  JAAC, and JAO are compact 
subsets of 19. 

The next result is the strengthening of Proposition 4.3 promised in 
Section 4. 

PROPOSITION 5.2 

For each v ~ [0,o o], the Markov model Po described in Figure 7 and 
the probability Pm°ix have exactly the same joint distributions for 
(XA,XB,Xc,Xo). 

Proof. Proposition 4.3 tells us that the two models P°ix and Po 
agree in their distances separating pairs of taxa. Therefore, Pm°ix and Po 
must agree in the marginal distributions they give to the six pairs 
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( X A , X s ) , ( X A , X  c)  . . . . .  (Xc ,  Xo) .  We want to show that P°ix and Po 
agree in the full joint distributions they give to the vector 
( X A , X s , X c , X o ) .  For convenience, let P0 denote pm0ix and let P1 
denote Po. Note that Pi{XA = Xc} = 1 for both i = 0,1, so that we need 
consider only the joint distributions of ( X  A, Xe ,  XD). Next observe that 
both probabilities Pi for i = 0,1 satisfy 

P,.{ X4 = 0 ,  X 8 = 0 ,  X D =0} =Pi{XA =1 ,  X B =1 ,  X o = I  } =:a~, 

P~{X~ = 0 ,  X s = 0 ,  X D =1} =P~{X  A = 0 ,  X B =1 ,  XD=O } 

--- P,{ XA = I, XB = O, XD = I } 

= Pi{ XA =1 ,  X B =1 ,  X o =0} =: b i, 

and 

Pi{X  A = 0 ,  X B =1 ,  X o =1} = P~{X A =1 ,  X B = 0 ,  X o =0} :=c/ ,  

where the symbol " = : "  indicates that the expression on the right-hand 
side is being defined by the expression on the left-hand side. Thus, the 
equality of the pairwise distributions gives as a particular case that 

ao+C o =Po{XA = 0 ,  X B = 0 ,  X o = 0  } + P0{XA =1 ,  X B = 0 ,  X o =0} 

= Po{X8 = o, x o  = 0} = PI{ x 8  = 0 ,  x v  = 0} 

= PI{XA = 0 ,  X B = 0 ,  X D = 0  } +PI{XA =1 ,  X B = 0 ,  X o =0} 

= a l + c  1 , 

which, upon making the substitution c i = 1 / 2 -  a i - 2 b  i for i = 0,1, 
yields that b 0 = b 1. Similarly, another calculation like that in the last 
display gives a 0 + b 0 = a 1 + b 1, so that we obtain a 0 = a 1, and we are 
done. • 

Next we prove the main inconsistency result for the maximum 
likelihood topology estimator. 

THEOREM 5.3 

Let r ~ (0,1) and consider the maximum likelihood topology estimator, 
where the likelihood is maximized over aU pure Markov models. There exists 
e > 0 such that the maximum likelihood topology estimator is inconsistent 
when the true model is the mixture Pn~ix = (1 - r ) P, + rPin v • 

Proof. We want to establish the existence of a positive 6 such that 
the maximum likelihood estimator ~ based on n observations from the 
mixture distribution P~ix has probability 1 of eventually lying outside 
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the true tree topoIogyYAB for large enough n. In fact, we will show that 
for sufficiently large n, ~ lies in ~ c ,  that is, 

u o) = u o). 

For P and Q joint distributions on (XA, X B, X c, Xo),  define 

g ( P , a )  = E P ( x ) l o g a ( x ) ;  
X 

this takes the value - w  if there is an x such that P ( x ) > O  and 
Q(x)  = O. A standard property of the function g is that 

g ( P , Q )  < g ( e , P )  whenever Q 4= P; (5.9) 

see, for example, Lemma 1.4.1 of [32]. 
We claim that 

max g(P°mix,Po) < maxg(P°ix ,Po) .  (5.10) 
O e ~AB U~AD 0 ~ 0 " " 

To verify this, observe that, by (5.9), it is sufficient to show that P°ix ~ O 
while 0 Pro°ix ~ B  U~AV" However, Proposition 5.2 shows that P°ix ~9~A c 
c O. To show that P~ix ~ ~AA B U JAA O, note that the distances d corre- 
sponding to any model in 3~ B satisfy the inequality d ( A , B ) +  d (C ,D)  
<<.d(A,C)+d(B,D).  However, inspection of Figure 7 together with 
(4.8) shows that the distances d°ix under P°ix satisfy 

0 0 
d m i x ( A , B )  + dmix (C ,D ) = 2dmix (v )  > dmix(2 v ) 

= d°mix(A,C) + d°~x(B,D) .  

Thus, P°ix ~JAB; similarly, Pm°ix ~AO" 
Now by Proposition 5.1, to complete the proof of the theorem it 

suffices to establish that, as e ---, 0, 

max g(  P,~ix,Po) ~ max g(P°ix,Po) (5.11) 
o ~ ~ u ~ ,  o ~ u ~ o  " " 

and 

max g ( Pm~ix , Po ) ~ m a x  g ( P°ix , Po ) , (5.12) 
0 ~ 0  0,~0 " 

because these will combine with (5.10) to give 

m a x  g(Pm x,eO) < (Pm x,eo) 
O ~ 'JAB U J A D  mEa~ g 
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for sufficiently small e. To circumvent concerns about g taking on the 
value - ~, define h(P, Q) = exp[g(e, Q)] if g(P, Q) > - ~ and h(e, Q) 
= 0  if g(P,Q)=-~.  Letting 3-denote  a compact subset of O, it 
suffices to show that 

sup h( P,~,x,Po) ~ sup h( P°mix,Po) (5.13) 

as e ~ 0 to establish the desired assertions (5.11) and (5.12). However, 
letting ~ '  denote a closed ball around Pro°ix, note that h is a continuous 
function on the compact set ~ '  × J,, so that h is uniformly continuous 
there. From this, the fact that P,~ix ~ Pro°ix as e --9 0 easily implies (5.13). 

6. DISCUSSION 

The existence of site-to-site heterogeneity in rates of evolution is well 
established. The examples in this paper used mild, unexotic forms of 
rate heterogeneity together with the type of branch length patterns 
found in the standard example of the inconsistency of parsimony. In this 
sense, the distance and maximum likelihood methods considered in this 
paper join parsimony in being susceptible to the charge of inconsistency 
on certain simple models. How serious the implications of this type of 
theoretical result are for phylogenetic practice is an issue that has long 
been debated; see Sober [33], for example. 

The examples presented here do not constitute an indictment of 
maximum likelihood as a general principle for deriving estimators. In 
our context, they show a failure of standard methods that maximize the 
likelihood over the class of pure Markov models; more elaborate 
methods that maximize the likelihood over more general mixtures of 
Markov models, such as some of the methods cited in the Introduction, 
can be expected to give improved performance. Establishing the extent 
to which such methods are successful under various levels of generality 
in heterogeneous models is an area for further research. 

The basic mathematical idea behind the counterexamples is this. We 
find a pair of pure Markov models that both belong to the intersection 
of two tree topologies, say ~AB and ~ c ,  such that their mixture lies well 
within JAC, say, and outside JAS" Then by slightly perturbing the pair of 
Markov models, we can move them slightly inside the topology ~An, 
while their mixture remains closer to JAC than to JAn. In particular, for 
the example with invariable characters described in Figure 6, the 
original pair of Markov models is P0 and Piny" These both lie in 
JAB ngAC, but by Proposition 5.2 their mixture lies within ~Ac. The 
slight perturbation is to change P0 to P~ for a small positive e. 
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The counterexamples were produced in the very simple setting de- 
scribed in Section 2, with binary characters, four taxa, and so on. We 
adopted this simple setting not only for ease of exposition but also, at 
least as important, because of the nature of the study of counterexam- 
pies. If an example of inconsistency exists within a special class of 
models, then an example obviously exists within any more general class 
of models that contains the special class. For example, if we had 
displayed an example of inconsistency using four-valued characters, 
then we would still wonder whether an example exists using only binary 
characters. However, finding such an example using binary characters 
implies in a trivial way that an example using four-valued characters 
exists. Similarly, having produced an example that is simply a mixture of 
two "rates," one of which is zero, we see that inconsistency does not 
require more than two rates and in particular does not require a 
continuum of rates having a continuous distribution, for example. 

It is also clear that examples of inconsistency exist that do not involve 
strictly invariable characters but still lie within the class of models of 
row 3 of Figure 3. For instance, the example of Figure 6 could be 
perturbed slightly by choosing a small number 6 > 0 and replacing the 
invariant character model P~nv by a tree geometrically similar to that of 
P~, with branch lengths all multiplied by 6. By continuity considerations, 
it is easy to see that there is a positive 8 that is sufficiently small that 
the resulting perturbed example would still be an example of inconsis- 
tency for the distance and maximum likelihood methods. In the result- 
ing example, both of the distributions in the mixture strictly favor the 
tree topology ~AB; if they were not mixed, they would both cause the 
estimation method to converge to the correct topology ~ B .  Under the 
mixture, however, the methods converge with probability 1 to the 
incorrect topology JAC. 

A recent investigation by Steel et al. [28] presents a remarkable 
example showing that the tree topology is in general not identifiable 
from the joint distribution of character states at the terminal nodes of 
the tree when different positions are allowed to evolve at different 
rates. Their example reveals that there are fundamental limits, the full 
nature and extent of which are not yet clear, on what may be achieved 
by any method in such heterogeneous models. This result is comple- 
mentary to the results presented here. The example of [28] exhibits two 
mixture models from different topologies that have precisely the same 
joint distribution of terminal character states, with both mixture models 
being of the type depicted in row 3 of Figure 3. Our main example also 
displays two models from different topologies. The models are simpler 
than those of [28], with one of the models being a pure Markov model 
(row 1 of Figure 3) and the other being from row 2 of Figure 3. Here 
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the pair of models have joint distributions of terminal character states 
that are arbitrarily close to each other, but not identical. This is enough 
to cause the methods under consideration to become positively mislead- 
ing. 

Finally, how can we reconcile the counterexamples with the positive 
statements of Cavender and Felsenstein [19] and Chang and Hartigan 
[18] for the distance methods and Felsenstein [20] for maximum likeli- 
hood? Those results state that if characters are truly generated by a 
single Markov model, then the distance methods and maximum likeli- 
hood will all consistently recover the tree topology. The resolution is 
this: A mixture of Markov models is generally not a Markov model. This 
is easy to see. Consider, for example, a character generated by the 
model P.~x of Figure 6, with v > 0. Referring to Figure 6, let E and F 
denote the internal nodes adjacent to A and C, respectively, so that the 
neighbors of E are A, B, and F. Supposing that we know the character 
states X A, Xt~, and XF, to show that the Markov property fails we ask: 
Could knowledge of any character states other than those neighboring 
states have any effect on probabilistic statements about XE? Clearly the 
answer is yes. For  example, suppose we know that X,4 = X B = X F -- 0. If 
we then further learn that X¢ = 1, we have gained the additional 
knowledge that the character is not invariant, so that it must have been 
generated by the model P,. Thus, using the Markov property of P,, 

Pm~x{Xe. = 0IX A = X B = X F = O, X c = 1} 
= P={XE = 0 1 x A  = x B  = = 0 } .  

The last probability is clearly smaller than the mixture probability 
P.~ix{Xe = 0IX A = X n = X F = 0}. Thus, given the neighboring states X A 
= X B = X F = 0, the additional knowledge that X c = 1 decreases the 
conditional probability under P~x that X z  = 0. This violation of the 
Markov property calls into question what might otherwise seem to be a 
rather innocuous Markov assumption. 

I am grateful to Colleen Kelly for  introducing me  to the issue o f  rate 
heterogeneity and for  a number  o f  stimulating discussions about this work. 
Thanks also to the referees for  their helpful comments.  
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