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Abstract

Phylogeny reconstruction is the process of inferring evolutionary relationships from molecular
sequences, and methods that are expected to accurately reconstruct trees from sequences of reasonable
length are highly desirable. To formalize this concept, the property of fast-convergence has been introduced
to describe phylogeny reconstruction methods that, with high probability, recover the true tree from
sequences that grow polynomially in the number of taxa n. While provably fast-converging methods have
been developed, the neighbor-joining (NJ) algorithm of Saitou and Nei remains one of the most popular
methods used in practice. This algorithm is known to converge for sequences that are exponential in n,
but no lower bound for its convergence rate has been established. To address this theoretical question,
we analyze the performance of the NJ algorithm on a type of phylogeny known as a ‘caterpillar tree’.
We find that, for sequences of polynomial length in the number of taxa n, the variability of the NJ criterion
is sufficiently high that the algorithm is likely to fail even in the first step of the phylogeny reconstruction
process, regardless of the degree of polynomial considered. This result demonstrates that, for general n-taxa
trees, the exponential bound cannot be improved.
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1. Introduction

Phylogeneticists employ evolutionary models to interpret observed molecular sequence data as
a series of divergences from unknown ancestral sequences. A variety of methods and algorithms
have been developed to implement these models, and researchers are left with a wealth of options
in choosing the phylogenetic method that best suits their needs with respect to modelling complex-
ity, computational efficiency, and interpretability. There are advantages and disadvantages to
each of the major classes of methods, and no particular algorithm has emerged as a clear ‘winner’
in the phylogenetic research community. However, there are certain properties that are considered
to be important attributes for any phylogeny reconstruction method: computational efficiency,
consistency, and robustness. And, because biologists are often limited in the amount of sequence
data that is available for their studies, methods that are expected to reconstruct trees accurately
from sequences of practical length are highly desirable.

The distance-based neighbor-joining (NJ) algorithm, introduced by Saitou and Nei in 1987 [1],
offers an intuitive, computationally efficient process for phylogeny reconstruction. It is easy to
implement and runs quickly on large datasets, making it a popular choice for practicing biologists.
In addition, the method is known to be consistent, meaning that, in the limit as the observed se-
quence length tends to infinity, the NJ criterion will always be minimized for a pair of neighboring
leaves (see Durbin et al. [2] for a proof of this theorem). Atteson [3] has established conditions
under which NJ will perform well from a matrix of estimated distances: if the difference between
the true and estimated distances is bounded by half the length of the shortest edge in a tree T, then
NJ will correctly reconstruct the topology of T. But how long must sequences be to guarantee that
the estimated distances will, with high probability, meet this criterion? Atteson also briefly ad-
dressed this question, deriving a bound that guarantees the accurate reconstruction of general
n-taxa trees from sequences that are of exponential length in the maximum distance between
any two leaves in the tree.

In 1999, Huson et al. [4] introduced a new standard for evaluating the convergence rates of
phylogeny reconstruction algorithms. The authors defined a method to be fast-converging
under a model of evolution if the method could, with high probability, accurately recover the
topology of any model tree from sequences that grow only polynomially in the number of
leaves. Huson et al. described an approach for creating fast-converging algorithms from existing
distance methods known as the Disk-Covering Method (DCM) [4–6], proving that ‘DCM-boosted’
methods were fast-converging under the Jukes–Cantor model. Additional research refined DCM
by developing methods which meet a more general criterion known as absolute fast-convergence
[7,8].

After introducing these fast-converging methods, the researchers performed simulations to
evaluate the performance of DCM-boosted algorithms relative to NJ and other popular methods.
While finding that the provably fast-converging methods out-performed NJ for some trees,
Nakhleh et al. [8] also reported that, in some cases, NJ offered significant improvements in accu-
racy over fast-converging methods, and other studies reported minimal differences between NJ
and fast-converging methods on large subsets of the tree space [9,4,10]. While none of these sim-
ulation studies evaluated sufficiently long sequences to realistically compare polynomial and expo-
nential convergence rates, these experimental results led to the suggestion that Atteson’s
exponential convergence bound for NJ was ‘probably loose’ [4]. However, because no immediate
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extension of the proof of fast-convergence of DCM-boosted methods was applicable to NJ,
the question remained: Is the original neighbor-joining algorithm a provably fast-converging
method?

To address this issue, we investigate the performance of the NJ algorithm for sequences of poly-
nomial length, analyzing the asymptotic behavior of the method on a phylogeny known as a ‘cat-
erpillar tree’. Our approach focuses on the first step of the caterpillar reconstruction process,
comparing the variability of the NJ criterion to its expected value. We find that this signal-to-
noise ratio converges to 0, demonstrating that polynomial length sequences are insufficient to
guarantee accurate performance of the NJ algorithm. In Section 2 we provide necessary back-
ground, in Section 3 we summarize our findings, and we close the paper with a discussion of
the theoretical and practical implications of this analysis in Section 4. Detailed proofs of
Theorems in Section 3 are provided in Appendix A.
2. Background

We begin with necessary definitions and background to motivate and support our analysis.
We provide a brief overview of distance-based methods and the Jukes–Cantor model for
sequence evolution, and then review the NJ algorithm. Finally, we introduce the ‘caterpillar
tree’ and discuss our approach for analyzing the performance of the NJ method using this
model tree.
2.1. Distance-based methods and the Jukes–Cantor model

The term ‘distance-based’ describes a class of methods that reconstruct phylogenies from a ma-
trix of pairwise distances dij, where dij denotes the distance between leaves i and j. Phylogenetic
researchers employing distance-based methods must assume that the matrix of pairwise distance
estimates provides sufficient information for the accurate reconstruction of the evolutionary rela-
tionships among the taxa considered. This is a strong assumption, and it is clear that the choice of
distance estimation method will have a considerable impact on the resulting phylogeny. There are
several methods for estimating distances, some of which allow for the differential weighting of cer-
tain types of substitutions in general DNA sequences [11,12], and others that specifically model
the evolution of protein coding regions [13,14]. The appropriateness of various assumptions
has been evaluated using some known or experimentally generated phylogenies [15–17], and sev-
eral statistical procedures have been introduced for choosing among evolutionary models in prac-
tice (see Posada and Buckley [18] for a recent overview of these methods). Most theoretical
analyses, however, focus on the Jukes–Cantor [19] model. The central assumptions of the model
are as follows:

(i) The equilibrium frequency of each of the four nucleotides {A,C,G,T} is equal to 1
4
.

(ii) Every type of substitution is equally likely.
(iii) The rate of substitution does not vary by time or position.
(iv) Mutations at each position occur independent of mutations at every other position.
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With these assumptions, the model is fully described by the following instantaneous rate matrix
R:
A C G T

A �3r r r r

C r �3r r r

G r r �3r r

T r r r �3r
For a random variable X representing a nucleotide evolving according to the Jukes–Cantor
model, we have, for any specified time t,
pt ¼ P ðX t 6¼ X 0Þ ¼
3

4
ð1� e�

4
3rtÞ. ð1Þ
For any pair of sequences Si and Sj of length L, the proportion of positions at which the two
sequences differ is given by the Hamming distance
XL
l¼1

ðSi;l 6¼ Sj;lÞ
L

.

Under the Jukes–Cantor model, this proportion provides an estimate for the expected Hamming
distance p = pt for any position along the sequence. Interpreting the product of substitution rate
and time as a measure of ‘distance’ (that is, d = rt) and inverting Eq. (1), we have
d ¼ � 3

4
log 1� 4

3
p

� �
. ð2Þ
As p approaches the value of 3
4
(the expected probability of observing a difference between com-

pletely unrelated sequences at any position), the distance d between the two sequences becomes
infinitely large.

While most short distances can be easily estimated under this model, it is clear that, for any pair
of sequences with estimated Hamming distance p̂ P 3

4
, the Jukes–Cantor distance estimate d̂ will be

undefined. This issue presents practical problems for researchers attempting to construct distance
estimates from limited amounts of DNA, since most distance-based phylogeny reconstruction
algorithms will fail to produce a tree when even a single pairwise distance estimate is undefined
for a set of sequences. While one would ideally avoid this problem by acquiring enough sequence
data to compute extremely precise distance estimates, sufficiently long sequences are often not
available for distantly related taxa. For this reason, undefined Jukes–Cantor distances are typically
‘corrected’ and assigned a large value. This value is generally at least as large as the maximum well-
defined distance estimate observed for the set of sequences, and may be determined either as a func-
tion of the observed estimates (known as a ‘fix factor’ [20]) or simply arbitrarily assigned [21].

2.2. The neighbor-joining algorithm

The neighbor-joining (NJ) algorithm reconstructs a phylogeny from n sequences by iteratively
joining the pairs of leaves i and j which minimize the criterion
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Dij ¼ dij �
1

n� 2

Xn
k¼1

dik þ
Xn
k¼1

djk

 !
;

where dij is the distance between sequences i and j. Once a pair of leaves is selected to join, a node
m connecting this pair is added to the tree. For all nodes k 5 {i, j}, the distance dmk is then defined
to be
dmk ¼
1

2
ðdik þ djk � dijÞ
and the distances dim and djm are given by
dim ¼ 1

2
dij þ

1

n� 2

Xn
k¼1

dik �
Xn
k¼1

djk

 ! !
and djm ¼ dij � dim.
The leaves i and j are subsequently removed from the distance matrix and replaced with the new
node m, and the NJ criterion matrix D is recomputed for the new set of n � 1 leaf nodes. The algo-
rithm continues to join pairs of leaves until only two leaves i and j remain, and these are connected
with edge length dij to complete the phylogeny.

2.3. The caterpillar tree

The term ‘caterpillar tree’ is used to describe a phylogeny in which n taxa are connected to a
single spine (see Fig. 1(a)). If we consider a simplified ‘legless’ caterpillar in which the n taxa
are connected in sequence by edges of equal length de, then the distance between a pair of taxa
i and j on a caterpillar tree is simply given by jj � ijde, the number of edges separating the pair
(see Fig. 1(b)). Since the longest pairwise distance d1,n = (n � 1)de, Atteson’s bound would require
sequence lengths to be exponential in n to guarantee asymptotic convergence. For this reason, the
caterpillar tree provides a useful model for exploring the performance of the NJ method for
sequences of polynomial length.
. (a) A general n-taxa caterpillar tree. There are n � 2 internal nodes, each represented by a ‘dot’ in the figure, and
ges have equal length de. (b) The ‘legless’ caterpillar tree considered in the analysis. The taxa are sequentially
cted by edges of equal length de.
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2.4. Method for analyzing the asymptotic stability of NJ

It is clear from the structure of the caterpillar tree that there are only two pairs of leaves that are
separated by a single node, leaves 1 and 2 and leaves n � 1 and n. Thus, the only way that the NJ
algorithm can correctly reconstruct the caterpillar is by joining either of these two pairs of leaves
on the first step of the process. On subsequent steps, the algorithm must continue to work its way
in towards the center of the caterpillar until the tree is fully reconstructed. If, at any time, a pair of
non-neighboring leaves are joined, then the NJ algorithm will fail. To illustrate this concept, con-
sider a simple caterpillar tree with 4 leaves. Leaf 1 is a neighbor to leaf 2, and leaf 3 is a neighbor
to leaf 4, but leaf 2 is not a neighbor to leaf 3. There are four ways to correctly reconstruct the
tree, all of which begin by either joining leaves 1 and 2 or leaves 3 and 4 on the first step (see
Fig. 2).

For general caterpillar trees with n leaves, the first step of the neighbor-joining process will
incorrectly join a pair of non-neighboring leaves unless the NJ criterion D̂ij is minimized by either
D̂1;2 or D̂n�1;n. By symmetry, D̂1;2 and D̂n�1;n are identically distributed random variables, and so we
focus our attention on the behavior of D̂1;2. For the NJ criterion to be minimized for the neigh-
boring sequences S1 and S2, we must have D̂1;2 6 D̂i;j for all pairs of non-neighboring sequences Si

and Sj. Thus, if we consider a single pair of non-neighboring sequences Sgn and Sgnþ1, the proba-
bility that the NJ criterion is not minimized by D̂1;2 will clearly be at least as large as the proba-
bility that D̂1;2 > D̂gn;gnþ1. Choosing gn to be sufficiently large that the estimates p̂1k and p̂gn;k are
nearly independent for all k (that is, gn = nc for any c 2 ð0; 1

2
Þ), we analyze the asymptotic

properties of the random variable Dn ¼ ðD̂gn;gnþ1 � D̂1;2Þ.
Fig. 2. Reconstructing a 4-leaf caterpillar. Two of the four correct paths, shown on the left and right, begin by joining
leaves 1 and 2. At each step, leaves and internal nodes included in the NJ distance calculations are enclosed in boxes.
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2.5. Modelling details

To further simplify the analysis, we reduce the complexity of observed sequences to consist of
binary strings, so that the relationship between the expected Hamming distance and the Jukes–
Cantor distance now becomes dij ¼ � 1

2
logð1� 2pijÞ, pij 2 ½0; 1

2
Þ (this is known as the Cavender-

Farris model [22,23]). For this additive model, the true distance between taxa i and j, i < j, is given
by (j � i)de, and thus the expected Hamming distance will be equal to 1

2
ð1� ð1� 2peÞ

j�iÞ where pe
is the true probability of observing a mutation on a single edge.

In this setting, it is clear that for distant sequences (where j is much larger than i), the expected
Hamming distance pij will approach the critical value of 1

2
exponentially fast as j � i increases. On

the other hand, for observed sequences that are only polynomially long, a calculation with the
Binomial distribution shows that the variance of p̂ij approaches 0 at most only polynomially fast.
A normal approximation to the Binomial then shows that, for pairs of taxa (i, j) separated enough
so that j�i

log n ! 1, the probability Pfp̂ij > 1
2
g converges to 1

2
. That is, with probability approaching 1

2

for each distantly separated pair of sequences, the standard distance estimate will be undefined.
Thus, we can easily conclude that if one does not allow for the correction of undefined distance

estimates, NJ will fail to reconstruct the caterpillar tree for large values of n. The question of
whether correction of undefined distances can enable NJ to succeed is more subtle. To address
this, we allow for the correction of such values by assigning the maximum observable value for
the sequence length Ln to any undefined distance. Assume, for definiteness, that Ln is an even
integer. We define the value of corrected distances to be dw, where
dH ¼ � 1

2
log 1� 2

1

2
� 1

Ln

� �� �
¼ 1

2
log

Ln

2

� �
. ð3Þ
We note that our results do not depend upon this particular choice, although we do assume that
any ‘corrected’ distance values will be at least as large as the maximum well-defined pairwise
distance estimate for a given set of sequences.
3. Results

To analyze the behavior of the random variable Dn, we derive bounds for its expectation and
variance. We find that, for sequences of polynomial length in n, the signal-to-noise ratio of Dn

asymptotically approaches 0: that is, the standard deviation of the distribution of Dn grows more
quickly that its mean. This implies that, in the limit, observed values of Dn are equally likely to be
positive or negative, and in the latter case the algorithm would incorrectly join the pair of non-
neighboring leaves. Detailed proofs of the expectation and variance bounds are provided in
Appendix A.
3.1. Derivation of an upper bound for the expectation of Dn

Let the notation d̂ i. ¼
Pn

k¼1d̂ i;k. For any value gn, the expectation of Dn ¼ D̂gn;gnþ1 � D̂1;2 is
equal to
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E d̂gn;gnþ1 �
1

n� 2
ðd̂gn. þ d̂gnþ1.Þ � d̂12 þ

1

n� 2
ðd̂1. þ d̂2.Þ

� �

¼ Eðd̂gn;gnþ1 � d̂12Þ þ
1

n� 2
Eðd̂1. � d̂gn.Þ þ Eðd̂2. � d̂gnþ1.Þ
� �

ð4Þ
and, because we have defined d1;2 ¼ de ¼ dgn;gnþ1, the above expression reduces to
EðD̂gn;gnþ1 � D̂1;2Þ ¼
1

n� 2
ðEðd̂1. � d̂gn.Þ þ Eðd̂2. � d̂gnþ1.ÞÞ. ð5Þ
Let Dk ¼ ðd̂1;k � d̂gn;kÞ and D0
k ¼ ðd̂2;k � d̂gnþ1;kÞ. If sufficiently long sequences were available to

guarantee accurate estimation of the distances d1,k and dgn;k for all values of k, then the expecta-
tion of the sums of differences Dk would approach
Xn
k¼1

ðd1;k � dgn;kÞ ¼ ðn� gnÞðgn � 1Þde;
where de denotes the length of a single edge on the caterpillar tree. However, for sequences of
polynomial length, we find that the expectation of the sums of differences Dk and D0

k will be
significantly smaller.

To bound this expectation, we divide the sums into three segments. The first includes those
terms for which k 6 gn + 1, the second includes terms for which k is greater than (but relatively
close to) gn + 1, and the remaining segment includes the terms for which k is significantly larger
than gn. We denote the length of the middle segment by bn and let bn = nb for some b 2 ð0; 1

2
Þ. With

this approach, we derive the following bound:

Theorem 1. For n sequences of length L = ns for any fixed s,
EðD̂gn;gnþ1 � D̂1;2Þ 6
lnðnÞ
n� 2

ðsnb þ oðn�1ÞÞ
for gn > 2 and b 2 ð0; 1
2
Þ.
3.2. Derivation of a lower bound for the variance of Dn

By definition,
VarðDnÞ ¼ Var ðd̂gn;gnþ1 � d̂1;2Þ þ
1

n� 2
ðd̂1. � d̂gn.Þ þ ðd̂2. � d̂gnþ1.Þ
� �� �

. ð6Þ
To analyze this expression, we first show that, because d1;2 ¼ de ¼ dgn;gnþ1 can be estimated with

great precision by sequences of polynomial length, the variance of ðd̂gn;gnþ1 � d̂1;2Þ converges to 0
for sequences of length Ln = ns. It follows from this result that the covariance terms involving
ðd̂gn;gnþ1 � d̂1;2Þ also converge to 0 for polynomial length sequences (see Lemma 14). Therefore,
we focus our attention on the expression
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Var ðd̂1. � d̂gn.Þ þ ðd̂2. � d̂gnþ1.Þ
� �

¼ Var
Xn
k¼1

Dk

 !
þ Var

Xn
k¼1

D0
k

 !
þ 2Cov

Xn
k¼1

Dk;
Xn
k¼1

D0
k

 !
;

ð7Þ
where
Var
Xn
k¼1

Dk

 !
¼
Xn
k¼1

VarðDkÞ þ 2
Xn�1

k¼1

Xn
l¼kþ1

CovðDk;DlÞ. ð8Þ
When k is significantly larger than gn, both p1,k and pgn;k are so close to 1
2
that the true proportion

of differences between sequences 1 and k cannot be accurately estimated by Ln = ns positions (in
other words, we have 1

2
� 1

ns < pgn;k < p1;k <
1
2
). In this case, where gn = nc for any c 2 ð0; 1

2
Þ, the esti-

mates d̂1;k and d̂gn;k are likely to be ‘corrected’ to the value dw with probability close to 1
2
, and, be-

cause gn is large, the estimates d̂1;k and d̂gn;k are nearly independent. Because of this inability to
precisely estimate the parameters p̂1;k and p̂gn;k when k is large, the variability of the difference
terms ðd̂1;k � d̂gn;kÞ is considerable, and Theorem 2 provides a lower bound for the variance of each
term:

Theorem 2. For k > gn and for n sequences of length L = ns for any fixed s, if gn = nc for any
c 2 ð0; 12Þ; then
Varðd̂1;k � d̂gn;kÞ P
1

4
� dgn;k

2
� oðn�1Þ

� �
s
4
� 1

2
� s
n

� �2

ðlnðnÞÞ2
with dgn;k ¼ P ðp̂gn;k < 1
2
Þ � 1

2
.

With this result, for k > gn + bn we have
Varðd̂1;k � d̂gn;kÞ P cb;s;nðlnðnÞÞ2;
where cb;s;n ¼ ð1
4
� dgn ;k

2
� oðn�1ÞÞðs

4
� 1

2
� s

n Þ
2 ! 1

4
ðs
4
� 1

2
Þ2 as n !1, and therefore
Xn
k¼1

Varðd̂1;k � d̂gn;kÞ > ðn� ðnc þ nbÞÞcb;s;nðlnðnÞÞ2 and

Xn
k¼1

Varðd̂2;k � d̂gnþ1;kÞ > ðn� ðnc þ nbÞÞcb;s;nðlnðnÞÞ2. ð9Þ
Now we consider the covariance terms in Eqs. (7) and (8). If we assume that the contribution of
the covariance terms is positive, then we may easily bound the standard deviation of Dn using
Inequality (9). However, given that the covariance terms may be negative, thereby reducing the
variance, we derive bounds for these terms which account for their largest possible impact. We
find upper and lower bounds for the covariance of each pair of distances in Lemma 9, establishing
that for all sequences Si, Sj, Sk, and Sl, Covðd̂ i;j; d̂k;lÞ P 0. We recognize, then, that each covari-
ance term is bounded below:
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CovðDk;DlÞ P �ðCovðd̂1;k; d̂gn;lÞ þ Covðd̂gn;k; d̂1;lÞÞ;
CovðD0

k;D
0
lÞ P �ðCovðd̂2;k; d̂gnþ1;lÞ þ Covðd̂gnþ1;k; d̂2;lÞÞ;

and CovðDk;D
0
lÞ P �ðCovðd̂1;k; d̂gnþ1;lÞ þ Covðd̂gn;k; d̂2;lÞÞ. ð10Þ
We employ this fact to derive bounds for the covariance terms in Theorem 3 and Corollary 4.

Theorem 3
Xn
k¼1

Xn
l¼1

CovðDk;D
0
lÞ P � 1

2
ln

Ln

2

� �� �2

½g2n þ oðn�1Þ�:
Corollary 4
Xn�1

k¼1

Xn
l¼kþ1

CovðDk;DlÞ P � 1

2
ln

Ln

2

� �� �2 g2n
2
þ oðn�1Þ

� �
and

Xn�1

k¼1

Xn
l¼kþ1

CovðD0
k;D

0
lÞ P � 1

2
ln

Ln

2

� �� �2 g2n
2
þ oðn�1Þ

� �
.

These inequalities demonstrate that, even in the most extreme case, the contribution of the
covariance terms is negligible relative to the overall variance. Aggregating the preceding results,
we derive the following lower bound:
Theorem 5. For b 2 (0,1), c 2 ð0; 12Þ and sequences of length Ln = ns,
VarðDnÞ P
lnðnÞ
n� 2

� �2

½2ðn� ðnc þ nbÞÞcb;s;n � s2n2c � oðn�1Þ�.
3.3. Relationship between expectation and variance results

Reviewing the inequalities derived in Sections 3.1 and 3.2, we see that, for any b 2 (0,1) and for
any c 2 ð0; 1

2
Þ,
EðDnÞ 6
lnðnÞ
n� 2

ðsnb þ oðn�1ÞÞ
for sequences of polynomial length ns, while
VarðDnÞ P
lnðnÞ
n� 2

� �2

½2ðn� ðnc þ nbÞÞcb;s;n � s2n2c � oðn�1Þ�.
Ignoring constants and those terms which converge to 0, we take the ratio of the expectation
inequality and the standard deviation inequality:
EðDnÞ
SDðDnÞ

6
nbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n� ðnc þ nb þ n2cÞ
p ¼ 1

n
1
2�b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðn�ð1�cÞ þ n�ð1�bÞ þ n�ð1�2cÞÞ

p . ð11Þ
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This ratio will approach 0 in the limit as n ! 1 for any b; c 2 ð0; 1
2
Þ, indicating that, for a wide

range of possible values of gn, the variability of the difference ðD̂gn;gnþ1 � D̂1;2Þ is increasing much
more rapidly than its expected value. Furthermore, if we assume that the distribution of Dn is rea-
sonably well-behaved, then
lim
n!1

P ðDn < 0Þ ¼ lim
n!1

P
Dn � EðDnÞ

rDn

<
�EðDnÞ
rDn

� �
¼ 1

2
. ð12Þ
4. Discussion

By analyzing the random variable Dn ¼ ðD̂gn;gnþ1 � D̂12Þ, we have shown that the NJ criterion is
likely to be minimized by a pair of non-neighboring leaves when polynomial length sequences are
considered. Our results demonstrate the vulnerability of the method to the impact of large num-
bers of imprecise distance estimates, as reflected in the asymptotic behavior of the signal-to-noise
ratio of Dn. It is therefore apparent that polynomial length sequences will be insufficient to guar-
antee phylogenetic accuracy for at least one class of trees, and that Atteson’s exponential bound
cannot be improved in general.

Our theoretical result should not necessarily be perceived as an indictment of the value of NJ as
a practical phylogeny reconstruction method. The caterpillar tree considered here represents an
extreme case, rarely (if ever) encountered in a realistic biological setting. As demonstrated by
numerous simulation studies that have considered more typical trees (including [24–27]), NJ does
in fact perform quite well with reasonably short sequence lengths.

The difficulties in phylogeny reconstruction demonstrated by the present analysis are not simply
a failing of the NJ algorithm but rather arise from an interaction between the NJ algorithm and
the ‘fast-convergence’ criterion. The criterion of fast convergence requires consideration of trees
whose number of taxa tends to infinity while maintaining a fixed positive lower bound on the edge
lengths in the tree. This in turn forces the existence of ever more remotely separated pairs of taxa.
More natural alternative asymptotic formulations of the process of biologists collecting data on
more and more species might assume a bounded time since the root of the tree, in which case the
minimum branch length of the tree would approach 0 as n !1. Characterizing the performance
of algorithms including NJ in such a framework is an area for further research.

More practically, the results presented in this analysis demonstrate the problems that can arise
when sequence lengths are insufficiently long to estimate large distances with precision. For any
phylogeny involving very distantly related taxa, it is to be expected that a significant number
of pairwise distance estimates will be inaccurate or undefined, and our analysis demonstrates that
NJ is highly susceptible to these errors. The insights drawn from this study are therefore not
restricted to the artificial special case of the caterpillar topology, but rather can be extended to
a much larger class of phylogeny reconstruction problems.
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Appendix A. Proofs for expectation and variance bounds

The following Lemma is employed in Proof of Theorem 1.

Lemma 6
Xn
k¼gnþbnþ1

Eððd̂1;k � d̂gn;kÞ þ ðd̂2;k � d̂gnþ1;kÞÞ <
lnðnÞ
pe

snsð1� 2peÞ
bn .
Proof of Lemma 6. For integers i 2 [0,Ln], let d(i) denote the distance function
dðiÞ ¼
� 1

2
lnð1� 2i

Ln
Þ; 0 6 i <

Ln

2
;

dH ¼ 1

2
ln

Ln

2

� �
; i P

Ln

2

8>><
>>:
Then for any k > gn, we have
Eðd̂1;k � d̂gn;kÞ ¼
XLn
i¼0

XLn
j¼0

P p̂1;k ¼
i
Ln

; p̂gn;k ¼
j
Ln

� �
ðdðiÞ � dðjÞÞ i; j <

Ln

2

� 	�

þðdH � dðjÞÞ i P
Ln

2
; j <

Ln

2

� 	
þ ðdðiÞ � dHÞ i <

Ln

2
; j P

Ln

2

� 	�

¼
XLn�1

i¼0

XLn
j¼iþ1

P p̂1;k ¼
j
Ln

; p̂gn;k ¼
i
Ln

� �
� P p̂1;k ¼

i
Ln

; p̂gn;k ¼
j
Ln

� �� �

� � 1

2
ln

Ln � 2j
Ln � 2i

� �� �
i; j <

Ln

2

� 	
þ ðdH � dðiÞÞ i <

Ln

2
; j P

Ln

2

� 	� �

6 dH
XLn�1

i¼0

XLn
j¼iþ1

P p̂1;k ¼
j
Ln

; p̂gn;k ¼
i
Ln

� �
� P p̂1;k ¼

i
Ln

; p̂gn;k ¼
j
Ln

� �� �
. ðA:1Þ
For a single position r, let Y1k,r = 1 if S1,r 5 Sk,r, 0 otherwise, and let Y gnk;r ¼ 1 if Sgn;r 6¼ Sk;r, 0

otherwise. It follows that Y 1k;r and Y gnk;r are dependent Bernoulli (p1,k) and Bernoulli (pgn;k) ran-
dom variables. For 1 6 l 6 Ln, define X ðlÞ

1k ¼
Pl

r¼1Y 1k;r, and X ðlÞ
gnk

¼
Pl

r¼1Y gnk;r. We note that
XLn�1

i¼0

XLn
j¼iþ1

P p̂1;k ¼
j
Ln

; p̂gn;k ¼
i
Ln

� �
� P p̂1;k ¼

i
Ln

; p̂gn;k ¼
j
Ln

� �� �

¼
XLn�1

i¼0

XLn
j¼iþ1

P ðX ðLnÞ
1k ¼ j;X ðLnÞ

gnk
¼ iÞ � P ðX ðLnÞ

1k ¼ i;X ðLnÞ
gnk

¼ jÞ
� �

<
XLn
i¼0

XLn
j¼0

P ðX ðLnÞ
1k ¼ j;X ðLnÞ

gnk
¼ iÞ � P ðX ðLnÞ

1k ¼ i;X ðLnÞ
gnk

¼ jÞ



 


 ðA:2Þ
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and, by properties of the total variation distance (see Section A.1)
XLn
i¼0

XLn
j¼0

P ðX ðLnÞ
1k ¼ j;X ðLnÞ

gnk
¼ iÞ � P ðX ðLnÞ

1k ¼ i;X ðLnÞ
gnk

¼ jÞ



 




6 ðLnÞ
X1
i¼0

X1
j¼0

P ðY 1k;r ¼ j; Y gnk;r ¼ iÞ � PðY 1k;r ¼ i;Xgnk;r ¼ jÞ


 

. ðA:3Þ
Let p1k;gnkði; jÞ ¼ PðY 1k;r ¼ i; Y gnk;r ¼ jÞ, and let q1k;gnkði; jÞ ¼ P ðY 1k;r ¼ j; Y gnk;r ¼ iÞ for i, j 2 0,1.

Assume, without loss of generality, that sequence S1,r = 0 for all positions r. We bound the dis-
tance

P
i;jjp1k;gnkði; jÞ � q1k;gnkði; jÞj. Because p1k;gnkði; iÞ ¼ q1k;gnkði; iÞ, we need only evaluate one of

the two cases where i 5 j (by symmetry, jp1k;gnkð1; 0Þ � q1k;gnkð1; 0Þj ¼ jp1k;gnkð0; 1Þ � q1k;gnkð0; 1Þj).
The probability p1k;gnkð1; 0Þ ¼ P ðY 1k;r ¼ 1; Y gnk;r ¼ 0Þ is given by
p1k;gnkð1; 0Þ ¼ P ðS1;r ¼ 0; Sgn;r ¼ 1; Sk;r ¼ 1Þ ¼ p1;gnð1� pgn;kÞ ðA:4Þ
and the probability q1k;gnkð1; 0Þ ¼ PðY 1k;r ¼ 0; Y gnk;r ¼ 1Þ is given by
q1k;gnkð1; 0Þ ¼ P ðS1;r ¼ 0; Sgn;r ¼ 1; Sk;r ¼ 0Þ ¼ p1;gnpgn;k. ðA:5Þ
It follows that
jp1k;gnkð1; 0Þ � q1k;gnkð1; 0Þj ¼ p1;gnð1� 2pgn;kÞ <
1

2
ð1� 2peÞ

k�gn ðA:6Þ
and with this bound we have, for each k,
Eðd̂1;k � d̂gn;kÞ 6 dH
XLn�1

i¼0

XLn
j¼iþ1

P p̂1;k ¼
j
Ln

; p̂gn;k ¼
i
Ln

� �
� P p̂1;k ¼

i
Ln

; p̂gn;k ¼
j
Ln

� �� �

< Lnð1� 2peÞ
k�gn 1

2
ln

Ln

2

� �� �
. ðA:7Þ
Summing over all of the terms, we find
E
Xn

k¼gnþbnþ1

d̂1;k � d̂gn;k

 !
¼ Ln

2
ln

Ln

2

� � Xn
k¼gnþbnþ1

ð1� 2peÞ
k�gn

¼ Ln

2
ln

Ln

2

� �
ð1� 2peÞ

bnþ1
Xn�ðgnþbnþ1Þ

k¼0

ð1� 2peÞ
k

¼ Ln

2
ln

Ln

2

� �
ð1� 2peÞ

bnþ1 1� ð1� 2peÞ
n�ðgnþbnÞ

1� ð1� 2peÞ

 !

<
lnðnÞ
2pe

snsð1� 2peÞ
bn ðA:8Þ
for sequences of length Ln = ns. To bound the expectation of the sum of differences ðd̂2;k � d̂gnþ1;kÞ,
we note that for any k > gn + 1
Eðd̂2;k � d̂gnþ1;kÞ ¼ Eðd̂1;k�1 � d̂gn;k�1Þ ðA:9Þ
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and so we also find
E
Xn

k¼gnþbnþ1

ðd̂2;k � d̂gnþ1;kÞ
 !

<
lnðnÞ
2pe

snsð1� 2peÞ
bn ðA:10Þ
as above. h

Proof of Theorem 1. By definition, for any gn > 2, the expectation of D̂gn;gnþ1 � D̂12 is equal to
E d̂gn;gnþ1 �
1

n� 2
ðd̂gn. þ d̂gnþ1.Þ � d̂12 þ

1

n� 2
ðd̂1. þ d̂2.Þ

� �

¼ 1

n� 2
ðEðd̂1. � d̂gn.Þ þ Eðd̂2. � d̂gnþ1.ÞÞ ðA:11Þ
by the equality of d12 and dgn;gnþ1.

To derive the result, we divide the terms into three regions. The first region is defined for
k 2 [1,gn + 1], the second region is defined by k 2 [gn + 2,gn + bn] where bn = nb for any b 2 ð0; 12Þ,
and the final region includes those terms for which k > gn + bn.

For the first region we find that
Xgnþ1

k¼1

Eððd̂1;k � d̂gnkÞ þ ðd̂2;k � d̂gnþ1;kÞÞ ¼ 0; ðA:12Þ
an intuitive result that is easily verified by direct calculations.
For the remaining terms, we first consider those terms for which k is relatively close to gn, with

k 2 [gn + 2,gn + bn]. In this region, the mutation probabilities p1k ¼ 1
2 ð1� ð1� 2peÞ

k�1Þ >
1
2 ð1� ð1� 2peÞ

gnÞ, and because gn = nc it is clear that, for sequences of polynomial length, many
estimates p̂1;k and p̂2k will be greater than or equal to 1

2. However, some of the mutation
probabilities pgn;k will not be large in this region, and we can expect, for k close to gn, that the
distance estimates d̂gn;k and d̂gnþ1;k will be well-defined and, therefore, less than the maximum
value dw. To account for this behavior in our analysis, we bound the expectation by assuming that

all estimates d̂1;k and d̂2;k are assigned the maximum value dH ¼ 1
2 logð

Ln
2 Þ, while all estimates d̂gn;k

and d̂gnþ1;k are well-defined. It follows that, for sequences of length Ln = ns for any s > 1,
Xgnþbn

k¼gnþ2

Eððd̂1;k � d̂gn;kÞ þ ðd̂2;k � d̂gnþ1;kÞÞ

<
Xgnþbn

k¼gnþ2

ðdH � Eðd̂gn;kÞÞ þ ðdH � Eðd̂gnþ1;kÞÞ
� �

< 2bnd
H < bns lnðnÞ. ðA:13Þ
In the region for which k > gn + bn, the distances d1k and dgn;k are both sufficiently large that, for

sequences of polynomial length, the distributions of p̂1;k and p̂gn;k are nearly identical. We find that

the expectation of the differences ðd̂1;k � d̂gn;kÞ and ðd̂2;k � d̂gnþ1;kÞ is negligible in this region,
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decreasing to 0 with n as established in Lemma 6. Aggregating these results, an overall upper
bound is given by
EðD̂gn;gnþ1 � D̂12Þ 6
lnðnÞ
n� 2

sbn þ
snsð1� 2peÞ

bn

pe

 !
ðA:14Þ
and for bn = nb for any b 2 ð0; 1
2
Þ and pe > 0; nsð1� 2peÞ

bn ¼ oðn�1Þ. h

Lemmas 7 and 8 are employed in the Proof of Theorem 2.
Lemma 7. For any distance estimate d̂ ij with p̂ij < 1
2,
Eðd̂ ijÞ <
s
4
þ 1

2
þ s
n

� �
lnðnÞ � 1

2
lnð2Þ.
Proof of Lemma 7. To establish this result, we first show that P ðp̂ij P 1
2
� 1

n
ffiffiffiffi
Ln

p Þ < 2
n. Note that, for

any well-defined estimate p̂ij,
P p̂ij P
1

2
� 1

n
ffiffiffiffiffi
Ln

p
� �

¼ P p̂ij 2
1

2
� 1

n
ffiffiffiffiffi
Ln

p ;
1

2

� �� �
. ðA:15Þ
Let p̂ij ¼ 1
Ln
X ij, where X ij ¼

PLn
r¼1ðSi;r 6¼ Sj;rÞ � BðLn; pijÞ. Assume, with-out loss of generality, that

Ln is an even integer. Then
P
Ln

2
�

ffiffiffiffiffi
Ln

p

n
6 X ij <

Ln

2

� �
< P

Ln

2
�

ffiffiffiffiffi
Ln

p

n

� �
6 X ij <

Ln

2

� �
; ðA:16Þ
where d
ffiffiffiffi
Ln

p

n e denotes the smallest integer greater than
ffiffiffiffi
Ln

p

n . Let X 0 be a binomial random variable

with size Ln and probability p0 ¼ 1
2
� 1

Ln
d
ffiffiffiffi
Ln

p

n e. Of all binomial random variables with size Ln and

probability p 2 1
2
� 1

Ln

ffiffiffiffi
Ln

p

n

l m
; 1
2

h �
, the distribution of X 0 has the smallest variance. Thus, the

maximum value of the probability mass function of X 0, which is achieved at its expected value,
is greater than the maximum value achieved by any other binomial random variable of size Ln

on the interval Ln
2
�

ffiffiffiffi
Ln

p

n

l m
; Ln
2

h �
. It follows that:
P
Ln

2
�

ffiffiffiffiffi
Ln

p

n

� �
6 X ij <

Ln

2

� �
< P X 0 ¼ Ln

2
�

ffiffiffiffiffi
Ln

p

n

� �� � ffiffiffiffiffi
Ln

p

n

� �
. ðA:17Þ
By Stirling’s approximation, L! �
ffiffiffiffiffiffi
2p

p
LðLþ1

2Þe�L. Then for any B(L,p) random variable X for which
Lp is an integer
P ðX ¼ LpÞ ¼ L!
ðLpÞ!ðLð1� pÞÞ! p

Lpð1� pÞLð1�pÞ

� LLþ1
2ffiffiffiffiffiffi

2p
p

ðLpÞLpþ
1
2ðLð1� pÞÞLð1�pÞþ1

2

pLpð1� pÞLð1�pÞ
� �

¼ ð2pLpð1� pÞÞ�
1
2. ðA:18Þ
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With this result, we have
P X 0 ¼ Ln

2
�

ffiffiffiffiffi
Ln

p

n

� �� �
� 2pLn

1

2
� 1

Ln

ffiffiffiffiffi
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6 2pLn
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� 1
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p

n

� �� �2
 !�1

2

<
2ffiffiffiffiffi
Ln

p ðA:19Þ
for all s P 1 and n P 4, and it follows directly that
P p̂ij P
1

2
� 1ffiffiffiffiffi

Ln
p

n

� �
< P X 0 ¼ Ln

2
�

ffiffiffiffiffi
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p
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� �
<

2

n
. ðA:20Þ
By definition, d̂ ij ¼ � 1
2
lnð1� 2p̂ijÞ for all p̂ij < 1

2
. Then, for even integers Ln, the maximum pos-

sible value for d̂ ij ¼ dH ¼ � 1
2
lnð1� 2ð1

2
� 1

Ln
ÞÞ ¼ 1

2
lnðLn

2
Þ; and so we may conservatively bound the

expectation of d̂ ij with the expression
Eðd̂ ijÞ 6 � 1

2
ln 1� 2
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2
� 1
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ffiffiffiffiffi
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2
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� �
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� �
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. ðA:21Þ
The final result follows from simplifying the expression for sequences of length Ln = ns. h

Lemma 8. If gn = nc for any c 2 ð0; 1
2
Þ, then
P p̂1;k <
1

2
; p̂gn;k P

1

2

� �
>

1

4
� 1

2
dgn;k þ oðn�1Þ
 �

;

where dgn;k ¼ P ðp̂gn;k < 1
2
Þ � 1

2
.

Proof of Lemma 8. For any k > gn, the probability Pðp̂1;k < 1
2
Þ ¼ 1

2
þ d1k, with d1k ! 0 as k !1,

and, similarly, P ðp̂gn;k < 1
2
Þ ¼ 1

2
þ dgnk. Letting X 1k ¼ Lnp̂1;k and Xgnk ¼ Lnp̂gn;k, we have
P p̂1;k <
1

2
; p̂gn;k P

1

2

� �
¼ P X 1;k <

Ln

2
;Xgn;k P

Ln

2

� �
.

Because X1k and Xgnk will be nearly independent for large k, we derive a bound by analyzing the
difference between the joint probability and the product of the marginal probabilities,
P X 1k <
Ln

2
;Xgnk P

Ln

2

� �
� P X 1k <

Ln

2

� �
P X gnk P
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2

� �










¼ P X 1k <
Ln

2

� �
P Xgnk P

Ln

2
X 1k <

Ln

2






� �

� P Xgnk P
Ln

2

� �� �










6

XLn2 �1

i¼0

PðX 1k ¼ iÞ
XLn
j¼0

jPðXgnk ¼ jjX 1k ¼ iÞ � P ðXgnk ¼ jÞj. ðA:22Þ
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By Lemma 11,
XLn
j¼0

jP ðXgnk ¼ jjX 1k ¼ iÞ � PðXgnk ¼ jÞj 6 Lnð1� 2peÞ
gnþ1

1� ð1� 2peÞ
2

ðA:23Þ
and thus
P X 1k <
Ln

2
;Xgnk P

Ln

2

� �
P P X 1k <

Ln

2

� �
P Xgnk P

Ln

2

� �
� Lnð1� 2peÞ

gnþ1

1� ð1� 2peÞ
2

" #

¼ 1

2
þ d1k

� �
1

2
� dgnk �

Lnð1� 2peÞ
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1� ð1� 2peÞ
2

 !

>
1

4
� 1

2
dgnk þ

Lnð1� 2peÞ
gnþ1

1� ð1� 2peÞ
2

 !
; ðA:24Þ
where, for sequences of length Ln = ns and gn = nc for c 2 ð0; 1
2
Þ,
Lnð1� 2peÞ
gnþ1

1� ð1� 2peÞ
2
¼ cnsð1� 2peÞ

nc ¼ oðn�1Þ ðA:25Þ
for all pe > 0. h

Proof of Theorem 2. For any pair of observations d̂1;k and d̂gn;k, let the variable Yk be defined as
follows:
Y k ¼

RR if p̂1;k < 1
2

and p̂gn;k <
1
2
;

RF if p̂1;k < 1
2

and p̂gn;k P
1
2
;

FR if p̂1;k P 1
2

and p̂gn;k <
1
2
;

FF if p̂1;k P 1
2

and p̂gn;k P
1
2
.

8>>><
>>>:

ðA:26Þ
Conditioning on Yk, we have
Varðd̂1;k � d̂gn;kÞ ¼ EðVarðd̂1;k � d̂gn;kjY kÞÞ þ VarðEðd̂1;k � d̂gn;kjY kÞÞ
P VarðEðd̂1;k � d̂gn;kjY kÞÞ. ðA:27Þ
We recall Inequality (A.7) in the Proof of Lemma 6 which states that, for sequences of length
Ln = ns for any integer s, for k > gn,
Eðd̂1;k � d̂gn;kÞ 6 snsð1� 2peÞ
k�gn lnðnÞ
and, since d1k P dgnk for all gn > 1;Eðd̂1;k � d̂gn;kÞ P 0. By definition,
VarðEðd̂1;k� d̂gn;kjY kÞÞ¼
X

i2fFF ;FR;RF ;RRg
P ðY k ¼ iÞðEðd̂1;k� d̂gn;kjY k ¼ iÞ�Eðd̂1;k� d̂gn;kÞÞ

2

P PðY k ¼RF Þ E d̂1;k p̂1;k <
1

2






� �

�dH

� �
�Eðd̂1;k� d̂gn;kÞ

� �2

. ðA:28Þ
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Because Eðd̂1;k � d̂gn;kÞ P 0 and Eðd̂1;kjp̂1;k < 1
2
Þ � dH

6 0, it is clear that
PðY k ¼ RF Þ E d̂1;k p̂1;k <
1

2
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�
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�� �2

. ðA:29Þ
By Lemma 7, we have, for dH ¼ 1
2
lnðLn

2
Þ ¼ s

2
lnðnÞ � 1

2
lnð2Þ,
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� �








P s

4
� 1

2
� s
n

� �
lnðnÞ. ðA:30Þ
Substituting this inequality into (A.29), it follows that:
VarðEðd̂1;k � d̂gn;kjY kÞÞ P P ðY k ¼ RF Þ s
4
� 1

2
� s
n

� �
lnðnÞ

� �2

. ðA:31Þ
Theorem 2 follows directly from this result and Lemma 8. h

Lemmas 9, 11, 12 and 13 are employed in the Proof of Theorem 3 and Corollary 4.

Lemma 9. For any four sequences Sa, Sb, Sc, and Sd with a 5 b and c5 d,
0 6 Covðd̂ab; d̂cdÞ 6
1

2
ln

Ln

2

� �� �2

max
06i6Ln

XLn
j¼0

P p̂cd ¼
j
Ln

p̂ab ¼
i
Ln






� �

� P p̂cd ¼
j
Ln

� �








.
Proof of Lemma 9. We first establish the upper bound. Define the distance function d(i) as in
Proof of Lemma 6. Then
Covðd̂ab; d̂cdÞ ¼
XLn
i¼0

P p̂ab ¼
i
Ln

� �
dðiÞ

XLn
j¼0

dðjÞ P p̂cd ¼
j
Ln

p̂ab ¼
i
Ln






� �

� P p̂cd ¼
j
Ln

� �� �
.

ðA:32Þ

Bounding d(i) and d(j) by dH ¼ 1

2
lnðLn

2
Þ for all i and j, we have
Covðd̂ab; d̂cdÞ 6
XLn
i¼0

P p̂ab ¼
i
Ln

� �
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2
ln

Ln
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� �� �2XLn
j¼0
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j
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6
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2
ln

Ln
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� �� �2

max
06i6Ln

XLn
j¼0

P p̂cd ¼
j
Ln

p̂ab ¼
i
Ln






� �

� P p̂cd ¼
j
Ln

� �








.
The lower bound follows from Proposition 10.

Proposition 10. For any sequence length Ln and any sequences Sa, Sb, Sc, and Sd with a 6 b 6 c 6 d,

(i) Covðd̂ac; d̂bdÞ P 0,
(ii) Covðd̂ad ; d̂bcÞ P 0.



Proof of Proposition 10. To establish this result, we apply a classic result from Lehmann [28].

Definitions

(1) A pair of random variables X and Y are said to be positively quadrant dependent if
P(XP x, YP y) P P(XP x)P(YP x) for all x,y. Let F1 denote the family of all distribu-
tions F satisfying this property.

(2) Two real-valued functions r and s of n arguments are said to be concordant for the ith coor-
dinate, if, considered as functions of the ith coordinate (with all other coordinates held
fixed), they are monotone in the same direction.
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We state the relevant portion of Lehmann’s results:

Theorem. [28] Let (X1,Y1), . . . , (Xn,Yn) be independent pairs of random variables with joint
distributions F1, . . . ,Fn. Let r and s be functions of n variables and let
X ¼ rðX 1; . . . ;XnÞ; Y ¼ sðY 1; . . . ; Y nÞ.

Then ðX ; Y Þ 2 F1 if, for each i, F i 2 F1 and r, s are concordant for the ith coordinate. Furthermore,
provided the expectations E(X) and E(Y) exist, ðX ; Y Þ 2 F1 ) EðXY Þ P EðX ÞEðY Þ.

For each position i in sequences Sa and Sb, let Xab;i ¼ I ðSa;i 6¼sb;iÞ. Let
rðXab;1; . . . ;Xab;LnÞ ¼
� 1

2
ln 1� 2

PLn
i¼1Xab;i

Ln

 !
;
XLn
i¼1

Xab;i <
Ln

2
� 1;

1

2
ln

Ln

2

� �
;

XLn
i¼1

Xab;i P
Ln

2
� 1.

8>>>>><
>>>>>:
We first establish that ðXac;i;Xbd;iÞ 2 F1 and ðXad;i;Xbc;iÞ 2 F1. For binary random variables X
and Y, we need only check that P(X = 1, Y = 1) P P(X = 1)P(Y = 1) to establish that
ðX ; Y Þ 2 F1. In the first case, we have
P ðXac;i ¼ 1;Xbd;i ¼ 1Þ ¼ ð1� pabÞðpbcÞð1� pcdÞ þ ðpabÞð1� pbcÞðpcdÞ

while
P ðXac;i ¼ 1ÞP ðXbd;i ¼ 1Þ ¼ pacpbd .
Taking the difference and simplifying, we find that
P ðXac;i ¼ 1;Xbd;i ¼ 1Þ � P ðXac;i ¼ 1ÞPðXbd;i ¼ 1Þ ¼ ð1� 2pabÞpbcð1� pbcÞð1� 2pcdÞ P 0

ðA:33Þ

since 0 6 pij <

1
2
for all sequences Si and Sj. And in the second case, we have
P ðXad;i ¼ 1;Xbc;i ¼ 1Þ � P ðXad;i ¼ 1ÞP ðXbc;i ¼ 1Þ ¼ ð1� 2pabÞpbcð1� pbd � pcdÞ P 0. ðA:34Þ

Noting that the concordance condition is trivially satisfied, it follows from Lehmann’s Theorem
that:
ðrðXac;1; . . . ;Xac;LnÞ;rðXbd;1; . . . ;Xbd;LnÞÞ 2F1 and ðrðXad;1; . . . ;Xad;LnÞ;rðXbc;1; . . . ;Xbc;LnÞÞ 2F1.
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And since d̂ ij ¼ rðX ij;1; . . . ;X ij;LnÞ for all sequences Si and Sj, we see that ðd̂ac; d̂bdÞ 2 F1 and
ðd̂ad ; d̂bcÞ 2 F1 to complete the proof. h

Lemma 11 (Total variation distance bounds). For three sequences Sa, Sb, and Sc with a < b < c,
ðiÞ max
06i6Ln

XLn
j¼0

P p̂ac ¼
j
Ln

p̂ab ¼
i
Ln






� �

� P p̂ac ¼
j
Ln

� �








 6 2Lnð1� 2peÞ

c�b
;

ðiiÞ max
06i6Ln

XLn
j¼0

P p̂bc ¼
j
Ln

p̂ac ¼
i
Ln






� �

� P p̂bc ¼
j
Ln

� �








 6 Lnð1� 2peÞ

b�a

1� ð1� 2peÞ
2
.

For four sequences Sa, Sb, Sc, and Sd with a < b < c < d,
ðiiiÞ max
06i6Ln

XLn
j¼0

P p̂bd ¼
j
Ln

p̂ac ¼
i
Ln






� �

� P p̂bd ¼
j
Ln

� �� �
6

Lnð1� 2peÞ
d�cþb�a

1� ð1� 2peÞ
2

;

ðivÞ max
06i6Ln

XLn
j¼0

P p̂bc ¼
j
Ln

p̂ad ¼
i
Ln






� �

� P p̂bc ¼
j
Ln

� �� �
6

Lnð1� 2peÞ
d�cþb�a

1� ð1� 2peÞ
2

.

Sketch of Proof of Lemma 11. For a single position r, let Y ij;r ¼ 1fSi;r 6¼Sj;rg for all sequences Si and
Sj. It follows that, for i 6 j 6 k, Yij,r, Yik,r, and Yjk,r are dependent Bernoulli random variables
with respective success probabilities pij, pik, and pjk. By Properties 1 and 2 of the total variation
distance for functions of independent and identically distributed random variables, if Y ¼Pn

i¼1Y i and X ¼
Pn

j¼1X j for (X1, . . . ,Xn) � Bernoulli(p) and (Y1, . . . ,Yn) � Bernoulli(q), then
max
i2f0;...;ng

Xn
j¼0

P p̂ ¼ j
n
q̂ ¼ i

n






� �

� P p̂ ¼ j
n

� �








 6 ðnÞ max

i2f0;1g

X1
j¼0

jPðX 1 ¼ jjY 1 ¼ iÞ � PðX 1 ¼ jÞj.

ðA:35Þ

It therefore suffices to establish bounds for a single position r in each case. We provide the details
of the calculation for Inequality (i) to illustrate the approach. In this case, we wish to bound
max
i

X
j

jP ðY ac;r ¼ jjY ab;r ¼ iÞj � P ðY ac;r ¼ jÞj
for i, j 2 {0,1}. We first note that
PðY ac;r ¼ 1jY ab;r ¼ 0Þ ¼
ð1� pa;bÞpb;c
ð1� pa;bÞ

¼ pb;c ¼
pa;bpb;c
pa;b

¼ P ðY ac;r ¼ 0jY ab;r ¼ 1Þ
and
PðY ac;r ¼ 0jY ab;r ¼ 0Þ ¼ 1� pb;c ¼ P ðY ac;r ¼ 1jY ab;r ¼ 1Þ.

With these calculations,
X1
j¼0

jPðY ac;r ¼ jjY ab;r ¼ 0Þ � PðY ac;r ¼ jÞj ¼ jð1� pb;cÞ � ð1� pa;cÞj þ jpb;c � pa;cj ¼ 2ðpa;c � pb;cÞ

ðA:36Þ
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and
X1
j¼0

jP ðY ac;r ¼ jjY ab;r ¼ 1Þ�P ðY ac;r ¼ jÞj ¼ jpb;c�ð1�pa;cÞjþ jð1�pb;cÞ�pa;cj ¼ 2ð1�pa;c�pb;cÞ.

ðA:37Þ
Since pa;c <
1
2
, we have
2ðpa;c � pb;cÞ 6 2ð1� pa;c � pb;cÞ ¼ ð1� 2peÞ
c�bð1þ ð1� 2peÞ

b�aÞ 6 2ð1� 2peÞ
c�b. �

ðA:38Þ
Lemma 12
ðiÞ
Xgnþ1

k¼1

Xk�1

l¼1

Cov d̂1;k; d̂gnþ1;l

� �
<

1

2
ln

Ln

2

� �� �2 g2n
4
þ Lngnð1� 2peÞ

gn
2

peð1� ð1� 2peÞ
2Þ

" #
;

ðiiÞ
Xn

k¼gnþ2

Xgn
l¼1

Cov d̂1;k; d̂gnþ1;l

� �
<

1

2
ln

Ln

2

� �� �2 g2n
4
þ Lngnð1� 2peÞ

gn
2

peð1� ð1� 2peÞ
2Þ

" #
.

Proof of Lemma 12. When 1 6 l < k 6 gn + 1, the distance estimates d̂1;k and d̂ l;gnþ1 will be highly
correlated when l is small (close to 1) and k is close to gn + 1. To account for these terms, we first
derive a conservative bound for those terms for which l < gn

c and k > ðc�1Þgn
c for some positive con-

stant c < gn:
Xgnþ1

k¼ðc�1Þgn
c þ1

Xgnc �1

l¼1

Cov d̂1;k; d̂ l;gnþ1

� �
<

gn
c
þ 1

� � gn
c
� 1

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðd̂1;kÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðd̂ l;gþnþ1Þ

q

<
gn
c

� �2 1

2
ln

Ln

2

� �� �2

; ðA:39Þ
where the final inequality stems from the fact that the maximum value for d̂1;k ¼ dH ¼ 1
2
lnðLn

2
Þ. For

the remaining terms, we have
Xðc�1Þgn
c

k¼1

Xk�1

l¼1

Cov d̂1;k; d̂l;gnþ1

� �
þ

Xgnþ1

k¼ðc�1Þgn
c þ1

Xk�1

l¼gn
c

Cov d̂1;kd̂1;gnþ1

� �

<
1

2
ln

Ln

2

� �� �2 Ln

1� ð1� 2peÞ
2

 !

�
Xðc�1Þgn

c

k¼1

Xk�1

l¼1

ð1� 2peÞ
gn�kþl þ

Xgnþ1

k¼ðc�1Þgn
c þ1

Xk�1

l¼gn
c

ð1� 2peÞ
gn�kþl

2
4

3
5; ðA:40Þ
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by Lemmas 9 and 11. To simplify the preceding inequalities, we bound the sums over l so that the
remaining terms may be written as geometric series in k. It follows that
Xðc�1Þgn
c

k¼1

Xk�1

l¼1

ð1� 2peÞ
gn�kþl

<
ðc� 1Þgn

c

Xðc�1Þgn
c

k¼1

ð1� 2peÞ
gn�kþ1

¼ ðc� 1Þgn
c

ð1� 2peÞ
gn
c þ1

Xðc�1Þgn
c �1

k¼0

ð1� 2peÞ
k

<
ðc� 1Þgn

2cpe
ð1� 2peÞ

gn
c ðA:41Þ
and, by the same approach
Xgnþ1

k¼ðc�1Þgn
c þ1

Xk�1

l¼gn
c

ð1� 2peÞ
gn�kþl

<
ðc� 1Þgn

2cpe
ð1� 2peÞ

gn
c . ðA:42Þ
Combining Inequalities (A.39), (A.41) and (A.42), we have
Xgnþ1

k¼1

Xk�1

l¼1

Covðd̂1;k; d̂gnþ1;lÞ <
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2Þ

" #
. ðA:43Þ
For the second inequality, we consider terms for which 1 6 l < gn + 1 < k. We follow the identical
approach, first deriving a conservative bound for those terms for which l 6 gn

c and k P ðc�1Þgn
c and

then simplifying the remaining terms to derive the inequality
Xn
k¼gnþ2

Xgn
l¼1

Covðd̂1;k; d̂gnþ1;lÞ <
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" #
. ðA:44Þ
Since Inequalities (A.43) and (A.44) hold for any integer c 2 [2,gn � 1], we choose c = 2 for
convenience to derive the final results. h
Lemma 13
Xn
k¼gnþ2

Xn
l¼gnþ1

Covðd̂1;k; d̂gnþ1;lÞ 6
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gn
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2

.

Proof of Lemma 13. We first consider the terms in the summation for which 1 < gn + 1 < k 6 l.
In this region, the distances d1k and dgnþ1;l partially overlap, and some correlation between the
distance estimates is expected. Applications of Lemmas 9 and 11 give the inequality
Xn

k¼gnþ2

Xn
l¼k

Covðd̂1;k; d̂gnþ1;lÞ 6
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We now consider the terms with 1 < gn + 1 6 l < k. In this region, the correlations between esti-
mates d̂1;k and d̂gnþ1;l are weakened by the large distance between sequences S1 and Sgn

. Again
applying Lemmas 9 and 11 and bounding as above, we derive the inequality
Xn
k¼gnþ2

Xk�1

l¼gnþ1

Covðd̂1;k; d̂gnþ1;lÞ < ðn� gnÞ
2 1

2
ln
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2
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gn

1� ð1� 2peÞ
2
. � ðA:46Þ
Proof of Theorem 3. From Lemma 9,
Xn

k¼1

Xn
l¼1

Covðd̂1;k � d̂gn;k; d̂2l � d̂gnþ1;lÞ P �
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Xn
l¼1

½Covðd̂1;k; d̂gnþ1;lÞ þ Covðd̂gn;k; d̂2lÞ�.

ðA:47Þ

The proof then consists of deriving the following bounds:
Xn
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and
Xn
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Xn
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� �
. ðA:49Þ
To establish the first inequality, we divide the sum into sections and bound each case. Because the
derivation of Inequality (A.49) is nearly identical to that of Inequality (A.48), the result is stated
without proof.

In the first region, we consider terms with either 1 6 k 6 gn + 1 6 l or 1 6 k 6 l 6 gn + 1. The
distance estimates d̂1;k and d̂gnþ1;l are independent in either case, and thus
Xgnþ1

k¼1

Xn
l¼k

Covðd̂1;k; d̂gnþ1;lÞ ¼ 0. ðA:50Þ
We bound the remaining regions in Lemmas 12 and 13. These results, in combination, cover all of
the n2 terms in the sum

Pn
k¼1

Pn
l¼1Covðd̂1;k; d̂gnþ1;lÞ, and so we derive the overall bound
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for gn = nc with c > 0. h

Sketch of Proof of Corollary 4. We summarize the result for the first inequality. By Lemma 9,
Xn�1
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h i

. ðA:51Þ
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For this first term,
Xn�1

k¼1

Xn
l¼kþ1

Cov d̂1;k; d̂gn;l

� �
¼ Cov
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� �
ðA:52Þ
by the independence of d̂1;k and d̂gn;l for k < gn < l and k < l < gn. And following the Proof of
Lemma 13, we find that
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For the second term, we note that
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For the first two summations in Eq. (A.54), we follow the Proof of Lemma 12 to establish that
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ðA:55Þ
and for the third summation, we follow the Proof of Lemma 13 to obtain
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Combining these results, we have
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Lemmas 14 and 15 are employed in Proof of Theorem 5.
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Lemma 14
VarðDnÞ ¼
1

n� 2

� �2

Var d̂1. � d̂gn.
� �

þ d̂2. � d̂gnþ1.
� �� �

þO n
�ðs�1Þ

2 lnðnÞ
� �

.

Proof of Lemma 14. Beginning with the variance of d̂gn;gnþ1 � d̂12

� �
, we see that, because the

random variables d̂gn;gnþ1 and d̂12 are independent and identically distributed
Var d̂gn;gnþ1 � d̂12

� �
¼ Var d̂gn;gnþ1

� �
þ Var d̂12

� �
¼ 2Var d̂12

� �
.

Define X12 to be a random variable which counts the number of observed differences between se-
quences 1 and 2. Then X12 follows a Binomial distribution with size Ln and probability p12, and,
for large values of Ln, the proportion of differences p̂12 will be approximately normally distributed
with mean p12 and variance p12ð1�p12Þ

Ln
. Because p12 = pe and Ln = ns, it is clear that Varðp̂12Þ ¼

1�ð1�2peÞ2
4ns ! 0 as n !1 for any constant value pe. Since d̂12 ¼ � 1

2
lnð1� 2p̂12Þ, by straightforward

Taylor series calculations in the neighborhood of p12 we have Varðd̂12Þ � 1�ð1�2peÞ2

4nsð1�2peÞ2
! 0, and it

follows that Varðd̂gn;gnþ1 � d̂12Þ ¼ Oðn�sÞ.
For the covariance terms, we have
Cov d̂gn;gnþ1 � d̂12; d̂1.� d̂gn.
� �
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Cov d̂gn;gnþ1 � d̂12; d̂2. � d̂gnþ1.
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Because Varðd̂gn;gnþ1 � d̂12Þ ¼ Oðn�sÞ, we need only show that the variance of ðd̂1. � d̂gn.Þ and
ðd̂2. � d̂gnþ1.Þ is not growing at a rate greater than or equal to ns to establish the overall conver-
gence of the covariance terms. To bound Varðd̂1. � d̂gn.Þ, we see that
Var
Xn
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 !
¼
Xn
k¼1

Var d̂1;k
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þ
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Var d̂gn;k

� �
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Cov d̂1;k; d̂gn;l

� �

6

Xn
k¼1

Var d̂1;k

� �
þ
Xn
k¼1

Var d̂gn;k

� �
by the positivity of the covariance of all pairs of distances as established in Lemma 9. Bounding
each variance term by the largest possible value (dw)2, we have
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 !
6 2nðdHÞ2 ¼ n

2
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<
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ðlnðnÞÞ2 ¼ OðnðlnðnÞÞ2Þ
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and it follows that
Cov d̂gn;gnþ1 � d̂12; d̂1. � d̂gn.
� �
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Lemma 15
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Proof of Lemma 15. Expanding the first term in the expression, we have
Var d̂1. � d̂gn.
� �

¼
Xn
k¼1

VarðDkÞ þ 2
Xn�1

k¼1

Xn
l¼kþ1

CovðDk;DlÞ. ðA:60Þ
Beginning with the variance terms, we consider only those values of k for which k P gn + bn,
where bn = nb for some b 2 ð0; 1

2
Þ. In this region, both the distance estimates d̂1;k and d̂gn;k are likely

to be ‘corrected’ to the value dw with nearly equal probability, since, for sequences of polynomial
length, the true mutation probabilities p̂1;k and p̂gn;k will both be greater than pH ¼ ð1

2
� 1

Ln
Þ. And,

because gn is large, the random variables p̂1;k and p̂gn;k are nearly independent. Thus, for any pair
of distance estimates fd̂1;k; d̂gn;kg, the probability that either estimate is corrected to the value dw

will approach 1
2
for large values of k. By Theorem 2, this behavior results in the inequality
Varðd̂1;k � d̂gn;kÞ P
1

4
� dgnk

2
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� �
s
4
� 1

2
� s
n

� �2

ðlnðnÞÞ2;
where dgnk ¼ P p̂gn;k <
1
2

 �
� 1

2
! 0 as k !1. Applying this inequality to the terms for which

k > gn + bn, we have
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where cb;s;n ! ð1
4
Þðs

4
� 1

2
Þ2 as n !1. And for the covariance terms in Eq. (A.60),
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by Corollary 4. For Varðd̂2. � d̂gnþ1.Þ, we note that, for all k > gn þ 1;Varðd̂2;k � d̂gnþ1;kÞ ¼
Varðd̂1;k�1 � d̂gn;k�1Þ. We therefore bound the sum as for the previous term and again apply
Corollary 4, deriving the identical bound
Varðd̂2. � d̂gnþ1.Þ > ðlnðnÞÞ2 ðn� ðgn þ bnÞÞcb;s;n �
g2ns

2

4
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Proof of Theorem 5. By definition,
VarðD̂gngnþ1� D̂12Þ ¼Var ðd̂gn;gnþ1� d̂12Þþ
1

n� 2
ðd̂1.� d̂gn.Þþ

1

n� 2
ðd̂2.� d̂gnþ1.Þ

� �

¼Varðd̂gn;gnþ1� d̂12Þþ
1
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þ 2
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� �
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þ 2
1

n� 2
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Covðd̂1.� d̂gn.; d̂2.� d̂gnþ1.Þ.
To analyze this expression, we first note that, by Lemma 14, the terms involving ðd̂gn;gnþ1 � d̂12Þ
are negligible for sequences of polynomial length. Focusing on the remaining terms, we employ
the lower bounds for Varðd̂1. � d̂gn.Þ and Varðd̂2. � d̂gnþ1.Þ obtained in Lemma 15. And by
Theorem 3,
Covðd̂1. � d̂gn.; d̂2. � d̂gnþ1.Þ P � 1

2
ln

Ln

2

� �� �2

½g2n þ oðn�1Þ�.
We combine this inequality with the results from Lemmas 14 and 15 to establish the overall
variance bound. h
A.1. Total variation distance results

The following properties are easily verified, and are therefore stated without proof.

Property 1. For two sequences of independent and identically distributed random variables
Y1,Y2, . . . ,Yk and Z1,Z2, . . . ,Zk,
TVððY 1; Y 2; . . . ; Y kÞ; ðZ1; Z2; . . . ;ZkÞÞ 6 ðkÞTVðY 1;Z1Þ.
Property 2. For any two random vectors Y = (Y1,Y2, . . . ,Yk) and Z = (Z1,Z2, . . . ,Zk) and any
function f,
TVðf ðYÞ; f ðZÞÞ 6 TVðY;ZÞ.
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