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Superefficiency
A. W. van der Vaart1

ABSTRACT We review the history and several proofs of the famous result
of Le Cam that a sequence of estimators can be superefficient on at most a
Lebesgue null set.

27.1 Introduction

The method of maximum likelihood as a general method of estimation in
statistics was introduced and developed by Fisher (1912, 1922, 1925, 1934). It
gained popularity as it appeared that the method automatically produces efficient
estimators if the number of observations is large. The concept of asymptotic
efficiency was invented by Fisher as early as 1922 roughly in the form as we
use it for regular models today: a sequence of statistics is efficient if it tends to
a normal distribution with the least possible standard deviation. In the 1930s
and 1940s there were many steps in the direction of a rigorous foundation of
Fisher’s remarkable insights. These consisted both of proofs of the asymptotic
normality of maximum likelihood estimators and of obtaining lower bounds for
the variance of estimators.

Chapters 32 and 33 of Cram´er (1946) give a summary of the state of affairs
in the mid 1940s, even though some work carried out in the early war years,
notably Wald’s, had been unavailable to him. Chapter 32 gives a rigorous proof
of what we now know as the Cram´er-Rao inequality and next goes on to define
the asymptotic efficiency of an estimator as the quotient of the inverse Fisher
information and the asymptotic variance. Next Chapter 33 gives a rigorous
proof of asymptotic normality of the maximum likelihood estimator, based on
work by Dugué (1937).

Cramér defines an estimator sequence to beasymptotically efficientif its
asymptotic efficiency (the quotient mentioned previously) equals one. Thus
combination of the results of the two chapters leads to the correct conclusion that
the method of maximum likelihood produces asymptotically efficient estimators,
under some regularity conditions on the underlying densities. Apparently the
conceptual hole in the definition was not fully recognized until 1951, even
though the difficulty must have been clear to several authors who had worked
on establishing efficiency within restricted classes of estimators.
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In 1951 Hodges produced the first example of asuperefficientestimator
sequence: an estimator sequence with efficiency at least one for allθ and more
than one for someθ . An abstraction of Hodges’ example is the following. Let
Tn be a sequence of estimators of a real parameterθ such that the sequence√

n(Tn − θ) converges to some limit distribution ifθ is the true parameter,
under everyθ . If Sn = Tn1

{|Tn| > n−1/4
}
, then the probability of the sequence

of events{Tn = Sn} converges to one under everyθ �= 0, while underθ = 0
the probability of the event{Sn = 0} converges to one. In particular, if the first
sequence of estimatorsTn is asymptotically efficient in the sense of Cram´er,
then the sequenceSn is superefficient atθ = 0.

Hodges’ example revealed a difficulty with the definition of asymptotic
efficiency and threw doubt on Fisher’s assertion that the maximum likelihood
estimator is asymptotically efficient. In this paper we review three lines of
approach addressing the matter. They were all initiated by Le Cam. Already
in 1952 Le Cam had announced in an abstract to the Annals of Mathematical
Statistics that the set of superefficiency can never be larger than a Lebesgue null
set. In the next section we review his proof, which appeared in Le Cam (1953).
Le Cam’s second approach is present in Le Cam (1973) and is based on
automatic invariance. We discuss it in Section 3. The third approach combines
elements of both papers and is given in Section 4. Particularly in this last
section we do not strive for the utmost generality. We hope that simple proofs
may help these beautiful results finally find their way into text books and lecture
notes.

In the following, superefficiencyof a sequence of estimators in the locally
asymptotically normal case will be understood in the sense that

lim sup
n→∞

Eθ �
(√

n(Tn − θ)
) ≤

∫
� d N0,I −1

θ
,

for everyθ , with strict inequality for someθ . Here Iθ is the Fisher information
matrix and� a given loss function.

Convergence in distribution is denoted� and convergence in distribution
under a law given by a parameterθ by θ� .

27.2 The 1953 proof

Le Cam (1953) started his paper with examples of superefficient estimator
sequences. These include Hodges’ example, but also estimators that are
superefficient on a dense set of parameters. Next he went on to prove that
superefficiency can occur only on Lebesgue null sets. The main idea is that the
sequence of maximum likelihood estimators is asymptotically Bayes with respect
to Lebesgue absolutely continuous priors on the parameter set. Specifically, let
θ̂n be the maximum likelihood estimator based on a sample of sizen from a
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density pθ . Under smoothness conditions on the mapθ 
→ pθ Le Cam showed
that

(1) lim sup
n→∞

∫
Eθ �

(√
n(θ̂n − θ)

)
π(θ) dθ ≤ lim inf

n→∞

∫
Eθ �

(√
n(Tn − θ)

)
π(θ) dθ,

for every sequence of estimatorsTn, most prior densitiesπ(θ) and most
symmetric, bounded, continuous loss functions�. Since the standardized
sequence of maximum likelihood estimators

√
n(θ̂n − θ) is asymptotically

normal N(0, I −1
θ ), the first limsup exists as an ordinary limit. Application of

Fatou’s lemma immediately yields that∫ (∫
� d N0,I −1

θ
− lim sup

n→∞
Eθ �

(√
n(Tn − θ)

))
π(θ) dθ ≤ 0.

Superefficiency of the sequenceTn would imply that the integrand is nonnegative.
Since it integrates nonpositive it must be zero almost surely underπ .

Rigorous proofs of the asymptotic normality of the sequence of maximum
likelihood estimators were available, for instance from Cram´er (1946). The
essential part of the preceding argument was therefore the proof of (1). Le Cam
based his proof on a version of the Bernstein-von Mises theorem. Let�

be a random variable with Lebesgue densityπ on the parameter set and
consider

∏n
i =1 pθ (xi ) as the conditional density of(X1, . . . , Xn) given � = θ .

Le Cam (1953) proved (under regularity conditions) that, for everyθ , with ‖ · ‖
denoting the total variation norm,∥∥∥L(√

n(� − θ̂n)| X1, . . . , Xn
) − N(0, I −1

θ )

∥∥∥ → 0, a.s. [Pθ ].

This strengthened earlier results by Bernstein (1934) and von Mises (1931)
to the point where application towards proving (1) is possible. In the present
notation the Bayes risk ofTn can be written∫

Eθ �
(√

n(Tn − θ)
)
π(θ) dθ

= E E
(
�
(√

n(Tn − θ̂n) − √
n(� − θ̂n)

) ∣∣ X1, . . . , Xn

)
.

According to the Bernstein-von Mises theorem the conditional expectation in
this expression satisfies, settingµn = √

n(Tn − θ̂n),

E
(
�
(
µn − √

n(� − θ̂n)
) ∣∣ X1, . . . , Xn

)
−

∫
� d N−µn,I

−1

θ̂n

→ 0,

almost surely under everyθ , hence also under the mixtures
∫

P∞
θ π(θ) dθ .

It is assumed at this point that the loss function� is bounded; otherwise a
stronger version of the Bernstein-von Mises theorem would be necessary. For
the usual symmetric loss functions the normal expectation in the preceding
display decreases ifµn is replaced by zero. This readily leads to (1).

From today’s perspective the references to asymptotic normality and the
maximum likelihood estimator are striking. As Le Cam was later to point
out neither of the two are essential for the principle of superefficiency. The
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special role of maximum likelihood estimators was removed in Le Cam (1956),
where they were replaced by one-step estimators. Next Le Cam (1960,
1964) abstracted the structure of asymptotically normal problems into the
‘local asymptotic normality’ condition and finally removed even the latter in
Le Cam (1972, 1973).

The use of Bayes estimators is in tune with the statistical paradigm of the
1940s and 1950s. Wald (1950)’s book firmly established statistical decision
theory as the basis of statistical reasoning. A main result was that Bayes
estimators (or rather their limit points) form a complete class. Wolfowitz (1953)
exploited this to explain the impossibility of superefficiency in an informal
manner. The preceding argument shows that the risk functions of Bayes
estimators are asymptotically equivalent to the risk function of the maximum
likelihood estimator. Thus asymptotically the maximum likelihood estimator is
the only Bayes estimator. This would establish its asymptotic admissibility, and
also its optimality. Only a more precise argument would properly explain the
role of sets of Lebesgue measure zero.
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Quadratic risk function of the Hodges estimator based on a sample of
size 10 (dashed), 100 (dotted) and 1000 (solid) observations from the
N(θ, 1)-distribution.

In the final section of his paper Le Cam (1953) also showed that in the
case of one-dimensional parameters superefficient estimators necessarily have
undesirable properties. For the Hodges’ estimatorT = X̄1

{|X̄| > n−1/4
}

based
on a sample of sizen from the N(θ, 1)-distribution this is illustrated in the
Figure, which shows the risk functionθ 
→ nEθ (T − θ)2 for three different
values ofn. Le Cam shows that this behaviour is typical: superefficiency at
the pointθ for a loss function� implies the existence of a sequenceθn → θ

such that lim inf Eθn�
(√

n(Tn − θn)
)

is strictly larger than
∫

� d N0,1/Iθ . For the
extreme case where the asymptotic risk atθ is zero, the liminf is even infinite
for a sequenceθn → θ .
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This result may be considered a forerunner of the local asymptotic minimax
theorem of Hájek (1972), which states that the maximum risk over a shrinking
neighbourhood ofθ is asymptotically bounded below by

∫
� d N0,1/Iθ . A much

earlier result of this type was obtained by Chernoff (1956), who essentially
showed that

lim
c→∞ lim inf

n→∞ sup
−c<h<c

Eθ+h/
√

n

(√
n
∣∣Tn − θ − h/

√
n
∣∣ ∧ c

)2
≥ 1

Iθ
.

Chernoff’s proof is based on a version of the Cram´er-Rao inequality, which
he attributed to Stein and Rubin. The theorem may have looked somewhat too
complicated to gain popularity. Nevertheless H´ajek’s result, for general locally
asymptotically normal models and general loss functions, is now considered the
final result in this direction. H´ajek wrote:

The proof that local asymptotic minimax implies local asymptotic
admissibility was first given by LeCam (1953, Theorem 14). · · ·.
Apparently not many people have studied Le Cam’s paper so far as
to read this very last theorem, and the present author is indebted to
Professor LeCam for giving him the reference.

Not reading to the end of Le Cam’s papers became not uncommon in later
years. His ideas have been regularly rediscovered.

Le Cam’s Theorem 14 about the bad properties of superefficient estimators
only applies to one-dimensional estimators. Le Cam commented:

In the case of an r -dimensional parameter the problem becomes
more complicated. The difficulties involved are conceptual as well as
mathematical.

This is very true: we now know that a similar result is false in dimensions
three and up. Only three years after Le Cam’s paper, Stein (1956) published
his famous paper on estimating a multivariate normal mean. The James-Stein
estimator

Tn = X̄ − (d − 2)
X̄

n‖X̄‖2

is superefficient atθ = 0 for the loss function�(x) = ‖x‖2, and it does not
behave badly in a neighbourhood of this point (for this loss function).

27.3 Automatic invariance

The second approach to proving the impossibility of superefficiency is based
on the remarkable fact that the usual rescaling of the parameter (for instance
consideringh = √

n(θ − θ0) as the parameter, rather thanθ ) automatically
leads to asymptotic equivariance at almost everyθ0. This idea is put forward
in Le Cam (1973) and leads to a completely different proof than the proof in
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Le Cam (1953). On comparing the two papers the difference in style is also
apparent. The main result of Le Cam (1973) asserts shift invariance of limit
experiments and is stated within the abstract framework ofL- and M-spaces.
The important application is only indicated in the second last paragraph:

Toutefois, et pour conclure, mentionnons que la démonstration du
résultat de convolution de Hájek (1970) s’étend à tous les cas considérés
ici, pourvu qu’elle soit faite par la méthode décrite dans Le Cam (1972).

The application must have been obvious to Le Cam. This would explain
that Section 8.4 of Le Cam (1986), which is concerned with the same subject,
seems to end without a conclusion regarding superefficiency as well. In this
section we present a simplified version of Le Cam’s (1973) result, suited to
superefficiency.

Asymptotic equivariance subsumes the H´ajek regularity property, which was
the key requirement for H´ajek (1970)’s convolution theorem. He defined an
estimator sequenceTn based onn observations from a smooth parametric model
to be regular at the parameterθ if

(2)
√

n(Tn − θ − h/
√

n)
θ+h/

√
n� Lθ , everyh,

for some fixed probability distributionLθ . The independence ofLθ of h is the
crucial feature of regularity. H´ajek’s (1970) convolution theorem states that in
this situation the limiting distributionLθ is a convolution of the type

Lθ = N(0, I −1
θ ) ∗ Mθ .

This certainly implies that the covariance matrix ofLθ is bounded below by
the inverseI −1

θ of the Fisher information matrix.
The ‘local uniformity’ in the weak convergence required by H´ajek regularity

looks not too unnatural, though on closer inspection not all interesting estimators
turn out to be regular. Shrinkage estimators are not regular at the shrinkage
point; estimators that are truncated to a parameter set (such asX̄ ∨ 0 if a mean
is known to be positive) are not regular at the boundary of the parameter set.
In these examples the set of points of irregularity is very small. It turns out
that this is necessarily the case. Below we shall show that the regularity holds
automatically at almost all parameter points for any estimator sequence such
that

√
n(Tn − θ) has a limiting distribution under everyθ .

This ‘automatic regularity’ is the key connection to superefficiency, for it
follows that the limit distributionsLθ are convolutions for almost everyθ . In
particular the asymptotic covariance matrix is bounded below by the inverse
Fisher information matrix for almost everyθ . This constitutes a modern proof
of the fact that superefficiency can occur only on Lebesgue null sets.

Hájek’s proof of the convolution theorem is based on delicate calculations
using the special character of local asymptotic normality. Le Cam (1972)’s
theory of limiting experiments puts the result in a very general framework.
Not only does it offer much insight in the Gaussian situation, it also allows
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superefficiency statements in many other situations. We shall now carry out the
preceding steps in more detail and in much greater generality.

From the more general point of view regularity is better described as (local)
asymptotic equivariance. My favourite version (Van der Vaart (1991)) of
Le Cam’s result is as follows. A sequence of experiments (or statistical models)
is said toconvergeto a limit if the marginals of the likelihood ratio processes
converge in distribution to the corresponding marginals of the likelihood ratio
processes in the limit experiment. The precise definition of convergence is not
important for this paper: convergence of experiments only enters as a condition
of the following theorem and through statements regarding concrete examples,
which are not proven here.

(3) Proposition Let the experiments(Xn,An, Pn,h: h ∈ H) converge to a
dominated experiment(Ph: h ∈ H). Let κn: H 
→ D be maps with values in a
Banach spaceD such that

rn
(
κn(h) − κn(h0)

) → κ̇h − κ̇h0,

for some mapκ̇: H 
→ D and linear mapsrn: D 
→ D. Let Tn:Xn 
→ D

be arbitrary maps with values inD such that the sequencern
(
Tn − κn(h)

)
converges in distribution underh, for everyh, to a probability distribution that
is supported on a Æxed separable, Borel measurable subset ofD. Then there
exists a randomized estimatorT in the limit experiment such thatrn

(
Tn −κn(h)

)
converges underh to T − κ̇h, for everyh.

In this proposition a randomized estimator is a measurable mapT :X ×
[0, 1] 
→ D whose law is to be calculated under the product ofPh and the
uniform law. ThusT = T(X,U ) is based on an observationX in the limit
experiment and an independent uniform variableU .

We could call the estimator sequenceTn in the preceding propositionregular
if the limiting distribution underh of the sequencern

(
Tn − κn(h)

)
is the same

for everyh. Then the matching randomized estimator in the limit experiment
satisfies

Lh
(
T − κ̇h

) = L0(T), everyh.

This may be expressed as:T is equivariant-in-lawfor estimating the parameter
κ̇h.

Within the context of the proposition ‘regularity’ has lost its interpretation
as a local uniformity requirement. This is recovered when the proposition is
applied to ‘localized’ experiments. For instance, local asymptotic normality of
the sequence of experiments(Xn,An, Pn

θ : θ ∈ �) at θ entails convergence of
the sequence of local experiments to a Gaussian experiment:

(Xn,An, Pn
θ+h/

√
n: h ∈ R

d) → (
Nd(h, I −1

θ ): h ∈ R
d
)
.

Regularity of a given estimator sequence for the functionalsκn(h) = θ + h/
√

n
in this sequence of localized experiments means exactly H´ajek regularity as in
(2). The proposition shows that the limit distributionLθ is the distribution under
h = 0 of an equivariant-in-law estimator forh in the Gaussian experiment.
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Hájek’s convolution theorem is reproved once it has been shown that every
such equivariant-in-law estimator can be decomposed as a sumX + W of two
independent variables, whereX is Nd(0, I −1

θ )-distributed. In any case the ‘best’
equivariant-in-law estimator isX itself, so that the covariance ofLθ is not
smaller thanI −1

θ .
The following theorem shows that estimator sequences in rescaled experiments

are automatically (almost) regular, at almost every parameter. The proof of the
theorem is based on an extension of a lemma by Bahadur (1964), who used
his lemma to rederive Le Cam (1953)’s result for one-dimensional parameters.
Denote thed-dimensional Lebesgue measure byλd.

(4) Theorem Let (Xn,An, Pn,θ : θ ∈ �) be experiments indexed by a
measurable subset� of R

d. Let Tn:Xn 
→ D and κn: � 
→ D be maps into
a complete metric space such that the mapsθ 
→ E∗

θ f
(
rn,θ (Tn − κn(θ))

)
are

measurable for every Lipschitz functionf : D 
→ [0, 1]. Suppose that

rn,θ

(
Tn − κn(θ)

) θ� Lθ , λd − a.e. θ,

for probability distributionsLθ supported on a Æxed separable, Borel measurable
subset ofD. Then for any matrices�n → 0 there exists a subsequence of{n}
such that

rn,θ+�nh
(
Tn − κn(θ + �nh)

) θ+�nh� Lθ , λ2d − a.e. (θ, h),

along the subsequence.

(5) Lemma For n ∈ N let gn, g: R
d 
→ [0, 1] be arbitrary measurable real

functions such that
gn → g, λd − a.e..

Then given any sequences of vectorsγn → 0 and matrices�n → 0 there exists
a subsequence of{n} such that

(i) gn(θ + γn)→ g(θ), λd − a.e. θ,

(ii) gn(θ + �nh)→ g(θ), λ2d − a.e. (θ, h),

along the subsequence. Ifgn(θ + �nhn) − gn(θ + �nh) → 0 for every sequence
hn → h, then (ii) is true for everyh ∈ R

d, for almost everyθ .

Proof. We prove statement (ii), the proof of (i) being slightly simpler. We may
assume without loss of generality that the functiong is integrable; otherwise we
first multiply eachgn andg with a suitable, fixed, positive, continuous function.
Write p for the standard normal density onRd. Then∫∫ ∣∣g(θ + �nh) − g(θ)

∣∣ p(θ) dθ p(h) dh → 0.

This follows since the inner integral converges to zero for everyh by the
L1-continuity theorem (e.g. Theorem 8.19 of Wheeden and Zygmund) and next
the outer integral converges to zero by the dominated convergence theorem.
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If pn is the density of theNd(0, I + �′
n�n)-distribution, then∫∫ ∣∣gn(θ + �nh) − g(θ + �nh)

∣∣ p(θ)p(h) dθdh =
∫ ∣∣gn(u) − g(u)

∣∣ pn(u) du.

The sequencepn converges inL1 to the standard normal density. Thus the
integral on the right converges to zero by the dominated convergence theorem.
Combination with the preceding display shows that the sequence of functions
(θ, h) 
→ gn(θ+�nh)−g(θ) converges to zero in mean, and hence in probability,
under the standard normal measure. There exists a subsequence along which it
converges to zero almost surely.

In the proof of the theorem abbreviatern,θ

(
Tn − κn(θ)

)
to Tn,θ . Assume

without loss of generality that� = R
d; otherwise fixθ0 such thatTn,θ0

θ0� Lθ0

and letPn,θ = Pn,θ0 for everyθ not in �. Let D0 be the separable Borel subset
of D on which the limit distributionsLθ concentrate. There exists a countable
collectionF of Lipschitz functions f : D 
→ [0, 1], depending only onD0, such
that weak convergence of a sequence of mapsTn:Xn 
→ D to a Borel measure
L on D0 is equivalent to E∗ f (Tn) → ∫

f dL for every f ∈ F . Consider the
functions

gn(θ; f ) = E∗
θ f (Tn,θ ); g(θ; f ) = ∫

f dLθ .

For every fixed f these functions are measurable by assumption andgn → g
pointwise. By the lemma there exists a subsequence of{n} along which

E∗
θ+�nh f (Tn,θ+�nh) → ∫

f dLθ , λ2d − a.e..

The subsequence depends onf , but by a diagonalization scheme we can
construct a subsequence for which this is valid for everyf in the countable set
F . �
(6) Example Suppose that for numbersrn → ∞ the sequence of variables
rn(Tn − θ) converges underθ to a limit distributionLθ for almost everyθ . The
preceding theorem asserts that for almost everyθ there exists a setHθ with
λd(Hc

θ ) = 0 such that

rn(Tn − θ − h/rn)
θ+h/rn� Lθ , everyh ∈ Hθ .

Thus the sequenceTn is almost Hájek regular, at almost everyθ . The first
‘almost’ refers to the setHθ which is almost all ofRd. In most situations this
‘almost’ can be removed from the statement. It is often the case that

‖Pn,θ+hn/rn − Pn,θ+h/rn‖ → 0, everyhn → h.

Then the total variation distance between the laws ofTn − θ − h/rn under
θ + hn/rn and θ + h/rn converges to zero as well and in view of the last
assertion of Lemma 5 the setHθ can be taken equal toRd. �
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The combination of Theorem 4 and the proposition gives interesting applica-
tions far beyond the Gaussian case. The key is that for almost allθ the limit
distributionLθ of an estimator sequence is not ‘better’ than the null distribution
of the best equivariant estimator in the limit experiment. Also when the latter
cannot be characterized as a convolution, the equivariance implies a lower bound
on the risk. The locally asymptotically mixed normal case is well-documented
in Jeganathan (1982, 1983). We give two other examples.

(7) Example Suppose the problem is to estimateθ based on a sample of
sizen from the uniform distributionPθ on the interval [θ, θ +1]. The sequence
of experiments(Pn

θ+h/n: h ∈ R) converges for eachθ to the experiment
consisting of observing a pair with the same distribution as(V + h, h − W) for
independent standard exponential variablesV andW. If the sequencen(Tn −θ)

converges in distribution to a limit for everyθ , then for almost everyθ the limit
distribution Lθ is the distribution of an equivariant-in-law estimatorT based on
(V +h, h−W). The best such estimator in terms of bowl-shaped loss functions
is 1

2

(
(V + h) + (h − W)

) = 1
2(V − W) + h. Its invariant standardized law is

the Laplace distribution, so that we may conclude∫
� dLθ ≥

∫
�(x) e−2|x| dx, λd − a.e. θ.

In this problem a characterization as a convolution is impossible. This can be
seen from the fact thatV + h and 1

2(V − W) are both equivariant estimators,
but their laws have no convolution factor in common.�
(8) Example Suppose the problem is to estimateθ based on a sample of
size n from the distributionPθ with density p(· − θ) on the real line, where
p(x) is differentiable at everyx /∈ {a1, . . . , am} with

∫ |p′(x)| dx < ∞ and
has discontinuities at eachai with p(ai −) = 0 < p(ai +). Then the sequence
(Pn

θ−h/n: h ∈ R) converges for eachθ to the experiment consisting of observing
a single random variable with the same distribution asV + h for a standard
exponential variableV with mean 1/

∑
p(ai +). Since the limit experiment is a

full shift experiment, it admits a convolution theorem. If the sequencen(Tn −θ)

converges in distribution to a limit for everyθ , then for almost everyθ the limit
distribution Lθ contains the distribution ofV as a convolution factor.�

27.4 Superefficiency and loss functions

The combined results of the preceding section give a deep characterization of
the limiting distributions of a sequence of estimators, valid at almost everyθ .
Apart from measurability the only assumption is the mere existence of limiting
distributions.



27. Superefficiency 407

The latter is a fair assumption for this type of result, but what can be said
without it? Equation (1) and asymptotic normality of the maximum likelihood
estimator show that for any estimator sequenceTn

(9) lim inf
n→∞

∫
Eθ �

(√
n(Tn − θ)

)
π(θ) dθ ≥

∫∫
� d N0,I −1

θ
π(θ) dθ,

for most prior densitiesπ . In view of Fatou’s lemma this readily gives

lim sup
n→∞

Eθ �
(√

n(Tn − θ)
) ≥

∫
� d N0,I −1

θ
, λd − a.e..

This cannot be strengthened by replacing the limsup by a liminf, basically
because the sequence{n} has too many subsequences.

(10) Example For the parameter set equal to the unit interval andk ∈ N
define estimatorsT2k+i = i 2−k for i = 1, . . . , 2k. Given a parameterθ define a
subsequence of{n} by nk = 2k+i k, for i k the integer such that(i k−1)2−k < θ ≤
i k2−k. Then

√
nk|Tnk − θ | ≤ √

22−k/2, whence lim inf Eθ �
(√

n(Tn − θ)
) = �(0)

for every symmetric loss function which is continuous at zero, and everyθ . �
Le Cam (1953) established (9) under regularity conditions somewhat better

than those given in Cram´er’s book. His result was improved in his later papers
and also in Strasser (1978). The integral

∫
� d N0,I −1

θ
is the minimax risk for

estimatingh based on a single observation from theN(h, I −1
θ )-distribution, the

limit of the local experiments aroundθ . The following theorem establishes a
relationship between the limiting pointwise risk and the minimax risk in the
local limit experiments in great generality, under very mild conditions. It is
assumed that the sequence of experiments(Pn,θ+h/rn : h ∈ R

d) converges for
almost everyθ to a dominated experimentEθ in which the minimax theorem is
valid in the form

sup
P

inf
T

∫
Eθ,h�(T − h) d P(h) = inf

T
sup

h
Eθ,h�(T − h).

Here the first supremum is taken over all probability measures with compact
support and the infimum over all randomized estimators inEθ . This is generally
the case, perhaps under some regularity condition on the loss function. Le Cam
has broadened the definition of estimators to ensure that the minimax theorem
is always true, but we wish to keep the statement simple. According to
Le Cam (1973) the local limit experiments are for almost allθ shift-invariant.
In Euclidean shift experiments the minimax risk is typically obtained as the
limit of Bayes risks for a sequence of uniform priors that approach the improper
Lebesgue prior.

(11) Theorem Let (Pn,θ : θ ∈ �) be measurable experiments indexed by an
open subset� ⊂ R

d. Suppose that for almost everyθ the local experiments
(Pn,θ+h/rn : h ∈ R

d) converge to dominated experimentsEθ in which the minimax
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theorem holds as mentioned for a given bounded subcompact loss function�.
Then for every estimator sequenceTn

lim sup
n→∞

Eθ �
(
rn(Tn − θ)

) ≥ inf
T

sup
h

Eθ,h�(T − h), λd − a.e. θ,

where the inÆmum is taken over all randomized estimators inEθ .

Proof. Let π be a probability density on a subset of� that is bounded away
from the boundary of�. Let P be a probability measure with compact support
and setγn = r −1

n . Abbreviate Rn(θ) = Eθ �
(
rn(Tn − θ)

)
. By a change of

variables ∣∣∣
∫

Rn(θ) π(θ) dθ −
∫∫

Rn(θ + γnh) d P(h) π(θ) dθ

∣∣∣
≤ ‖�‖∞

∫ ∫ ∣∣π(θ) − π(θ − γnh)
∣∣ dθ d P(h) → 0,

by the L1-continuity theorem and the dominated convergence theorem. Es-
sentially as a consequence of Proposition 3, applied to a compactification of
R

d,

lim inf
n→∞

∫
Eθ+γnh�

(
rn(Tn − θ − γnh)

)
d P(h) ≥ inf

T

∫
Eθ,h�(T − h) d P(h),

where the infimum is taken over all randomized estimatorsT for the parameter
h ∈ R

d in Eθ . This is valid for almost everyθ . Combination of the preceding
displays and Fatou’s lemma gives

lim inf
n→∞

∫
Eθ �

(
rn(Tn − θ)

)
π(θ) dθ ≥

∫
inf
T

∫
Eθ,h�(T − h) d P(h) π(θ) dθ.

By assumption there exists for eachθ andm a probability measurePθ,m such
that the inner integral is within distance 1/m of the minimax risk inEθ . The
desired conclusion follows by the monotone convergence theorem asm → ∞.
�
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