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Superefficiency

A.W. van der Vaart!

ABSTRACT We review the history and several proofs of the famous result
of Le Cam that a sequence of estimators can be superefficient on at most a
Lebesgue null set.

27.1 Introduction

The method of maximum likelihood as a general method of estimation in
statistics was introduced and developed by Fisher (1912, 1922, 1925, 1934). It
gained popularity as it appeared that the method automatically produces efficient
estimators if the number of observations is large. The concept of asymptotic
efficiency was invented by Fisher as early as 1922 roughly in the form as we
use it for regular models today: a sequence of statistics is efficient if it tends to
a normal distribution with the least possible standard deviation. In the 1930s
and 1940s there were many steps in the direction of a rigorous foundation of
Fisher’s remarkable insights. These consisted both of proofs of the asymptotic
normality of maximum likelihood estimators and of obtaining lower bounds for
the variance of estimators.

Chapters 32 and 33 of Cran{1946) give a summary of the state of affairs
in the mid 1940s, even though some work carried out in the early war years,
notably Wald's, had been unavailable to him. Chapter 32 gives a rigorous proof
of what we now know as the CranRao inequality and next goes on to define
the asymptotic efficiency of an estimator as the quotient of the inverse Fisher
information and the asymptotic variance. Next Chapter 33 gives a rigorous
proof of asymptotic normality of the maximum likelihood estimator, based on
work by Duglg (1937).

Crangr defines an estimator sequence toalsgmptotically efficienif its
asymptotic efficiency (the quotient mentioned previously) equals one. Thus
combination of the results of the two chapters leads to the correct conclusion that
the method of maximum likelihood produces asymptotically efficient estimators,
under some regularity conditions on the underlying densities. Apparently the
conceptual hole in the definition was not fully recognized until 1951, even
though the difficulty must have been clear to several authors who had worked
on establishing efficiency within restricted classes of estimators.
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In 1951 Hodges produced the first example o$uperefficientestimator
sequence: an estimator sequence with efficiency at least one fbaatl more
than one for somé. An abstraction of Hodges’ example is the following. Let
T, be a sequence of estimators of a real parameteuch that the sequence
J/n(T, — 0) converges to some limit distribution if is the true parameter,
under eveny. If S, = T,1{|Ta| > n~Y/4}, then the probability of the sequence
of events{T, = S,} converges to one under evefy# 0, while underd = 0
the probability of the eventS, = 0} converges to one. In particular, if the first
sequence of estimatof, is asymptotically efficient in the sense of Cram”
then the sequencs, is superefficient af = 0.

Hodges’ example revealed a difficulty with the definition of asymptotic
efficiency and threw doubt on Fisher’'s assertion that the maximum likelihood
estimator is asymptotically efficient. In this paper we review three lines of
approach addressing the matter. They were all initiated by Le Cam. Already
in 1952 Le Cam had announced in an abstract to the Annals of Mathematical
Statistics that the set of superefficiency can never be larger than a Lebesgue null
set. In the next section we review his proof, which appeared in Le Cam (1953).
Le Cam’s second approach is present in Le Cam (1973) and is based on
automatic invariance. We discuss it in Section 3. The third approach combines
elements of both papers and is given in Section 4. Particularly in this last
section we do not strive for the utmost generality. We hope that simple proofs
may help these beautiful results finally find their way into text books and lecture
notes.

In the following, superefficiencyf a sequence of estimators in the locally
asymptotically normal case will be understood in the sense that

lim supEy £ (v/n(Ty — 6)) < fﬂdNo,gl»

for every@, with strict inequality for som@. Herel, is the Fisher information
matrix and¢ a given loss function.

Convergence in distribution is denoted> and convergence in distribution
under a law given by a parametehy - .

27.2 The 1953 proof

Le Cam (1953) started his paper with examples of superefficient estimator
sequences. These include Hodges' example, but also estimators that are
superefficient on a dense set of parameters. Next he went on to prove that
superefficiency can occur only on Lebesgue null sets. The main idea is that the
sequence of maximum likelihood estimators is asymptotically Bayes with respect
to Lebesgue absolutely continuous priors on the parameter set. Specifically, let
6, be the maximum likelihood estimator based on a sample ofrsiftem a
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density p,. Under smoothness conditions on the néap> p, Le Cam showed
that

limsup | Es€(v/N(én — 6)) 7(6) do < lim in / Eot(v/N(To — 0)) 7 (6) 6,

n—o0

for every sequence of estimatolg, most prior densitiesr(9) and most
symmetric, bounded, continuous loss functighsSince the standardized
sequence of maximum likelihood estimatqpéﬁ(én — 0) is asymptotically
normal N (0, I(;l), the first limsup exists as an ordinary limit. Application of
Fatou’s lemma immediately yields that

f(/ £dNy, 2 — lim SUpEs€(«/(Ty — 6)) ) 7(6) do =< .

Superefficiency of the sequentgewould imply that the integrand is nonnegative.
Since it integrates nonpositive it must be zero almost surely uader

Rigorous proofs of the asymptotic normality of the sequence of maximum
likelihood estimators were available, for instance from CGzarfi946). The
essential part of the preceding argument was therefore the proof of (1). Le Cam
based his proof on a version of the Bernstein-von Mises theorem@®Let
be a random variable with Lebesgue densityon the parameter set and
consider]‘[i"=1 py(Xi) as the conditional density afXy, ..., X,) given® = 6.
Le Cam (1953) proved (under regularity conditions) that, for edenyith || - ||
denoting the total variation norm,

HL(JH(@ — ) X1, ..., Xn) = N(O, |th -0, as. Pl

This strengthened earlier results by Bernstein (1934) and von Mises (1931)
to the point where application towards proving (1) is possible. In the present
notation the Bayes risk of, can be written

/ Eot(+v/N(Th — 0)) 7(0) do
—E E(z(ﬁ(Tn — ) = VO =) | X1, xn).

According to the Bernstein-von Mises theorem the conditional expectation in
this expression satisfies, settipg = /n(Ty — 6,),

E(E(un —VNO —6p) | X, ..., xn) -~ fsz_Mn,,gl -0,

almost surely under every, hence also under the mixturgsP;® 7 (6) d6.
It is assumed at this point that the loss functioiis bounded; otherwise a
stronger version of the Bernstein-von Mises theorem would be necessary. For
the usual symmetric loss functions the normal expectation in the preceding
display decreases ji, is replaced by zero. This readily leads to (1).

From today’s perspective the references to asymptotic normality and the
maximum likelihood estimator are striking. As Le Cam was later to point
out neither of the two are essential for the principle of superefficiency. The
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special role of maximum likelihood estimators was removed in Le Cam (1956),
where they were replaced by one-step estimators. Next Le Cam (1960,
1964) abstracted the structure of asymptotically normal problems into the
‘local asymptotic normality’ condition and finally removed even the latter in
Le Cam (1972, 1973).

The use of Bayes estimators is in tune with the statistical paradigm of the
1940s and 1950s. Wald (1950)'s book firmly established statistical decision
theory as the basis of statistical reasoning. A main result was that Bayes
estimators (or rather their limit points) form a complete class. Wolfowitz (1953)
exploited this to explain the impossibility of superefficiency in an informal
manner. The preceding argument shows that the risk functions of Bayes
estimators are asymptotically equivalent to the risk function of the maximum
likelihood estimator. Thus asymptotically the maximum likelihood estimator is
the only Bayes estimator. This would establish its asymptotic admissibility, and
also its optimality. Only a more precise argument would properly explain the
role of sets of Lebesgue measure zero.
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Quadratic risk function of the Hodges estimator based on a sample of
size 10 (dashed), 100 (dotted) and 1000 (solid) observations from the
N (6, 1)-distribution.

In the final section of his paper Le Cam (1953) also showed that in the
case of one-dimensional parameters superefficient estimators necessarily have
undesirable properties. For the Hodges’ estimates X1{|X| > n~*/*} based
on a sample of size from the N (9, 1)-distribution this is illustrated in the
Figure, which shows the risk functioh — nE,(T — 6)? for three different
values ofn. Le Cam shows that this behaviour is typical: superefficiency at
the pointé for a loss function? implies the existence of a sequere— 6
such that liminfg, ¢(v/N(T, — 6y)) is strictly larger than/ £dNg1/,,. For the
extreme case where the asymptotic risl¥ as zero, the liminf is even infinite
for a sequencé, — 6.
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This result may be considered a forerunner of the local asymptotic minimax
theorem of Hijek (1972), which states that the maximum risk over a shrinking
neighbourhood ob is asymptotically bounded below bf¢ dNg 1/1,. A much
earlier result of this type was obtained by Chernoff (1956), who essentially
showed that

S 2 1
Jim liminf _Cs<uhECE9+h/ﬁ(\/ﬁ|Tn — 0 —h/Vn| A c) > e
Chernoff’s proof is based on a version of the Ces¥®ao inequality, which
he attributed to Stein and Rubin. The theorem may have looked somewhat too
complicated to gain popularity. NeverthelesajéK's result, for general locally
asymptotically normal models and general loss functions, is now considered the
final result in this direction. Hjek wrote:

The proof that local asymptotic minimax implies local asymptotic
admissibility was first given by LeCam (1953, Theorem 14). ---
Apparently not many people have studied Le Cam’s paper so far as
to read this very last theorem, and the present author is indebted to
Professor LeCam for giving him the reference.

Not reading to the end of Le Cam’s papers became not uncommon in later
years. His ideas have been regularly rediscovered.

Le Cam’s Theorem 14 about the bad properties of superefficient estimators
only applies to one-dimensional estimators. Le Cam commented:

In the case of an r-dimensional parameter the problem becomes
more complicated. The difficulties involved are conceptual as well as
mathematical.

This is very true: we now know that a similar result is false in dimensions
three and up. Only three years after Le Cam’s paper, Stein (1956) published
his famous paper on estimating a multivariate normal mean. The James-Stein
estimator

X

T, =X—-—d-2———
" R NIE

is superefficient ab = 0 for the loss functiort(x) = ||x||?, and it does not
behave badly in a neighbourhood of this point (for this loss function).

27.3 Automatic invariance

The second approach to proving the impossibility of superefficiency is based
on the remarkable fact that the usual rescaling of the parameter (for instance
consideringh = \/n(® — ) as the parameter, rather théh automatically

leads to asymptotic equivariance at almost ev&gryThis idea is put forward

in Le Cam (1973) and leads to a completely different proof than the proof in
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Le Cam (1953). On comparing the two papers the difference in style is also
apparent. The main result of Le Cam (1973) asserts shift invariance of limit
experiments and is stated within the abstract framework-odnd M-spaces.
The important application is only indicated in the second last paragraph:

Toutefois, et pour conclure, mentionnons que la démonstration du
résultat de convolution de Héjek (1970) s'étend & tous les cas considérés
ici, pourvu qu’elle soit faite par la méthode décrite dans Le Cam (1972).

The application must have been obvious to Le Cam. This would explain
that Section 8.4 of Le Cam (1986), which is concerned with the same subject,
seems to end without a conclusion regarding superefficiency as well. In this
section we present a simplified version of Le Cam’s (1973) result, suited to
superefficiency.

Asymptotic equivariance subsumes thajéK regularity property, which was
the key requirement for &ék (1970)’s convolution theorem. He defined an
estimator sequench, based om observations from a smooth parametric model
to beregular at the paramete? if

Vn(Th — 0 —h/y/n) f+BL/m Lo, everyh,

for some fixed probability distributioh,. The independence df, of h is the
crucial feature of regularity. &ék’s (1970) convolution theorem states that in
this situation the limiting distributior, is a convolution of the type

Lo = N(O, I;) % My.

This certainly implies that the covariance matrix lof is bounded below by
the inversel ;! of the Fisher information matrix.

The ‘local uniformity’ in the weak convergence required bgjekK regularity
looks not too unnatural, though on closer inspection not all interesting estimators
turn out to be regular. Shrinkage estimators are not regular at the shrinkage
point; estimators that are truncated to a parameter set (sughva if a mean
is known to be positive) are not regular at the boundary of the parameter set.
In these examples the set of points of irregularity is very small. It turns out
that this is necessarily the case. Below we shall show that the regularity holds
automatically at almost all parameter points for any estimator sequence such
that ./n(T, — 0) has a limiting distribution under eves.

This ‘automatic regularity’ is the key connection to superefficiency, for it
follows that the limit distributiond_, are convolutions for almost evesy In
particular the asymptotic covariance matrix is bounded below by the inverse
Fisher information matrix for almost eve#y This constitutes a modern proof
of the fact that superefficiency can occur only on Lebesgue null sets.

Hajek’s proof of the convolution theorem is based on delicate calculations
using the special character of local asymptotic normality. Le Cam (1972)’s
theory of limiting experiments puts the result in a very general framework.
Not only does it offer much insight in the Gaussian situation, it also allows



27. Superefficiency 403

superefficiency statements in many other situations. We shall now carry out the
preceding steps in more detail and in much greater generality.

From the more general point of view regularity is better described as (local)
asymptotic equivariance. My favourite version (Van der Vaart (1991)) of
Le Cam’s result is as follows. A sequence of experiments (or statistical models)
is said toconvergeto a limit if the marginals of the likelihood ratio processes
converge in distribution to the corresponding marginals of the likelihood ratio
processes in the limit experiment. The precise definition of convergence is not
important for this paper: convergence of experiments only enters as a condition
of the following theorem and through statements regarding concrete examples,
which are not proven here.

(3) Proposition Let the experiment$X,, An, Pan:h € H) converge to a
dominated experimer®,:h € H). Letx,: H — D be maps with values in a
Banach spacB® such that

rn(Kn(h) — Kn(ho)) — kh —«khg,

for some map:H — D and linear maps,:D +— D. Let Ty: Ay — D

be arbitrary maps with values i such that the sequence(Tn — Kn(h))
converges in distribution undéy; for everyh, to a probability distribution that
is supported on ax&d separable, Borel measurable subsdbofThen there
exists a randomized estimafbrin the limit experiment such that (Tn - Kn(h))
converges unddn to T — «h, for everyh.

In this proposition a randomized estimator is a measurable Ta} x
[0, 1] — D whose law is to be calculated under the productPefand the
uniform law. ThusT = T(X,U) is based on an observatiof in the limit
experiment and an independent uniform varidble

We could call the estimator sequeniEgin the preceding propositioregular
if the limiting distribution undeth of the sequence, (T, — «a(h)) is the same
for everyh. Then the matching randomized estimator in the limit experiment
satisfies

Ln(T —kh) = Lo(T), everyh.

This may be expressed a3: is equivariant-in-lawfor estimating the parameter
&h.

Within the context of the proposition ‘regularity’ has lost its interpretation
as a local uniformity requirement. This is recovered when the proposition is
applied to ‘localized’ experiments. For instance, local asymptotic normality of
the sequence of experiment&;, A,, P;':6 € ©) atf entails convergence of
the sequence of local experiments to a Gaussian experiment:

(Xn, An, Py mih € R — (Na(h, 1;9:h € RY).

Regularity of a given estimator sequence for the functiorglh) = 6 +h//n
in this sequence of localized experiments means exadjgkifegularity as in
(2). The proposition shows that the limit distributiap is the distribution under
h = 0 of an equivariant-in-law estimator fdr in the Gaussian experiment.
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Hajek’s convolution theorem is reproved once it has been shown that every
such equivariant-in-law estimator can be decomposed as axsunW of two
independent variables, wheXeis Nq (0, I(,‘l)-distributed. In any case the ‘best’
equivariant-in-law estimator iX itself, so that the covariance df, is not
smaller thanl ;.

The following theorem shows that estimator sequences in rescaled experiments
are automatically (almost) regular, at almost every parameter. The proof of the
theorem is based on an extension of a lemma by Bahadur (1964), who used
his lemma to rederive Le Cam (1953)’s result for one-dimensional parameters.
Denote thed-dimensional Lebesgue measure By

(4) Theorem Let (X, An, Phg:0 € ©) be experiments indexed by a
measurable subsét of RY. Let T,: Xy — D and,:® — D be maps into
a complete metric space such that the maps E} f (rno(Th — «n(9))) are
measurable for every Lipschitz functidn D — [0, 1]. Suppose that

fno(Tn — kn(0)) = Lo, 29 —ae.6,

for probability distributiond_, supported on ax€&d separable, Borel measurable
subset ofd. Then for any matrice¥, — 0 there exists a subsequence{nf
such that

0+

h
rn,0+Fnh(Tn —kn(0 + 1_‘nh)) ~ Lo, 22— ae. @, h),
along the subsequence.

(5) Lemma Forn e N let g, g:RY - [0, 1] be arbitrary measurable real
functions such that
O — 0, 2 —ae.

Then given any sequences of vectggs— 0 and matrices™,, — 0 there exists
a subsequence @h} such that

0; o0 +y)— 9®), A% —ae.0,
(i) gn(@ + Tnh)— g(®), 22— ae. 0,h),

along the subsequence. gf(6 + I'nhy) — gn (6 + T'hh) — 0 for every sequence
hn — h, then (ii) is true for evenh € RY, for almost every.

Proof. We prove statement (ii), the proof of (i) being slightly simpler. We may
assume without loss of generality that the functipis integrable; otherwise we
first multiply eachg, andg with a suitable, fixed, positive, continuous function.
Write p for the standard normal density ®f. Then

/ |g(6 + Tnh) — g(®)| p®) do p(h)dh — 0.

This follows since the inner integral converges to zero for everyy the
L 1-continuity theorem (e.g. Theorem 8.19 of Wheeden and Zygmund) and next
the outer integral converges to zero by the dominated convergence theorem.
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If pn is the density of theNg (0, | + I';,I"y)-distribution, then

/f|gn<9 + I'wh) — g(® + T'wh)| p©) p(h) dodh = /|gn<u> — g(w| pn(w) du.

The sequence, converges inL; to the standard normal density. Thus the
integral on the right converges to zero by the dominated convergence theorem.
Combination with the preceding display shows that the sequence of functions
®, h) — g,(0+Trh)—g(6) converges to zero in mean, and hence in probability,
under the standard normal measure. There exists a subsequence along which it
converges to zero almost surely.

In the proof of the theorem abbreviatgs(Tn — «kn(0)) to Ty . ASsume
without loss of generality tha® = RY; otherwise fixfy such thafT, g, Oorr Le,
and letP,y = Py g, for everyd not in ®. Let Dy be the separable Borel subset
of D on which the limit distributiond_, concentrate. There exists a countable
collection F of Lipschitz functionsf:D — [0, 1], depending only oy, such
that weak convergence of a sequence of mBpst, — D to a Borel measure
L on Dy is equivalent to Ef (T,) — f f dL for every f € F. Consider the
functions

On(0; T) =E;f(Tnp); g0 f) = [fdL,.

For every fixedf these functions are measurable by assumptiongane- g
pointwise. By the lemma there exists a subsequendajoflong which

E5irn f (Thosr,n) — [ FdLg, A4 —ae.

The subsequence depends bnbut by a diagonalization scheme we can
construct a subsequence for which this is valid for everyn the countable set
F. O

(6) Example Suppose that for numberg — oo the sequence of variables
rn(T, — 0) converges undet to a limit distributionL, for almost everyd. The
preceding theorem asserts that for almost evethere exists a setly with
A9(HS) = 0 such that

rn(Th—6 —h/rp) B0 Lo, everyh e Hy.
Thus the sequencg, is almost Hijek regular, at almost evey. The first
‘almost’ refers to the seH, which is almost all ofR?. In most situations this
‘almost’ can be removed from the statement. It is often the case that

Il Pr.o-+h/ra — Prghyrg Il = O, everyh, — h.

Then the total variation distance between the laws,pf- 6 — h/r, under
0 + hn/r, and6 + h/r, converges to zero as well and in view of the last
assertion of Lemma 5 the skl can be taken equal t&9. O
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The combination of Theorem 4 and the proposition gives interesting applica-
tions far beyond the Gaussian case. The key is that for almosgttak limit
distribution L, of an estimator sequence is not ‘better’ than the null distribution
of the best equivariant estimator in the limit experiment. Also when the latter
cannot be characterized as a convolution, the equivariance implies a lower bound
on the risk. The locally asymptotically mixed normal case is well-documented
in Jeganathan (1982, 1983). We give two other examples.

(7) Example Suppose the problem is to estima#eased on a sample of
sizen from the uniform distributionP, on the interval §, 0 +1]. The sequence

of experiments(Py, ,:h € R) converges for each to the experiment
consisting of observing a pair with the same distributior(\ast- h, h — W) for
independent standard exponential variableandW. If the sequencea(T, —6)
converges in distribution to a limit for evepy, then for almost every the limit
distribution L, is the distribution of an equivariant-in-law estimaibrbased on

(V +h, h—W). The best such estimator in terms of bowl-shaped loss functions
is 2((V +h) + (h—W)) = 3(V — W) + h. Its invariant standardized law is

the Laplace distribution, so that we may conclude

/ZdLg > /Z(x) e 2 dx, A4 —a.e. 0.

In this problem a characterization as a convolution is impossible. This can be
seen from the fact tha¥ + h and %(V — W) are both equivariant estimators,
but their laws have no convolution factor in comman.

(8) Example Suppose the problem is to estim&#éased on a sample of
sizen from the distributionP, with density p(- — ) on the real line, where
p(x) is differentiable at everx ¢ {ay, ..., am} with [ |p’(x)|dx < co and
has discontinuities at each with p(a—) = 0 < p(g+). Then the sequence
(P(,'Lh/n: h € R) converges for each to the experiment consisting of observing
a single random variable with the same distributionvag- h for a standard
exponential variabl& with mean ¥ )" p(a+). Since the limit experiment is a
full shift experiment, it admits a convolution theorem. If the sequen(dg —0)
converges in distribution to a limit for evesy then for almost every the limit
distribution L, contains the distribution 0¥ as a convolution factor]

27.4 Superefficiency and loss functions

The combined results of the preceding section give a deep characterization of
the limiting distributions of a sequence of estimators, valid at almost every
Apart from measurability the only assumption is the mere existence of limiting
distributions.
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The latter is a fair assumption for this type of result, but what can be said
without it? Equation (1) and asymptotic normality of the maximum likelihood
estimator show that for any estimator sequemge

Iiergf/Egﬁ(\/ﬁ(Tn —0))7(0)d6 > /fszoqle_ln(e)de,

for most prior densities. In view of Fatou’s lemma this readily gives

lim supEy ¢ (vn(Ty — 0)) > /Z AN, A4 —ae.

n—o0

This cannot be strengthened by replacing the limsup by a liminf, basically
because the sequenf® has too many subsequences.

(10) Example For the parameter set equal to the unit interval &nel N
define estimator3x; =i27 ¥ fori = 1,..., 2%, Given a parametef define a
subsequence gh} by n, = 25+iy, for iy the integer such that,—1)2 % < 6 <
ik27%. Then /M| Ty, — 0] < +/227%/2, whence liminf ¢(/N(T, — 6)) = £(0)
for every symmetric loss function which is continuous at zero, and evefy

Le Cam (1953) established (9) under regularity conditions somewhat better
than those given in Craen’s book. His result was improved in his later papers
and also in Strasser (1978). The integfaﬂdNO‘,e_l is the minimax risk for

estimatingh based on a single observation from tRe¢h, Ig‘l)-distribution, the
limit of the local experiments aroungl The following theorem establishes a
relationship between the limiting pointwise risk and the minimax risk in the
local limit experiments in great generality, under very mild conditions. It is
assumed that the sequence of experimeRrts nr,:h € RY) converges for
almost every to a dominated experimeid} in which the minimax theorem is
valid in the form

supinf / Ey n€(T — h)dP(h) = inf supEy n£(T — h).
p T T n

Here the first supremum is taken over all probability measures with compact
support and the infimum over all randomized estimator&inThis is generally

the case, perhaps under some regularity condition on the loss function. Le Cam
has broadened the definition of estimators to ensure that the minimax theorem
is always true, but we wish to keep the statement simple. According to

Le Cam (1973) the local limit experiments are for almostfa#ihift-invariant.

In Euclidean shift experiments the minimax risk is typically obtained as the
limit of Bayes risks for a sequence of uniform priors that approach the improper
Lebesgue prior.

(11) Theorem Let (Ph4:0 € ®) be measurable experiments indexed by an
open subse® C RY. Suppose that for almost eveflythe local experiments
(Png4h/rah e RY) converge to dominated experime#tsin which the minimax
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theorem holds as mentioned for a given bounded subcompact loss fufiction
Then for every estimator sequerite

lim SUpEs£(rn(Tn — 0)) > irTlf SUpEy n&(T — h), 2 —ae.on,
n—oo h

where the in/Bum is taken over all randomized estimatorsgin

Proof. Let 7 be a probability density on a subset @fthat is bounded away
from the boundary 0. Let P be a probability measure with compact support
and sety, = r;. AbbreviateR,(0) = E;¢(r,(T, — 6)). By a change of
variables

‘/ Rn(Q)n(G)dQ—// Rn(é?—i—ynh)dP(h)n(@)dB‘

< el //\n(e) (0 — )| dOdP(R) > O,

by the L;-continuity theorem and the dominated convergence theorem. Es-
sentially as a consequence of Proposition 3, applied to a compactification of
RS,

iminf [ Eont(ra(Ta = 0 = yoh) dP(h) = inf [ EonecT —hy dP(h),

where the infimum is taken over all randomized estimafofer the parameter
h e RY in &. This is valid for aimost everg. Combination of the preceding
displays and Fatou’s lemma gives

Iigninf/Egﬂ(rn(Tn —0))7(6)do > /ir;f/Eg,hz(T —hydP(h) 7 (6) d.

By assumption there exists for eaéhandm a probability measurd; ,, such
that the inner integral is within distancerh of the minimax risk in&. The
desired conclusion follows by the monotone convergence theorem-asoco.
Il
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