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Chapter 8
Poisson approximations

The Bin(n, p) can be thought of as the distribution of a sum of independent indicator
random variablesX; + ... + X,, with {X; = 1} denoting a head on thi¢h toss of a coin.
The normal approximation to the Binomial works best when the variap¢e — p) is large,
for then each of the standardized summagds— p)//np(1 — p) makes a relatively small
contribution to the standardized sum. Wheis large butp is small, in such a way thatp
is not large, a different type of approximation to the Binomial is better.

Definition. A random variable Y is said to have a POISSON DISTRIBUTION With parame-
ter A, abbreviated to Poissolir), if it can take values 0, 1, 2, ... with probabilities
e Ak
k!
The parameter . must be positive. |

. .. <81>
ePoisson distribution

fork=0,1,2,...

P{Y =K} =

The Poisso(i) appears as an approximation to the @inp) whenn is large, p is
small, andx = np:
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The exponential factor comes from:

log|( 1 )Ln—nlo 1 * =n po L2 N —A if A/n~0
9 n) =M% n) n 2m2 )" o

By careful consideration of the error terms, one can give explicit bounds for the er-
ror of approximation. For example, there exists a constarguch that, ifX is distributed
Bin(n, p) andY is distributed Poissdnp) then

ilﬂ”{x =k} -P{Y=k}|<Cp
k=0

Le Cant has sketched a proof showing th@tcan be taken equal to 4. Clearly the Poisson
is an excellent approximation whemis small.

The Poisson inherits several properties from the Binomial. For example, tkia, Bin
has expected valuep and variancenp(1— p). One might suspect that the Poiséonshould

1 Page 187 of “On the distribution of sums of independent random variableBgrimouilli,
Bayes, Laplace: Anniversary Volumik Neyman and L Le Cam, eds., Springer-Verlag 1965.
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<8.2>

therefore have expected valie= n(A/n) and variance. = lim,_. ., n(A/n)(1 — A/n). Also,
the coin-tossing origins of the Binomial show that{fhas a Birim, p) distribution andX’

has Bin(n, p) distribution independent oX, then X + X’ has a Birin + m, p) distribution.
Putting2 = mpand u = np one would then suspect that the sum of independent Pgisson
and Poissofu) distributed random variables is Poissbr- 1) distributed.

Exercise. Verify the properties of the Poisson distribution suggested by the Binomial
analogy: If Y has a Poissoh) distribution, show that

(i) EY =

(ii) var(Y) = A
Also, if Y’ has a Poissqm) distribution independent of, show that

(i) Y + Y’ has a Poissan + ) distribution
SoLUTION: Assertion (i) comes from a routine application of the formula for the expecta-
tion of a random variable with a discrete distribution.

EY = ikP{Y =k}

k=0
2, ek
= k What happens t& = 0?
k!
k=1
o kkfl
=e’A —
k;O (k — D!
=e’re
=X

Notice how thek cancelled out one factor from the in the denominator.

If we were to calculatéZ(Y?) in the same way, one factor in tté would cancel the
leadingk from thek!, but would leave an unpleasakit(k — 1)! in the sum. Too bad thk?
cannot be replaced by(k — 1). Well, why not?

E(Y2=Y) = kk—DP(Y =k}
k=0

o0 )\k
— e _nA _ _
=¢ kZ; k(k = 1)1 What happens t& = 0 andk = 1?
_ e—)h)\‘Z o0 )\'k—Z
5o (K= 2)!
=22
Now calculate the variance.
var(Y) = E(Y?) — (EY)? = E(Y2 - Y) + EY — (EY)? = A.
For assertion (iii), first note that + Y’ can take only values,@, 2.... For a fixedk in

this range, decompose the evélt+ Y’ = k} into disjoint pieces whose probabilities can be
simplified by means of the independence betw¥eandY’.

PIY+Y =k} =P{Y=0,Y =K} +P{Y =1Y =k—1} +... + P{Y =k, Y' = 0}
—PY = O)P{Y =k} + P{Y = JP{Y =k — 1} + ... + P{Y = K}P{Y’ = 0}

e lemyk e kel

ok T T o
R L k! 1, k-1 k' ko
T Tk <W’\“+1!(k—1)!)‘“ RS
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—A—

= O+ Wk

The bracketed sum in the second last line is just the binomial expansionof.). O

Question: How should you interpret the notation in the last calculation when0? |
always feel slightly awkward about a contribution frdm- 1 whenk = 0.

Counts of rare events—such as the number of atoms undergoing radioactive decay dur-
ing a short period of time, or the number of aphids on a leaf—are often modelled by Pois-
son distributions, at least as a first approximation. In some situations it makes sense to think
of the counts as the number of successes in a large number of independent trials, with the
chance of a success on any particular trial being very small (“rare events”). In such a set-
ting, the Poisson arises as an approximation for the Binomial. The Poisson approximation
also applies in many settings where the trials are “almost independent” but not quite.

<8.3> [Example. SupposeN letters are placed at random inkb envelopes, one letter per enve-
lope. The total number of correct matches, can be written as a su; + ... + Xy of

indicators, ) o . .
o {1 if letteri is placed in envelopée
| =

0 otherwise
The X; are dependent on each other. For example, symmetry implies that
P{Xi =1} =1/N for eachi

and

1
N—i+1
We could eliminate the dependence by relaxing the requirement of only one letter per enve-
lope. The number of letters placed in the correct envelope (possibly together with other, in-
correct letters) would then have a B, 1/N) distribution, which approximates Poisgan
if N is large.

We can get some supporting evidence ¥ohaving something close to a Poissbn
distribution by calculating SOMROMENTS:

EX = ZEXi =NP{Xj =1} =1

PXi =1 Xy =Xp=...=Xj_1 =1} =

i<N
and
Ex2=E<xf+...+xﬁ, +2inxj>
i<]j
2 N
= NEX{ +2 5 EX31X3 by symmetry
=NP{X; =1} + (N2 = N)P{X; =1, Xo =1}
1
=Nx—+(N2=N)x ———
XN T )X NIN=TD)
=2
Compare with Exercise:8.2>, which impliesEY = 1 andEY? = 2 for aY distributed
Poissoril). O

Using theMETHOD OF INCLUSION AND EXCLUSION, it is possiblé to calculate the
exact distribution of the random variab}e from the previous Example:

PX—k—l 1-1 1 ! + !

2 Feller Vol 1, Chapter 4

Statistics 241: 19 October 1947 (© David Pollard




Chapter 8 Poisson approximations ‘ ‘ Page 4 ‘

For fixedk, asN — oo the probability converges to

1 1 1 et
H(l_”i_i_“'):W’
which is the probability that = k if Y has a Poissad) distribution.

YLOYZOTOVROTOTOZOTOTOZOTOTOTOTOTOT

One of the most elegant developments in modern probability theory is a general method
for establishing approximation results, due principally to Charles Stein. It has been devel-
oped by Chen and Stein to derive Poisson approximations for many sitifafibasmethod
is elementary—in the sense that it makes use of probabilistic techniques at the level of
Statistics 241—but extremely subtle. The next Example illustrates the Chen-Stein method
by deriving a Poisson approximation for the matching problem.

<85> Example. Consider once more the matching problem described in Example>. Use
the Chen-Stein method to establish the approximation

e—l
IP’{X:k}%W fork=0,1,2,...

starting point is a curious connection between the Poid3amnd the functiorg(-) defined
by g(0) = 0 and

1
a(j) =f et ldt  forj=1,2,...
0

Notice that O< g(j) <1 for all j. Also, integration by parts shows that
g(j+D =jog(j)—e?t forj=012,...
and direct calculation gives
gl =1-¢t
More succinctly,
<8.6> gj+D—-jo(j)=1j=0—-et forj=0,1,...

Actually the definition ofg(0) has no effect on the validity of the assertion whiega- 0; you
could giveg(0) any value you liked.

SupposeY has a Poissai) distribution. Substituté’ for j in <8.6>, then take expec-
tations to get

E@QY+1)-YgY)=ELY=0—el=PY=0—-el=0.

A similar calculation withX in place ofY gives

<8.7> P{X =0} —e 1 =E(g(X+1) — Xg(X)).
If we can show that the right-hand side is close to zero then we will have
P{X =0} ~ e L,

which is the desired Poisson approximation #§iX = k} whenk = 0. A simple symmetry
argument will then give the approximation for otHewalues.

There is a beautiful probabilistic trick for approximating the right-hand side®of>.
Write the Xg(X) contribution as

N N
<8.8> EXg(X) = EZ Xig(X) = ZEXig(X) = NEX1g(X)
i=1 i=1

3 See the 1992 book by Barbour, Holst, and Jan®misson Approximatigrfor a detailed
discussion of the Chen-Stein method for deriving Poisson approximations.
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The trick consists of a special two-step method for allocating letters at random to en-
velopes, which initially gives lettel a special role.

(1) Put letter 1 in envelope 1, then allocate letters.2, N to envelopes 2.., N in
random order, one letter per envelope. Write- Z for the total number of matches
of letters to correct envelopes. (The 1 comes from the forced matching of letter 1
and envelope 1.) Notice th@tZ = 1, as shown in Example8.3>.

(2) Choose an envelopR at random (probability AN for each envelope), then swap
letter 1 with the letter in the chosen envelope.

Notice thatX; is independent oZ, because of step 2. Notice also thatt Z if and only if
the envelopeR chosen in step 2 does not contain its correct letter. Thus

k+1
P{X¢Z|Z:k}=%
and
k+1 EZ+1 2

MX#H:%}TTMZZMZ . =
That is, the construction give$ = Z with high probability.
From the fact that wheiX; = 1 (that is,R = 1) we haveX = Z + 1, deduce that
<8.9> X19(X) = X191+ 2)
The asserted equality holds trivially whefy = 0. Take expectations. Then argue that
EXg(X) = NEX;g9(X) by <8.8>
= NEX19(1+ 2) by <8.9>
= NEX3Eg(1+ 2) by independence oX; and Z
=Eg(l+ 2)
The right-hand side 0k8.7> therefore equal® (g(X + 1) — g(Z + 1)). On the part of the

sample space wherg = Z the two terms cancel; on the part wheXe#£ Z, the contribution
lies betweent-1 because & g(j) <1forj =12, .... Thus

2
POX+1) = 9(Z+1)| = 1xPX#2) <
and
<8.10> IP{X =0} —e | = [P(g(X + 1) — Xg(X))| < 2/N

The exact expression fd@{X = 0} from <8.4> shows that 2N greatly overestimates the
error of approximation, but at least it tends to zeroN\aglets large.

After all that work to justify the Poisson approximation®X = k} fork = 0,
you might be forgiven for shrinking from the prospect of extending the approximation to
largerk. Fear not! The worst is over.

Fork =1, 2,... the event{ X = k} specifies exacthk matches. There ar@‘) choices
for the matching envelopes. By symmetry, the probability of matches only in a particular set
of k envelopes is the same for each specific choice of the deteofelopes. It follows that

N
P{X =k} = (k)IP’{enveIopes L ..,k match; the rest dorj't
The probability of getting matches in envelopes .1, k equals

1
N(N—1)...(N—k+1)

The conditional probability

P{envelopek + 1,..., N don't match | envelopes 1. ..,k match
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is equal to the probability of zero matches when— k letters are placed at random into
their envelopes. IN is much larger thaik, this probability is close t@™*, as shown above.

Thus
N! 1 1 el

KIIN = K)! N(N = 1)(N —=2)...(N —k+1)e Y
More formally, for each fixed,

P{X =k} =

—1

P{X:k}ei—lzp{sz} asN — oo,

whereY has the Poissdf) distribution. O
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