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Chapter 8

Poisson approximations

The Bin(n, p) can be thought of as the distribution of a sum of independent indicator
random variablesX1 + . . . + Xn, with {Xi = 1} denoting a head on thei th toss of a coin.
The normal approximation to the Binomial works best when the variancenp(1− p) is large,
for then each of the standardized summands(Xi − p)/

√
np(1− p) makes a relatively small

contribution to the standardized sum. Whenn is large butp is small, in such a way thatnp
is not large, a different type of approximation to the Binomial is better.

<8.1> Definition. A random variable Y is said to have a Poisson distribution with parame-•Poisson distribution ter λ, abbreviated to Poisson(λ), if it can take values 0, 1, 2, . . . with probabilities

P{Y = k} = e−λλk

k!
for k = 0, 1, 2, . . .

The parameter λ must be positive. ¤

The Poisson(λ) appears as an approximation to the Bin(n, p) whenn is large, p is
small, andλ = np:(

n

k

)
pk(1− p)n−k = n(n− 1) . . . (n− k+ 1)

k!

(
λ

n

)k (
1− λ

n

)n−k

≈ λk

k!

(
1− λ

n

)n

if k small relative ton

≈ λk

k!
e−λ if n is large

The exponential factor comes from:

log

(
1− λ

n

)n

= n log

(
1− λ

n

)
= n

(
−λ

n
− 1

2

λ2

n2
− . . .

)
≈ −λ if λ/n ≈ 0.

By careful consideration of the error terms, one can give explicit bounds for the er-
ror of approximation. For example, there exists a constantC, such that, ifX is distributed
Bin(n, p) andY is distributed Poisson(np) then

∞∑
k=0

|P{X = k} − P{Y = k}| ≤ Cp

Le Cam1 has sketched a proof showing thatC can be taken equal to 4. Clearly the Poisson
is an excellent approximation whenp is small.

The Poisson inherits several properties from the Binomial. For example, the Bin(n, p)
has expected valuenp and variancenp(1− p). One might suspect that the Poisson(λ) should

1 Page 187 of “On the distribution of sums of independent random variables”, inBernouilli,
Bayes, Laplace: Anniversary Volume, J. Neyman and L Le Cam, eds., Springer-Verlag 1965.
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therefore have expected valueλ = n(λ/n) and varianceλ = limn→∞ n(λ/n)(1− λ/n). Also,
the coin-tossing origins of the Binomial show that ifX has a Bin(m, p) distribution andX′

has Bin(n, p) distribution independent ofX, then X + X′ has a Bin(n + m, p) distribution.
Puttingλ = mp andµ = np one would then suspect that the sum of independent Poisson(λ)

and Poisson(µ) distributed random variables is Poisson(λ+ µ) distributed.

<8.2> Exercise. Verify the properties of the Poisson distribution suggested by the Binomial
analogy: If Y has a Poisson(λ) distribution, show that

(i) EY = λ
(ii) var(Y) = λ

Also, if Y′ has a Poisson(µ) distribution independent ofY, show that

(iii) Y + Y′ has a Poisson(λ+ µ) distribution

Solution: Assertion (i) comes from a routine application of the formula for the expecta-
tion of a random variable with a discrete distribution.

EY =
∞∑

k=0

kP{Y = k}

=
∞∑

k=1

k
e−λλk

k!
What happens tok = 0?

= e−λλ
∞∑

k−1=0

λk−1

(k− 1)!

= e−λλeλ

= λ
Notice how thek cancelled out one factor from thek! in the denominator.

If we were to calculateE(Y2) in the same way, one factor in thek2 would cancel the
leadingk from thek!, but would leave an unpleasantk/(k − 1)! in the sum. Too bad thek2

cannot be replaced byk(k− 1). Well, why not?

E(Y2− Y) =
∞∑

k=0

k(k− 1)P{Y = k}

= e−λ
∞∑

k=2

k(k− 1)
λk

k!
What happens tok = 0 andk = 1?

= e−λλ2
∞∑

k−2=0

λk−2

(k− 2)!

= λ2

Now calculate the variance.

var(Y) = E(Y2)− (EY)2 = E(Y2− Y)+ EY − (EY)2 = λ.
For assertion (iii), first note thatY + Y′ can take only values 0, 1, 2 . . .. For a fixedk in

this range, decompose the event{Y + Y′ = k} into disjoint pieces whose probabilities can be
simplified by means of the independence betweenY andY′.

P{Y + Y′ = k} = P{Y = 0,Y′ = k} + P{Y = 1,Y′ = k− 1} + . . .+ P{Y = k,Y′ = 0}
= P{Y = 0}P{Y′ = k} + P{Y = 1}P{Y′ = k− 1} + . . .+ P{Y = k}P{Y′ = 0}
= e−λλ0

0!

e−µµk

k!
+ . . .+ e−λλk

k!

e−µµ0

0!

= e−λ−µ

k!

(
k!

0!k!
λ0µk + k!

1!(k− 1)!
λ1µk−1+ . . .+ k!

k!0!
λkµ0

)
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= e−λ−µ

k!
(λ+ µ)k.

The bracketed sum in the second last line is just the binomial expansion of(λ+ µ)k. ¤

Question: How should you interpret the notation in the last calculation whenk = 0? I
always feel slightly awkward about a contribution fromk− 1 whenk = 0.

Counts of rare events—such as the number of atoms undergoing radioactive decay dur-
ing a short period of time, or the number of aphids on a leaf—are often modelled by Pois-
son distributions, at least as a first approximation. In some situations it makes sense to think
of the counts as the number of successes in a large number of independent trials, with the
chance of a success on any particular trial being very small (“rare events”). In such a set-
ting, the Poisson arises as an approximation for the Binomial. The Poisson approximation
also applies in many settings where the trials are “almost independent” but not quite.

<8.3> Example. SupposeN letters are placed at random intoN envelopes, one letter per enve-
lope. The total number of correct matches,X, can be written as a sumX1 + . . . + XN of
indicators,

Xi =
{

1 if letter i is placed in envelopei
0 otherwise

The Xi are dependent on each other. For example, symmetry implies that

P{Xi = 1} = 1/N for eachi

and

P{Xi = 1 | X1 = X2 = . . . = Xi−1 = 1} = 1

N − i + 1

We could eliminate the dependence by relaxing the requirement of only one letter per enve-
lope. The number of letters placed in the correct envelope (possibly together with other, in-
correct letters) would then have a Bin(N, 1/N) distribution, which approximates Poisson(1)
if N is large.

We can get some supporting evidence forX having something close to a Poisson(1)
distribution by calculating somemoments:

EX =
∑
i≤N

EXi = NP{Xi = 1} = 1

and

EX2 = E
(

X2
1 + . . .+ X2

N + 2
∑
i< j

Xi Xj

)

= NEX2
1 + 2

(
N

2

)
EX1X2 by symmetry

= NP{X1 = 1} + (N2− N)P{X1 = 1, X2 = 1}
= N × 1

N
+ (N2− N)× 1

N(N − 1)
= 2

Compare with Exercise<8.2>, which impliesEY = 1 andEY2 = 2 for a Y distributed
Poisson(1). ¤

Using themethod of inclusion and exclusion, it is possible2 to calculate the
exact distribution of the random variableX from the previous Example:

<8.4> P{X = k} = 1

k!

(
1− 1+ 1

2!
− 1

3!
− . . .± 1

(N − k)!

)
2 Feller Vol 1, Chapter 4
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For fixedk, as N →∞ the probability converges to

1

k!

(
1− 1+ 1

2!
− 1

3!
− . . .

)
= e−1

k!
,

which is the probability thatY = k if Y has a Poisson(1) distribution.

z z z z z z z z z z z z z z z z

One of the most elegant developments in modern probability theory is a general method
for establishing approximation results, due principally to Charles Stein. It has been devel-
oped by Chen and Stein to derive Poisson approximations for many situations3 The method
is elementary—in the sense that it makes use of probabilistic techniques at the level of
Statistics 241—but extremely subtle. The next Example illustrates the Chen-Stein method
by deriving a Poisson approximation for the matching problem.

<8.5> Example. Consider once more the matching problem described in Example<8.3>. Use
the Chen-Stein method to establish the approximation

P{X = k} ≈ e−1

k!
for k = 0, 1, 2, . . .

starting point is a curious connection between the Poisson(1) and the functiong(·) defined
by g(0) = 0 and

g( j ) =
∫ 1

0
e−t t j−1dt for j = 1, 2, . . .

Notice that 0≤ g( j ) ≤ 1 for all j . Also, integration by parts shows that

g( j + 1) = jg( j )− e−1 for j = 0, 1, 2, . . .

and direct calculation gives
g(1) = 1− e−1

More succinctly,

<8.6> g( j + 1)− jg( j ) = 1{ j = 0} − e−1 for j = 0, 1, . . .

Actually the definition ofg(0) has no effect on the validity of the assertion whenj = 0; you
could giveg(0) any value you liked.

SupposeY has a Poisson(1) distribution. SubstituteY for j in <8.6>, then take expec-
tations to get

E (g(Y + 1)− Yg(Y)) = E1{Y = 0} − e−1 = P{Y = 0} − e−1 = 0.

A similar calculation withX in place ofY gives

<8.7> P{X = 0} − e−1 = E (g(X + 1)− Xg(X)) .

If we can show that the right-hand side is close to zero then we will have

P{X = 0} ≈ e−1,

which is the desired Poisson approximation forP{X = k} whenk = 0. A simple symmetry
argument will then give the approximation for otherk values.

There is a beautiful probabilistic trick for approximating the right-hand side of<8.7>.
Write the Xg(X) contribution as

<8.8> EXg(X) = E
N∑

i=1

Xi g(X) =
N∑

i=1

EXi g(X) = NEX1g(X)

3 See the 1992 book by Barbour, Holst, and Janson,Poisson Approximation, for a detailed
discussion of the Chen-Stein method for deriving Poisson approximations.
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The trick consists of a special two-step method for allocating letters at random to en-
velopes, which initially gives letter 1 a special role.

(1) Put letter 1 in envelope 1, then allocate letters 2, . . . , N to envelopes 2, . . . , N in
random order, one letter per envelope. Write 1+ Z for the total number of matches
of letters to correct envelopes. (The 1 comes from the forced matching of letter 1
and envelope 1.) Notice thatEZ = 1, as shown in Example<8.3>.

(2) Choose an envelopeR at random (probability 1/N for each envelope), then swap
letter 1 with the letter in the chosen envelope.

Notice thatX1 is independent ofZ, because of step 2. Notice also thatX 6= Z if and only if
the envelopeR chosen in step 2 does not contain its correct letter. Thus

P{X 6= Z | Z = k} = k+ 1

N
and

P{X 6= Z} =
∑

k

k+ 1

N
P{Z = k} = EZ + 1

N
= 2

N

That is, the construction givesX = Z with high probability.

From the fact that whenX1 = 1 (that is,R= 1) we haveX = Z + 1, deduce that

<8.9> X1g(X) = X1g(1+ Z)

The asserted equality holds trivially whenX1 = 0. Take expectations. Then argue that

EXg(X) = NEX1g(X) by <8.8>

= NEX1g(1+ Z) by <8.9>

= NEX1Eg(1+ Z) by independence ofX1 and Z

= Eg(1+ Z)

The right-hand side of<8.7> therefore equalsP (g(X + 1)− g(Z + 1)). On the part of the
sample space whereX = Z the two terms cancel; on the part whereX 6= Z, the contribution
lies between±1 because 0≤ g( j ) ≤ 1 for j = 1, 2, . . .. Thus

|P (g(X + 1)− g(Z + 1)) | ≤ 1× P{X 6= Z} ≤ 2

N
and

<8.10> |P{X = 0} − e−1| = |P (g(X + 1)− Xg(X)) | ≤ 2/N

The exact expression forP{X = 0} from <8.4> shows that 2/N greatly overestimates the
error of approximation, but at least it tends to zero asN gets large.

After all that work to justify the Poisson approximation toP{X = k} for k = 0,
you might be forgiven for shrinking from the prospect of extending the approximation to
largerk. Fear not! The worst is over.

For k = 1, 2, . . . the event{X = k} specifies exactlyk matches. There are
(N

k

)
choices

for the matching envelopes. By symmetry, the probability of matches only in a particular set
of k envelopes is the same for each specific choice of the set ofk envelopes. It follows that

P{X = k} =
(

N

k

)
P{envelopes 1, . . . , k match; the rest don’t}

The probability of getting matches in envelopes 1, . . . , k equals

1

N(N − 1) . . . (N − k+ 1)

The conditional probability

P{envelopesk+ 1, . . . , N don’t match | envelopes 1, . . . , k match}
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is equal to the probability of zero matches whenN − k letters are placed at random into
their envelopes. IfN is much larger thank, this probability is close toe−1, as shown above.
Thus

P{X = k} ≈ N!

k!(N − k)!

1

N(N − 1)(N − 2) . . . (N − k+ 1)
e−1 = e−1

k!

More formally, for each fixedk,

P{X = k} → e−1

k!
= P{Y = k} as N →∞,

whereY has the Poisson(1) distribution. ¤
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