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§ 1. Introduction

Outline:

� Introduction of the framework

Parametric model vs. non-parametric model

� Best estimator

1.1 Basics of Statistical Decision Theory

� Statistical Experiment: A collection of probability distributions (over a common measurable
space (X ,F)).

P = {Pθ : θ ∈ Θ}

� Data:
X ∼ Pθ for some θ ∈ Θ

X could be a random variable, vector, process, etc, depending on X .

� Objective:

T : Θ→ Y
θ 7→ T (θ)

The value T (θ) is what we want to estimate, which can be θ itself, or a relevant aspect of θ,
e.g., a function of θ such as its norm ‖θ‖.

� Estimator (Decision Rule):
T̂ : X → Ŷ

Note the that Ŷ need not be the same as Y.

Remark 1.1. T̂ can be a deterministic or randomized estimator:

– deterministic estimator: T̂ = T̂ (X).

– randomized estimator: T̂ = T̂ (X,U), where U denotes external randomness independent
of X. In this case T̂ should be viewed as a conditional probability distribution PT̂ |X
(Markov transition kernel).

The problem in statistical experiment is the following game: By choosing the parameter θ,
nature picks a distribution that generates the data X. The statistician observes the data and
computes an estimation T̂ of T (θ). The goal is for T̂ to be close to T . To that end, we need
to introduce a metric to quantify how good T̂ is:
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� Loss Function:

l :Y × Ŷ → R

T × T̂ 7→ l(T, T̂ )

Since we are dealing with loss, all the negative (converse) results are lower bound and all the
positive (achievable) results are upper bound.

Note: Since X is a random variable, the estimator is also a random variable. Hence, l(T, T̂ ) is
a random variable. Therefore, to make sense of “minimizing the loss”, we define the following:

� Risk:

Rθ(T̂ ) = Eθ[l(T, T̂ )] =

∫
Pθ(dx)PT̂ |X(dt̂|x)l(t(θ), t̂),

which we refer to as the risk of T̂ at θ. Note that the expected risk depends on the strategy
as well as where the truth is. The subscript indicates the distribution with respect to which
the expectation is taken.

The following diagram summarizes the process:

Example 1.1.
Gaussian Location Model (GLM): or Normal Mean Model, Additive Gaussian-Noise Channel

− Model:
P = {N (θ, Ip) : θ ∈ Θ}

where Ip is the p-dimensional identity matrix and Θ ⊂ Rp. Equivalently,

X = θ + Z Z ∼ N (0, Ip), θ ∈ Θ ⊂ Rp.

� p = 1: scalar case

� p > 1: vector case
We also encompass matrix case: By arranging a p2-dimensional vector into a p×p matrix.
In this case Θ ⊂ Rp×p.

− Objective: Examples of the objective include T (θ) = θ, ‖θ‖2, θmax = max
i∈[p]

θi, where [p] =

{1, · · · , p}.

− Loss function: Examples of the loss function include the following:

l(θ, θ̂) = ‖θ − θ̂‖22, ‖θ − θ̂‖1, · · ·
In the matrix case : l(θ, θ̂) = ‖θ − θ̂‖2F , ‖θ − θ̂‖op, · · ·
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− Estimator: Examples of the estimator include the following:

Maximum Likelihood Estimator: θ̂ = X

James-Stein estimator: θ̂JS =

(
1− p− 2

‖X‖22

)
X

The choice of the estimator mainly depends on the objective.

− Parameter space: Examples of the parameter space include the following:

a) Θ = Rp: unstructured.

b) Θ = {all k-sparse vectors} = {θ ∈ Rp : ‖θ‖0 ≤ k}, where ‖θ‖0 , |{i : θi 6= 0}| denotes the
size of the support.

Θ = lq-norm balls, 0 ≤ q ≤ ∞, where ‖θ‖q = (
∑
|θi|q)

1
q .

c) Matrix case: low-rank matrices: Θ = {θ : rank(θ) ≤ r}.
Note that by definition, more structure (smaller paramater space) always leads to smaller risk;
but it need not simplify the computation issue.

− Testing: We have two scenarios and based on the observed data X, we want to determine which
one is the true scenario.

∗ Simple Hypothesis:

H0 : θ = θ0

H1 : θ = θ1

For instance θ0 could be the all zero vector and θ1 could be all one vector. Then this
corresponds to sending a single bit repeatedly in Gaussian noise.

parameter space = Θ = {θ0, θ1} = Θ̂ = decision space

l(θ, θ̂) = 1{θ 6=θ̂}: This is Hamming loss (zero-one loss).

∗ Composite Hypothesis:
Example 1: One of the hypothesis is composite.

H0 : θ = 0

H1 : ‖θ‖2 ≥ ε

Here, H0 and H1 could be interpreted as pure noise case and the case where signal is
present, respectively.

Θ = {0} ∪ {θ : ‖θ‖2 ≥ ε}
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Example 2: Both hypothesis are composite.

H0 : ‖θ‖2 ≤ δ
H1 : ‖θ‖2 ≥ ε

Here, H0 and H1 could be interpreted as the case with weak signal and strong signal,
respectively.

Remark 1.2 (Parametric model versus non-parametric model). According to statistical conventions,
parametric model refers to the case that the parameter of interest is finite-dimensional while non-
parametric model refers to the case that the parameter is infinite-dimensional.

In this class, we are mostly interested in high-dimensional parametric model.

Parametric Model

Examples of parametric model:

� GLM or more generally exponential family. We start with distribution P on Rp, and for
θ ∈ Rp, consider the tilted distribution

dPθ =
e〈θ,X〉∫

P (dx)e〈θ,x〉
dP

� Covariance matrix estimation:

X = (X1, · · · , Xn)
iid∼ N (0,Σ). In this case, Σ is our parameter and Pθ = N (0,Σ)⊗n.

If we want to estimate Σ, we can use the loss function l(Σ, Σ̂) = ‖Σ− Σ̂‖.
If we want to estimate a function of Σ, T : Σ → v (principle component) we can use loss
function l(v, v̂) = d(span(v), span(v̂)‖ = ‖vv′ − v̂v̂′‖.

� Stochastic block model: We observe the graph G of n vertices bisected partitioned into two
communities: C and Cc. So

X = G

Θ = {C : C ⊂ [n], |C| = n/2}

Given the partition, the graph is generated as follows: for nodes i and j, the probability that
i is connected to j depends on whether they belong to the same partition or not, namely,

P (i ∼ j) =

{
p if i, j ∈ C or Cc

q o.w.

Given the graph G, the goal is to estimate the communities with respect to the following loss
function:

l(C, Ĉ) = 1{C 6=Ĉ} or |C∆Ĉ|
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� Large alphabet: Estimating a discrete distribution.

P = {all distributions on [k]}
X = (X1, · · · , Xn) ∼ P ∈ P
l(P, P̂ ) = ‖P − P̂‖ or D(P‖P̂ )

Non-parametric Model

Examples of non-parametric model:

� Density estimation: Here the parameter is a pdf, for example:

f ∈ F = {smooth, log concave, monotone}

X = (X1, · · · , Xn)
iid∼ f on Rp

l(f, f̂) = ‖f − f̂‖22

� Regression: We observe noisy samples at discrete points. The parameter is the unknown
function f .

X = (Xi) = f(i/n) + Zi

� White Gaussian noise model: we observe a wave form:

dXt = f(t)dt+ dBt

Xt =

∫ t

0
f(τ)dτ +Bt

where Bt is a Brownian motion. Equivalently, if f ∈ L2 where {φi} is an orthonormal basis,
then

Xi = 〈X,φi〉 = θi + Zi i = 0, 1, · · ·

This is called Gaussian Sequence Model (which is GLM with p =∞).

Remark 1.3. Testing:

simple vs. simple
H0 : θ = θ0 vs. H1 : θ = θ1 Θ = {θ0, θ1}

simple vs. composite
H0 : θ = θ0 vs. H1 : θ ∈ Θ1 Θ = {θ0} ∪Θ1
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composite vs. composite

H0 : θ ∈ Θ0 vs. H1 : θ ∈ Θ1 Θ = Θ0 ∪Θ1

T̂ (X) ∈ {0, 1} l(θ, T̂ ) = 1{θ/∈ΘT̂ }.

Remark 1.4. Confidence interval/region/bond: For example to estimate a function we output a
region in which the function lies w.h.p.

T̂ = some subset

l(θ, T̂ ) = 1{θ/∈T̂} + size of T̂

Remark 1.5. We frequently deal with independent sampling model. In this case:

X = (X1 · · · , Xn)︸ ︷︷ ︸
i.i.d. samples

P = {P⊗nθ : θ ∈ Θ}

1.2 How to define the “best estimator”

One of the main objectives of this course is to investigate the fundamental limit, that is, to find the
performance of the best estimator. We use the risk of an estimator to quantify its performance. As
mentioned in the framework, for an estimator θ̂, we define the risk as follows:

Rθ(θ̂) = Eθ[l(θ, θ̂)]

Note that, Rθ(θ̂) could be viewed as a function of θ. As an example, the following figure depicts the
risk curves for two different estimators.

To find the best estimator, we first need to define the figure of merit.
Naive Method: Find the estimator which is better that all other estimators at all points, i.e.,

find θ̂, such that
Rθ(θ̂) ≤ Rθ(θ̂′), ∀θ,∀θ̂′.

It is easy to see that this method is typically too greedy to be realistic and an estimator that
satisfies the requirement above does not exist. For example, consider θ1 6= θ2 in Θ and l(θ, θ̂) is
some norm. Consider the estimator θ̂1 = θ1 which throws away data and always spits out θ1. Then
Rθ1(θ̂) ≤ Rθ1(θ̂1) = 0 means θ̂ = θ1, which means it cannot beat θ̂2 = θ2 now. Therefore, we need
other methods to compare estimators.
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Method 1 Limit the class of competitors (of θ̂):

In some cases, by restricting the class of estimators, we can find a strategy which is uniformly
the best. For example,

� Restricting to unbiased estimators: Frequently it is good to have be biased.

� Restricting to invariant estimators

Method 1 is difficult to generalize to high dimensional problems.

Method 2 Bayes approach: average-case analysis.

Method 3 Minimax approach: worst-case analysis

As mentioned before, finding a curve that dominates all other curves at all points is not always
feasible. Hence, in Methods 2 and 3, we summarize a curve to a number so that we can
compare them. In Method 2, we give weights to each point and take the average. The weights
are called the prior. But the problem is which prior to choose. In Method 3, we consider the
worst prior. For example, according to Method 3, in the figure above, θ̂2 is a better strategy.
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§ 2. Minimax risk and Bayes risk

Recall from last lecture:
Model: A set of probability distributions P = {Pθ : θ ∈ Θ}, where θ is the parameter (finite or

infinite dimensional) that specifies the distribution.
The estimation problem: Nature chooses θ and generate data X from the distribution

Pθ. Upon observing X, the statistician estimates a functional T (θ) of θ, by T̂ . In this lecture,
for simplicity, we focus on estimating θ itself and thus T (θ) = θ. In the following parts, we
consider deterministic estimator of θ denoted by θ̂(X) as well as randomized estimator given by the
transition kernel Pθ|X . Equivalently, we can write θ̂ = θ̂(X,U), where U is a random variable that
is independent from X. For all practical purposes (e.g., X takes value in a standard Borel space),
we can choose U to be uniform on [0, 1]. (Why?)

Risk: Rθ(θ̂) = Eθ`(θ, θ̂), which quantifies the quality of the estimator θ̂ at θ.

Remark 2.1 (Convex loss =⇒ deterministic estimator). If θ̂ 7→ `(θ, θ̂) is convex, then random-
ization does not help. The proof of this claim is just based on the Jensen’s inequality: for any
randomized estimator θ̂, we have

Rθ(θ̂) = E`(θ, θ̂) ≥ E`(θ,E[θ̂|X]),

where E[θ̂|X] is a deterministic estimator.

2.1 Bayes risk

The Bayes approach is an average-case analysis by considering the average risk of an estimator over
all θ ∈ Θ. Concretely, we set a probability distribution (prior) π on Θ. Then, the average risk
(w.r.t π) is defined as

Rπ(θ̂) = Eθ∼πRθ(θ̂) = Eθ,X`(θ, θ̂).

The Bayes risk for a prior π is the minimum that the average risk can achieve, i.e.

R∗π = inf
θ̂
Rπ(θ̂).

Example 2.1 (Quadratic loss and MMSE). Let θ, θ̂ ∈ R, θ ∼ π. Consider quadratic loss `(θ, θ̂) =
‖θ̂ − θ‖22, then the Bayes risk is the minimum mean-square error (MMSE)

R∗π = E‖θ − E[θ|X]‖22,

where the Bayes estimator is the conditional mean θ̂(X) = E[θ|X].

Example 2.2 (Gaussian Location Model). X = θ + Z,Z ∼ N (0, 1), θ ∈ R. Consider the Gaussian

prior distribution: θ ∼ π = N (0, σ2). Then E[θ|X] = σ2

1+σ2X and

R∗π =
σ2

σ2 + 1
. (2.1)
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Similarly, for multivariate GLM: X = θ + Z,Z ∼ N (0, Ip), if θ ∼ π = N (0, σ2Ip), then we have

R∗π =
σ2

σ2 + 1
p. (2.2)

If R∗π = inf θ̂ Rπ(θ̂) is attained by θ̂, θ̂ is called Bayes estimator. Bayes estimator is always
deterministic – this fact holds for any loss function. To see this, note that for any randomized
estimator θ̂ = θ̂(X,U), its risk is lower bounded by

Rπ(θ̂) = Eθ,X,U`(θ, θ̂(X,U)) = EURπ(θ̂(·, U)) ≥ inf
u
Rπ(θ̂(·, u))

where for any u, θ̂(·, u) is a deterministic estimator.
An alternative way to appreciate this is the following: Note that for any randomized estima-

tor understood as a Markov kernel Pθ̂|X , the average risk Rπ(θ̂) is an affine functional of Pθ̂|X .

Maximizing a convex (e.g., affine) function over a convex constraint set is always achieved at the
extremal points. In this case the extremal points of Markov kernels are simply delta measures,
which corresponds to deterministic estimators.

The usual critisim to the Bayes approach is which prior to pick. A framework related to this but
not discussed in this case is the empirical Bayes approach, where one “estimates” the prior from the
data instead of choosing a prior a priori. Instead, we take a frequentist viewpoint by considering
the worst-case situation:

2.2 Minimax risk

We have the risk of θ̂ at a given point θ : Rθ(θ̂). The minimax risk is defined as

R∗ = inf
θ̂

sup
θ∈Θ

Rθ(θ̂). (2.3)

If there exists θ̂ s.t. supθ∈ΘRθ(θ̂) = R∗, then the estimator θ̂ is minimax (minimax optimal).
Finding the value of the minimax risk R∗ entails

Minimax upper bound: ∃θ̂,∀θ,Rθ(θ̂) ≤ r ⇔ R∗ ≤ r (2.4)

Minimax lower bound: ∀θ̂,∃θ,Rθ(θ̂) ≥ r ⇔ R∗ ≥ r (2.5)

This task is frequently difficult especially in high dimensions. Instead of the exact minimax risk, it
is often useful to find a constant-factor approximation, which we call minimax rate

R∗ � ψ, (2.6)

that is, cψ ≤ R∗ ≤ Cψ for some universal constants c, C ≥ 0. Establishing ψ is a minimax rate still
entails upper and lower bounds (2.4) and (2.5), albeit within multiplicative constant factors.

In practice, minimax lower bounds are rarely established via the obvious recipe (2.5). Throughout
this course, all lower bound techniques essentially boil down to lower bounding the minimax risk by
Bayes risk with a smarly chosen prior.

Theorem 2.1 (Minimax risk ≥ worst-case Bayes risk).

R∗ ≥ R∗B , sup
π
R∗π.
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Proof. Two (equivalent) ways to understand this fact:

1. “max ≥ mean”: ∀θ̂, Rπ(θ̂) = Eθ∼πRθ(θ̂) ≤ supθ∈ΘRθ(θ̂);

2. “min max ≥ max min”:

R∗ = inf
θ̂

sup
θ∈Θ

Rθ(θ̂) = inf
θ̂

sup
π∈M(Θ)

Rπ(θ̂) ≥ sup
π∈M(Θ)

inf
θ̂
Rπ(θ̂) = sup

π
R∗π,

where M(Θ) is the set of all probability distributions on Θ.

Example 2.3 (Minimax > worst-case Bayes). Let θ, θ̂ ∈ N , {1, 2, ...} and `(θ, θ̂) = 1{θ̂ < θ},
i.e., the statistician loses one dollar if the nature’s choice exceeds the statistician’s guess and loses
nothing if otherwise. Consider the extreme case of blind guessing (i.e., no data is available, say,
X = 0). Then ∀θ̂, we have Rθ(θ̂) = P(θ̂ < θ). Furthermore, we have R∗ ≥ limθ→∞ P(θ̂ < θ) = 1,
which is clearly achievable. On the other hand, for any prior π on N, Rπ(θ̂) = P(θ̂ < θ) and we let
θ̂ →∞. Therefore, we have R∗π = 0. Therefore in this case

R∗ = 1 > R∗B = 0.

Example 2.4 (Gaussian Linear Model). In the scalar case, this experiment is given by:

X ∼ N (θ, 1), `(θ, θ̂) = (θ − θ̂)2, θ, θ̂ ∈ R

To get a minimax upper bound, we choose θ̂ = X and thus Rθ(θ̂) = 1. Therefore, R∗ ≤ 1. To get a
minimax lower bound, we set a prior distribution for θ, i.e., π ∼ N (0, σ2). Using (2.1), we have

R∗ ≥ R∗π = σ2

σ2+1
for all σ > 0 and thus R∗ ≥ supπ R

∗
π = 1.

The p-dimensional case: X = θ + Z ∈ Rp, Z ∼ N (0, Ip), `(θ, θ̂) = ‖θ − θ̂‖2. Similarly, using (2.1)

as a lower bound and using θ̂ = X for the upper bound, we have R∗ = p.

Exercise 2.1. Show that the minimax quadratic risk of the GLM model X ∼ N (θ, 1) with parameter
space θ ≥ 0 is the same as the unconstrained case.

This might be a bit surprising because it is reasonable to think that the thresholded estimator
X+ = max(X, 0) can improve the performance. This is indeed correct in the sense that it achieves
a better risk pointwise (at every θ ≥ 0); however, in the worst case the gain is asymptotically
diminishing.

2.3 Minimax and Bayes risk: an optimization perspective

In the last lecture, we proved that minimax risk is always lower bounded from the worst-case Bayes
risk, namely

R∗ ≥ R∗B , sup
π∈M(Θ)

R∗π. (2.7)

This result can be interpreted from an optimization perspective. More precisely:

� The RHS of (2.7) is exactly the dual program of the LHS;

� The inequality (2.7) is simply weak duality ;

� If strong duality holds, then (2.7) holds with equality, i.e., minimax theorem holds.
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For simplicity, we consider the case where Θ is a finite set. Recall the minimax risk

R∗ = min
θ̂

max
θ∈Θ

Eθ[`(θ, θ̂)],

which is in fact a convex optimization problem. Indeed, Pθ̂ 7→ Eθ[`(θ, θ̂)] is affine and supremum of
affine functions are convex. Let us write down its dual problem. First we can rewrite

R∗ = min
θ̂,t

t

s.t Eθ[`(θ, θ̂)] ≤ t, ∀θ ∈ Θ.

Attach dual variable πθ ≥ 0 to each inequality constraint. The Lagrangian of the above minimization
problem is

L(θ̂, t, π) = t+
∑
θ∈Θ

πθ

(
Eθ[`(θ, θ̂)]− t

)
=

(
1−

∑
θ∈Θ

πθ

)
t+

∑
θ∈Θ

πθEθ[`(θ, θ̂)].

Note that unless
∑

θ∈Θ πθ = 1, mint∈R L(θ̂, t, π) is −∞. Thus the dual variable π = {πθ : θ ∈ Θ} is
a probability measure (prior) and the dual problem is

max
π

min
θ̂,t

L(θ̂, t, π) = max
π:πθ≥0,∑
θ∈Θ πθ=1

min
θ̂
Rπ(θ̂)

= max
π∈M(Θ)

R∗π.

Hence, R∗ ≥ R∗π, for all π ∈M(Θ). Note that, as usual, the dual program is a concave maximization
problem.

Theorem 2.2 (Minimax theorem).
R∗ = R∗B

in either of the following cases:

� Θ is a finite set and the data X takes values in a finite set X .

� Θ is a finite set and the loss function ` is bounded from below, i.e., infθ,θ̂ `(θ, θ̂) > −∞

Proof. The first case directly follows from the fact that strong duality holds for finite-dimensional
linear programming.

For the second case, we start by showing that if R∗ =∞, then R∗B =∞. To see this, consider

the uniform prior π on Θ. Then for any estimator θ̂, there exists θ ∈ Θ such that R(θ, θ̂) = ∞.
Then Rπ(θ̂) ≥ 1

|Θ|R(θ, θ̂) =∞.

Next we assume that R∗ < ∞. Then R∗ ∈ R since ` is bounded from below (say, by a) by
assumption. Define

S = {R(·, θ̂) ∈ RΘ : θ̂ is a randomized estimator} = {set of all possible risk vectors}
T = {t ∈ RΘ : ti < R∗}.
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Note that both S and T are convex (why?) subsets of Euclidean space RΘ and S∩T = ∅ by definition
of R∗. By the separation hyperplane theorem, there exists a non-zero π ∈ RΘ and c ∈ R, such
that infs∈S 〈π, s〉 ≥ c ≥ supt∈T 〈π, t〉. Obviously, π must be componentwise positive, for otherwise
supt∈T 〈π, t〉 =∞. Therefore by normalization we may assume that π is a probability vector, i.e., a
prior on Θ. Then R∗B ≥ R∗π = infs∈S 〈π, s〉 ≥ supt∈T 〈π, t〉 ≥ R∗, completing the proof.
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§ 3. Minimax risk of GLM and four extensions

In this lecture, we discuss several extension of the Gaussian local model (GLM) to illustrate the
following concepts such as tensor product of experiments and sample complexity.

Recall the scalar GLM we discussed in the last lecture, where X = θ + Z, where θ ∈ R, Z ∼
N (0, σ2) and the loss function is quadratic `(θ, θ̂) = (θ − θ̂)2. Then we have

R∗ = σ2. (3.1)

This follows from

� Lower bound: If θ ∼ N (0, σ2
0), we know Rπ =

σ2
0σ

2

σ2
0+σ2 . Letting σ0 →∞ yields R∗ ≥ σ2.

� Upper bound: Let the estimator be θ̂ = X. Thus Rθ(θ̂) = σ2 for all θ. Hence R∗ ≤ σ2.

3.1 Multivariate version and tensor product of experiments

We observe X = θ+Z, where θ ∈ Rp, Z ∼ N (0, σ2Ip) and the loss function `(θ, θ̂) = ‖θ− θ̂‖22. Then

R∗ = pσ2. (3.2)

This can be obtained using similar argument to the univariate case:

� Lower bound: θ ∼ N (0, σ2
0Ip) and σ0 →∞.

� Upper bound: take θ̂ = X.

The multivariate GLM can be viewed as a tensor product of the univariate GLM, and their
minimax risks satisfy a general relationship. We discuss this notion below:

Minimax risk for tensor product of the experiment Given statistical experiments Pi =
{Pθi : θi ∈ Θi} and the corresponding loss function `i, for i ∈ [p], consider their tensor product,
which is the following statistical experiment:

P =

{
Pθ =

p∏
i=1

Pθi : θ = {θ1, . . . , θp} ∈ Θ ,
p∏
i=1

Θi

}
,

X = (X1, . . . , Xp) where Xi
ind∼ Pθi ,

`(θ, θ̂) =
n∑
i=1

`i(θi, θ̂i), ∀θ, θ̂ ∈ Θ.

Then the minimax risk of the tensor product experiment is related to the minimax risk R∗(Pi) and
worst-case Bayes risks R∗B(Pi) , supπ Rπ(Pi) of individual experiments as follows:1

1Here the minimax risk is defined allowing randomized procedures.
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Theorem 3.1 (Minimax risk of tensor product).

p∑
i=1

R∗B(Pi) ≤ R∗(P) ≤
p∑
i=1

R∗(Pi). (3.3)

Consequently, if minimax theorem holds for each experiment, i.e., R∗(Pi) = R∗B(Pi), we have

R∗(P) =

p∑
i=1

R∗(Pi). (3.4)

Proof. The right inequality simply follows by separately estimating θi based on Xi, namely, θ̂ =
(θ̂1, . . . , θ̂p). For the left inequality, consider a product prior π =

∏p
i=1 πi. Then Xi’s are independent.

For any θ̂i = θ̂i(X1, . . . , Xp, Ui), where Ui is independent external randomness, we can rewrite

θ̂i = θ̂i(Xi, Ũi), where Ũi = (X\i, Ui) ⊥⊥ Xi serves as randomization. Therefore the Bayes risk of

θ̂i satisfies: E[`(θi, θ̂i)] ≥ R∗πi . Summing over i and taking suprema over priors πi’s yields the left
inequality of (3.4).

Remark 3.1 (Minimax risk of tensor product < sum of minimax risks). The right inequality of
(3.4) can be strict. This might appear surprising since Xi only carries information about θi and it is
intuitive to estimate θi based solely on Xi. Nevertheless, the following is a counterexample:

Consider X = θZ, where θ ∈ N, Z ∼ Bern(1
2). The estimator θ̂ takes values in N as well

and the loss function is `(θ, θ̂) = 1{θ̂ < θ}, i.e., whoever guesses the greater number wins. The
minimax risk for this experiment is equal to P [Z = 0] = 1

2 . To see this, note that if Z = 0, then
all information about θ is erased. Therefore for any (randomized) estimator Pθ̂|X , the risk is lower

bounded by Rθ(θ̂) = P[θ̂ < θ] ≥ P[θ̂ < θ, Z = 0] = 1
2P[θ̂ < θ|X = 0]. Therefore sending θ → ∞

yields supθ Rθ(θ̂) ≥ 1
2 . This is achievable by θ̂ = X. Clearly, this is a case where minimax theorem

does not hold, which is very similar to the trivial example given in the last lecture.
Next consider the tensor product of two copies of this experiment. We show that the minimax

risk is strictly less than one. For i = 1, 2, let Xi = θiZi, where Z1, Z2
i.i.d.∼ Bern(1

2). Consider the

following estimator θ̂1 = θ̂2 = X1 ∨X2. Then for any θ1, θ2 ∈ N,

E[`(θ, θ̂)] = P[θ̂1 < θ1] + P[θ̂2 < θ2] = P[Z1 = 0, Z2 < θ1/θ2] + P[Z2 = 0, Z1 < θ2/θ1]

=
1

2
(P[Z2 < θ1/θ2] + P[Z1 < θ2/θ1]) ≤ 3

4
.

Remark 3.2 (Non-uniqueness of minimax estimator). In general, minimax risk achieving strategies
need not be unique. For instance, consider Example 3.1 where θ̂ = X is the maximum likelihood
estimator as well as the minimax. On the other hand, the risk of the James-Stein estimator

θ̂JS =

(
1− p− 2

‖X‖2

)
X

dominates that of MLE everywhere (see Fig. 3.1). Therefore θ̂JS also achieves R∗ = p for p ≥ 3.
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Figure 3.1: Risks of MLE and JS estimators for p = 10.

3.2 Multiple samples and sample complexity

We now consider a variant of GLM where we observe X = (X1, . . . , Xn) where Xi = θ + Zi, Zi
iid∼

N (0, σ2Ip), θ ∈ Rp. In this case, we have

R∗ =
pσ2

n
. (3.5)

To see this, note that for the case of i.i.d. Gaussian random variables, X̄ is a sufficient statistic of X
for θ, because the joint pdf pX1,...,Xn|θ is of the form h (X) gθ(X̄), and hence by Fisher’s factorization

criterion, θ → X̄ → (X1, . . . , Xn). Therefore the model reduces to X̄ ∼ N (θ, σ
2

n Ip), which is the
single-sample multivariate case and the minimax risk follows from (3.2).

Sample complexity Given the experiment {Pθ : θ ∈ Θ}, consider the experiment

Pn =
{
P⊗nθ : θ ∈ Θ

}
.

Note this is not the tensor product of the given experiment because all samples are generated
by a common parameter. It is easy to see that n 7→ R∗ (Pn) is decreasing since we can always
discard samples. Typically, R∗ (Pn)→ 0 as n→∞. Thus it is natural to consider how fast R∗(Pn)
decreases with n (convergence rate). Equivalently, one can ask what is the minimum number of
samples to attain a prescribed error ε even in the worst case. This motivates the following definition.

Definition 3.1 (Sample complexity). Given an error margin ε > 0, we define the sample complexity
of the statistical model as

n∗(ε) , min {n ∈ N : R∗ (Pn) ≤ ε} .

In machine learning and related fields, it is customary and useful to consider high-probability
bound instead of average risk bound and it is useful to define the sample complexity to be the
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minimum number of samples required to achieve a prescribed loss with high confidence. In other
words, given ε > 0 and 0 < δ < 1, the sample complexity n∗(ε, δ) is the smallest n such that there
exists θ̂ = θ̂(X1, . . . , Xn) satisfying

Pθ(`(θ, θ̂) ≤ ε) ≥ 1− δ, ∀θ ∈ Θ.

This is in fact just a special case of Definition 3.1 with the loss function ` replaced by 1{`(θ, θ̂) ≥ ε}.

Remark 3.3. For the multi-sample GLM with unit variance, we know that R∗ = p
n . Hence the

sample complexity is given by n∗(ε) = dpε e. Here we notice that the sample complexity grows
linearly with the dimension p. This is the common wisdom that “the sample size need to scale at
least proportionally to the number of parameters”, also known as “counting the degrees of freedom”.
Indeed in high dimensions we typically expect the sample complexity to grow with the ambient
dimension. However, such claim of linear growth should be taken with a grain of salt because it
highly depends on what loss function and what is target we are estimating. For example, consider
the matrix case θ ∈ Rp×p and let ε be a small constant. Then

� For quadratic loss, namely, ‖θ − θ̂‖2F , then we have R∗ = p2

n and hence n∗(ε) = Θ(p2).

� If the loss function is ‖θ − θ̂‖2op, then we have R∗ � p
n and hence n∗(ε) = Θ(p).

� If we only want to estimate the scalar functional ‖θ‖`∞ , then n∗(ε) = Θ(
√

log p).

3.3 Nonparametric extension

The result we obtained on the minimax risk of GLM can be in fact generalized to the following
nonparametric setting. Consider the class of distributions (which need have density) on the real line
with bounded variance:

� Model: P = {P ∈M(R) : varP ≤ 1}, where varP denotes the variance of the distribution P .

� Data: X = (X1, . . . , Xn)
iid∼ P for some P ∈ P.

� Objective: We wish to estimate θ(P ) where θ(P ) = mean of the distribution P .

� Loss function: `(θ, θ̂) = (θ − θ̂)2 for θ, θ̂ ∈ R.

Then the minimax risk is

R∗(P) =
1

n
.

Proof. Restricting the analysis to the subcollection of Gaussian distributions PG = {N (θ, 1) : θ ∈ R},
we know that R∗(PG) = 1

n . Hence R∗(P) ≥ 1
n . On the other hand, for the estimator θ̂ = X̄,

Rθ(θ̂) = E[(θ(P )− θ̂)2] = E[(θ(P )− X̄)2] =
1

n2
E

[
n∑
i=1

(θ(P )−Xi)
2

]
≤ 1

n
.

Hence supP∈P Rθ(θ̂) ≤ 1
n and R∗(P) ≤ 1

n . Thus R∗(P) = 1
n .
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3.4 Non-quadratic loss

One can also consider non-quadratic loss functions such as ‖θ − θ̂‖1 when θ ∈ Rp or ‖θ − θ̂‖op when
θ ∈ Rp×p, etc., where R∗ will no longer be given by (3.5). We will prove the following result later in
the course (see Lecture 9).

Theorem 3.2. For the Gaussian location model where X = (X1, . . . , Xn)
iid∼ N (θ, Ip) and `(θ, θ̂) =

‖θ − θ̂‖2 for some arbitrary norm ‖ · ‖, one has

R∗ =
E[‖Z‖2]

n
.

Thus (3.5) can be seen as a direct consequence of this theorem. In this case, the sample

complexity n∗(ε) scales as E[‖Z‖2]
ε , depending on the norm.
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Part II

f-divergences, information
inequalities, and large-sample

asymptotics
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§ 4. Total variation/Inequalities between f-divergences

4.1 f-divergences

Outline of the topics.

� Notion of dissimilarity between distributions: Common f -divergences such as KL-divergence,
Hellinger distance, total variation distance, χ2-distance, etc.

� Notion of dependence between distributions: Mutual information.

� Data processing principle

� Fisher information & minimax bounds

We now define the f -divergence between probability distributions over a measurable space
(X ,F), introduced by Csiszár [Csi67]. Roughly speaking, all f -divergences quantify the difference
between a pair of distributions, each with different operational meaning.

Definition 4.1 (f -divergence). Let P and Q be two probability distributions on X . Then for any
convex function f : (0,∞)→ R such that it is strictly convex1 at 1 and f(1) = 0, the f -divergence
of Q from P with P � Q is defined as

Df (P‖Q) , EQ
[
f

(
dP

dQ

)]
. (4.1)

Remark 4.1. When X is discrete, Df (P‖Q) =
∑

x∈X Q(x)f
(
P (x)
Q(x)

)
.

Remark 4.2. The notation dP
dQ stands for the relative density (Radon-Nikodym derivative) of P

with respect to Q, whenever P � Q, which is a function from X to R. For conciseness, we sometimes
abbreviate dP

dQ by P
Q . The defining property of dP

dQ is its utility in change of measure:

EP [f(X)] = EQ
[
f(X)

dP

dQ
(X)

]
Remark 4.3 (General definition of f -divergence). If P is not absolutely continuous with respect
to Q, (4.1) is not well-defined. The general definition of f -divergence is as follows:

Df (P‖Q) , EQ
[
f

(
dP/dµ

dQ/dµ

)]
(4.2)

where µ is a dominating probability measure (e.g., µ = (P +Q)/2) of P and Q, i.e., both P � µ
and Q� µ, with the understanding that

1By strict convexity at 1, we mean for all s, t ∈ (0,∞) and α ∈ (0, 1) such that αs + ᾱt = 1, we have
αf(s) + (1− α)f(t) > f(1).
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� f(0) = f(0+),

� 0f(0
0) = 0, and

� 0f(a0 ) = limx↓0 xf(ax) for a > 0.

This definition is not merely for completeness, for example, we will show later that dTV(P,Q) = 1
iff P ⊥ Q.

The following are the common f -divergences (“big four”) that we would be frequently used in
this course.

� Kullback-Leibler (KL) divergence: aka relative entropy, f(x) = x log x,

D(P‖Q) , EQ
[
P

Q
log

P

Q

]
= EP

[
log

P

Q

]
.

It is worth noting that, in general D(P‖Q) 6= D(Q‖P ). When f(x) = − log x, we obtain

Df (P‖Q) = EQ
[
− log P

Q

]
= D(Q‖P ).

� Total variation: f(x) = 1
2 |x− 1|,

dTV(P,Q) ,
1

2
EQ
[∣∣∣∣PQ − 1

∣∣∣∣] =
1

2

∫
|dP − dQ|.

Moreover, dTV(·, ·) is a metric on the space of probability distributions, and hence it is a
symmetric function of P and Q.

� χ2-divergence: f(x) = (x− 1)2,

χ2(P‖Q) , EQ

[(
P

Q
− 1

)2
]

=

∫
(P −Q)2

Q
=

∫
P 2

Q
− 1.

Note that we can also choose f(x) = x2−1. Indeed different f can lead to the same divergence.

� Squared Hellinger distance: f(x) = (1−
√
x)

2
,

H2(P,Q) , EQ

(1−

√
P

Q

)2
 =

∫ (√
P −

√
Q
)2
.

Note that H2(P,Q) = H2(Q,P ).

Theorem 4.1 (Properties of f -divergences).

� Non-negativity: Df (P‖Q) ≥ 0 with equality if and only if P = Q.

� Joint convexity: (P,Q) 7→ Df (P‖Q) is a jointly convex function. Consequently, P 7→
Df (P‖Q) and Q 7→ Df (P‖Q) are also convex functions.

� Conditioning increases f-divergence: Define the conditional f -divergence:

Df

(
PY |X‖QY |X |PX

)
, EX∼PX

[
Df

(
PY |X‖QY |X

)]
,

Let PX
PY |X−−−→ PY and PX

QY |X−−−→ QY , i.e.,
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PX

PY |X

QY |X

PY

QY

Then
Df (PY ‖QY ) ≤ Df

(
PY |X‖QY |X |PX

)
.

Note: For the last property, one can view PY and QY as the output distributions after passing PX
through the channel transition matrices PY |X and QY |X respectively. The above relation tells us
that the average f -divergence between the corresponding channel transition rows is at least the
f -divergence between the output distributions.

Proof. � Df (P‖Q) = EQ
[
f
(
P
Q

)]
≥ f

(
EQ
[
P
Q

])
= f(1) = 0, where the inequality follows from

the Jensen’s inequality. By strict convexity at 1, equality holds if and only if P = Q.

� For any convex function f on R+, it follows that (p, q) 7→ qf
(
p
q

)
is convex on R2

+ (the

perspective of f). Since Df (P‖Q) = EQ
[
f
(
P
Q

)]
, Df (P‖Q) is jointly convex.

� This follows directly from the joint-convexity of Df (P‖Q) and the Jensen’s inequality.

Recall the definition of f -divergences from last time. If a function f : R+ → R satisfies the
following properties:

� f is a convex function.

� f(1) = 0.

� f is strictly convex at x = 1, i.e. for all x, y, α such that αx + αy = 1, the inequality
f(1) < αf(x) + αf(y) is strict.

Then the functional that maps pairs of distributions to R+ defined by

Df (P‖Q) , EQ
[
f

(
dP

dQ

)]
is an f -divergence.

4.2 Data processing inequality

Theorem 4.2. Consider a channel that produces Y given X based on the law PY |X (shown below).
If PY is the distribution of Y when X is generated by PX and QY is the distribution of Y when X
is generated by QX , then for any f -divergence Df (·‖·),

Df (PY ‖QY ) ≤ Df (PX‖QX).
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PY |X

PX

QX

PY

QY

One interpretation of this result is that processing the observation x makes it more difficult to
determine whether it came from PX or QX .

Proof.

Df (PX‖QX) = EQX

[
f

(
PX
QX

)]
(a)
= EQXY

[
f

(
PXY
QXY

)]
= EQY

[
EQX|Y f

(
PXY
QXY

)]
Jensen’s inequality→ ≥ EQY

[
f

(
EQX|Y

PXY
QXY

)]
= EQY

[
f

(
EPX|Y

PY
QY

)]
(b)
= EQY

[
f

(
PY
QY

)]
= Df (PY ‖QY ).

Note that (a) means Df (PX‖QX) = Df (PXY ‖QXY ); (b) can be alternatively understood by noting
that EQ[ PXYQXY

|Y ] is precisely the relative density PY
QY

, by checking the definition of change of measure,

i.e., EP [g(Y )] = EQ[g(Y ) PXYQXY
] = EQ[g(Y )E[ PXYQXY

|Y ]] for any g.

Remark 4.4. PY |X can be a deterministic map so that Y = f(X). More specifically, if f(X) =
1E(X) for any event E, then Y is Bernoulli with parameter P (E) or Q(E) and the data processing
inequality gives

Df (PX‖QX) ≥ Df (Bern(P (E))‖Bern(Q(E))). (4.3)

This is how we prove the converse direction of large deviation.

Example 4.1. If X = (X1, X2) and f(X) = X1, then we have Df (PX1X2‖QX1X2) ≥ Df (PX1‖QX1).
As seen from the proof of Theorem 4.2, this is in fact equivalent to data processing inequality.

Remark 4.5. If Df (P‖Q) is an f -divergence, then Df̃ (P‖Q) with f̃(x) := xf( 1
x) is also an f -

divergence and Df (P‖Q) = Df̃ (Q‖P ). Example: Df (P‖Q) = D(P‖Q) then Df̃ (P‖Q) = D(Q‖P ).

Proof. First we verify that f̃ has all three properties required for Df̃ (·‖·) to be an f -divergence.

� For x, y ∈ R+ and α ∈ [0, 1] define c = αx+ αy so that αx
c + αy

c = 1. Observe that

f̃(αx+ αy) = cf

(
1

c

)
= cf

(
αx

c

1

x
+
αy

c

1

y

)
≤ cαx

c
f

(
1

x

)
+ c

αy

c
f

(
1

y

)
= αf̃(x) + αf̃(y).

Thus f̃ : R+ → R is a convex function.

� f̃(1) = f(1) = 0.

� For x, y ∈ R+, α ∈ [0, 1], if αx+ αy = 1, then by strict convexity of f at 1,

0 = f̃(1) = f(1) = f

(
αx

1

x
+ αy

1

y

)
< αxf

(
1

x

)
+ αyf

(
1

y

)
= αf̃(x) + αf̃(y).

So f̃ is strictly convex at 1 and thus Df̃ (·‖·) is a valid f -divergence.
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Finally,

Df (P‖Q) = EQ
[
f

(
P

Q

)]
= EP

[
Q

P
f

(
P

Q

)]
= EP

[
f̃

(
Q

P

)]
= Df̃ (Q‖P ).

4.3 Total variation and hypothesis testing

Recall that the choice of f(x) = 1
2 |x− 1| gives rise to the total variation distance,

Df (P‖Q) =
1

2
EQ
∣∣∣∣PQ − 1

∣∣∣∣ =
1

2

∫
|P −Q|,

where
∫
|P −Q| is a short-hand understood in the usual sense, namely,

∫
|dPdµ −

dQ
dµ |dµ where µ is a

dominating measure, e.g., µ = P +Q, and the value of the integral does not depends on µ.
We will denote total variation by dTV(P,Q) or TV(P,Q).

Theorem 4.3. The following definitions for total variation are equivalent:

1.
dTV(P,Q) = sup

E
P (E)−Q(E), (4.4)

where the supremum is over all measurable set E.

2. Given an observation X, the minimal sum of Type-I and Type-II error probabilities for testing
X ∼ P versus X ∼ Q is given by 1− dTV(P,Q),

min
φ
{P (φ = 1) +Q(φ = 0)} = 1− dTV(P,Q), (4.5)

where the minimum is over all decision rule φ ∈ {0, 1} as a (deterministic or random) function
of the observation X.2 Furthermore,3

dTV(P,Q) = 1−
∫
P ∧Q. (4.6)

3. Provided the diagonal {(x, x) : x ∈ X} is measurable,

dTV(P,Q) = inf
PXY :

PX=P,PY =Q

P [X 6= Y ] . (4.7)

4. Let F = {f : X → R, ‖f‖∞ ≤ 1}. Then

dTV(P,Q) =
1

2
sup
f∈F

EP f(x)− EQf(x). (4.8)

Remark 4.6 (Variational representation). The equation (4.4) and (4.8) provide sup-representation
of total variation, which will be extended to general f -divergences (later). Note that (4.7) is an
inf-representation of total variation in terms of couplings, meaning total variation is the Wasserstein
distance with respect to Hamming distance. The benefit of variational representations is that
choosing a particular coupling in (4.7) gives an upper bound on dTV(P,Q), and choosing a particular
f in (4.8) yields a lower bound.

2The extension of (4.5) from from simple to composite hypothesis testing is in (18.1)
3Throughput the course a ∧ b = min{a, b} and a ∨ b = max{a, b}. Here again

∫
P ∧Q is a short-hand understood

per the usual sense, namely,
∫

( dP
dµ
∧ dQ

dµ
)dµ where µ is any dominating measure.
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Remark 4.7 (Operational meaning). In the binary hypothesis test for H0 : X ∼ P or H1 : X ∼ Q,
Theorem 4.3 shows that 1− dTV(P,Q) is the sum of false alarm and missed detection probabilities.
This can be seen either from (4.4) where E is the decision region for deciding P or from (4.6) since
the optimal test (for average probability of error) is the likelihood ratio test dP

dQ > 1. In particular,

� dTV(P,Q) = 1 ⇔ P ⊥ Q, the probability of error is zero since essentially P and Q have
disjoint supports.

� dTV(P,Q) = 0⇔ P = Q and the minimal sum of error probabilities is one, meaning the best
thing to do is to flip a coin.

4.4 Motivating example: Hypothesis testing with multiple
samples

Observation: “Not all f -divergences are born equal”

1. Different f -divergences have different operational significance. For example, as we saw in
Section 4.3, testing two hypothesis boils down to total variation, which determines the
fundamental limit (minimum average probability of error). Later in the course we will

encounter another f -divergence: L(P‖Q) =
∫ (P−Q)2

P+Q , which is useful for estimation under
quadratic loss.

2. Some f -divergence is easier to evaluate than others. For example, for product distributions,
Hellinger distance and χ2-divergence tensorize in the sense that they are easily expressible
in terms of those of the one-dimensional marginals; however, computing the total variation
between product measures is frequently difficult. Another example is that computing the
χ2-divergence from a mixture of distributions to a simple distribution is convenient.

Therefore the punchline is that it is often fruitful to bound one f -divergence by another and this
sometimes leads to tight characterizations. In this section we consider a specific useful example
to drive this point home. Then in the next lecture we develop inequalities between f -divergences
systematically.

Consider a binary hypothesis test where data X = (X1, . . . , Xn) are i.i.d drawn from either P
or Q and the goal is to test

H0 : X ∼ P⊗n vs H1 : X ∼ Q⊗n.

As mentioned before, 1−dTV(P⊗n, Q⊗n) gives minimal Type-I+II probabilities of error, achieved by
the maximum likelihood test. By the data processing inequality, dTV(P⊗m, Q⊗m) ≤ dTV(P⊗n, Q⊗n)
for m < n. From this we see that dTV(P⊗n, Q⊗n) is an increasing sequence in n (and bounded by 1
by definition) and hence converges. One would hope that as n→∞, dTV(P⊗n, Q⊗n) converges to 1
and consequently, the probability of error in the hypothesis test converges to zero. It turns out that
if the distributions P,Q are independent of n, then large deviation theory gives

dTV(P⊗n, Q⊗n) = 1− exp(−nC(P,Q) + o(n)), (4.9)

where the constant C(P,Q) = − log inf0≤α≤1

∫
PαQ1−α is the Chernoff Information of P,Q. It

is clear from this that dTV(P⊗n, Q⊗n)→ 1 as n→∞, and, in fact, exponentially fast.
However, as frequently encountered in high-dimensional statistical problems, if the distributions

P = Pn and Q = Qn depend on n, then the large-deviation approach that leads to (4.9) is no longer
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valid. In such a situation, total variation is still relevant for hypothesis testing, but its behavior as
n→∞ is not obvious nor easy to compute. In this case, understanding how a more computationally
tractable f -divergence is related to total variation may give insight on hypothesis testing without
needing to directly compute the total variation. It turns out Hellinger distance is precisely suited
for this task – see Theorem 4.4 below.

Recall that the squared Hellinger distance, H2(P,Q) = EQ
[(

1−
√

P
Q

)2
]

is an f -divergence

with f(x) = (1−
√
x)2, which provides a sandwich bound for total variation

0 ≤ 1

2
H2(P,Q) ≤ dTV(P,Q) ≤ H(P,Q)

√
1− H2(P,Q)

4
≤ 1. (4.10)

This can be proved by elementary manipulations and a systematic proof will be explained in the
next lecture. Direct consequences of this bound are:

� H2(P,Q) = 2, if and only if dTV(P,Q) = 1.

� H2(P,Q) = 0 if and only if dTV(P,Q) = 0.

� Hellinger consistency ⇔ TV consistency, namely H2(Pn, Qn)→ 0⇔ dTV(Pn, Qn)→ 0.

Theorem 4.4. For any sequence of distributions Pn and Qn, as n→∞,4

dTV(P⊗nn , Q⊗nn )→ 0⇔ H2(Pn, Qn) = o

(
1

n

)
dTV(P⊗nn , Q⊗nn )→ 1⇔ H2(Pn, Qn) = ω

(
1

n

)
Proof. Because the observations X = (X1, X2, ...Xn) are i.i.d, the joint distribution factors

H2(P⊗nn , Q⊗nn ) = 2− 2EQ⊗nn

√√√√ n∏
i=1

Pn
Qn

(Xi)


By independence→ = 2− 2

n∏
i=1

EQn

[√
Pn
Qn

(Xi)

]
= 2− 2

(
EQn

[√
Pn
Qn

])n

= 2− 2

(
1− 1

2
H2(Pn, Qn)

)n
.

Then dTV(P⊗nn , Q⊗nn ) → 0 if and only if H2(P⊗nn , Q⊗nn ) → 0, which happens precisely when
H2(Pn, Qn) = o( 1

n).
Similarly, dTV(P⊗nn , Q⊗nn )→ 1 if and only if H2(P⊗nn , Q⊗nn )→ 2 which happens precisely when

H2(Pn, Qn) = ω( 1
n).

Remark 4.8. The proof of Theorem 4.4 relies on two ingredients:

1. Sandwich bound (4.10).

2. Tensorization properties of Hellinger:

H2

(
n∏
i=1

Pi,
n∏
i=1

Qi

)
= 2− 2

n∏
i=1

(
1− H2(Pi, Qi)

2

)
(4.11)

4For positive sequences {an}, {bn}, we say an = ω(bn) if bn = o(an).
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Note that there are other f -divergences that are also tensorizable, e.g., χ2-divergences:

χ2

(
n∏
i=1

Pi,
n∏
i=1

Qi

)
=

n∏
i=1

(
1 + χ2(Pi, Qi)

)
− 1; (4.12)

however, no sandwich inequality like (4.10) exists for dTV and χ2 and hence there is no χ2-version of
Theorem 4.4. Asserting the non-existence of such inequalities requires understanding the relationship
between these two f -divergences (see next lecture).

4.5 Inequalities between f-divergences

We will discuss two methods for finding inequalities between f -divergences.

� ad hoc approach: case-by-case proof using results like Jensen’s inequality, max ≤ mean ≤ min,
Cauchy-Schwarz, etc.

� systematic approach: joint range of f -divergences.

Definition 4.2. The joint range between two f -divergences Df (·‖·) and Dg(·‖·) is the range of the
mapping (P,Q) 7→ (Df (P‖Q), Dg(P‖Q)), i.e., the set R ⊂ R+ × R+ where (x, y) ∈ R if there exist
distributions P,Q on some common measurable space such that x = Df (P‖Q) and y = Dg(P‖Q).

D
f

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

D
g

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The green region in the above figure shows what a joint range between Df (·‖·) and Dg(·‖·) might
look like. By definition of R, the lower boundary gives the sharpest lower bound of Dg in terms of
Df , namely:

Df (P‖Q) ≥ V (Dg(P‖Q)), where V (t) , inf{Df (P‖Q) : Dg(P‖Q) = t};
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similarly, the upper boundary gives the best upper bound. As will be discussed in the next lecture,
the sandwich bound (4.10) correspond to precisely the lower and upper boundaries of the joint
range of H2 and dTV, therefore not improvable. It is important to note, however, that R may be an
unbounded region and some of the boundaries may not exist, meaning it is impossible to bound one
by the other, such as χ2 versus dTV.

To gain some intuition, we start with the ad hoc approach by proving Pinsker’s inequality, which
bounds total variation from above by the KL divergence.

Theorem 4.5 (Pinsker’s inequality).

D(P‖Q) ≥ 2 log ed2
TV(P,Q). (4.13)

Proof. First we show that, by the data processing inequality, it suffices to prove the result for
Bernoulli distributions. For any event E, let Y = 1 {X ∈ E} which is Bernoulli with parameter
P (E) or Q(E). By data processing inequality, D(P‖Q) ≥ d(P (E)‖Q(E)). If Pinsker’s inequality is
true for all Bernoulli random variables, we have√

1

2
D(P‖Q) ≥ dTV(Bern(P (E)),Bern(Q(E)) = |P (E)−Q(E)|

Taking the supremum over E gives
√

1
2D(P‖Q) ≥ supE |P (E) − Q(E)| = dTV(P,Q), in view of

Theorem 4.3.
The binary case follows easily from Taylor’s theorem (with integral remainder form):

d(p‖q) =

∫ p

q

p− t
t(1− t)

dt ≥ 4

∫ p

q
(p− t)dt = 2(p− q)2

and dTV(Bern(p),Bern(q)) = |p− q|.

Remark 4.9. Pinsker’s inequality is known to be sharp in the sense that the constant “2” in (4.13)
is not improvable, i.e., there exist {Pn, Qn} such that LHS

RHS → 2 as n→∞. (Why?) Nevertheless,
this does not mean that (4.13) itself is not improvable because it might be possible to subtract
some higher-order term from the RHS. This is indeed the case and there are many refinements of
Pinsker’s inequality. But what is the best inequality? Settling this question rests on characterizing
the joint range and the lower boundary. This is the topic of next lecture.
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§ 5. Inequalities between f-divergences via their joint range

In the last lecture we proved the Pinkser’s inequality that D(P‖Q) ≥ 2d2
TV(P,Q) in an ad hoc

manner. The downside of ad hoc approaches is that it is hard to tell whether those inequalities can
be improved or not. However, the key step when we proved the Pinkser’s inequality, reduction to
the case for Bernoulli random variables, is inspiring: is it possible to reduce inequalities between
any two f -divergences to the binary case?

5.1 Inequalities via joint range

A systematic method is to prove those inequalities via their joint range. For example, to prove
a lower bound of D(P‖Q) by a function of dTV(P,Q) that D(P‖Q) ≥ F (dTV(P,Q)) for some
F : [0, 1] 7→ [0,∞], the best choice, by definition, is the following:

F (ε) , inf
(P,Q):dTV(P,Q)=ε

D(P‖Q).

The problem boils to the characterization of the region {(dTV(P,Q), D(P‖Q)) : P,Q} ⊆ R2, their
joint range, whose lower boundary is the function F .

0.0 0.2 0.4 0.6 0.8
TV0.0

0.5

1.0

1.5

D

Figure 5.1: Joint range of dTV and D.
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Definition 5.1 (Joint range). Consider two f -divergences Df (P‖Q) and Dg(P‖Q). Their joint
range is a subset of R2 defined by

R , {(Df (P‖Q), Dg(P‖Q)) : P,Q are probability measures on some measurable space} ,
Rk , {(Df (P‖Q), Dg(P‖Q)) : P,Q are probability measures on [k]} .

The region R seems difficult to characterize since we need to consider P,Q over all measurable
spaces; on the other hand, the region Rk for small k is easy to obtain. The main theorem we will
prove is the following [HV11]:

Theorem 5.1 (Harremoës-Vajda ’11).

R = co(R2).

It is easy to obtain a parametric formula of R2. By Theorem 5.1, the region R is no more than
the convex hull of R2.

Theorem 5.1 implies that R is a convex set; however, as a warmup, it is instructive to prove con-
vexity of R directly, which simply follows from the arbitrariness of the alphabet size of distributions.
Given any two points (Df (P0‖Q0), Dg(P0‖Q0)) and (Df (P1‖Q1), Dg(P1‖Q1)) in the joint range, it
is easy to construct another pair of distributions (P,Q) by alphabet extension that produces any
convex combination of those two points.

Theorem 5.2. R is convex.

Proof. Given any two pairs of distributions (P0, Q0) and (P1, Q1) on some space X and given any
α ∈ [0, 1], we define another pair of distributions (P,Q) on X × {0, 1} by

P = ᾱ(P0 × δ0) + α(P1 × δ1),

Q = ᾱ(Q0 × δ0) + α(Q1 × δ1).

In other words, we construct a random variable Z = (X,B) with B ∼ Bern(α), where PX|B=i = Pi
and QX|B=i = Qi. Then

Df (P‖Q) = EQ
[
f

(
P

Q

)]
= EB

[
EQZ|B

[
f

(
P

Q

)]]
= ᾱDf (P0‖Q0) + αDf (P1‖Q1),

Dg(P‖Q) = EQ
[
g

(
P

Q

)]
= EB

[
EQZ|B

[
g

(
P

Q

)]]
= ᾱDg(P0‖Q0) + αDg(P1‖Q1).

Therefore, ᾱ(Df (P0‖Q0), Dg(P0‖Q0)) + α(Df (P1‖Q1), Dg(P1‖Q1)) ∈ R and thus R is convex.

Theorem 5.1 is proved by the following two lemmas:

Lemma 5.1 (non-constructive/existential). R = R4.

Lemma 5.2 (constructive/algorithmic).

Rk+1 = co(R2 ∪Rk) for any k ≥ 2

and hence
Rk = co(R2), for any k ≥ 3.
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5.1.1 Representation of f-divergences

To prove Lemma 5.1 and Lemma 5.2, we first express f -divergences by means of expectation over
the likelihood ratio.

Lemma 5.3. Given two f -divergences Df (·‖·) and Dg(·‖·), their joint range is

R =

{(
E[f(X)] + f̃(0)(1− E[X])
E[g(X)] + g̃(0)(1− E[X])

)
: X ≥ 0,E[X] ≤ 1

}
,

Rk =

{(
E[f(X)] + f̃(0)(1− E[X])
E[g(X)] + g̃(0)(1− E[X])

)
:

X ≥ 0,E[X] ≤ 1, X takes at most k − 1 values,

or X ≥ 0,E[X] = 1, X takes at most k values

}
,

where f̃(0) , limx→0 xf(1/x) and g̃(0) , limx→0 xg(1/x).

In the statement of Lemma 5.3, we remark that f̃(0) and g̃(0) are both well-defined (possibly
+∞) by the convexity of x 7→ xf(1/x) and x 7→ xg(1/x) (from the last lecture).

Before proving above lemma, we look at the following two examples to understand the corre-
spondence between a point in the joint range and a random variable. The first example is the simple
case that P � Q, when the likelihood ratio of P and Q (or Radon-Nikodym derivative defined on
the union of the spaces of P and Q) is well-define.

Example 5.1. Consider the following two distributions P,Q on [3]:

1 2 3

P 0.34 0.34 0.32

Q 0.85 0.1 0.05

Then Df (P‖Q) = 0.85f(0.4) + 0.1f(3.4) + 0.05f(6.4), which is E[f(X)] where X is the likelihood
ratio of P and Q taking 3 values with the following pmf:

x 0.4 3.4 6.4

µ(x) 0.85 0.1 0.05

On the other direction, given the above pmf of a non-negative, unit-mean random variable X ∼ µ
that takes 3 values, we can construct a pair of distribution by Q(x) = µ(x) and P (x) = xµ(x).

In general cases P is not necessarily absolutely continuous w.r.t. Q, and the likelihood ratio X
may not always exist. However, it is still well-defined on the event {Q > 0}.

Example 5.2. Consider the following two distributions P,Q on [2]:

1 2

P 0.4 0.6

Q 0 1

Then Df (P‖Q) = f(0.6) + 0f(0.4
0 ), where 0f(p0) is understood as

0f
(p

0

)
= lim

x→0
xf
(p
x

)
= p lim

x→0

x

p
f
(p
x

)
= pf̃(0).

Therefore Df (P‖Q) = f(0.6) + 0.4f̃(0) = E[f(X)] + f̃(0)(1−E[X]) where X is defined on {Q > 0}:
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x 0.6

µ(x) 1

On the other direction, given above pmf of a non-negative random variable X ∼ µ with E[X] ≤ 1
that takes 1 value, we let Q(x) = µ(x), let P (x) = xµ(x) on {Q > 0} and let P have an extra point
mass 1− E[X].

Proof of Lemma 5.3. We first prove it for R. Given any pair of distributions (P,Q) that produces a
point of R, let p, q denote the densities of P,Q under some dominating measure µ, respectively. Let

X =
p

q
on {q > 0} , µX = Q, (5.1)

then X ≥ 0 and E[X] = P [q > 0] ≤ 1. Then

Df (P‖Q) =

∫
{q>0}

f

(
p

q

)
dQ+

∫
{q=0}

q

p
f

(
p

q

)
dP =

∫
{q>0}

f

(
p

q

)
dQ+ f̃(0)P [q = 0]

= E[f(X)] + f̃(0)(1− E[X]),

Analogously,
Dg(P‖Q) = E[g(X)] + g̃(0)(1− E[X]),

On the other direction, given any random variable X ≥ 0 and E[X] ≤ 1 where X ∼ µ, let

dQ = dµ, dP = Xdµ+ (1− E[X])δ∗, (5.2)

where ∗ is an arbitrary symbol outside the support of X. Then(
Df (P‖Q)
Dg(P‖Q)

)
=

(
E[f(X)] + f̃(0)(1− E[X])
E[g(X)] + g̃(0)(1− E[X])

)
.

Now we consider Rk. Given two probability measures P,Q on [k], the likelihood ratio defined in
(5.1) takes at most k values. If P � Q then E[X] = 1; if P 6� Q then X takes at most k − 1 values.

On the other direction, if E[X] = 1 then the construction of P,Q in (5.2) are on the same
support of X; if E[X] < 1 then the support of P is increased by one.

5.1.2 Proof of Theorem 5.1

Aside: Fenchel-Eggleston-Carathéodory’s theorem: Let S ⊆ Rd and x ∈ co(S). Then there
exists a set of d+ 1 points S′ = {x1, x2, . . . , xd+1} ∈ S such that x ∈ co(S′). If S is connected, then
d points are enough.

Proof of Lemma 5.1. It suffices to prove that

R ⊆ R4.

Let S , {(x, f(x), g(x)) : x ≥ 0} which is a connected set. For any pair of distributions (P,Q) that
produces a point of R, we construct a random variable X as in (5.1), then (E[X],E[f(X)],E[g(X)]) ∈
co(S). By Fenchel-Eggleston-Carathéodory’s theorem,1 there exists (xi, f(xi), g(xi)) and the corre-
sponding weight αi for i = 1, 2, 3 such that

(E[X],E[f(X)],E[g(X)]) =
3∑
i=1

αi(xi, f(xi), g(xi)).

1To prove Theorem 5.1, it suffices to invoke the basic Carathéodory’s theorem, which proves a weaker version of
Lemma 5.1 that R = R5.
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We construct another random variable X ′ that takes value xi with probability αi. Then X takes 3
values and

(E[X],E[f(X)],E[g(X)]) = (E[X ′],E[f(X ′)],E[g(X ′)]). (5.3)

By Lemma 5.3 and (5.3),(
Df (P‖Q)
Dg(P‖Q)

)
=

(
E[f(X)] + f̃(0)(1− E[X])
E[g(X)] + g̃(0)(1− E[X])

)
=

(
E[f(X ′)] + f̃(0)(1− E[X ′])
E[g(X ′)] + g̃(0)(1− E[X ′])

)
∈ R4.

We observe from Lemma 5.3 that Df (P‖Q) only depends on the distribution of X for some
X ≥ 0 and E[X] ≤ 1. To find a pair of distributions that produce a point in Rk it suffices to find a
random variable X ≥ 0 taking k values with E[X] = 1, or taking k − 1 values with E[X] ≤ 1. In
Example 5.1 where (P,Q) produces a point in R3, we want to show that it also belongs to co(R2).
The decomposition of a point in R3 is equivalent to the decomposition of the likelihood ratio X that

µX = αµ1 + ᾱµ2.

A solution of such decomposition is that µX = 0.5µ1 + 0.5µ2 where µ1, µ2 has the following pmf:

x 0.4 3.4

µ1(x) 0.8 0.2

x 0.4 6.4

µ2(x) 0.9 0.1

Then by (5.2) we obtain two pairs of distributions

P1 0.32 0.68

Q1 0.8 0.2

P2 0.36 0.64

Q2 0.9 0.1

We obtain that (
Df (P‖Q)
Dg(P‖Q)

)
= 0.5

(
Df (P1‖Q1)
Dg(P1‖Q1)

)
+ 0.5

(
Df (P2‖Q2)
Dg(P2‖Q2)

)
.

Proof of Lemma 5.2. It suffices to prove the first statement, namely, Rk+1 = co(Rk) for any k ≥ 2.
Since Rk ⊆ Rk+1 by definition, it remains to show Rk+1 ⊆ co(Rk).

Given any pair of distributions (P,Q) that produces a point of (Df (P‖Q), Dg(P‖Q)) ∈ Rk+1,
we construct a random variable X as in (5.1) that takes at most k + 1 values. Let µ denote the
distribution of X. We consider two cases that Eµ[X] < 1 and Eµ[X] = 1 separately.

� Eµ[X] < 1. Then X takes at most k values since otherwise P � Q. Denote the smallest value
of X by x and then x < 1. Suppose µ(x) = q and then µ can be represented as

µ = qδx + q̄µ′,

where µ′ is supported on at most k − 1 values of X other than x. Let µ2 = δx. We need to
construct another probability measure µ1 such that

µ = αµ1 + ᾱµ2,

– Eµ′ [X] ≤ 1. Let µ1 = µ′ and let α = q̄.

– Eµ′ [X] > 1. Let µ1 = pδx + p̄µ′ where p =
Eµ′ [X]−1

Eµ′ [X]−x such that Eµ1 [X] = 1. Let

α =
Eµ[X]−x

1−x .
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� Eµ[X] = 1.2 Denote the smallest value of X by x and the largest value by y, respectively, and
then x ≤ 1, y ≥ 1. Suppose µ(x) = r and µ(y) = s and then µ can be represented as

µ = rδx + (1− r − s)µ′ + sδy,

where µ′ is supported on at most k− 1 values of X other than x, y. Let µ2 = βδx + β̄δy where
β = y−1

y−x such that Eµ2 [X] = 1. We need to construct another probability measure µ1 such
that

µ = αµ1 + ᾱµ2,

– Eµ′ [X] ≤ 1. Let µ1 = pδy + p̄µ′ where p =
1−Eµ′ [X]

y−Eµ′ [X] such that Eµ1 [X] = 1. Let ᾱ = r/β.

– Eµ′ [X] > 1. Let µ1 = pδx + p̄µ′ where p =
Eµ′ [X]−1

Eµ′ [X]−x such that Eµ1 [X] = 1. Let ᾱ = s/β̄.

Applying the construction in (5.2) with µ1 and µ2, we obtain two pairs of distributions (P1, Q1)
supported on k values and (P2, Q2) supported on two values, respectively. Then(

Df (P‖Q)
Dg(P‖Q)

)
=

(
Eµ[f(X)] + f̃(0)(1− Eµ[X])
Eµ[g(X)] + g̃(0)(1− Eµ[X])

)
= α

(
Eµ1 [f(X)] + f̃(0)(1− Eµ1 [X])
Eµ1 [g(X)] + g̃(0)(1− Eµ1 [X])

)
+ ᾱ

(
Eµ2 [f(X)] + f̃(0)(1− Eµ2 [X])
Eµ2 [g(X)] + g̃(0)(1− Eµ2 [X])

)
= α

(
Df (P1‖Q1)
Dg(P1‖Q1)

)
+ ᾱ

(
Df (P2‖Q2)
Dg(P2‖Q2)

)
.

Remark 5.1. Theorem 5.1 can be viewed as a consequence of Krein-Milman’s theorem. Consider
the space of {PX : X ≥ 0,E[X] ≤ 1}, which has only two types of extreme points:

1. X = x for 0 ≤ x ≤ 1;

2. X takes two values x1, x2 with probability α1, α2, respectively, and E[X] = 1.

For the first case, let P = Bern(x) and Q = δ1; for the second case, let P = Bern(α2x2) and
Q = Bern(α2).

5.2 Examples

5.2.1 Hellinger distance versus total variation

The upper and lower bound we mentioned in the last lecture is the following [Tsy09, Sec. 2.4]:

1

2
H2 ≤ dTV ≤ H

√
1−H2/4. (5.4)

Equivalently, in terms of Hellinger affinity α ,
∫ √

PQ, we have the so-called Bhattacharya bound:

1− α ≤ dTV ≤
√

1− α2.

2The author is grateful to Pengkun Yang for correcting the error in the original proof.
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The joint range R2 of (dTV, H
2) has a parametric formula{

(2(1−√pq −
√
p̄q̄), |p− q|) : 0 ≤ p ≤ 1, 0 ≤ q ≤ 1

}
and is the gray region in Fig. 5.2. The joint rangeR is the convex hull ofR2 (grey region, non-convex)
and exactly described by (5.4); so (5.4) is not improvable. Indeed, with t ranges from 0 to 1,

� the upper boundary is achieved by P = Bern(1+t
2 ), Q = Bern(1−t

2 ),

� the lower boundary is achieved by P = (1− t, t, 0), Q = (1− t, 0, t).

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

H^2

T
V

Figure 5.2: Joint range of dTV and H2.

5.2.2 KL divergence versus total variation

Pinsker’s inequality states that
D(P‖Q) ≥ 2d2

TV(P,Q). (5.5)

There are various kinds of improvements of Pinsker’s inequality. Now we know that the best lower
bound is the lower boundary of Fig. 5.1, which is exactly the boundary of R2. Therefore a paremetric
formula of the lower boundary is easy to write down, but there is no known close-form expression.
Here is a corollary (weaker bound) due to Vadja [Vaj70]:

D(P‖Q) ≥ log
1 + dTV(P,Q)

1− dTV(P,Q)
− 2dTV(P,Q)

1 + dTV(P,Q)
.

Consequences:

� The original Pinsker’s inequality shows that D → 0⇒ dTV → 0.

� dTV → 1 ⇒ D → ∞. Thus D = O(1) ⇒ dTV is bounded away from one. This is not
obtainable from Pinsker’s inequality.

Also from Fig. 5.1 we know that it is impossible to have an upper bound of D(P‖Q) using a function
of dTV(P,Q) due to the lack of upper boundary.

For more examples see [Tsy09, Sec. 2.4].
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§ 6. Variational representation, HCR and CR lower bounds.

Last lecture we discussed systematic methods to find the best inequalities between different f -
divergence via their joint range. We showed that examining the binary cases is sufficient to derive
optimal inequalities. In this lecture we will further discuss lower bounds for statistical estimation
using f -divergences.

Outline:

� Variational representation of f -divergences.

– Convexity.

– Lower semi-continuity.

� (Specializing to χ2) Lower bounds for statistical estimation.

– Hammersley-Chapman-Robbins (HCR) lower bound.

– Cramér-Rao (CR) lower bound.

– Bayesian Hammersley-Chapman-Robbins (HCR) lower bound.

– Bayesian Cramér-Rao (CR) lower bound.

6.1 Variational representation of f-divergences

We begin with an example regarding the total variation metric.

Example 6.1 (Total variation). Let (X ,F) a measure space and P,Q two probability distributions.
In previous lectures we saw how by choosing f(x) = 1

2 |x− 1| the f -divergence becomes the total
variation metric. In particular, we saw that:

dTV(P,Q) = Df (P‖Q) =
1

2

∫
|P −Q| = sup

E∈F
|P (E)−Q(E)| = 1

2
sup
‖f‖∞≤1

|EP f(x)− EQf(x)|.

It should be noted that the requirement of f to be convex in the definition of f -divergence is
essential. In Euclidean spaces any convex function can be represented as the pointwise supremum of
a family of affine functions and vice versa, every supremum of a family of affine functions produces a
convex function. Take f(x) = 1

2 |x− 1| as an example. We see that it can be written as a pointwise
supremum of f1(x) = 1

2(x − 1) and f2(x) = 1
2(1 − x). This remark can be used not only as a

geometric interpretation of convex functions but as a definition of convexity. For f -divergences
which are convex functions of probability measures, its variational representation amounts to writing
it as a pointwise supremum of affine functions.
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6.1.1 Convex conjugate

Let f : (0,+∞)→ R be a convex function. The convex conjugate f∗ of f is defined by:

f∗(y) = sup
x∈R

[xy − f(x)]. (6.1)

Two important properties of the convex conjugates are

1. f∗ is also convex (which holds regardless of f being convex or not);

2. Biconjugation: (f∗)∗ = f .

In particular, the definition of f∗ yields the following (Young-Fenchel inequality)

f(x) ≥ xy − f∗(y), (6.2)

where the last inequality holds for any y.
Using the notion of convex conjugate, we obtain a variational representation of f -divergence in

terms of the convex conjugate of f :1

Df (P‖Q) = EQ

[
f

(
P

Q

)]
= sup

g:X→R
EP [g(X)]− EQ[f∗(g(X))], (6.3)

where g is such that both expectations are finite (of course). This representation is insightful for
many reasons. For example, we get the following properties for free:

1. Convexity: First of all, note that Df (P‖Q) is expressed as a supremum of affine functions
(since the expectation is a linear operation). As a result, we get that (P,Q) 7→ Df (P‖Q) is
convex, which was proved in previous lectures using different method.

2. Weak lower semicontinuity: We begin with an example. Assume {Xi} are i.i.d. Rademachers
(±1). Then, by the central limit theorem we have that∑n

i=1Xi√
n

D−→N (0, 1);

however,

Df

(
PX1+X2+...+Xn√

n

∥∥∥∥N (0, 1)

)
6→ 0,

since the former distribution is discrete and the latter is continuous. Therefore the best we can
hope for f -divergence is semicontinuity. Indeed, if X is a nice space (e.g., Euclidean space), in
(6.3) we can restrict the function g to continuous bounded functions, in which case Df (P‖Q) is
expressed as a supremum of weakly continuous functionals (note that f∗ ◦ g is also continuous
and bounded since f∗ is continuous) and is hence weakly lower semi-continuous, i.e., for any
sequence of distributions Pn and Qn such that Pn

w−→ P and Qn
w−→ Q, we have

lim inf
n→∞

Df (Pn‖Qn) ≥ Df (P‖Q).

1Equivalently, one can take the supremum over all kernels PZ|X where Z is R-valued.
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Example 6.2 (Total variation). By using f(x) = 1
2 |x− 1| in the formula of f -divergence we get

the total variation metric given by

dTV (P,Q) =
1

2

∫
|P −Q|.

By using the definition of convex conjugate it is easy to see that

f∗(y) = sup
x

{
xy − 1

2
|x− 1|

}
=

{
+∞ if |y| > 1

2
y if |y| ≤ 1

2

Thus (6.3) gives

dTV (P,Q) = sup
g:X→R

EP [g(X)]− EQ[f∗(g(X))] = sup
g:|g|≤ 1

2

EP [g(X)]− EQ[g(X)], (6.4)

where in the last equality we restricted the supremum to functions bounded by 1/2, since any other
function would make the term inside the supremum equal to −∞.

Example 6.3 (KL-divergence). By using f(x) = x log x in the formula of f -divergence we get the
KL-divergence

D(P‖Q) = EP
[

log
P

Q

]
.

By using differentiation to find the supremum it is easy to see that f∗(y) = ey−1. Plugging in the
formula of f -divergence we get

D(P‖Q) = 1 + sup
g:X→R

EP [g(X)]− EQ[eg(X)]. (6.5)

In comparison, the famous Donsker-Varadhan representation is

D(P ||Q) = sup
g

EP [g(X)]− logEQ[eg(X)], (6.6)

which is stronger than (6.5) in the sense that for each g, the RHS of (6.6) is at least that of (6.5),
since log(1 + t) ≤ t.

Example 6.4 (χ2-divergence). By using f(x) = (x− 1)2 in the formula of f -divergence we get the
χ2-divergence

χ2(P‖Q) = EQ

[(
P

Q
− 1

)2
]

= varQ

(
P

Q

)
.

By using differentiation to find the supremum it is easy to see that f∗(y) = y + y2

4 . Hence

χ2(P‖Q) = sup
g:X→R

EP [g(X)]− EQ

[
g(X) +

g2(X)

4

]
.

Finally by a change of variable h(x) = 1
2g(x) + 1 we get

χ2(P‖Q) = sup
h:X→R

2EP [h(X)]− EQ[h2(X)]− 1. (6.7)

It is not hard to see that we also have a more symmetric version which is directly related to bias
and variance tradeoff:

χ2(P‖Q) = sup
h:X→R

(EP [h(X)]− EQ[h(X)])2

varQ(h(X))
. (6.8)

The representation (6.7) will be used repeatedly for the derivation of the Hammersley-Chapman-
Robbins (HCR) lower bound as well as their Bayesian version in the next section.
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6.2 Hammersley-Chapman-Robbins (HCR) lower bound

In this section, we apply the variational representation for the χ2-divergence to probability distribu-
tions P and Q on R.2 By limiting the choice of function h to affine functions, the equality (6.7)
becomes an inequality. In particular, let h(x) = ax+ b and optimize over a, b ∈ R, we have

χ2(P‖Q) ≥ sup
a,b∈R

{
2(aEP (X) + b)− EQ[(aX + b)2]− 1

}
=

(EP [X]− EQ[X])2

varQ(X)
. (6.9)

Note: The inequality (6.9) can be interpreted as follows: On the left hand side of the inequality we
have the χ2-divergence, a measure of the dissimilarity between two distributions. Looking at the
right hand side we see that if the two distributions are centered at very distant locations, then the
right hand side will be large. Due to (6.9), this will lead to a bigger χ2-divergence something that
was in fact expected.

The reason that the variance with respect to the Q distribution appears in the denominator is
to quantify how different the two means are relatively. Indeed, the standard deviation must appear
as a normalizing factor because the LHS is a numerical number. Also, the bound only involves the
variance under Q not P , which is consistent with the asymmetry of χ2-divergence.

Using (6.7) we now derive the HCR lower bound on the variance of an estimator (possibly
randomized). To this end, assume that data X ∼ Pθ, where θ ∈ Θ ⊂ R. We use quadratic cost to
quantify the difference between the real and the predicted parameter, i.e., `(θ, θ̂) = (θ − θ̂)2. Then
the risk of estimator θ̂ when the real parameter is θ is given by Rθ(θ̂) = Eθ[(θ− θ̂)2]. Now, fix θ ∈ Θ.
For any other θ′ ∈ Θ we will use (6.9) with Q = Pθ and P = P ′θ. As a result we have that

χ2(Pθ′‖Pθ) ≥ χ2(Pθ̂‖Qθ̂) ≥
(Eθ[θ̂]− Eθ′ [θ̂])2

varθ(θ̂)

Where the first inequality arises by using the data processing inequality and the second inequality
by (6.9). Finally, by swapping the denominator with the left hand side and taking the supremum
over all θ′ 6= θ, and since varθ(θ̂) is not a function of θ′, we derive the final result.

Theorem 6.1 (Hammersley-Chapman-Robbins (HCR) lower bound). For the quadratic loss, any
estimator θ̂ satisfies

Rθ(θ̂) ≥ varθ(θ̂) ≥ sup
θ′ 6=θ

(Eθ[θ̂]− Eθ′ [θ̂])2

χ2(Pθ′‖Pθ)
, ∀θ ∈ Θ. (6.10)

6.3 Cramér-Rao (CR) lower bound

We now derive the Cramér-Rao lower bound as a consequence of the HCR lower bound. To this
end, we restrict the problem to unbiased estimators, where an estimator θ̂ is said to be unbiased if
Eθ[θ̂] = θ for all θ ∈ Θ. Then by applying the HCR lower bound we have that

varθ(θ̂) ≥ sup
θ′ 6=θ

(θ − θ′)2

χ2(Pθ′‖Pθ)
≥ lim

θ′→θ

(θ − θ′)2

χ2(Pθ′‖Pθ)
. (6.11)

Here, we bypass the supremum by sending θ′ to θ. However, when θ′ → θ both the numerator and
denominator will go to zero. Doing this, we hope that the denominator will go to zero quadratically

2This can always be assumed by allowing the likelihood ratio function dP
dQ

which is a sufficient statistic.
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as the numerator does. Remember that

χ2(Pθ′‖Pθ) =

∫
(Pθ − Pθ′)2

Pθ
.

Then by using the Taylor expansion for Pθ around θ′ we get that

Pθ − Pθ′ = (θ − θ′)dPθ
dθ

+ o[(θ − θ′)2],

for θ near θ′. Combining the above while ignoring the little-o terms we get that

χ2(Pθ′‖Pθ) = (θ − θ′)2

∫
(dPθdθ )2

Pθ
.

Plugging back in (6.11) we get the CR lower bound.

Theorem 6.2 (Cramér-Rao (CR) lower bound). For any unbiased estimator θ̂ and any θ ∈ Θ

varθ(θ̂) ≥
1

I(θ)
,

where I(θ) is the Fisher information given by

I(θ) =

∫
(dPθdθ )2

Pθ
.

An intuitive interpretation of I(θ) is that it is a measure of the information the data contains for
the estimation of the parameter when its true value is θ.

Example 6.5 (GLM). Let θ ∈ R and X ∼ Pθ = N (θ, 1). Define the standard normal distribution
by Φ(x). Note that Pθ(x) = Φ(x− θ). Next we calculate the Fisher information. By shifting x to θ,
note that

I(θ) =

∫
(dPθ(x)

dθ )2

Pθ(x)
dx =

∫
( ddθΦ(x− θ))2

Φ(x− θ)
dx = I(0).

Thus, I(θ) = I(0) for all θ ∈ Θ. In general, in any case where we have the model X = θ +Noise,
where the noise is standard normal (location model) we have that the fisher information is the same
everywhere.

Remark
Another useful way of seeing the Fisher information is the following:

I(θ) =

∫
(∂Pθ(x)

∂θ )2

Pθ(x)
∂x = Eθ

[(
∂Pθ(X)
∂θ

Pθ(X)

)2]
= Eθ

[(
∂ logPθ(X)

∂θ

)2]
= varθ

[
∂ logPθ(X)

∂θ

]
,

where the last equality holds after noticing that

Eθ
[
∂ logPθ(X)

∂θ

]
= 0.
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6.4 Biased estimators

Many times restricting ourselves to unbiased estimators proves to be very limiting. As a result,
biased estimators need to be considered. Then it is useful to see how the HCR bound can be applied
in this case. Define the bias of an estimator θ̂ by b(θ) = Eθ[θ̂]− θ. Assuming the risk function is
quadratic it is easy to see that for a biased estimator by directly using HCR then

Rθ(θ̂) = b2(θ) + varθ(θ̂) ≥ b2(θ) + sup
θ′ 6=θ

(b(θ′) + θ′ − b(θ)− θ)2

χ2(Pθ′‖Pθ)
.

By using the same taylor expansion trick and assuming that b(θ) is differentiable we finally get that
for an estimator θ̂ and any θ ∈ Θ

Rθ(θ̂) ≥ b2(θ) +
(1 + b′(θ))2

I(θ)
.

Using this inequality we can find a lower bound on the worst case mini-max risk. In particular, we
have that

R∗ = inf
θ̂

sup
θ
Rθ(θ̂) ≥ inf

b

[
sup
θ

(
b2(θ) +

(1 + b′(θ))2

I(θ)

)]
,

where in the last inequality we also used the fact that the choice of the estimator affects our quantity
only through the bias.

6.5 Bayesian CR lower bound

Previously in this lecture we used the HCR bound to derive the CR lower bound. In order to derive
the Bayesian version of the CR lower bound a similar approach can be used: first prove the Bayesian
HCR and then derive the Bayesian CR lower bound as a result.

Theorem 6.3 (Bayesian CR lower bound). Assume that the loss function is quadratic, i.e., `(θ, θ̂) =
(θ − θ̂)2. Also, for any estimator θ̂ (possibly randomized), and for any prior π ∈M(Θ) define the
Bayes risk of θ̂ by Rπ(θ̂) =

∫
Rθ(θ̂)π(dθ) =

∫
Eθ[(θ̂ − θ)2]π(dθ). Then we have that

R∗π = inf
θ̂
Rπ(θ̂) ≥ 1

Eθ∼π[I(θ)] + I(π)
,

where I(π) the Fisher information of π, i.e.,

I(π) =

∫
(π′(θ))2

π(θ)
dθ.
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§ 7. Information bound

Recall the Chi-squared divergence and Hammersley-Chapman-Robbins (HCR) bound from last
class. Suppose that P,Q are two probability distribution defined on some space X and X is an
X -valued random variable. The Chi-squared divergence has the following variational representation.

χ2(P‖Q) = sup
g:X→R

2EP [g(X)]− EQ[g2(X)]− 1.

Furthermore, if X = R, choosing affine function g yields

χ2(P‖Q) ≥
(EP [X]− EQ[X])2

varQ[X]
(7.1)

which gives the HCR bound.

7.1 HCR Lower Bound

We are now continuing on the HCR lower bound from the last class. We here illustrate an example
of HCR lower bound on estimation.

Example 7.1 (Estimation). Let θ ∈ R be an unknown parameter and let X ∈ R be a random
variable (data) whose distribution depends on θ. Suppose θ̂ is an unbiased estimate of θ based on
X. The relationships can be shown as

θ → X → θ̂.

The estimation loss `(θ, θ̂) is defined as `(θ, θ̂) = (θ− θ̂)2. Let P = Pθ′ , Q = Pθ, and then the risk is
lower bounded by

Rθ(θ̂) ≥ varθ(θ̂) ≥
(Eθθ̂ − Eθ′ θ̂)2

χ2(Pθ′‖Pθ)
.

Suppose θ̂ is an unbiased estimate of θ, then

Rθ(θ̂) ≥ sup
θ 6=θ

(θ − θ′)2

χ2(Pθ′‖Pθ)
≥ lim

θ′→θ

(θ′ − θ)2

χ2(Pθ′‖Pθ)
.

7.2 Fisher information

The Fisher information is a way of measuring the amount of information that an observable random
variable X carries about an unknown, deterministic parameter θ upon which the distribution of the
observation X depends. Assume the probability density function of random variable X conditional
on the value of θ is pθ. The Fisher information is defined as

47



Definition 7.1 (Fisher information). The Fisher information of the parameteric family of densitities
{pθ : θ ∈ Θ} (with respect to µ) at θ is

I(θ) = E

[(
∂ log pθ
∂θ

)2
]

=

∫ (
∂pθ
∂θ

)2 1

pθ
dµ. (7.2)

Theorem 7.1 (Fisher information). Assume that pθ is twice differentiable with respect to θ and
satisfies the regularity condition: ∫

∂2pθ
∂θ2

dµ =
∂2

∂θ2

∫
pθdµ = 0.

The Fisher information can be written as

I(θ) = −Eθ
[
∂2 log pθ
∂θ2

]
Proof. Since

∂2 log pθ
∂θ2

=
∂2pθ
∂θ2

pθ
−

(
∂pθ
∂θ

pθ

)2

=
∂2pθ
∂θ2

pθ
−
(
∂ log pθ
∂θ

)2

and

E
[
∂2pθ
∂θ2

1

pθ

]
= 0

by assumption, we have

I(θ) = Eθ

[(
∂

∂θ
log pθ

)2
]

= −Eθ
[
∂2

∂θ2
log pθ

]
.

Theorem 7.2 (Fisher information: mutiple sample). Suppose random sample X1, . . . , Xn inde-
pendently and identically drawn from a distribution pθ. The Fisher information In(θ) provided by
random samples X1, . . . , Xn is

In(θ) = nI(θ),

where I(θ) is Fisher information provided by a single sample X1.

Proof. We first denote the joint pdf of X1, . . . , Xn as

pθ(x1, . . . , xn) =

n∏
i=1

pθ(xi).

Then the Fisher information In(θ) provided by X1, . . . , Xn is

In(θ) = Eθ

[(
∂pθ(X1, . . . , Xn)

∂θ

)2
]

=

∫
. . .

∫ (
∂pθ(x1, . . . , xn)

∂θ

)2

pθ(x1, . . . , xn)dx1dx2 . . . dxn,

which is an n-dimensional integral. Thus, by Theorem 7.1, the Fisher information provided by
X1, . . . , Xn can be calculated as

In(θ) = −Eθ
[
∂2 log pθ(X1, . . . , Xn)

∂θ2

]
= −Eθ

[
n∑
i=1

∂2 log pθ(Xi)

∂θ2

]
= −

n∑
i=1

Eθ
[
∂2 log pθ(Xi)

∂θ2

]
= nI(θ).
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7.3 Variations of HCR/CR lower bound

This section contains the following three versions of HCP/CR lower bound:

� Multiple Samples Version

� Multivariate Version

� Functional Version

7.3.1 Multiple-sample version

Suppose θ is some unknown, deterministic parameter and X1, . . . , Xn are n random variables iid
drawn from the distribution Pθ. The estimate θ̂ comes from X1, . . . , Xn. The relationships is shown
as follows:

θ → X1, . . . , Xn → θ̂.

Then the risk is lower bound by

Rθ(θ̂) ≥ varθ(θ̂) ≥
(Eθθ̂ − Eθ′ θ̂)2

χ2(P⊗nθ′ ‖P
⊗n
θ )

.

For the HCR lower bound,

Rθ(θ̂) ≥ sup
θ 6=θ′

(θ − θ′)2

(1 + χ2(Pθ‖Pθ′))n − 1

θ′→θ
≥ 1

nI(θ)
.

7.3.2 Multivariate Version

We next show the multi-dimensional version of

χ2(P‖Q) ≥
(EPX − EQX)2

varQX
.

Suppose P,Q are two distributions defined on Rp, then

χ2(P‖Q) = sup
g:Rp→R

[2EP g(X)− EQg2(X)− 1].

Furthter, if g(X) = 〈a,X〉+ 1, then

χ2(P‖Q) ≥ 2EP 〈a,X〉+ 1− EQ(〈a,X〉+ 1)2.

If we further assume EQX = 0 , then we have

χ2(P‖Q) ≥ 2 〈a,EPX〉 − aTEQ[XXT ]a.

Therefore, we finally have

χ2(P‖Q) ≥ (EPX − EQX)T cov−1
Q (X)(EPX − EQX)

Let the loss function `(θ, θ̂) = ‖θ − θ̂‖22 and θ̂ be the unbiased estimate of θ, i.e., Eθθ̂ = θ. Then

(θ′ − θ)T cov−1
θ (θ̂)(θ′ − θ) ≤ χ2(Pθ′‖Pθ)

θ′→θ
= (θ′ − θ)T I(θ)(θ′ − θ) + ‖θ′ − θ‖22,
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where the equality follows from the Taylor expansion and Fisher information matrix is given as

I(θ) =

∫
∇Pθ(∇Pθ)T

Pθ
.

If we take θ′ = θ + εu for an arbitrary unit vector u and ε→ 0, we have

uT cov−1
θ (θ̂)u ≤ uT I(θ)u,

which is equivalent to
covθ(θ̂) � I−1(θ),

and further indicates
Rθ(θ̂) = tr(covθ(θ̂)) ≥ tr(I−1(θ)). (7.3)

Then we have

E‖θ − θ̂‖22 =

p∑
i=1

E(θ̂i − θi)2 ≥
p∑
i=1

1

Ii
, (7.4)

where Ii , Iii(θ), since
p∑
i=1

1

Ii(θ)
≤ tr(I−1(θ)).

Note that if we apply the one-dimensional CRLB for each coordinate we would get (7.4) which is
weaker than (7.3).

Finally, similar to Theorem 7.1, assuming the corresponding regularity of the Hessian, the Fisher
information matrix can be written as

I(θ) = Eθ[(∇ logPθ)(∇ logPθ)
T ] = covθ(∇ logPθ) = −

(
Eθ
[
∂2 logPθ
∂θi∂θj

])
.

7.3.3 Functional Version

Assume that θ is an unknown parameter, that random variable X comes from the distribution Pθ
and that T̂ (X) is an estimation for T (θ), where T : Θ→ R. The relationship is shown as follows:

θ → X → T̂ .

If we further assume T̂ (θ) is an unbiased estimation for T (θ), then

varθ(T̂ ) ≥ ‖∇T‖
2
2

I(θ)

7.4 Bayesian Cramér-Rao Lower Bound via data processing
inequality

The class will introduce two methods of proving Bayesian Cramér-Rao lower bound.

� Method 1: χ2 → Bayesian HCR→ Bayesian CR (next).

� Method 2: Classical Method (see Theorem 8.1).

The notation used in this section is shown as follows:
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� Θ = R

� `(θ, θ̂) = (θ − θ̂)2.

� π is a “nice” prior on R

The relationship can be described as follows:

π → θ → X → θ̂.

Theorem 7.3 (Bayesian Cramér-Rao Lower Bound). Assuming suitable regularity conditions, then

R∗ ≥ R∗π = inf
θ̂
Eπ(θ, θ̂)2 ≥ 1

Eθ∼πI(θ) + I(π)
,

where R∗π is the Bayes risk and I(π) =
∫
π′2
π is the Fisher information of the prior.

Proof. Consider the following comparison of experiments:

Q : π −→ θ
Pθ=QX|θ−−−−−−→ X −→ θ̂,

P : π̃ −→ θ
P̃θ=PX|θ−−−−−→ X −→ θ̂.

Then

χ2(PθX‖QθX) ≥ χ2(Pθθ̂‖Qθθ̂) data processing inequality

≥ χ2(Pθ−θ̂‖Qθ−θ̂) data processing inequality

≥
(EP (θ − θ̂)− EQ(θ − θ̂))2

varπ(θ̂ − θ)
. by (7.1)

Let Tδ denote the pushforward of shifting by δ, that is, Tδ(PA) = PA+δ. Let us choose

Qθ = π,QX|θ = Pθ, Pθ = Tδπ, PX|θ = Pθ−δ,

then PX = QX which further indicates Pθ̂ = Qθ̂ and the mean of θ̂ under distribution of P equals

to the mean under the distribution under Q. Hence EP (θ − θ̂)− EQ(θ − θ̂) = δ! For the Bayesian
HCR lower bound,

R∗π ≥ sup
δ 6=0

δ2

χ2(PXθ‖QXθ)
≥ lim

δ→0

δ2

χ2(PXθ‖QXθ)
=

1

I(π) + Eθ∼π[I(θ)]
. (7.5)

The last step is justified as follows:

χ2(PXθ‖QXθ) =

∫
(PXθ −QXθ)2

QXθ
=

∫
[Pθ(PX|θ −QX|θ) + (Pθ −Qθ)QX|θ]2

QXθ

=

∫
P 2
θ

Qθ

∫
(PX|θ −QX|θ)2

QX|θ
+

∫
(Pθ −Qθ)2

Q2
θ

+ 2

∫
Pθ(Pθ −Qθ)

Qθ

∫
(PX|θ −QX|θ)

= χ2(Pθ‖Qθ) + E

[
χ2(PX|θ‖QX|θ) ·

(
Pθ
Qθ

)2
]

Then applying

� χ2(Pθ‖Qθ) = χ2(Tδπ‖π) = δ2[I(π) + o(1)] by Taylor expansion,

� χ2(PX|θ‖QX|θ) = [I(θ) + o(1)]δ2 by Taylor expansion,

we obtain (7.5).
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7.5 Information Bound

In this section, we introduce the local version of the minimax lower bound. The local minimax risks
is defined in a quadratic form: inf θ̂ sup|θ−θ0|≤ε E(θ̂ − θ)2. Further, we have

inf
θ̂

sup
|θ−θ0|≤ε

E(θ̂ − θ)2 ≥ 1

I(θ) + nEθ∼π[I(θ)]

=
1 + o(1)

nEθ∼π[I(θ)]

If θ 7→ I(θ) is continuous, then

Eθ∼π[I(θ)] = I(θ0) + o(1) =
1 + o(1)

nI(θ)
.

Assume the random variable Z coming from the distribution π, Z ∼ π. Let I(Z) , I(π). For

constant α, β 6= 0, then I(Z + α) = I(Z) and I(βZ) = I(Z)
β2 . If the π has the distribution of form

cos2 πx
2 , then minπ:[−1,1] I(π) = π2. If the distribution π has the form of cos2 π(x−θ0)

2ε , then I(θ) = π2

ε .
Then we have

inf
θ̂

sup
|θ0−θ|≤ε

E(θ̂ − θ)2 ≥ R∗π ≥
1

nEθ∼π[I(θ)] + I(π)
.

Now if we pick ε = n−1/4, we have

R∗ ≥ inf
θ̂

sup
|θ−θ0|≤n−1/4

Eθ(θ − θ̂)2 ≥ 1

nI(θ) + o(
√
n)

Optimize
=⇒ R∗ ≥ 1 + o(1)

n infθ0∈Θ I(θ0)
.
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§ 8. Bayesian Cramér-Rao (continued), MLE

8.1 Example: Gaussian Location Model (GLM)

Let Xi = θ + Zi, where Zi ∼ N (0, 1), and θ ∼ π = N (0, s). Given i.i.d. observations X =
(X1, X2, · · · , Xn), we have

χ2(PθX ||QθX) = χ2(PθX̄ ||QθX̄)

= χ2(Pθ||Qθ) + EQ

[(
Pθ
Qθ

)2

χ2(PX̄|θ||QX̄|θ)

]
= (eδ

2/s − 1) + eδ
2/s(enδ

2 − 1)

= eδ
2(n+ 1

s
) − 1.

The first line follows from the fact that X̄ is a sufficient statistic (θ → X̄ → X), and the information
processing inequality. The second line follows from Lecture 7 (last equation, Page 5). The third line
follows from

χ2
(
N (θ, σ2)||N (θ + δ, σ2)

)
= eδ

2/σ2 − 1.

Therefore, by Bayesian HCR and Bayesian Cramér-Rao Lower Bound:

R∗π ≥ sup
δ 6=0

δ2

eδ
2(n+ 1

s
) − 1

= lim
δ→0

δ2

eδ
2(n+ 1

s
) − 1

=
1

n+ 1
s

=
s

sn+ 1
.

In this case, the lower bound is exact! (It has been verified that R∗π = s
sn+1 .) The minimax lower

bound is R∗ ≥ supsR
∗
π = 1

n .

8.2 Classical Proof of Bayesian Cramér-Rao Lower Bound

Theorem 8.1 (Same statement as Theorem 7.3). If X ∼ Pθ, θ ∼ π, we have

E[(θ̂(X)− θ)2] ≥ 1

I(π) + Eθ∼π[I(θ)]
.

Alternative Proof. Note that∫
θ̂(x)

∂

∂θ
(Pθ(x)π(θ)) dθ = 0, (8.1)∫

θ
∂

∂θ
(Pθ(x)π(θ)) dθ = −

∫
Pθ(x)π(θ) dθ, (8.2)

where the first equation follows from the regularity condition, and the second equation follows from
integration by part.
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Therefore,

E
[
(θ̂(X)− θ)∂ log(Pθ(X)π(θ))

∂θ

]
=

∫
µ(dx)

∫
(θ̂(x)− θ)∂(Pθ(x)π(θ))

∂θ

Pθ(x)π(θ)

Pθ(x)π(θ)
dθ

=

∫
µ(dx)

∫
Pθ(x)π(θ)dθ

= 1,

where the second line follows from (8.1) and (8.2).
By Cauchy-Schwarz inequality,

1 = E
[
(θ̂(X)− θ)∂ log(Pθ(X)π(θ))

∂θ

]
≤ E

[
(θ̂(X)− θ)2

]
E

[(
∂ log(Pθ(X)π(θ))

∂θ

)2
]
.

Hence

E
[
(θ̂(X)− θ)2

]
≥ 1

E
[(

∂ logPθ(X)
∂θ + ∂ log π(θ)

∂θ

)2
] =

1

E[I(θ)] + I(π)
.

8.3 An Alternative Information Inequality

If we choose a uniform prior in Theorem 8.1, the resulting lower bound is zero since the Fisher
information of uniform distribution is infinity. Nevertheless, it is possible to obtain an alternative
information inequality involving Eθ∼uniform[I(θ)]; however, it should be pointed out that the lower
bound applies to the minimax risk (not Bayes risk with respect to uniform prior) since the proof in
act involves two prior: uniform on the interval and uniform over the two endpoints.

Theorem 8.2. Assume the usual regularity condition:∫
∂pθ
∂x

dx = 0.

Then

R∗ = inf
θ̂

sup
θ∈[θ0−ε,θ0+ε]

Eθ[(θ − θ̂)2] ≥ 1

(ε−1 +
√
nĪ)2

where I denotes the average Fisher information:

I =
1

2ε

∫ θ0+ε

θ0−ε
I(θ) dθ.

Proof. See Problem 2 in Homework 1.

Remark 8.1. Theorem 8.2 is a strict improvement of the inequality of Chernoff-Rubin-Stein:1

inf
θ̂

sup
θ∈[θ0−ε,θ0+ε]

Eθ[(θ − θ̂)2] ≥ max
0<δ<1

min

{
δ2

4
,
1− ε
nĪ

}
=

1

(ε−1 +
√
nĪ + 1)2

.

Both this and Theorem 8.2 suffice to prove the optimal minimax lower bound.

1This is given in [Che56, Lemma 1] without proof, which Chernoff credited to Rubin and Stein.

54



8.4 Maximum Likelihood Estimator (MLE) and asymptotic
efficiency

We sketch the analysis of MLE in the classical large-sample asymptotics. LetX = (X1, X2, · · · , Xn)
i.i.d.∼

Pθ0 , define maximum likelihood estimator:

θ̂MLE = arg max
θ∈Θ

Lθ(X),

where

Lθ(X) = logP⊗nθ (X) =
n∑
i=1

logPθ(Xi).

Intuition:

Eθ0 [Lθ(X)− Lθ0(X)] = Eθ0

[
n∑
i=1

log
Pθ(Xi)

Pθ0(Xi)

]
= −nD(Pθ0 ||Pθ) ≤ 0.

So as long as θ0 6= θ, Lθ(X)−Lθ0(X) is a random walk with negative drift. From here the consistency
of MLE follows upon assuming appropriate regularity conditions.

Assuming more conditions one can obtain asymptotic normality and
√
n-consistency of MLE.

Next, we derive a local quadratic approximation of the log-likelihood function. By Taylor expansion,

Lθ(X) = Lθ0(X) +
n∑
i=1

∂ logPθ(Xi)

∂θ

∣∣∣∣
θ=θ0

(θ − θ0) +
1

2

n∑
i=1

∂2 logPθ(Xi)

∂θ2

∣∣∣∣
θ=θ0

(θ − θ0)2 + o((θ − θ0)2).

(8.3)

Recall that

E
[
∂ logPθ(Xi)

∂θ

]
= 0, E

[(
∂ logPθ(Xi)

∂θ

)2
]

= −E
[
∂2 logPθ(Xi)

∂θ2

]
= I(θ).

By the Central Limit Theorem,

1√
nI(θ0)

n∑
i=1

∂ logPθ(Xi)

∂θ

d.−→ N (0, 1).

By the Weak Law of Large Numbers,
n∑
i=1

∂2 logPθ(Xi)

∂θ2
= −nI(θ0) + oP (n).

Substituting these quantities into (8.3), we obtain a local quadratic approximation of the log-
likelihood function:

Lθ(X) ≈ Lθ0(X) +
√
nI(θ0) · Z · (θ − θ0)− 1

2
nI(θ0)(θ − θ0)2,

where Z ∼ N (0, 1). Maximizing the right-hand side, we obtain:

θ̂MLE ≈ θ0 +
Z√
nI(θ0)

.

Therefore, MLE achieves the locally minimax lower bound R∗ ≥ 1+o(1)
nI(θ0) (see Section 7.5 in Lecture

7).

Remark 8.2. The general asymptotic theory of MLE and achieving information bound is due to
Hájek and LeCam.
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8.5 Bayesian Lower Bounds for Functional Estimation

Next, we derive the Bayesian Cramér-Rao lower bound for functional estimation T̂ (X).

Theorem 8.3. Let T : Rp → R, and

θ → X
↓ ↓

T (θ) T̂ (X)

Then we have
R∗π ≥ (∇T )′I−1∇T.

Proof. By similar arguments in previous lectures,

χ2(PθX ||QθX) ≥ χ2(P
T−T̂ ||QT−T̂ ) ≥

(
EP [T − T̂ ]− EQ[T − T̂ ]

)2

VarQ[T − T̂ ]
. (8.4)

Let Q(θ) = π(θ), and P (θ) = π(θ − εu), where u ∈ Rp. In order to make the marginal distribution
of PX = QX , let Pθ(x) = Qθ−εu(x). Hence the numerator and the denominator in (8.4) satisfy:(

EP [T − T̂ ]− EQ[T − T̂ ]
)2

= (EP [T ]− EQ[T ])2

=

(∫
π(θ)T (θ + εu) dθ −

∫
π(θ)T (θ) dθ

)2

=

(∫
π(θ) 〈∇T, εu〉+ o(ε)

)2

= ε2 〈Eπ∇T, u〉2 + o(ε2), (8.5)

VarQ[T − T̂ ] ≤ EQ[(T − T̂ )2] = Rπ. (8.6)

The left-hand side of (8.4) satisfies

χ2(PθX ||QθX) = χ2(Pθ||Qθ) + EQ

[
χ2(PX|θ||QX|θ)

(
Pθ
Qθ

)2
]

=

∫
(π(θ − εu)− π(θ))2

π(θ)
dθ + Eπ

[∫
(Qθ−εu(x)−Qθ(x))2

Qθ(x)
dx

(
π(θ − εu)

π(θ)

)2
]

=

∫
ε2u′(∇π)(∇π)′u

π(θ)
dθ + Eπ

[∫
ε2u′(∇θQ)(∇θQ)′u

Qθ(x)
dx

]
+ o(ε2)

= ε2u′ (I(π) + Eπ[I(θ)])u+ o(ε2). (8.7)

Substituting (8.5), (8.6), and (8.7) into (8.4), we have

R∗π ≥
〈Eπ∇T, u〉2

u′ (I(π) + Eπ[I(θ)])u

Locally, Eπ∇T (θ) ≈ ∇T (θ0), and I(π) + Eπ[I(θ)] ≈ I(θ0). Hence

R∗π ≥ sup
u

〈∇T (θ0),u〉2
u′I(θ0)u = (∇T (θ0))′I−1(θ0)∇T (θ0).
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The maximum is attained when u = I−1(θ0)∇T (θ0).2

Remark 8.3. The maximum likelihood estimator satisfies T (θ̂MLE) = T (θ0 + 1√
n
Z), where Z ∼

N (0, I−1(θ0)). Hence

T (θ̂MLE) ∼ N
(
T (θ0),

1

n
(∇T (θ0))′I−1(θ0)(∇T (θ0))

)
.

The maximum likelihood estimator again asymptotically achieves the locally minimax lower bound.

8.6 Example: Classical asymptotics of entropy estimation

Corollary 8.1. Let X1, · · · , Xn
i.i.d.∼ p ∈Mk, where Mk denotes the set of probability distributions

over [k] = {1, . . . , k}. Then the minimax quadratic risk of entropy estimation satisfies

R∗ = inf
Ĥ

sup
P∈Mk

E[(Ĥ −H)2] =
1

n

(
max
p∈Mk

V (p) + o(1)

)
, n→∞

where

H(p) =
k∑
i=1

pi log
1

pi
= E

[
log

1

p(X)

]
,

V (p) = Var

(
log

1

p(X)

)
Note: maxp∈Mk

V (p) ≤ log2 k for all k ≥ 3 (see [PPV10, Eq. (464)]).

Proof. We have H : Θ→ R+, where θ = (p1, p2, · · · , pk−1).3 Therefore,

∂H

∂pi
= log

pk
pi
, i = 1, 2, · · · , k − 1.

Next, we compute the Fisher Information matrix:

I(θ)ij = −E
[
∂2 log p(X)

∂pi∂pj

]
=

{
1
pi

+ 1
pk

if i = j
1
pk

if i 6= j
.

Therefore,

I(θ) =


1
p1

. . .
1

pk−1

+
1

pk
11′.

By Matrix Inversion Lemma,4 we have

I−1(θ) =

p1

. . .

pk−1

+

 p1
...

pk−1

 [p1 · · · pk−1

]
.

2This can be shown, for example, by letting ũ = I−
1
2 (θ0)u.

3pk = 1− p1 − · · · − pk−1.
4(A+ UCV )−1 = A−1U(C−1 + V A−1U)−1V A−1.
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Therefore,

∇H ′I−1(θ)∇H =

k−1∑
i=1

pi log2 pk
pi
−

(
k−1∑
i=1

pi log
pk
pi

)2

=

k∑
i=1

pi log2 1

pi
+ log2 1

pk
− 2

k∑
i=1

pi log
1

pi
log

1

pk
−

((
k∑
i=1

pi log
1

pi

)
− log

1

pk

)2

=
k∑
i=1

pi log2 1

pi
−

(
k∑
i=1

pi log
1

pi

)2

= E
[
log2 1

p(X)

]
−
(
E
[
log

1

p(X)

])2

= Var

[
log

1

p(X)

]
= V (p).

Given n samples, the Fisher Information matrix is nI(θ). By Theorem 8.3,

R∗ ≥ 1 + o(1)

n
∇H ′I−1(θ)∇H =

1 + o(1)

n
V (p).
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Part III

Unstructured estimation problems in
high dimensions
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§ 9. Exact minimax risk for Gaussian location model, LeCam’s method

In this lecture we consider estimation problems with no prior assumption on the structure of the
parameter space. Examples of structures include sparsity, smoothness and low-rankness.

Let X = (X1, . . . , Xn)
i.i.d∼ Pθ be n samples drawn from distribution Pθ parametrized by θ ∈ Θ,

where Θ is Rp. Given a loss function ` : Rp × Rp → R+, the minimax risk is

R∗n(Θ) = inf
θ̂

sup
θ∈Θ

Eθ`(θ, θ̂).

Two obvious observations:

� More structures lead to smaller risk. Formally, if Θ′ ⊂ Θ, then R∗n(Θ′) ≤ R∗n(Θ).1 Without
assuming any prior structure, Θ = Rp, and we denote R∗n(Rp) = R∗n,p.

� More samples lead to smaller risk. Formally, n 7→ R∗n(Θ) is decreasing and typically vanishing
as n→∞. In the classical large-sample asymptotic regime as studied in Lecture 8, the speed
is usually “parametric“, e.g., 1

n under the quadratic risk. In comparison, the focus in this
course is understanding the dependency on dimension and other structural parameters without
assuming large sample size. This is captured by the minimax rate. For example, we say

R∗n,p � Ψn,p, when c ≤ R∗n,p
Ψn,p

≤ c′, ∀ n, p for some universal constants c and c′.

9.1 Log-concavity, Anderson’s lemma and exact minimax risk in
GLM

Definition 9.1 (Gaussian location model (GLM)). Let X1, . . . , Xn be iid drawn from N (θ, Ip)

with θ ∈ Rp. The goal is to estimate the mean θ. Let θ̂ denote the estimator and R∗n,p denote the

minimax risk under loss function `(θ, θ̂).

Theorem 9.1. Under GLM with quadratic loss function `(θ, θ̂) = ‖θ − θ̂‖22 =
∑p

i=1(θi − θ̂i)2, then

R∗n,p =
p

n
, ∀n, p ∈ N.

Proof. We upper bound and lower bound R∗n,p by p
n in order to show equality. Let us have an

estimator X̄ =
∑
Xi
n ∼ N (θ, 1

nIp). Hence the risk R∗n,p is upper bounded by the risk obtained when

using estimator θ̂ = X̄. We can compute the risk for using θ̂ = X̄ as p
n . So,

R∗n,p ≤
p

n
(9.1)

1Note that this does not mean that achieving R∗n(Θ′) is computationally easier than R∗n(Θ)!
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We lower bound the minimax risk R∗n,p by Bayes risk with prior π ∼ N (0, sIp). We can compute
R∗π = sp

sn+1 . So,

R∗n,p ≥ R∗π
lim s→∞

=
p

n
(9.2)

Combining the upper bound and lower bound in (9.1) and (9.2), we complete the proof.

The limitation of the above proof technique is that it only works for quadratic loss function. We
next discuss a more general theorem which works over a larger range of loss functions.

Definition 9.2 (Bowl-shaped). A function ρ : Rd → R+ is called bowl-shaped when all its sublevel
sets Kc = {x : ρ(x) < c} for all c ∈ R are convex and symmetric (i.e. Kc = −Kc).

Theorem 9.2. Consider GLM with loss functions `(θ, θ̂) = ρ(θ − θ̂), where ρ : Rp → R+ is
bowl-shaped and lower-semicontinous. Then

R∗n,p = Eρ
(
Z√
n

)
,

where Z ∼ N (0, Ip).

Corollary 9.1. Let ρ = ‖.‖q, q ≥ 1, then under GLM,

R∗n,p =
1

nq/2
E‖Z‖q.

Example 9.1. Applications of Corollary 9.1:

� If ρ = ‖.‖22, then R∗n,p = 1
nE‖Z‖

2 = p
n .

� If ρ = ‖.‖∞, then E‖Z‖∞ �
√

log p and R∗n,p �
√

log p
n .

� If θ ∈ Rp×p is a matrix, and ρ = ‖.‖2op = σmax(·), then E‖Z‖op �
√
p and R∗n,p �

p
n

� If θ ∈ Rp×p is a matrix, and ρ = ‖.‖2F , R∗n,p = p2

n .

Proof of Theorem 9.2. (Upper bound) Consider the estimator θ̂ = X̄ = 1
n

∑
iXi ∼ N (θ, 1

nIp). Then

θ − =̂
√

1
nZ where Z ∼ N (0, Ip). Thus

R∗n,p ≥ E[`(θ, X̄)] = E[ρ(θ − X̄)] = E[ρ(
1√
n
Z)]. (9.3)
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(Lower bound) We lower bound the minimax risk R∗n,p by Bayes risk R∗π with prior π = N (0, sIp):

R∗n,p ≥ R∗π
= inf

θ̂
Eπ[ρ(θ − θ̂)]

= inf
θ̂
E[E[ρ(θ − θ̂)|X]]

= E[inf
θ̂
E[ρ(θ − θ̂)|X]]

(a)
= E[E[ρ(θ − E[θ|X])|X]]

(b)
= E[ρ(

√
s

1 + sn
Z)]

s→∞
= lim

s→∞
E[ρ(

√
s

1 + sn
Z)]

(c)
= E[ lim

s→∞
ρ(

√
s

1 + sn
Z)]

(d)
= E[ρ( lim

s→∞

√
s

1 + sn
Z)]

= E[ρ(
1√
n
Z)] (9.4)

where (a) follows from Anderson’s Lemma 9.1, (b) uses Z ∼ N (0, Ip) or
√

s
1+snZ = (θ − E[θ|X]) ∼

N (0, s
1+snIp) since θ|X ∼ N ( sn

1+sn ,
s

1+snIp), (c) follows from Fatou’s Lemma, and (d) follows since
ρ(·) is a lower-semicontinuous function.

Combining the upper bound and lower bounds in (9.3) and (9.4), we can say that R∗n,p =

E[ρ( 1√
n
Z)].

Lemma 9.1 (Anderson). Let X ∼ N (0,Σ), and ρ : Rp → R+ is a bowl-shaped loss function, then

min
y∈Rp

E[ρ(y +X)] = E[ρ(X)].

In order to prove Lemma 9.1, it suffices to consider ρ being indicator functions. This is done in
the next lemma, which we prove later for simpler exposition.

Lemma 9.2. Let K ∈ Rp be a symmetric convex set and X ∼ N (0,Σ) for some covariance matrix
Σ. Then ∀y ∈ R,P(X + y ∈ K) ≤ P(X ∈ K).

Proof of Lemma 9.1. Denote the sub-level set set Kc = {x ∈ Rp : ρ(x) < c}. Since ρ is bowl-shaped,
Kc is convex and symmetric, which satisfies the conditions of Lemma 9.2. So,

E[ρ(y + x)] =

∫ ∞
0

P(ρ(y + x) ≥ c)dc,

=

∫ ∞
0

(1− P(y + x ∈ Kc))dc,

≥
∫ ∞

0
(1− P(x ∈ Kc))dc,

=

∫ ∞
0

P(ρ(x) ≥ c)dc,

= E[ρ(x)].
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Hence, miny∈Rp E[ρ(y + x)] = E[ρ(x)].

Before going into the proof of Lemma 9.2, we need the following definition.

Definition 9.3. A measure µ on Rp is said to be log-concave if

µ(λA+ (1− λ)B) ≥ µ(A)λµ(B)1−λ

for all measurable A,B ⊂ Rp and any λ ∈ [0, 1].

The following result characterizes log-concavity of measures in terms of that of its density. See
[Rin76] for a proof.

Theorem 9.3 (Prékopa). A measure µ is log-concave if and only if µ has a density f with respect
to the Lebesgue measure, such that f is a log-concave function.

Example 9.2. Examples of log-concave measures:

� Lebesgue measure: Let µ = vol be the Lebesgue measure on Rp, which satisfies Theorem 9.3
(f ≡ 1). Then

vol(λA+ (1− λ)B) ≥ vol(A)λvol(B)1−λ, (9.5)

which implies2 the Brunn-Minkowski inequality:

vol(A+B)
1
p ≥ vol(A)

1
p + vol(B)

1
p . (9.6)

� Gaussian distribution: Let µ = N (0,Σ), with a log-concave density f since log f(x) =
−p

2 log(2π)− 1
2 log det(Σ)− 1

2x
′Σ−1x is concave.

Proof of Lemma 9.2. By Theorem 9.3, the distribution of X is log-concave. Then

P[X ∈ K]
(a)
= P

[
X ∈ 1

2
(K + y) +

1

2
(K − y)

]
(9.7)

(b)

≥
√

P[X ∈ K − y]P[X ∈ K + y] (9.8)

(c)
= P[X + y ∈ K], (9.9)

where (a) follows from 1
2(K + y) + 1

2(K − y) = 1
2K + 1

2K = K since K is convex; (b) follows from
the definition of log-concavity in Definition 9.3 with λ = 1

2 , A = K − y = {x − y : x ∈ K} and
B = K + y; (c) follows from P[X ∈ K + y] = P[X ∈ −K − y] = P[X + y ∈ K] since X has a
symmetric distribution and K is symmetric (K = −K).

9.2 LeCam’s two-point argument

In this section we study a general method to obtain a lower bound on the minimax risk R∗n,p(Θ).

2Applying (9.5) to A′ = vol(A)−1/pA, B′ = vol(B)−1/pB (both of which have unit volume), and λ =
vol(A)1/p

vol(A)1/p+vol(B)1/p
.
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Theorem 9.4 (LeCam’s Method/two-point argument). Suppose the loss function ` : Θ×Θ→ R+

satisfies the following α-triangle inequality

`(θ0, θ1) ≤ α(`(θ0, θ) + `(θ1, θ)), ∀ θ0, θ1, θ,

for some α > 0, then

R∗(Θ) , inf
θ̂

sup
θ∈Θ

Eθ`(θ, θ̂) ≥ sup
θ0,θ1∈Θ

`(θ0, θ1)

4α
(1− dTV(Pθ0 , Pθ1)) (9.10)

Proof. In general, testing is “easier” than estimation in the statistical sense that one can often
convert an estimator to a test. Hence, in LeCam’s method, we convert the estimation problem to a
hypothesis testing problem by discretizing the set Θ and obtain a lower bound on the worst-case
risk R∗.

For simplicity, let us break Θ into two points Θ′ = {θ1, θ2} ⊂ Θ. Consider the problem, when
the distribution Pθ is either Pθ1 or Pθ2 . Let us consider the risk in this problem using test ψ, where,

ψ =

{
θ0 `(θ0, θ̂) ≤ `(θ1, θ̂)

θ1 `(θ1, θ̂) < `(θ0, θ̂)

for any estimate θ̂ for problem θ ∈ Θ.
Let us denote the minimax risk obtained in this problem as R∗(Θ′). Since, we are considering a

simpler problem of θ = θ1 or θ = θ2 rather than θ ∈ Θ, the risk R∗(Θ′) forms a lower bound to the
risk R∗. So,

R∗ ≥ R∗(Θ′) (b)
= R∗θ0 ∨R

∗
θ1 . (9.11)

where (b) follows from the definition of minimax risk.
Now, let ε = `(θ0, θ1). The probability of false alarm is defined Pθ0(ψ = θ1) and probability of

miss is defined as Pθ1(ψ = θ0). Now,

Pθ0(ψ = θ1) = Pθ0(`(θ̂, θ1) ≤ `(θ̂, θ0))

(a)

≤ Pθ0(`(θ̂, θ0) ≥ ε

2α
)

(b)

≤ 2α

ε
Eθ0 [`(θ̂, θ0)] (9.12)

where (b) follows from Markov’s inequality, (a) follows because the α-triangle inequality and
separation assumption: ε ≤ `(θ0, θ1) ≤ α(`(θ0, θ) + `(θ1, θ)).

Similarly, we can establish that the probability of miss detection:

Pθ1 [ψ = θ0] ≤ 2αEθ1 [`(θ̂, θ1)]

ε
. (9.13)

Now, since 1− dTV is the minimal total probability of error, we have

1− dTV(Pθ1 , Pθ0) ≤ Pθ1 [ψ = θ0] + Pθ0(ψ = θ1)

(a)

≤ 2α

ε
(Eθ1 [`(θ̂, θ1)] + Eθ0 [`(θ̂, θ0)])

=
2α

ε
(Rθ0(θ̂) +Rθ1(θ̂))

≤ 4α

ε
(Rθ0(θ̂) ∨Rθ1(θ̂))

≤ 4α

ε
(Rθ0(θ̂) ∨Rθ1(θ̂)), (9.14)
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where (a) follows from (9.13) and (9.12).
Combining (9.14) with (9.11), we can say that

R∗ ≥ ε

4α
(1− dTV(Pθ1 , Pθ0))

Optimizing over the pair θ0, θ1 gives (9.10).

Example for Theorem 10.1: Suppose `(θ, θ̂) = ‖θ − θ̂‖q, q ≥ 1. Then we can easily show that
l(·) satisfies 2q−1−triangle inequality. So, by Theorem 10.1, when q = 2 ,R∗n,p ≥ supθ0,θ1

1
8‖θ0 −

θ1‖2(1− dTV(Pθ0 , Pθ1)).
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§ 10. Le Cam’s Method, Two-point Argument and Assouad’s Lemma

Recap:

Theorem 10.1 (Le Cam’s Method). If `(θ0, θ1) ≤ α{`(θ0, θ̂) + `(θ1, θ̂1)}, ∀θ̂ then

R∗ = inf
θ̂

sup
θ∈Θ

Eθ[`(θ, θ̂)] ≥
`(θ0, θ1)

4α
(1− dTV(Pθ0 , Pθ1)) (10.1)

Note:

� For n samples, the total variation increases and hence we get a smaller lower bound.

� For different loss functions we have:

l = ‖.‖ ⇒ α = 1

l = ‖.‖q ⇒ α = 2q−1

� For quadratic loss `(θ, θ̂) = ‖θ − θ̂‖22, using Theorem 10.1, we have:

R∗ ≥ ‖θ0 − θ1‖22
8

(1− dTV(Pθ0 , Pθ1)) (10.2)

Can we improve the constant 8 in the above inequality? The answer is YES as we shall show
in the next section that it can be replaced by 4 which is the best possible.

10.1 Le Cam’s method for quadratic loss

Let Θ be an inner product space. Consider the quadratic loss `(θ, θ̂) = ‖θ − θ̂‖22 = 〈θ − θ̂, θ − θ̂〉.

Theorem 10.2 (Reduction of factor in (10.2) from 8 to 4).

R∗ = inf
θ̂

sup
θ∈Θ

Eθ[‖θ − θ̂‖22] ≥ ‖θ0 − θ1‖22
4

(1− dTV(Pθ0 , Pθ1)). (10.3)

Remark 10.1. The constant 4 is clearly the best possible. In the extreme case of Pθ0 = Pθ1
(non-identifiable), the best estimate is arg min `(θ0, θ̂) ∨ `(θ0, θ̂), which in the quadratic case is
1
2(θ0 + θ1).

Proof. We use minimiax risk ≥ Bayes risk:

R∗ ≥ R∗π
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Using π = λ̄δθ0 + λδθ1 as the prior, where λ ∈ [0, 1], λ̄ = 1− λ, we have:

R∗π = inf
θ̂
λ̄Eθ0‖θ0 − θ̂‖22 + λ̄Eθ1‖θ1 − θ̂‖22 (10.4)

⇒ R∗π =

∫
X
µ(dx){inf

θ̂
λ̄Pθ0(x)‖θ0 − θ̂(x)‖22 + λPθ1‖θ1 − θ̂(x)‖22} (10.5)

We first consider the following general problem:

⇒ inf
θ̂
{ᾱ‖θ0 − θ̂‖22 + α‖θ1 − θ̂‖22}

⇒ inf
θ̂
{‖θ̂‖22 − 2θ̂(ᾱθ0 + αθ1) + ‖ᾱθ0 + αθ1‖22 − ‖ᾱθ0 + αθ1‖22 + ᾱ‖θ0‖22 + α‖θ1‖22}

⇒ inf
θ̂
{αᾱ‖θ0 − θ1‖22 + ‖θ̂ − (ᾱθ0 + αθ1)‖22} = αᾱ‖θ0 − θ1‖22

So we basically have the conditional mean as the estimate for the above problem which is intuitively
correct. We now normalize (10.4) and use the above result to get:

R∗π = λλ̂‖θ0 − θ1‖22
∫
X
µ(dx)

Pθ0Pθ1
λ̄Pθ0 + λPθ1

= λλ̂‖θ0 − θ1‖22Eθ0{
Pθ1

λ̄Pθ0 + λPθ1
}

Now, we observe that λ̄Pθ0 + λPθ1 ≤ Pθ0 ∨ Pθ1 . Using this fact, we have:

R∗π ≥ λλ̂‖θ0 − θ1‖22(

∫
X
µ(dx)(Pθ0 ∨ Pθ1))

=
1

4
‖θ0 − θ1‖22(1− dTV(Pθ0 , Pθ1))

where we used λ = λ̄ = 1
2 .

10.2 Two-point method

For two-point method, we strip off the uncertainty by choosing only 2 possible values of the
parameters. So we have:

R∗π ≥ R∗({θ0, θ1})
= sup

π
R∗π

where the last equality follows from minimax theorem (which holds here since we consider a finite
set of parameters). Now, for the optimal Bayes Risk we have:

R∗π = inf
θ̂:X→Θ

λ̄Eθ0`(θ0, θ̂) + λEθ1`(θ1, θ̂)

= Eθ0 inf
θ̂:X→Θ

{λ̄`(θ0, θ̂) + λ
Pθ1
Pθ0

`(θ1, θ̂)}

Note: We could change the order of expectation and infimum in the above equation as the infimum
is over θ̂ which depends only on data.

We now define λ̄`(θ0, θ̂) + λ
Pθ1
Pθ0

`(θ1, θ̂) = F (
Pθ1
Pθ0

). Therefore, we have:

⇒ R∗π = Eθ0{F (
Pθ1
Pθ0

)}
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Example 10.1 (Quadratic Loss Function). If `(θ, θ̂) = ‖θ − θ̂‖22, then R∗π = Expected value of an
f -divergence between Pθ0 and Pθ1 .

We can choose an f -divergence which suits our needs.

So for two-point method, we have:

R∗(Θ) ≥ R∗({θ0, θ1})
≥ Function of (separation between θ0 and θ1, separation between Pθ0 and Pθ1)

Remark 10.2. Since the separation between Pθ0 and Pθ1 is quantified using f -divergences, we can
lower bound the minimax risk in terms of f -divergences other than total variation as well as follows:

� Using Le Cam’s method, we can find a bound using total variation and then replace total
variation with other f -divergences like χ2 or hellinger distance.

� We can also use some other f -divergence directly instead of using total variation.

10.3 How good is Le Cam’s bound?

In this section, we try to understand how tight Le Cam’s bound is. To gain insight, we first consider
the following example:

Example 10.2 (p-dimensional, n-sample Gaussian Location Model). For p-dimensional, n-sample
GLM, we use X̄ = 1

n

∑n
i=1Xi as the estimate. So we have X̄ ∼ N(θ, 1

nIp). We also know from

Theorem 9.1 that for `(θ, θ̂) = ‖θ − θ̂‖22, we have R∗ = p
n . Let us compare this result with the lower

bound obtained using Le Cam’s method:

R∗ ≥ sup
θ0,θ1∈Rp

1

4
‖θ0 − θ1‖22(1− dTV(N(θ0,

1

n
Ip), N(θ1,

1

n
Ip)))

= sup
θ∈Rp

1

4
‖θ‖22(1− dTV(N(0,

1

n
Ip), N(θ,

1

n
Ip)))

=
1

4n
sup
θ∈Rp

‖θ‖22(1− dTV(N(0, Ip), N(θ, Ip)))

=
1

4n
sup
s>0

s2(1− dTV(N(0, 1), N(s, 1))),

where the second step follows from the fact that we can replace θ0 by 0 and θ1 by θ with out any
loss of generality, and the last step follows from the following: to reduce the total variation to one
dimension, we simply rotate the vector θ to reduce the problem to that of one-dimensional total
variation calculation

dTV(N(0, Ip), N(θ, Ip)) = dTV(N(0, Ip), N(‖θ‖e1, Ip)

= dTV(N(0, 1), N(‖θ‖, 1)).

Clearly, the upper bound above doesn’t scale with the dimension p.

How to scale R∗ with p? We observe that we have considered a similar model as previous lectures
and hence using tensorization of 1-dimensional n-sample GLM, we can conclude R∗ should linearly
grow in p. Explanation: Since `(θ, θ̂) =

∑p
i=1 `(θi, θ̂i), and each dimension of vector θ is estimated
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using corresponding dimension of the vector X̄. Hence, as each dimension has a constant lower
bound, the vector should have a lower bound scaling linearly with p as its lower bound is the sum
of respective one-dimensional lower bounds. Therefore, we have pR∗π1−d ≤ R

∗
p ≤ pR∗1−d.

To improve upon the lower bound obtained using Le Cam’s method, we consider more than
two points to obtain the minimax bound. In next section, we shall discuss Assouad’s Lemma which
consider a hypercube instead of a line.

10.4 Assouad’s Lemma

Lemma 10.1 (Assouad’s Lemma). If each coordinate consists of binary testing, i.e. θ ∈ {0, 1}p ⊂
Θ = Rp and `(θ, θ̂) = ‖θ − θ̂‖1, then:

R∗ ≥ p

4
(1− max

d(θ,θ′)=1
dTV(Pθ, Pθ′))

Proof. Since minimiax risk is greater than Bayes risk, we have R∗ ≥ R∗π. Also we consider a uniform
prior over {0, 1}p. We also define θ̃i as follows:

θ̃i =

{
0, θ̂i <

1
2

1, otherwise

Therefore, ∀θ̂ : X → Rp, we have:

E‖θ − θ̂‖1 =

p∑
i=1

E|θi − θ̂i|

≥ 1

2

p∑
i=1

E|θi − θ̃i|

=
1

2

p∑
i=1

P (θi 6= θ̃i)

≥ 1

2

p∑
i=1

inf
θ̂i=θ̂i(X)

P (θi 6= θ̂i)

Since, θi ∈ {0, 1}, we have:

E‖θ − θ̂‖1 ≥
1

4

p∑
i=1

(1− dTV(PX|θi=0, PX|θi=1)) (10.6)

We now try to upper bound the total variation expression in the above inequality. From Bayes rule,
we get:

dTV(PX|θi=0, PX|θi=1) = dTV(
1

2p−1

∑
θ:θi=1

Pθ,
1

2p−1

∑
θ:θi=0

Pθ)

Using convexity of total variation, we have:

dTV(PX|θi=0, PX|θi=1) ≤ 1

2p−1

∑
θ\i∈{0,1}p−1

dTV(P{θ\i,1}, P{θ\i,0})

≤ max
d(θ,θ′)=1

dTV(Pθ, Pθ′)
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Using the above result in (10.5) and using the fact that `(θ, θ̂ =
∑p

i=1 `(θi, θ̂i), we get:

R∗ ≥ l(0, 1)p

4
(1− max

d(θ,θ′)=1
dTV(Pθ, Pθ′))

For l1 loss function, l(0, 1) = 1, hence we obtain the result.

Example 10.3 (p-dimensional, n-sample Gaussian Location Model(GLM)). We consider `(θ, θ̂) =∑p
i=1(θi − θ̂i)2, θ ∈ {0, ε}p. Using Assoud’s Lemma, we get:

R∗ ≥ ε2p

4
{1− max

θ,θ′∈{0,ε}p,d(θ,θ′)=1
dTV(N(θ,

1

n
Ip), N(ε,

1

n
Ip))}

=
ε2p

4
{1− dTV(N(0,

1

n
Ip), N(ε,

1

n
Ip))}

Using ε = 1√
n

and scaling by 1
n , we get:

R∗ ≥ kp

n

where k = 1− dTV(N(0, 1), N(1, 1)) is a constant (∼ 0.7).

In the next lecture we will talk more about Assouad’s Lemma which considers a hypercube of
parameters. We will also introduce Fano’s Lemma which uses a pyramid of parameters instead of a
hypercube.

70



§ 11. Mutual Information Method

Quick review: Assouad’s lemma

In Assouad’s lemma discussed in the last lecture, we made the following assumptions:

� Parameter space is a hypercube embedded in Rp, i.e. Θ = {θ0, θ1}p.

� Loss function l(θ, θ̂) is separable, i.e. l(θ, θ̂) =
∑p

i=1 l(θi, θ̂i), (e.g. Hamming, `2 squared.)

� and satisfies α-triangle inequality, i.e. l(θ0, θ1) ≤ α
[
l(θ0, θ̂) + l(θ1, θ̂)

]
.

Letting π ∼ Unif(Θ), we could proceed as:

R∗ ≥ R∗π = inf
θ̂

p∑
i=1

Eθ∼π[l(θi, θ̂i)] =

p∑
i=1

inf
θ̂i

Eθ∼π[l(θi, θ̂i)]

Le Cam
≥

p∑
i=1

l(θ0, θ1)

4α

[
1− dTV(PX|θi=θ0 , PX|θi=θ1)

]
convexity
≥ p · l(θ0, θ1)

4α

[
1− max

dH(θ,θ′)=1
dTV(Pθ, Pθ′)

]
.

where the last line could be thought of as a “deteriorated” version.

Example 11.1 (Gaussian Location Model). As usual, let Z ∼ N (0, Ip), Θ =
{

0, 1√
n

}p
, and

l(θ, θ̂) = ‖θ − θ̂‖22 (which satisfies 2-triangle inequality). Then, Assouad’s lemma gives us:

R∗ ≥ p

8n

[
1− max

dH(θ,θ′)=1
dTV(Pθ, Pθ′)

]
=

p

8n

[
1− dTV

(
N
(

0,
1

n

)
,N
(

1√
n
,

1

n

))]
' 0.3

8

p

n

which is not very good compared to p
n .

Along with the above example, the fact that the loss function is not always separable (e.g. `∞)
necessitates a search a more versatile method. In this lecture, we discuss the “mutual information
method” where the most important measure of information would be, of course, the mutual
information I(X;Y ).

11.1 Mutual Information I(X;Y )

Recall that KL-divergence was defined using the function f(x) = x log x:

D(P‖Q) , EQ
[
P

Q
log

P

Q

]
= EP

[
log

P

Q

]
.

Now, the mutual information can be defined using KL-divergence.
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Definition 11.1 (Mutual Information). Given a joint probability distribution PXY , the mutual
information between X and Y is defined as

I(X;Y ) , D(PXY ‖PXPY ),

the distance between the original distribution and the hypothetical distribution assuming that X
and Y are independent.

Mutual information has the following useful properties:

Proposition 11.1 (Properties of Mutual Information). Followings are true:

1. I(X;Y ) = D(PY |X‖PY |PX) = Ex∼PX [D(PY |X=x‖PY )]

2. (Symmetry) I(X;Y ) = I(Y ;X).

3. (Measure of dependency) I(X;Y ) ≥ 0 with equality iff X ⊥⊥ Y .

4. (I vs H: Y discrete) I(X;Y ) = H(Y )−H(Y |X), where H(Y ) denotes the Shannon entropy
H(Y ) ,

∑
y PY (y) log 1

PY (y) .

5. (I vs h: Y continuous) I(X;Y ) = h(Y )−h(Y |X), where h(Y ) denotes the differential entropy
h(Y ) ,

∫
fY (y) log 1

fY (y)dy.

Example 11.2 (Additive noise: binary). Let Y = X ⊕ Z, where X ∼ Bern(δ), Z ∼ Bern(ε),
X ⊥⊥ Z, and ⊕ denotes the XOR operation (binary addition). Then,

I(X;Y ) = H(Y )−H(Y |X) = H(Y )−H(X ⊕ Z|X) = H(Y )−H(Z)

= H(Bern(δ ? ε))−H(Bern(ε)) = h(δ ? ε)− h(ε).

where h(t) = t log 1
t + (1− t) log 1

1−t is the binary entropy function (not differential entropy!) and

the convolution operation ? on [0, 1] for Bernoulli random variables is δ ? ε = δε̄+ δ̄ε.

Example 11.3 (Additive noise: Gaussian). Let Y = X + Z where X ∼ N (0, S), Z ∼ N (0, 1),
X ⊥⊥ Z. Then,

I(X;Y ) = h(Y )− h(Y |X) = h(Y )− h(Z)

= h(N (0, 1 + S))− h(N (0, 1)) =
1

2
log(1 + S).

Alternatively, we could do

I(X;Y ) = D(PY |X‖PY |PX) = Ex∼N (0,S)[D(N (x, 1)‖N (0, 1 + S))].

to arrive the same conclusion.

Like f -divergence, the mutual information has a very useful property when applied on Markov
chains: the data processing inequality. In fact, the data processing inequality of mutual information
is a direct consequence of that of KL-divergence.

Theorem 11.1 (Data processing inequality for M.I.). Let X → Y → Z forms a Markov chain.
Then,

I(X;Z) ≤ I(X;Y ).
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Proof. For the same kernel PZ|Y , we have PY |X=x

PZ|Y−−−→ PZ|X=x for each x and similarly PY
PZ|Y−−−→ PZ .

Hence applying the data processing inequality for KL divergence yield

I(X;Z) = D(PZ|X‖PZ |PX) ≤ D(PY |X‖PY |PX) = I(X;Y ).

Remark 11.1. For the longer Markov chain W → X → Y → Z, we have I(W ;Z) ≤ I(X;Y ).

Remark 11.2. For other f -divergences, we can define If (X;Y ) , Df (PY |X‖PY |PX) which naturally
satisfies the data processing inequality on Markov chain.

For a detailed explanation on the materials presented in this section, please refer to [PW15,
Ch.2.1-2.2] or [CT06].

11.2 Mutual information method: minimax lower bound

Here’s the main idea of the mutual information method: As usual, we are trying to estimate the
parameter θ distributed by some prior π, using the estimator θ̂ using the experiment X as its input.
In other words, we have a Markov chain θ → X → θ̂.

Then we can upper-bound the mutual information between θ and θ̂ as follows:

I(θ, θ̂) ≤ I(θ;X) ≤ sup
π∈M(Θ)

I(θ;X),

where the first inequality is due to the data processing inequality of mutual information. The second
inequality could be used to drop the assumption that we know the prior π, and is useful when the
data X does not provide enough information about θ.

For the lower bound, we have the following:

I(θ, θ̂) ≥ inf
Pθ̂|θ:El(θ,θ̂)≤R∗π

I(θ; θ̂),

for any ‘good’ θ̂ that satisfies El(θ, θ̂) ≤ R∗π. This could be interpreted as a minimum amount of
information required for an estimation task.

Also notice the followings:

� This line of inequalities is akin to the converse proof of joint-source channel coding in
information theory, with the capacity-like upper bound and rate-distortion-like lower bound.

� Only the lower bound is related to the loss function.

� Sometimes we need a smart choice of the prior.

11.3 Extremization of the mutual information

A good news is that we have the convexity and concavity of the mutual information at hand, which
could help us find the infimum and supremum of the mutual information. In specific, we have the
following property cf. [PW15, p.28]:

Proposition 11.2 (Convexity and Concavity of mutual information). Consider the notation
I(PX , PY |X) = I(X;Y ). Then
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� For fixed PY |X , PX 7→ I(PX , PY |X) is concave.

� For fixed PX , PY |X 7→ I(PX , PY |X) is convex.

The upper bound, or the maximization part, is the following task: given PY |X , we want to find
maxPX∈P I(X;Y ) where P is a convex set.

Example 11.4 (GLM, upper bound). Again let Y = X + Z, where Z ∼ N (0, Ip) and X ⊥⊥ Z.
However, in this case we do not know the prior distribution of X. Rather, we consider a convex
set of priors P = {PX : E‖X‖22 ≤ p · s}, the signals with constrained average per-dimension power.
Then, by the well-known formula for Gaussian channel capacity cf. [PW15, p.33]

max
PX∈P

I(X;X + Z) =
p

2
log(1 + s).

The lower bound, or the minimization part, is: given PX , we want to find minPY |X∈P I(X;Y ).

Example 11.5 (GLM, lower bound). We are only assuming that X ∼ N (0, s · Ip). In the case of
the squared distortion, it is known that [PW15, p.33]

min
PY |X :‖Y−X‖2≤p·ε

I(X;Y ) =

{
p
2 log

(
s
ε

)
ε < s

0 otherwise.

For non-Gaussian cases, it is in general difficult to find the bounds exactly, and in the following
lectures we would discuss the further bounding on both bounds. But before that, we provide several
more examples.

Example 11.6 (Bernoulli, lower bound). Let X ∼ Bern(δ)⊗p. Then for ε < δ < 1
2 ,

min
PY |X :EdH(X,Y )≤p·ε

I(X;Y ) = p [h(δ)− h(ε)] .

Example 11.7 (p-dim, n-sample GLM, quadratic loss, combining bounds). Let θ ∼ N (0, S · Ip),
and θ → X → θ̂ hold. Following the usual assumptions, we have PX|θ ∼ N (θ, 1

nIp). Then, from the
upper bound we know

I(θ, θ̂) ≤ I(θ;X) =
p

2
log(1 + S · n).

From the lower bound, we have:

I(θ, θ̂) ≥ min
Pθ̂|θ:‖θ̂−θ‖22≤R∗π

I(θ; θ̂) =
p

2
log

S

R∗π/p
.

Combining the preceeding two displays we get

R∗π ≥
S · p

1 + S · n

which becomes R∗ ≥ p
n as S →∞ and, surprisingly, recovers the exact minimax risk in Theorem 9.1

without loss of any constant factor.,

Note: Statistical estimation task could be represented as a Markov chain θ → X → θ̂ where PX|θ
is given by the model and Pθ̂|X is the estimator we design. In comparison, in data transmission

we have the Markov chain θ → X → Y → θ̂ where PY |X is fixed by the channel and we design the
“encoder” PX|θ and decoder Pθ̂|Y .

74



11.4 Coming next

Starting from the next lecture, we discuss various methods to further upper and lower bound I(θ; θ̂).
In specific:

� Fano’s method is again about reducing the estimation into testing, thereby forming the Markov
chain θ → X → θ̂ → θ̂test, and investigating the value min I(θ; θ̂test).

� Mutual information would be view as an information radius, and we would use the fact that
radius is upper bounded by diameter, which would be more easily characterized.
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§ 12. Mutual Information Method: Continued

12.1 Recap: Mutual Information Method

We have several equivalent definitions of mutual information from last class, capturing a measure of
how far X and Y are from independence, or how much information about Y is provided by X:

I(X;Y ) = D(PXY ‖PXPY )

= D(PY |X‖PY |PX) = Ex∼PX [D(PY |X=x‖PY )]

= inf
Q:X⊥⊥Y under Q

D(PXY ‖QXY )

Given the normal model θ → X → θ̂, where θ generates the data X which generates an estimate
θ̂, we can use the mutual information method to bound I(θ; θ̂). In particular, as we saw last time,
the following chain of inequalities always holds:

min
Pθ̂|θ:E`(θ,θ̂)≤R∗π

I(θ; θ̂) ≤ I(θ; θ̂) ≤ I(θ;X) ≤ max
Pθ∈M(θ)

I(θ;X)

We like to think of the left-most lower bound as the “cost” of an estimation task, which
depends only on the prior and the loss function, but not on how the data is collected. We think of
maxPθ∈M(θ) I(θ;X) as the “capacity” of the model, which depends only on the model itself. Last
lecture, we were able to compute the cost and capacity exactly for the Gaussian Location Model. In
general, we may not be able to exactly compute the cost and capacity, so we will focus on methods
for bounding them in this lecture.

12.2 Tensorization of Mutual Information

First, we would like to develop tools for bounding the mutual information of not just random
variables, but random vectors as well. The chain rule for mutual information gives us an intuitive
way to express the mutual information of a random vector as a sum of the mutual information of
one-dimensional random variables:

Theorem 12.1 (Mutual Information Chain Rule). Let the random vector X = (X1, . . . , Xk) be
jointly distributed with Y . Then:

I(X;Y ) = I(X1, X2, . . . , Xk;Y )

= I(X1;Y ) + I(X2;Y |X1) + . . .+ I(Xk;Y |Xk−1)

The proof of the chain rule follows from telescoping logs. For more information, see section 2.5
of [CT06]. In general, we cannot remove the conditioning and bound I(X;Y ) from above or below
by
∑

i I(Xi;Y ). However, in some situations it is possible.
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Example 12.1 (Tensorization in extremization problem). Suppose X = (X1, . . . , Xk) and Y =
(Y1, . . . , Yk) are random vectors, and each coordinate of Y depends only on the corresponding
coordinate of X:

X1 → Y1

X2 → Y2

...

Xk → Yk

Then the conditional distribution of Y given X factors:

PY |X =
k∏
i=1

PYi|Xi

So long as the channels are decoupled like this, we have:

I(X;Y ) ≤
k∑
i=1

I(Xi, Yi)

with equality if the Xi are independent from each other. Therefore, in particular:

max
PX

I(X;Y ) =
k∑
i=1

max
PXi

I(Xi, Yi)

We can also consider a minimization problem for I(X;Y ). For example, if the coordinates of X are
independent, i.e.:

PX =

k∏
i=1

PXi

then we get can a lower bound on the mutual information:

I(X;Y ) ≥
k∑
i=1

I(Xi, Yi)

Equality holds when the coordinates of Y depend only on the corresponding coordinates of X, so
minPY |X I(X;Y ) is achieved at the product of minimizers:

min
PY |X

I(X;Y ) =

k∑
i=1

min
PYi|Xi

I(Xi;Yi)

In GLM, we could get nice bounds through the product structure. Otherwise, if there is no product
structure, we would need to use the chain rule, which can be more difficult.
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12.3 Capacity as Information Radius

To start, let us consider another way of thinking about mutual information.

Theorem 12.2 (Another Representation of Mutual Information).

I(X;Y ) = min
Q

D(PY |X‖Q|PX)

Proof. For any Q we have:

I(X;Y ) = D(PY |X‖PY |PX)

= E log
PY |X

Q

Q

PY

= D(PY |X‖Q|PX)−D(PY ‖Q)

We get the desired result by noting that D(PY ‖Q) ≥ 0 and optimizing over Q. In particular,
we can bound the mutual information using a convenient choice of Q, as we will see in the next
example:

Example 12.2 (GLM). Suppose X ∼ Pθ = N (θ, 1). Then, choosing the best possible Gaussian Q
and applying the above bound, we have:

I(θ,X) ≤ EθD(Pθ‖Q)

= inf
µ∈R,s≥0

D(N (θ, 1)‖N (µ, S))

=
1

2
log(1 + Var(X))

where the solution to the minimization problem comes from the well-known formula for Gaussian
channel capacity [PW15, p. 28].

Geometric Interpretation

The above representation of mutual information has a nice geometric picture, as follows: Let X be
some space, let ` : X × X → R be a loss function, and let A be a subset of X .

Definition 12.1 (Radius of a Set). The radius of A is the smallest ball that covers A. Note that
we do not require the center y of the ball to be contained in A:

rad(A) , inf
y∈X

sup
x∈A

`(x, y)

Definition 12.2 (Diameter of a Set). The diameter of A is the largest loss between two points in
A:

diam(A) , sup
x,y∈A

`(x, y)

Remark 12.1. Note that rad(A) ≤ diam(A). If ` satisfies the triangle inequality, then we further
have rad(A) ≥ 1

2diam(A).

Nothing above required ` to be a valid metric. In fact, we will be examining the following case
where ` is not symmetric and does not satisfy the triangle inequality:
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� A = {Pθ : θ ∈ Θ} , P

� `(P,Q) = D(P‖Q)

� rad(P) = infQ supP∈P D(P‖Q)

� diam(P) = supP,Q∈P D(P‖Q)

By bounding the radius of P, we can now upper bound the capacity of P.

Theorem 12.3 (Capacity Bounded by Radius). Suppose we have the model θ → X, where P = {Pθ}
is defined as above. Let C(P) be the capacity of P. Then:

C(P ) ≤ rad(P) ≤ diam(P)

Proof. Using Theorem 12.2, we have:

C(P) = sup
Pθ∈M(θ)

I(θ;X)

= sup
Pθ∈M(θ)

inf
Q
D(PX|θ‖Q|Pθ)

≤ inf
Q

sup
Pθ∈M(θ)

D(PX|θ‖Q|Pθ)

= inf
Q

sup
θ∈Θ

D(Pθ‖Q)

= rad(P)

≤ diam(P) = sup
θ,θ′∈Θ

D(Pθ‖Pθ′)

Note: In fact, if P is convex, then we have equality in the third step, which would give us
C(P) = rad(P). This is a result of Kemperman (cf. [PW15, Theorem 4.5]).

Example 12.3 (GLM, bounded mean). Let P = {Pθ} = {N (θ, n−1) : |θ| ≤ δ}. We can bound the
radius of Pθ, taking Q ∼ N (0, n−1):

rad(P) = inf
Q

sup
|θ|≤δ

D
(
N (θ, n−1)‖Q

)
≤ sup
|θ|≤δ

D
(
N (θ, n−1)‖N (0, n−1)

)
= sup
|θ|≤δ

n

2
θ2

=
nδ2

2

We have used the fact that the KL divergence between two normal distributions with mean u
and v and identical variance σ2 is 1

2σ2 |u− v|2. We can also compute the diameter quite easily:

diam(P) = sup
θ,θ′∈[±δ]

D(N (θ, n−1)‖N (θ′, n−1))

=
n

2
sup

θ,θ′∈[±δ]
|θ − θ′|2

= 2nδ2

Note that in this case, using the diameter instead of the radius only loses a factor of 4.
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Now, we can proceed to the more general bounded GLM:

Theorem 12.4 (Bounded GLM). Let X ∼ Pθ = N (θ, 1
nIp). Let `(θ, θ′) = ‖θ − θ′‖22 (quadratic

loss), and let Θ = B2(0, ρ) ⊂ Rp. Then:

R∗ � p

n
∧ ρ2

Remark 12.2. The interpretation is that if ρ2 is small and either we do not have enough samples
or dimension is very high so that p

n is smaller than ρ2, then we should discard all the your data
and declare zero as the estimate, because data do not provide better resolution than the prior
information.

Proof. (Upper bound) We are already done here. Using X as an estimator, we have from previous
lectures that (up to constant factors for these bounds):

R∗ ≤ p

n

Using 0 as an estimator, we just showed:

R∗ ≤ ρ2

Therefore R∗ ≤ p
n ∧ ρ

2.
(Lower bound) First, to make things simpler, we will consider the case where p = 1. Before,

when obtaining a lower bound on minimax risk, we used a Gaussian prior. However, we cannot use
such a prior in this case because the Gaussian distribution is not supported on a ball of radius ρ.
Instead, we will choose a uniform prior π ∼ Uniform(−r, r), with r < ρ. As before, we have:

min
Pθ̂|θ:E`(θ,θ̂)≤D

I(θ; θ̂) ≤ I(θ; θ̂) ≤ I(θ;X) ≤ rad({N (θ,
1

n
) : |θ| ≤ r})

We already have that the radius above is bounded by nr2

2 . However, the cost C = minPθ̂|θ:E`(θ,θ̂)≤D I(θ; θ̂)

is much harder to calculate. We will therefore use a trick called the Shannon lower bound to bound
C. The Shannon lower bound says that the cost given a non-Gaussian prior is not too far away from
the cost given a Gaussian prior, provided that the prior is fairly Gaussian-like:

C ≥ C |θ∼Gaussian −D(unif(−r, r)‖N (0, r2/3))

Note: The quantity r2

3 above is the variance of the uniform distribution.

We have (from last lecture) that the cost given a Gaussian prior is 1
2 log r2/3

D . Furthermore,

we have that D(unif(−r, r)‖N (0, r
2

3 )) = D(unif(−1, 1)‖N (0, 1
3)) = c1 is a constant that does not

depend on r. Therefore, for some other constant c:

C ≥ 1

2
log

r2/3

D
− c1

=
1

2
log

r2c

D
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To complete the lower bound, remember that 1
2 log r2c2

D ≤ C ≤ nr2

2 , so:

R∗ ≥ R∗π ≥ cr2 exp(−nr2),∀r ∈ [0, ρ]

≥ sup
r∈[0,ρ]

cr2 exp(−nr2)

� 1

n
∧ ρ2

To justify the last step, do a change of variables x = nr2, so the expression becomes 1
n sup0≤x≤nρ2 x exp(−x).

If we examine the function x exp(−x), we see that it achieves a global maximum of 1
e at x = 1.

Therefore, if x < 1 we should choose x exp(−x), and if x ≥ 1 we should choose 1
e . This gives us:

1

n
sup

0≤x≤nρ2

x exp(−x) =
1

n
(nρ2e−nρ

2 ∧ 1

e
)

Recap: In order to get the upper bound on the minimax risk, we used the radius, which can be
thought of as the maximum distance between a central estimate and any other point in the space of
distributions. The lower bound on the minimax risk came from the Shannon lower bound, which is
based on how different the selected prior distribution is from a Gaussian distribution.

To extend the lower bound to an arbitrary dimension p, start with a uniform prior over a ball of
radius r, calculate its variance, and use the Shannon lower bound again.
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§ 13. Shannon lower bound, Fano’s method

In the last class, we learned minimax risk bounding technique by data processing inequality of
mutual information such that for θ −X − θ̂,

inf
Pθ̂|θ:E[`(θ,θ̂)]≤R∗π

I(θ; θ̂) ≤ I(θ; θ̂) ≤ I(θ;X) ≤ capacity = sup
Pθ

I(θ;X). (13.1)

Because the exact characterization of the LHS is intractable in most cases, we need an appropriate
technique that further lower bounds the LHS, which is called the Shannon lower bound. Another
technique to get a minimax lower bound, called Fano’s method, will be discussed as well.

13.1 Shannon lower bound

13.1.1 Shannon lower bound

Suppose that the loss function is rth power of an arbitrary norm over Rp, i.e., `(θ, θ̂) = ‖θ − θ̂‖r,
and let R∗π = D. Then, the LHS can be written as

inf
Pθ̂|θ:E[`(θ,θ̂)]≤D

I(θ; θ̂) = inf
Pθ̂|θ:E[‖θ−θ̂‖r≤D

I(θ; θ̂)

= inf
Pθ̂|θ:E[‖θ−θ̂‖r≤D

h(θ)− h(θ|θ̂)

= inf
Pθ̂|θ:E[‖θ−θ̂‖r≤D

h(θ)− h(θ − θ̂|θ̂)

≥ inf
Pθ̂|θ:E[‖θ−θ̂‖r≤D

h(θ)− h(θ − θ̂)

= h(θ)− sup
E‖W‖r≤D

h(W ) , SLB.

where W , θ − θ̂ and the very last quantity is called the Shannon lower bound. To evaluate the
supremum term, any convex optimization technique such as Lagrange multiplier can be applied.

A special case of the lower bound for Euclidean norm is given by

SLB = h(θ)− sup
E‖W‖22≤D

h(W ) = h(θ)− h
(
N
(

0,
D

p
Ip

))
= h(θ)− p

2
log

(
2πe

D

p

)
,

where we used the fact that Gaussian maximizes differential entropy when the second moment is
bounded.

Theorem 13.1 (Shannon’s Lower Bound). Let ‖ · ‖ be an arbitrary norm on Rp and r > 0. Then

inf
Pθ̂|θ:E‖θ−θ̂‖r≤D

I(θ; θ̂) ≥ h(θ)− log

{
Vp ·

(
Dre

p

) p
r

· Γ
(

1 +
p

r

)}
,
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where Vp is the volume of the unit radius ball, i.e.,

Vp , vol(B‖·‖) = vol({x ∈ Rp : ‖x‖ ≤ 1}).

The proof will be given in homework.
Note: The Shannon lower bound is asymptotically tight as D → 0.

Example 13.1 (GLM). Consider the p-dimensional n-sample GLM, i.e., (X1, · · · , Xn)
iid∼ N (θ, Ip)

or equivalently X̄ ∼ N
(
θ, 1

nIp
)
. Then the minimax risk with respect to ‖ · ‖r is

R∗ &
1

(cn)r/2
V −r/pp .

Proof. Take a prior θ ∼ π = N (0, sIp). Then the inequality chain (13.1) is rewritten as

p

2
log(1 + ns) ≥ I(θ,X) ≥ I(θ; θ̂) ≥ inf

Pθ̂|θ:E[`(θ,θ̂)]≤R∗π
I(θ; θ̂)

≥ SLB =
p

2
log(2πes)− log

{
Vp ·

(
R∗πre

p

) p
r

· Γ
(

1 +
p

r

)}
.

Then, rearranging terms, taking limit s→∞, and using the Stirling’s formula we get

R∗π &
1

(cn)r/2
V −r/pp ⇒ R∗ &

1

(cn)r/2
V −r/pp . (13.2)

Note that for r = 2,

R∗ &
1

n
V −2/p
p ,

while the exact bound (see Sec. 3.2) is R∗ = E‖Z‖2
n = p

n . In the next example, we will see volumes
for `q norm.

Example 13.2 (`q-norm). Consider `q-norm, i.e., for 1 ≤ q ≤ ∞

‖x‖q =

(
p∑
i=1

|xi|q
)1/q

.

See the volume for several q’s.

� (q = 2) (Cont’d from the previous) Note that R∗ = p
n for the quadratic loss ‖ · ‖22. The

n-dimensional volume of a unit Euclidean ball B2 is given by

Vp(B2)1/p =
π1/2(

Γ
(
1 + p

2

))1/p � 1
√
p
,

which follows from the Stirling’s approximation,(
Γ
(

1 +
p

2

))1/p
�
(( p

2e

)p/2 (p
2

)1/2
)1/p

�
( p

2e

)1/2 (p
2

)1/2p
� √p.

Plugging in (13.2) with r = 2,

R∗ &
1

n
V −1/2
p =

p

n
.

Hence in this case the SLB is tight.

83



� (1 ≤ q <∞) Consider `q norm, where 1 ≤ q <∞, the volume of a unit `q ball is given by

Vp(Bq) =

[
2Γ
(

1 + 1
q

)]p
Γ
(

1 + p
q

) .

So using (13.2) and the Stirling’s formula, the minimax bound for a loss function ‖ · ‖2q is given
by

R∗ &
p2/q

n
.

Another way to get the same bound is that

R∗ &
1

n
E‖Z‖2q �

p2/q

n
.

Here the property that if Z ∼ N (0, Ip), ‖Z‖qq = ΘP (p) is used.

� (q =∞) Recall a unit hypercube in Rp. Then, Vp(B∞) = 2p, hence, R∗ & 1
n by the SLB. On

the other hand, we know the exact risk,

R∗ =
1

n
E‖Z‖2∞ �

log p

n
.

So in this case the SLB is not tight. Here, the equality follows from the fact that if Z ∼ N (0, Ip),
‖Z‖∞ = ΘP (

√
log p).

Note: In the case that we have restriction on θ such that θ ∈ Θ ⊂ Rp, where Θ is a convex set
with non-empty interior, the only thing to be changed is the SLB part. Upper bound by capacity
remains unchanged. As an example of uniform prior over some Θ ⊂ Rp,

capacity ≥ SLB = h(θ)− log[· · ·R∗π · · · ] = log vol(Θ)− log[· · ·R∗π · · · ].

We get the bound of minimax risk connecting this SLB with capacity formula.
Also note that the exact characterization of R∗(Θ) is open even for a convex set Θ.

13.1.2 Gaussian width of a convex body K

Suppose Z ∼ N(0, Ip) and a set K is convex and symmetric. Define the Gaussian width of K

w(K) , E
[

sup
x∈K
〈x, Z〉

]
.

Lemma 13.1 (Urysohn).

vol(K)1/p .
w(K)

p
.

Urysohn’s lemma helps us characterize the bound of minimax risk. In our case, K = B‖·‖, then

w(K) = E
[

sup
x∈K
〈x, Z〉

]
= E

[
sup
‖x‖≤1

〈x, Z〉

]
= E‖Z‖∗,

which is in fact the expected dual norm of Z. From the lemma, we have V
1/p
p . E‖Z‖∗

p . Therefore,

R∗ &
1

n
V −2/p
p &

1

n

(
p

E‖Z‖∗

)2

.
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Figure 13.1: Discretization

13.2 Fano’s method

Recall the inequality chain,

inf
Pθ̂|θ:E‖θ̂−θ‖≤R∗π

I(θ; θ̂) ≤ I(θ; θ̂) ≤ I(θ;X) ≤ capacity.

In this section, we discuss Fano’s method that reduces the LHS to multiple hypothesis testing
problem, which is easier to compute.

The steps are followings:

1. (Discretize) Instead of Θ, consider a discrete subset Θ̃ = {θ1, · · · , θn} ⊂ Θ. Points are picked
to satisfy ‖θi − θj‖ ≥ ε for all i 6= j. Figure 13.1 visualizes this discretization.

2. (Reduce to multiple hypothesis testing) Assume uniform prior such that θ ∼ π = unif({θ1, · · · , θn})
and let f be a quantizer that maps θ ∈ Θ to θi ∈ Θ̃, the closest point to θ. Note that f(θ) = θ
because θ is drawn over Θ̃. So by data processing inequality for θ −X − θ̂ − f(θ̂),

I(θ; θ̂) ≥ I(θ; f(θ̂)).

Note that I(θ; f(θ̂)) is a function of joint probability mass over discrete space Θ̃× Θ̃.

Let’s see the error events {θ 6= f(θ̂)}. Let say the true source is θ = θk. If error happens, it
implies our estimate θ̂ closer to θj = f(θ̂) than θk for some j. In other words, if error happens,

‖θ̂ − f(θ̂)‖ ≤ ‖θ̂ − θk‖.

So due to triangular inequality, the error event implies

ε ≤ ‖f(θ̂)− θk‖ = ‖f(θ̂)− θ̂ + θ̂ − θk‖ ≤ ‖f(θ̂)− θ̂‖+ ‖θ̂ − θk‖
≤ 2‖θ̂ − θk‖,

⇒ ε

2
≤ ‖θ̂ − θk‖.

Hence,

Pe , Pr(θk 6= f(θ̂)) ≤ Pr
(
‖θ̂ − θk‖ ≥

ε

2

)
≤ E‖θ̂ − θk‖

ε/2
≤ R∗π
ε/2

=
2R∗π
ε

⇒ inf
Pθ̂|θ:E‖θ̂−θ‖≤R∗π

I(θ; θ̂) ≥ inf
Pe≤ 2R∗π

ε

I(θ; θ̂) ≥ inf
Pe≤ 2R∗π

ε

I(θ; f(θ̂)).
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Figure 13.2: Data processing kernel for Fano’s inequality

So, we reduce the LHS to a multiple hypothesis test problem where θ, f(θ̂) are both discrete.

3. (Apply Fano’s inequality) Recall the data processing inequality for KL divergence by Figure
13.2. Here our processor is 1{θ 6= θ̂}, and we can further lower bound as

I(θ; f(θ̂)) = D
(
Pθ,f(θ̂)‖PθPf(θ̂)

)
≥ D

(
Bern(Pe)‖Bern

(
1− 1

n

))
= Pe log

Pe

1− 1
n

+ (1− Pe) log
1− Pe

1
n

= −h(Pe) + log n− Pe log(n− 1)

≥ − log 2 + log n− Pe log n,

⇒ Pe ≥ 1− I(θ; f(θ̂)) + log 2

log n
,

where h(·) is a binary entropy function. So finally we reach the bound

2R∗

ε
≥ 2R∗π

ε
≥ Pe ≥ 1− I(θ; f(θ̂)) + log 2

log n

⇒ R∗ ≥ ε

2

(
1− I(θ; f(θ̂)) + log 2

log n

)
.

Note: The situation of the Fano’s inequality in class is that

1. θ uniformly takes M values.

2. Markov chain θ −X − θ̂ holds.

Then, the Fano’s inequality says that

I(θ;X) ≥ − log 2 + logM − Pe log(M − 1)

≥ − log 2 + (1− Pe) logM,

⇒ Pe ≥ 1− I(θ;X) + log 2

logM
.

The Fano’s inequality intuitively means that when the mutual information is fixed, Pe cannot
be less than a certain value. On the other hand, when Pe is fixed, the mutual information must be
greater than a certain value.
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Note: We can also use the Fano inequality as following:

I(θ;X) ≥ min
Pe≤ 2R∗π

ε

I(θ;X),

and similarly as above,

2R∗

ε
≥ 2R∗π

ε
≥ Pe ≥ 1− I(θ;X) + log 2

log n

⇒ R∗ ≥ ε

2

(
1− I(θ;X) + log 2

logM

)
.

Note: If the loss function is ‖ · ‖2,

min
Pe≤ 2R∗π

ε

I(θ;X) ⇒ R∗ ≥
( ε

2

)2
(

1− I(θ;X) + log 2

logM

)
.
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§ 14. Packing, covering, and consequences on minimax risk

Last lecture, we lower bounded min‖θ−θ̂‖ I(θ; θ̂) using Shannon lower bound, and we saw that for
the p dimensional n sample GLM,

R∗(Rp) &
1

nvol
2
p (B‖·‖)

with respect to a loss `(θ, θ̂) = ‖θ − θ̂‖2 and an arbitrary norm ‖ · ‖.
To understand why some sort of volume shows up, we further extend the lower bound obtained

using Fano’s method. We first introduce the concept of packing, covering, relate them to the
notion of volume, and then plug them into the lower bound obtained using the Fano’s inequality.
When applied to GLM, this alternative method gives the same dependence on the dimension and
the sample size for `q norms with q <∞.

14.1 Covering and Packing

Let (V, ‖ · ‖) be a normed space and Θ ⊂ V .

Definition 14.1 (ε-covering). We say {V1, ..., VN} is an ε-covering of Θ if Θ ⊂ ∪Ni=1B(Vi, ε), or
equivalently, ∀θ ∈ Θ, ∃i such that ‖θ − Vi‖ ≤ ε.

Definition 14.2 (ε-packing). We say {θ1, ..., θM} ⊂ Θ is an ε-packing of Θ if mini 6=j ‖θi− θj‖ > ε,1

or equivalently, the balls {B(θi, ε/2) : j ∈ [M ]} are disjoint.

Upon defining ε-covering and ε-packing, one naturally asks what is the minimal number of ε-balls
one needs in order to cover Θ, and what is the maximal number of ε/2-balls one can pack in Θ.
Those numbers are defined as covering and packing numbers, which, similar to volume and width,
measures the “massiveness” of a set.

Definition 14.3 (Covering number). N(Θ, ‖ · ‖, ε) , min{n : ∃ε-covering over Θ of size n}.

Definition 14.4 (Packing number). M(Θ, ‖ · ‖, ε) , max{m : ∃ε-packing of Θ of size m}.

Remark 14.1. Some basic remarks.

� M(Θ, ‖ · ‖, ε) and N(Θ, ‖ · ‖, ε) are often abbreviated as M(ε), N(ε).

� For ε-covering, the balls need not be disjoint.

� N(Θ, ‖ · ‖, ε) is a decreasing function of ε when the norm and Θ are fixed. That is, if ε0 < ε1,
and {V1, ..., VN} is an ε-covering of Θ, then Θ ⊂ ∪Ni=1B(Vi, ε0) ⊂ ∪Ni=1B(Vi, ε1).

1Notice we imposed strict inequality for convenience.
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� Metric entropy: logM(ε) and logN(ε).

� N(ε) <∞ ∀ε > 0⇔ Θ is totally bounded (In topology, a metric space is said to be totally
bounded if for every ε > 0 there is a finite covering of the space by ε-balls). For example, a
metric space is compact iff it is complete and totally bounded. Hence a compact metric space
is totally bounded.

Remark 14.2. Note that in Definition 14.1 we do not require the ε-covering to be a subset of Θ. It
turns out imposing this restriction does not change the behavior of the covering number that much.
Similar to Definition 14.3, denote by N ′(Θ, ‖ · ‖, ε) the smallest ε-covering of Θ that is included in
Θ. Then we have

N(Θ, ‖ · ‖, ε) ≤ N ′(Θ, ‖ · ‖, ε) ≤ N(Θ, ‖ · ‖, ε/2) (14.1)

The left inequality is obvious. To see the right inequality,2 let {θ1, . . . , θN} be an ε
2 -covering of Θ.

For each i, let θ′i = arg minu∈Θ ‖θi − u‖. Then {θ′1, . . . , θ′N} ⊂ Θ constitutes an ε-covering. Indeed,
for any θ ∈ Θ, we have ‖θ−θi‖ ≤ ε/2 for some θi. Then ‖θ−θ′i‖ ≤ ‖θ−θi‖+‖θi−θ′i‖ ≤ 2‖θ−θi‖ ≤ ε.

The relation between the packing number and the covering number is described in the following
theorem.

Theorem 14.1 (Kolomogrov-Tikhomirov).

M(Θ, ‖ · ‖, 2ε)≤N(Θ, ‖ · ‖, ε)≤M(Θ, ‖ · ‖, ε). (14.2)

Proof. First prove the right inequality. Suppose E = {θ1, ..., θM} is a maximal packing. Then
∀θ ∈ Θ\E, ∃i such that ‖θ − θi‖ ≤ ε (if this does not hold for θ then we can construct a bigger
packing with θM+1 = θ). Hence E is automatically an ε-covering (which is also a subset of Θ). Since
N(Θ, ‖ · ‖, ε) is the minimal size of all possible coverings, we have M(Θ, ‖ · ‖, ε) ≥ N(Θ, ‖ · ‖, ε).

We next prove the left inequality by contradiction. Suppose there exists a 2ε-packing {θ1, ..., θM}
and an ε-covering {x1, ..., xN} such that M ≥ N + 1. Then by the pigeonhole principle, there exist
distinct θi and θj belonging to the same ε-ball B(xk, ε). This means that the distance between θi and
θj cannot be more than the diameter of the ball, i.e., ‖θi − θj‖ ≤ 2ε, which leads to a contradiction
since ‖θi − θj‖ > 2ε for a 2ε-packing. Hence the size of any 2ε-packing is less or equal to the size of
any ε-covering. Hence M(Θ, ‖ · ‖, 2ε), the maximal size of a 2ε-packing is at most N(Θ, ‖ · ‖, ε), the
minimal size of an ε-covering.

When V is the d-dimensional Euclidean space, we can extend the previous theorem by further
lower/upper bounding the covering/packing numbers. The result is given as follows.

Theorem 14.2. Let Θ ⊂ V = Rd and let ‖ · ‖ be an arbitrary norm. Then(
1

ε

)d vol(Θ)

vol(B)

(a)

≤ N(Θ, ‖ · ‖, ε) ≤M(Θ, ‖ · ‖, ε)
(b)

≤
vol(Θ + ε

2B)

vol( ε2B)

(c)

≤
Θ convex
εB⊂Θ

vol(3
2Θ)

vol( ε2B)
=

(
3

ε

)d vol(Θ)

vol(B)
.

where B denotes the unit norm ball and + denotes the Minkowski sum, i.e., A+B = {a+ b : a ∈
A, b ∈ B}.

2Another way to see this is from Theorem 14.1: note that (b) in (14.2) yields a ε-covering that is included in Θ.
Together with (a), we get N ′(ε) ≤M(ε) ≤ N(ε/2).
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Proof. First prove (a). For a covering of minimal size, Θ ⊂ ∪ni=1B(Xi, ε). Hence

vol(Θ) ≤ vol(∪N(ε)
i=1 B(Xi, ε)) ≤

N(ε)∑
i=1

vol(B(Xi, ε)).

Since vol(B(Xi, ε)) = εdvol(B), we have vol(Θ) ≤ N(ε)εdvol(B). Hence (a) is proved.

Next we prove (b). For an ε-packing, the balls B(θi, ε/2) are disjoint, and ∪M(ε)
i=1 B(θi, ε/2) ⊂

Θ + ε
2B. Taking the volume on both sides, we have

vol(Θ +
ε

2
B) ≥ vol(∪M(ε)

i=1 B(θi, ε/2)) = M(ε)vol(
ε

2
B).

This proves (b).
To prove (c), we prove two statements. (1) When εB ⊂ Θ, Θ + ε

2B ⊂ Θ + 1
2Θ, and (2) when Θ

is convex, Θ + 1
2Θ = 3

2Θ.
To prove (1), notice for any z ∈ Θ + ε

2B, we have z = x+ y where x ∈ ε
2B and y ∈ Θ. Since

x ∈ ε
2B ⇒ x ∈ Θ, we immediately have z ∈ Θ + 1

2Θ.
To prove (2), first notice that ∀θ ∈ 3

2Θ, θ = 1
3θ+ 2

3θ. Since 1
3θ ∈

1
2Θ, and 2

3θ ∈ Θ, 3
2Θ ⊆ Θ + 1

2Θ.
On the other hand, for any x ∈ Θ + 1

2Θ, we have x = y + 1
2z with y, z ∈ Θ. When Θ is convex,

2
3x = 2

3y + 1
3z ∈ Θ. Hence x ∈ 3

2Θ, implying Θ + 1
2Θ ⊆ 3

2Θ.
With (1) and (2), (c) follows immediately.

Remark 14.3. Why is Theorem 14.1 cool?

� (a) is a converse, saying that the minimal covering size cannot be too small. When combined
with N(ε) ≤ M(ε), this turns into an existential statement: It is possible to construct a
packing of size at least vol(Θ)/vol(B(ε)). From the proof we see that this corresponds to a
greedy construction. Furthermore, for Hamming space and Hamming distance, this is exactly
the Gilbert-Varshanov bound.

� (b) is a converse, saying that the maximal packing size cannot be too large. When combined
with N(ε) ≤M(ε), this turns into an existence statement: there exists a small covering.

Example 14.1 (Metric entropy of norm balls). Let ‖ · ‖ be an arbitrary norm on Rd and let
B = B‖·‖ = {x ∈ Rd : ‖x‖ ≤ 1} be the corresponding unit norm ball. Consider the covering number
of B‖·‖ with respect to the same norm, namely, N(ε) = N(B‖·‖, ‖ · ‖, ε). When ε ≥ 1, N(ε) = 1.
When ε < 1, applying Theorem 14.2 we have(

1

ε

)d
=

vol(Θ)

vol(B2)
≤ N(ε) ≤M(ε) ≤

vol((1 + ε
2)B)

vol( ε2B)
=

(
1 +

2

ε

)d
≤
(

3

ε

)d
.

Hence d log 1
ε ≤ logN(ε) ≤ d log 3

ε . This relationship holds for all norms as long as the covering is
done with respect to the same norm.

If we fix the dimension d and let ε→ 0, then because all norms on Euclidean space are equivalent
(with constant factors of each other where the constants depend on dimension), whenever Θ has
non-empty interior, logN(Θ, ‖ · ‖, ε) = (d + o(1)) log 1

ε . In particular, for a different norm ‖ · ‖′,
N(B‖·‖, ‖ · ‖′, ε) is still approximately d log 1

ε when ε is sufficiently small. But how small is small
enough depends on the dimension d and there are some interesting high-dimensional phenomena
when the covering number is not determined by volumetric methods. See Lecture 15 for details.
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14.2 Applying metric entropy & Fano’s inequality to minimax
risk

We now apply metric entropy and Fano’s inequality to lower bound the minimax risk. The key idea
is to reduce estimation over Θ to testing between a packing E = {θ1, ..., θM} within T ⊂ Θ. Then
R∗(Θ) ≥ R∗(T ) ≥ R∗π where π is equi-probable over E.

Let E = {θ1, ..., θM} be an ε-packing on T ⊂ Θ. Let θ̃ be the quantized version of θ̂ restricted
to E. Then we have the Markov chain θ → X → θ̂ → θ̃. Consider the quadratic loss function
`(θ, θ̂) = ‖θ − θ̂‖2. Recall that

radKL(T ) = inf
Q

sup
θ∈T

D(Pθ‖Q),

and
diamKL(T ) = sup

θ,θ′∈T
D(Pθ′‖Pθ).

We immediately have

E
[
‖θ − θ̂‖2

] Markov
≥

( ε
2

)2
P
[
‖θ − θ̂‖ ≥ ε

2

]
≥
( ε

2

)2
P
[
θ 6= θ̃

]
Fano
≥

( ε
2

)(
1− I(θ;X) + log 2

logM(ε)

)
≥ ε2

4

(
1− radKL(T ) + log 2

logM(ε)

)

≥ sup
T⊂Θ,ε>0

ε2

4

1− diamKL(T ) + log 2

log vol(T )
vol(εB)

 , (14.3)

where in the last step, the inequality holds true for all choices of T and ε, and the supremum is
placed to obtain a better bound.

For GLM, we can use the above method (Fano+packing) to obtain the same result (up to
constant factor) by Shannon Lower Bound.

Example 14.2 (p-dimensional n-sample GLM). Let Θ = Rp, and T = B2(s). Then diamKL(T ) =
supθ,θ′∈T D(Pθ‖Pθ′) = supθ,θ′∈T D(N(θ, Ip)

⊗n‖N(θ′, Ip)
⊗n) = supθ,θ′

n
2 ‖θ − θ

′‖2 = n
2 diam2(T ) =

n
2 s

2. By (14.3), we have

R∗ ≥ ε2

4

1− diamKL(T ) + log 2

log vol(T )
vol(εB)

 =
ε2

4

1−
n
2 s

2 + log 2

log spvol(B2)
εpvol(B‖·‖)

 .

We now choose ε and s. Denote vol(B‖·‖) = V , and recall that vol1/p(B2) � 1√
p , i.e., c1

1√
p <

vol1/p(B2) < c2
1√
p . If we choose

s = c3

√
p

n
, ε = c4

1
√
nV 1/p

,

then

R∗ ≥ c2
4

4nV 2/p

(
1−

c23p
2 + log 2

p log c1c3
c4

)
≥ c2

4

4nV 2/p

(
1−

c23
2 + log 2

log c1c3
c4

)
.
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As long as we choose c1, c2, c3, c4 such that (
c23
2 + log 2)/ log c1c3

c4
< c < 1, we have

R∗ ≥ c2
4(1− c)
4nV 2/p

&
1

nV 2/p
. (14.4)

Remark 14.4. When the specified norm is ‖ · ‖∞, the norm ball becomes a cube, and the volume
is (for fixed values of p)

V = 2p.

Hence R∗ & 1
n ; however, we know R∗ � log p

n and we lose the dependence on the dimension p.
So what should be blamed? It turns out our mutual information method and, in fact, its further

relaxation via packing plus Fano’s inequality are both tight in this case. What is loose is the volume
ratio bound on packing number in Theorem 14.2. In the next lecture, we will prove

logN(B, ‖ · ‖, ε) �

{
p log 1

ε
√
p , ε . 1√

p
1
ε2

log(pε2), ε & 1√
p

.

This will lead to the tight result R∗ � log p
n .

92



§ 15. Sudakov, Maurey, and duality of metric entropy

In this lecture we study the upper and lower bounds on M(B1, ‖ · ‖2, ε).
From the last lecture Theorem 14.2, we know that for any Θ ⊂ Rd and any ε > 0,

vol(Θ)

vol(εB)
≤M(Θ, ‖ · ‖, 2ε) ≤ N(Θ, ‖ · ‖, ε) ≤M(Θ, ‖ · ‖, ε) ≤

vol(Θ + ε
2B)

vol( ε2B)
.

where B is the ball of radius 1 measured by ‖ · ‖. Therefore,

M(B1, ‖ · ‖2, ε) ≤
vol(B1 + ε

2B2)

vol( ε2B2)
≤

vol((1 + ε
√
d

2 )B1)

vol( ε2B2)
=

(
1 + ε

√
d

2
ε
2

)d(
c1√
d

)d
≤
(

1 +
c2

ε
√
d

)d
,

where we have used the fact that B2 ⊂
√
dB1 by Cauchy-Schwarz inequality, vol(B1) = 2d/d! and

hence vol(B1)1/d � 1
d , and vol(B2)1/d � 1√

d
. On the other hand,

M(B1, ‖ · ‖2, ε) ≥
vol(B1)

vol(εB2)
=

(
1

ε

)d vol(B1)

vol(B2)
=

(
c

ε
√
d

)d
.

From last lecture we know that volume bound is tight when ε is sufficiently small (i.e., ε→ 0).
However, in high dimension, how small is sufficiently small depends on the dimensionality. The
volume bound derived above is useful only when ε . 1√

d
. It turns out when ε� 1√

d
(which could

still be small), we need different methods, and the full picture is the following

Lemma 15.1. There exist absolute constants c1, c2, such that

d log
(

1 +
c2

ε2d

)
∧ 1

ε2
log
(
1 + c2ε

2d
)
. logM(B1, ‖ · ‖2, ε) . d log

(
1 +

c1

ε2d

)
∧ 1

ε2
log
(
1 + c1ε

2d
)
.

That is to say,

logM(B1, ‖ · ‖2, ε) �


1
ε2

log
(
ε2d
)

ε & 1√
d

d ε � 1√
d

d log 1
ε2d

ε . 1√
d

. (15.1)

15.1 Upper bound via Sudakov minoration

Recall that the Gaussian width of Θ ⊂ Rd is defined as1

w(Θ) = E sup
θ∈Θ
〈θ, Z〉, where Z ∼ N(0, Id).

1To avoid measurability difficulty, w(Θ) should be understood as supT⊂Θ,|T |<∞ Emaxθ∈T 〈θ, Z〉.
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Theorem 15.1 (Sudakov minoration). For any Θ ⊂ Rd and any ε > 0,

w(Θ) & ε
√

logM(Θ, ‖ · ‖2, ε).

The proof of Theorem 15.1 relies on Slepian’s Gaussian comparison lemma:

Lemma 15.2 (Slepian’s lemma). Let X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) be Gaussian random
vectors. If E(Yi − Yj)2 ≤ E(Xi −Xj)

2 for all i, j, then EmaxYi ≤ EmaxXi.

For a self-contained proof see [Cha05].2 See also [Pis99, Lemma 5.7, p. 70] for a simpler proof of
a weaker version EmaxXi ≤ 2EmaxYi, which suffices for our purposes though.

Proof of Theorem 15.1 assuming Slepian. Let {θ1, . . . , θM} be an he optimal ε-packing of Θ. Let

Xi = 〈θi, Z〉 for i ∈ [M ], where Z ∼ N (0, Id). Let Yi
i.i.d.∼ N (0, ε2/2). Then for any pair i, j, Xi and

Xj are jointly Gaussian, and

E(Xi −Xj)
2 = (θi − θj)′E[ZZ ′](θi − θj) = ‖θi − θj‖22 ≥ ε2 = E(Yi − Yj)2.

It follows from Lemma 15.2 that

E max
1≤i≤M

Xi ≥ E max
1≤i≤M

Yi � ε
√

logM.

This completes the proof because E supθ∈Θ〈θ, Z〉 ≥ Emax1≤i≤M Xi.

We can apply this theorem to Θ = B1. In this case, by the definition of the dual norm,

w(B1) = E sup
x∈Rd: ‖x‖1≤1

〈x, Z〉 = E‖Z‖∞ �
√

log d.

The theorem then implies that

logM(B1, ‖ · ‖2, ε) .
log d

ε2
. (15.2)

This bound is almost optimal: When ε� 1/
√
d, this upper bound is (in fact optimal and) much

better than what we get from the volume argument, which is

logM(B1, ‖ · ‖2, ε) . d log

(
1 +

c

ε
√
d

)
.

However, (15.2) is not always sharp. For example, when ε � 1/
√
d, it gives d log d and we know

(even from volume bound) that the correct behavior is d. This suggests we need a more refined
bound that interpolates between volume and Sudakov.

2If you took ECE 534 last fall, you should revisit Problem 4 of http://maxim.ece.illinois.edu/teaching/

fall15a/homework/hw4.pdf which follows [Cha05].
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15.2 Upper bound via Maurey’s empirical method

We can construct a covering of B1 using the probabilistic method. Let {ei : i = 1, . . . , d} be the
standard basis of Rd. For an arbitrary x ∈ B1, define a d-dimensional random vector Z as

Z =

{
sgn(xi)ei w.p. |xi|
0 w.p. 1− ‖x‖1

Then Z has the property that EZi = xi for i = 1, . . . , d, hence EZ = x, and Var[Zi] = E(Zi − xi)2

for i = 1, . . . , d. Let Z(1), . . . , Z(k) be i.i.d. copies of Z, and let Z̄ = 1
k

∑k
j=1 Z(j). Then

E‖Z̄ − x‖22 =
d∑
i=1

E(Z̄i − xi)2 =
d∑
i=1

Var[Z̄i] =
1

k

d∑
i=1

Var[Zi] =
1

k
E‖Z − x‖22 ≤

1

k
E‖Z − x‖21 ≤

1

k
,

where we have used the facts that Var[Z̄i] = 1
kVar[Zi] and ‖Z − x‖2 ≤ ‖Z − x‖1 ≤ 1. If we choose

k = 1/ε2, then E‖Z̄ − x‖2 ≤
√
E‖Z̄ − x‖22 ≤ ε. So there is a realization z̄ of Z̄ such that

‖z̄ − x‖2 ≤ ε.

Now we examine how many distinct values Z̄ can take regardless of x, which gives the size of the
packing. Note that

Z̄ =
1

k

k∑
j=1

Z(j) =
1

k
(K1, . . . ,Kd),

where

d∑
i=1

Ki ≤ k, with Ki ∈ Z, and 0 ≤ |Ki| ≤ k for i = 1, . . . , d. (15.3)

For any (K1, . . . ,Kd) satisfying inequality (15.3), we get a solution for the following inequality

d∑
i=1

K+
i +K−i ≤ k, with K+

i ,K
−
i ∈ Z, and 0 ≤ K+

i ,K
−
i ≤ k for i = 1, . . . , d, (15.4)

by setting K+
i = Ki and K−i = 0 if Ki ≥ 0, and setting K+

i = 0 and K−i = −Ki if Ki < 0. Therefore,
the number of values Z̄ can take is upper bounded by the number of solutions of inequality (15.4).
Note that there are

(
k+2d−1

2d−1

)
solutions for

d∑
i=1

K+
i +K−i = k, with K+

i ,K
−
i ∈ Z, and 0 ≤ K+

i ,K
−
i ≤ k for i = 1, . . . , d,

because the solutions are all possible types of the sequences of length k with alphabet size 2d. It
follows that the number of solutions of inequality (15.4) is(

0 + 2d− 1

2d− 1

)
+

(
1 + 2d− 1

2d− 1

)
+ . . .+

(
k + 2d− 1

2d− 1

)
=

(
k + 2d

2d

)
=

(
k + 2d

k

)
,

which is an upper bound on the number of Z̄’s regardless of x. We thus have shown the existence of
an ε-covering of B1 in ‖ · ‖2 with cardinality upper bounded by( 1

ε2
+ 2d

2d

)
=

( 1
ε2

+ 2d
1
ε2

)
.
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Therefore,

logN(B1, ‖ · ‖2, ε) ≤ 2d log
(

1 +
1

2ε2d

)
∧ 1

ε2
log
(

1 + 2dε2
)
.

We can see that the first upper bound recovers the result from the volume argument, while the
second upper bound is even stronger than the result obtained from Sudakov’s minoration.

15.3 Lower bound via packing Hamming spheres

Let Sk = {x ∈ {0, 1}d : wH(x) = k} be the Hamming sphere of radius k. For the ρ-packing of Sk in
Hamming distance ‖ · ‖H, using Theorem 14.2 we have

logM(Sk, ‖ · ‖H, ρ) ≥ |Sk|
|BH(ρ)|

=

(
d
k

)∑ρ
i=0

(
d
i

) .
This leads to the following lemma.

Lemma 15.3 (Gilbert-Varshamov). There exist constants c1 and c2 such that for all d ∈ N and
any k ∈ [d],

logM(Sk, ‖ · ‖H, c1k) ≥ c2k log
ed

k
.

Now we construct a packing of B1 based on a packing of Sk. Let {x1, . . . , xM} be a c1k-packing
of Sk. Let θi = xi/k. Then θi ∈ B1 for i = 1, . . . ,M , and

‖θi − θj‖22 =
1

k2
‖xi − xj‖H ≥

c1

k
.

Therefore, {θ1, . . . , θM} is a
√
c1/k-packing of B1 in ‖ · ‖2. Choosing k = 1/ε2, it follows from

Lemma 15.3 that
logM(B1, ‖ · ‖2,

√
c1ε) ≥

c2

ε2
log
(
edε2

)
for some constants c1 and c2.

To summarize, combining the upper and lower bounds, we have

logN(B1, ‖ · ‖2, ε) �


1
ε2

log
(
ε2d
)

ε & 1√
d

d ε � 1√
d

d log 1
ε2d

ε . 1√
d

. (15.5)

15.4 Duality of metric entropy

First we define a more general notoin of covering number. For K,T ⊂ Rd, define the covering
number of K using translates of T as

N(K,T ) = min{N : ∃x1, . . . , xN ∈ Rd such that K ⊂ ∪Ni=1T + xi}.

An amazing theorem of Artstein-Milman-Szarek [AMS04] establishes the following duality result for
metric entropy: There exist constants α and β such that for any symmetric convex body K,

1

β
logN

(
B2,

ε

α
K◦
)
≤ logN(K, εB2) ≤ logN(B2, αεK

◦),
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where B2 is the usual unit `2-ball,

K◦ =

{
y : sup

x∈K
〈x, y〉 ≤ 1

}
is the polar body of K. For example, B◦p = Bq whenever 1

p + 1
q = 1. Therefore by duality, (15.5)

also applies to logN(B2, ‖ · ‖∞, ε), which is what is needed for application to minimax risk.

15.5 Example: Sharp rate for `∞ loss

Finally, we use the results in this lecture to derive the minimax lower bound for the p-dimension,
n-sample Gaussian location model with respect to the distortion function ‖θ − θ̂‖2∞.

We can construct an ε-packing of B2(δ) in ‖ · ‖∞. From the Fano’s method,

R∗ & ε2

(
1−

diamKL({N(θ, 1
nIp), θ ∈ B2(δ)}) + log 2

logM(B2(δ), ‖ · ‖∞, ε)

)

= ε2
(

1− nδ2 + log 2

logM(B2(δ), ‖ · ‖∞, ε)

)
& ε2

(
1− nδ2 + log 2

logM(B1, ‖ · ‖2, ε/δ)

)

& ε2

1− nδ2 + log 2

δ2

ε2
log
(

1 + pε2

δ2

)


where we have used that fact that diamKL({N(θ, 1
nIp), θ ∈ B2(δ)}) = ndiam2

‖·‖2(B2(δ)), the duality

theorem, and the lower bound on logM(B1, ‖ · ‖2, ε/δ). Choosing ε = c1

√
log p
n and δ = c2ε with

appropriate c1 and c2 such that the parenthesis in the lower bound is a positive constant, we obtain

R∗ &
log p

n
.

An alternative proof of this result is by choosing the packing set as τ{e1, . . . , ep} for some τ > 0
to be determined later. This set is a τ -packing of Rd in ‖ · ‖∞, because ‖τ(ei − ej)‖∞ = τ for all
pairs {i, j}. We also have ‖τ(ei − ej)‖22 = 2τ2. Then by Fano’s method,

R∗ ≥ τ2

(
1− 2nτ2 + log 2

log p

)
.

Choosing τ = c
√

log p
n with some appropriate constant c such that the parenthesis in the above

bound is a positive constant, we obtain

R∗ &
log p

n
.
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§ 16. Yang-Barron’s construction for density estimation

So far we have been mostly focusing on parametric problems in finite (possibly high) dimensions. In
this lecture, we shift our attention to nonparametric problems in infinite-dimensional. We consider
the problem of density estimation, which can be formulated as follows. The main goal of this lecture
is to give an exposition of the scheme of Yang and Barron [YB99], who constructed an estimator by
averaging a sequence of predictive density estimates and give KL risk guarantee in terms the KL
covering number.

Given X1, . . . , Xn
i.i.d.∼ p ∈ P , we obtain an estimate p̂ = p̂(·|X1, . . . , Xn). The loss function is the

KL divergence D(p‖p̂). The average risk is thus

EpD(p‖p̂) =

∫
D (p‖p̂(·|xn)) p⊗n(dxn).

Our task is to upper bound the minimax risk

inf
p̂

sup
p∈P

EpD(p‖p̂), (16.1)

We note that the term “density” is a little misleading, and hence quoted, because the elements of P
need not have a density. Crucially, the estimator in (16.1), such as the one due to Yang and Barron,
need not be a member of P; in other words, we allow improper estimates.

16.1 Bounding Capacity with Covering Number

This section introduces a bound on capacity using covering number, which is useful in terms of both
its conclusion and its proof. Before it is formally states, here is a recap on some important concepts.

� KL divergence:

D(P‖Q) = EP
[
log

P

Q

]
.

� Mutual information:

I(X;Y ) = D (PXY ‖PXPY ) = inf
Q
D
(
PY |X‖Q|PX

)
, (16.2)

where the infimum is achieved at Q = PY = EX [pY |X ].

� Capacity: Denote P =
{
pY |X=x : x ∈ X

}
, then the capacity is defined as

C = sup
PX

I(X;Y ) ≤ radius = inf
Q

sup
x∈X

D
(
PY |X=x‖Q

)
, (16.3)

with “=” if P is convex.
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� Covering number for sets of distributions

N(ε) = min # of “balls” that covers P
= min

{
N : ∃Q1, . . . , QN s.t. ∀x ∈ X ,∃i ∈ [N ], D(PY |X=x‖Qi) ≤ ε

}
.

Now we are ready to state the lemma.

Lemma 16.1.
C ≤ inf

ε>0
{ε+ logN(ε)} (16.4)

There are two ways of proving this lemma.

Proof. #1
Fix ε, letN = N(ε), ∃Q1, . . . , QN that form an ε-cover. ∀x ∈ X , let i(x) = argmini∈[N ]D

(
PY |X=x‖Qi

)
,

and thus D
(
PY |X=x‖Qi(x)

)
≤ ε.

Fix any PX ,
I(X;Y ) = I(X, i(X);Y )

(1)
= I(i(X);Y ) + I(X;Y |i(X))

≤ H(i(X)) + I(X;Y |i(X))

(2)

≤ logN + ε,

where (1) is derived from the chain rule of mutual information. (2) is derived from that H(i(X)) is
the entropy of a distribution with N outcomes, whose maximum is achieved when all the outcomes
are equiprobable; and that

I(X;Y |i(X)) = inf
Q
D
(
PY |X‖Q|i(X)

)
≤ D

(
PY |X‖Qi(X)|i(X)

)
≤ ε.

Proof. #2
I(X;Y ) = inf

Q
D
(
PY |X‖Q|PX

)
≤ D

(
PY |X‖

1

N

N∑
i=1

Qi|PX

)

= EX

[
D

(
PY |X‖

1

N

N∑
i=1

Qi

)]

= EX

[
EPY |X log

PY |X
1
N

∑N
i=1Qi

]

≤ EX

[
EPY |X log

PY |X
1
NQi(X)

]
= logN + EPX

[
D
(
PY |X‖Qi(X)

)]
≤ logN + ε.
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Remark 16.1. “=” in equation (16.4) holds if P is convex, and thus C =radius (from equation
(16.3)). It is easy to verify it with a special case ε=radius, where N(ε) = 1, and both sides of
equation (16.4) equal to radius.

Remark 16.2. For n samples Xn = (X1, . . . , Xn)
i.i.d∼ pX , note that

D
(
P⊗n‖Q⊗n

)
= nD(P‖Q).

Denote Nn(ε) is the covering number for P⊗n, and N(ε) for P. The product distributions of a
ε/n-cover for P form a ε-cover for P⊗n. Therefore

Nn(ε) ≤ N
( ε
n

)
.

In Gaussian case, for instance, KL-divergence is represented by Euclidean norm, and thus

N(ε) ∼
(

1

ε

)d
.

According to equation (16.4),

Cn . inf
ε>0

{
ε+ d log

n

ε

}
= d inf

ε>0

{
ε

d
+ log

n/d

ε/d

}
ε′=ε/d

= d inf
ε′>0

{
ε′ + log

n/d

ε′

}
= d log

(
1 +

n

d

)
.

(16.5)

16.2 An Upper Bound on the Bayes Risk

This section introduces an upper bound on the Bayes risk, which inspires the upper bound on the
minimax risk, as will be shown in the next section.

Consider the standard Bayes setting where

Xn = (X1, . . . , Xn)
i.i.d∼ pθ, and θ ∼ π,

and the estimate, p̂(·|Xn), is a function of Xn. The Bayes risk is given by

Eθ,Xn [D(pθ‖p̂(·|Xn))] =

∫
π(dθ)p⊗nθ (dxn)D(pθ‖p̂(·|xn)).

Lemma 16.2. The Bayes risk is

inf
p̂
Eθ,Xn [D(pθ‖p̂(·|Xn))] = I(θ;Xn+1|Xn),

where Xn+1 is identically distributed to and independent of X1, . . . , Xn. The infimum is achieved
when

p̂(·|Xn) = pXn+1|Xn ,

which is the Bayes estimator.

100



Proof. First note that pθ and p̂(·|Xn) are distributions for a new data, which can be denoted as
Xn+1. Taking the infimum over p̂ = p̂(·|·) of the Bayes risk,

inf
p̂
Eθ,Xn [D(pθ‖p̂(·|Xn))] = inf

p̂

∫
π(dθ)p⊗nθ (dxn)D(pθ‖p̂(·|Xn = xn))

=

∫
pXn(dxn) inf

p̂
Eθ|Xn=xn [D(pθ‖p̂)]

=

∫
pXn(xn) inf

p̂
D
(
pXn+1|θ‖p̂|pθ|Xn=xn

)
(1)
=

∫
pXn(xn)D

(
pXn+1|θ‖pXn+1|Xn |pθ|Xn=xn

)
= I(θ;Xn+1|Xn).

(1) is derived from equation (16.2). Specifically, fix Xn = xn, the infimum of D
(
pXn+1|θ‖p̂|pθ|Xn=xn

)
is achieved when

p̂ = Eθ|Xn

[
pXn+1|θ

]
= pXn+1|Xn .

With lemma 16.2, we can derive an upper bound in terms of capacity, fix any prior π(θ),

Cn+1 ≡ sup
π(θ)

I(θ;Xn+1) ≥ I(θ;Xn+1)

(1)
= I(θ;X1) + I(θ;X2|X1) + · · ·+ I(θ;Xn+1|Xn)

(2)

≥ (n+ 1)I(θ;Xn+1|Xn)

(1) is due to the chain rule of mutual information; (2) is due to the fact that the mutual information
with one extra observation diminishes as the number of existing observations increases, namely

I(θ;Xn+1|Xn) ≤ I(θ;Xn|Xn−1).

Therefore, from equation (16.5), we have a bound for optimal Bayes risk, which holds for any prior
π(θ):

I(θ;Xn+1|Xn) ≤ Cn+1

n+ 1
.
d

n
log
(

1 +
n

d

)
. (16.6)

16.3 An Upper Bound for Minimax Risk

This section introduces a theorem which states that the bound in equation (16.6) also holds for
minimax risk, and its proof is inspired by the Bayes case.

Theorem 16.1 (Yang-Barron).

inf
p̂

sup
θ∈Θ

EθD(pθ‖p̂) ≤ inf
ε>0

1

n
logN(ε) + ε ∼ d

n
log
(

1 +
n

d

)
.

Proof. Choose the following estimate

p̂(·|Xn) =
1

n

n∑
i=1

pXi|Xi−1(·|Xi−1),
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where

pXi|Xi−1 =

∫
π(dθ)

∏i
j=1 pθ(Xj)∫

π(dθ)
∏i−1
j=1 pθ(Xj)

.

Hence the estimator is a function of π(θ). Note that π(θ) here is used only to define an estimator; it
has nothing to do with Bayes setting. The rest of the proof bounds the worst case risk of p̂ induced
by an appropriate π(θ).

Fix θ, the risk for p̂ can be upper bounded by

EpθD(pθ‖p̂) = EpθD

(
pθ‖

1

n

n∑
i=1

pXi|Xi−1

)
(1)

≤ 1

n

n∑
i+1

D
(
pθ‖pXi|Xi−1

)
(2)
=

1

n
D
(
p⊗nθ ‖pXn

)
.

(16.7)

where (1) is due to the convexity of KL divergence; (2) is the chain rule of KL divergence:

D (PXN ‖QXN ) = E
[
log

PXN

QXN

]
= E

[∏n
i=1 PXi|Xi−1∏n
i=1QXi|Xi−1

]

=
n∑
i=1

D
(
PXi|Xi−1‖QXi|Xi−1

)
.

Fix ε, denote N = N(ε) as the covering number. Let G = {θ1, . . . , θN} be a set whose corresponding
pθs form an ε-covering of P. Choose the p̂ induced by π(θ) ∼ uniform(G). Then

D
(
p⊗nθ ‖pXn

)
= D

(
p⊗nθ ‖

1

N

N∑
i=1

p⊗nθi

)

= E log

[
p⊗nθ

1
N

∑N
i=1 p

⊗n
θi

]

≤ E log

[
p⊗nθ

1
N p
⊗n
θi(X)

]
≤ logN + nε.

(16.8)

Combining equations (16.7) and (16.8), we can bound the minimax risk:

inf
p

sup
θ∈Θ

EpθD (pθ‖p̂) ≤ sup
θ∈Θ

EpθD (pθ‖p̂) ≤
1

n
(logN + nε) =

1

n
logN + ε.

Since it holds for ∀ε, taking the infimum of both sides, and noticing that N(ε) ∼ (1/ε)d concludes
the proof.

In Gaussian case, the minimax risk is the canonical d/n (KL-divergence reduces to Euclidean
norm), so Theorem 16.1 is loose with an additional log factor log(1 + n/d). In the next lecture,
we will obtain a tighter bound, which is polynomial with respect to 1/n, given some additional
Lipschitz continuity constraint.
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§ 17. Application to Smooth Density Estimation

In last lecture, we studied the minimax risk of a parameterized density estimation and its upper
bound. We are given n i.i.d. samples X1, ..., Xn generated from Pθ, where Pθ ∈ P = {Pθ : θ ∈ Θ} is
the density to be estimated. Let the loss function between a true distribution Pθ and an estimated
distribution P̂ be their KL-divergence, i.e.,

`(Pθ, P̂ ) = D(Pθ‖P̂ ).

One can bound the minimax risk R∗ of this estimation problem by,

R∗n = inf
P̂

sup
θ∈Θ

EθD(Pθ‖P̂ ) ≤ Cn
n
, (17.1)

where Cn is the capacity over θ and Xn, i.e.,

Cn = sup
π∈M(Θ)

I(θ;Xn) = inf
ε>0
{nε+ logNKL(ε)},

where NKL(ε) is the covering number of P.
Further, we can use the chain rule in mutual information to learn the properties of Cn. For any

prior π over Θ, one has,

R∗π = I(θ;Xn+1|X∗) = I(θ;Xn+1)− I(θ;Xn).

Taking the supremum over π on both sides, one has,

R∗n = supR∗π = sup
π

(
I(θ;Xn+1)− I(θ;Xn)

)
≥ sup

π
I(θ;Xn+1)− sup

π
I(θ;Xn) = Cn+1 − Cn.

Therefore we can have a lower bound over R∗n as well.

Remark 17.1. There are some properties of {Cn}:

� {Cn} is subadditive and increasing, i.e.,

Cn+m ≤ Cn + Cm, ∀m, n ∈ Z+.

and therefore Cn
n has a limit for n→∞. By Fekete’s lemma,

lim
n→∞

Cn
n

= inf
n≥1

Cn
n
.
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� If we let ∆n = Cn+1 − Cn, one can rewrite Cn by,

Cn =
n−1∑
k=1

∆k,

and therefore,

∆n ≤
∑n−1

k=1 ∆k

n
.

In today’s lecture, we use the bound in (17.1) to study the minimax risk of a nonparameterized
density estimation. As a leading example, consider the problem of estimating a smooth probability
density function. To be precise, we are interested in estimating a pdf f ∈ Pβ with smoothness
parameter β > 0, where f belongs to Pβ iff,

� f is a pdf on [0, 1] and is upper bounded by a constant, say, 2.

� f (m) α-Hölder continuous, i.e.,

|f (m)(x)− f (m)(y)| ≤ |x− y|α, ∀ x, y ∈ (0, 1),

where α ∈ (0, 1], m ∈ Z and β = α+m.

For example, if β = 1, then P1 is simply the set of pdfs which are Lipshitz and bounded by 2.

Theorem 17.1. Given n i.i.d. samples X1, ..., Xn randomly generated from a pdf f ∈ Pβ, the

minimax risk of an estimation f̂ of f under the quadratic loss function `(f, f̂) = ‖f − f̂‖22 =∫ 1
0 (f(x)− f̂(x))2dx satisfies

R∗(Pβ) = inf
f̂

sup
f∈Pβ

E‖f − f̂‖22 � n
− 2β

1+β . (17.2)

Before we goes into the proof for Theorem 17.1, we makes some remarks.

Remark 17.2. The larger β is, the smoother the pdfs are, the faster R∗ decays with n.

Remark 17.3. If f is defined over [0, 1]d, the bound turns into,

R∗n(Pβ) = inf
f̂

sup
f∈Pβ

E‖f − f̂‖22 � n
− 2β
d+β

Now we prove Theorem 17.1.

Proof. First, we claim we can use the minimax risk over a set of lower bounded pdfs to bound
R∗n(Pβ). The idea is in Lemma 17.1

Lemma 17.1. Let F be the set of pdfs that are lower bounded, i.e., F =
{
f : f ≥ 1

2

}
. Let P be an

arbitrary set of pdfs on [0, 1] and let P̃ = P ∩ F . Then

R∗n(P) ≤ R∗n(P̃) ≤ 16R∗n(P).
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Proof of Lemma 17.1. Since P̃β ⊂ Pβ, the lower bound is obvious,

R∗n(P̃β) ≤ R∗n(Pβ). (17.3)

We will construct an estimator to show,

R∗n(Pβ) ≤ 16R∗n(P̃β). (17.4)

Let X1, ..., Xn be the n i.i.d. samples from f ∈ Pβ we have, and let U1, ..., Un be n i.i.d. samples
uniformly generated from [0, 1]. We define n i.i.d. random variables Z1, ..., Zn as,

Zi =

{
Ui w.p. 1

2 ,
Xi otherwise.

Thus, it is equivalent to think Z1, ..., Zn are i.i.d. samples from g = 1
2(1 + f) ∈ P̃β. Let ĝ be an

estimator of g from Zn. Let g̃ be its projection in F , i.e.,

g̃ = arg min
h∈F
‖h− ĝ‖.

Note g ∈ F , and we can bound the distance between g̃ and g by,

‖g̃ − g‖ ≤ ‖ĝ − g‖+ ‖g̃ − ĝ‖ ≤ 2‖ĝ − g‖.

Let f̂ = 2g̃− 1, which is a valid pdf since g̃ is lower bounded by 1
2 . As a result, for every pdf f ∈ Pβ ,

there is a corresponding g = 1
2(1 + f) ∈ P̃β which has a good estimator ĝ, and one can construct a

good estimator f̂ from ĝ in the sense that,

‖f̂ − f‖ = 2‖g̃ − g‖ ≤ 4‖ĝ − g‖.

Therefore,

R∗n(Pβ) = inf
f̂

sup
f∈Pβ

E‖f̂ − f‖22

≤ 16 inf
ĝ

sup
f∈Pβ

E
∥∥∥∥ĝ − 1

2
(1 + f)

∥∥∥∥2

2

≤ 16 inf
ĝ

sup
g∈P̃β

E ‖ĝ − g‖22 = R∗n(P̃β),

where the first inequality is due to the construction of f̂ , and the second inequality is due to{
1
2(1 + f) : f ∈ Pβ

}
⊂ P̃β. Therefore from (17.3) and (17.4) Lemma 17.1 follows.

It is then equivalent to prove,

R∗n(P̃β) = inf
f̂

sup
f∈Pβ

E‖f − f̂‖22 � n
− 2β
d+β
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Upper bound First we use the capacity to upper bound the minimax risk. On one hand, It is
known that for any bounded pdf f and g,

‖f − g‖21 & ‖f − g‖22,

and the total variation between f and g is bounded by its KL-divergence,

D(f‖g) ≥ 2d2
TV(f, g) =

1

2
‖f − g‖21.

Therefore, we have for any bounded pdf f and g,

‖f − g‖22 . D(f‖g)

As a result,

R∗n(P̃β) = inf
ĝ

sup
g∈P̃β

E‖g − ĝ‖22 ≤ inf
ĝ

sup
g∈P̃β

ED(g‖ĝ) = R∗n,KL(P̃β). (17.5)

On the other hand, one can bound the minimax risk under KL-divergence by (17.1), where the
capacity between g and Xn can be computed via,

Cn ≤ inf
ε>0
{logNKL(ε) + nε}

� inf
ε>0
{logN2(

√
ε) + nε}

� inf
ε>0
{ε−

1
2β + nε} = n

1
1+2β .

The second equality is due to the connection between the KL-divergence and the L2 distance. The
third equality comes from Kolomogrov-Tikhomirov’s Theorem. Therefore with (17.5), the upper
bound is proved by showing,

R∗n(P̃β) .
Cn
n

. n
− 2β

1+2β . (17.6)

Lower bound Next we lower bound R∗n(Pβ) by Fano’s inequality. Due to the relation between
covering and packing numbers, we know,

logM(P̃β, ‖ · ‖2, ε) � logN(P̃β, ‖ · ‖2, ε) � ε−1/β,

where the second equality is due to Kolomogrov-Tikhomirov’s Theorem. Let ε = n
− β

1+2β . Fano’s
inequality tells us,

R∗n(P̃β) & ε2

(
1− I(g;Xn) + log 2

logM(P̃β, ‖ · ‖2, ε)

)

& ε2

(
1− Cn

logM(P̃β, ‖ · ‖2, ε)

)

& ε2

(
1− n

1
1+2β

ε
− 1
β

)
� ε2 = n

− 2β
1+2β . (17.7)

The proof is done via (17.6) and (17.7).
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We make some remarks on the proof.

Remark 17.4. We have learned two ways to construct a density estimator:

� The mean of predictive density estimators;

� The maximum likelihood estimator.

None of those is computationally efficient. In practice, kernel density estimator (KDE) is proposed:
let X1, ..., Xn be the n samples, one can estimate the density by its histogram,

π̂ =
1

n

n∑
i=1

δXi .

This estimator, however, is not a pdf. To address this issue, one put a kernel instead of a spike over
each sample points, i.e.,

f̂Ω = Ω⊗ π̂,

where Ω is the kernel function and is chosen to satisfy the smooth constraint of the pdfs.

Remark 17.5. The result in Theorem 17.1 can be generalized to Lp for p <∞, following the same
analysis.
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§ 18. Density estimation via pairwise comparison à la Le Cam-Birgé

When we prove the lower bound in Theorem 17.1, we use the reasoning that if an ε-covering of a set
Θ cannot be tested, then θ ∈ Θ cannot be estimated more than precision ε, thereby establishing
a minimax lower bound in terms of the KL metric entropy. Conversely, we can ask the following
question:

Is it possible to construct an estimator based on tests, and produce a minimax upper
bound in terms of the metric entropy?

For Hellinger loss, the answer is yes, although the metric entropy involved is with respect to the
Hellinger distance not KL divergence. The basic construction is due to Le Cam and further developed
by Birgé. The main idea is as follows: Fix an ε-covering {P1, . . . , PN} of the set of distributions P.
Given n samples drawn from P ∈ P, let us test which ball P belongs to; this allows us to estimate
P up to Hellinger loss ε. This can be realized by a pairwise comparison (tournament) of testing the
(composite) hypothesis P ∈ B(Pi, ε) versus P ∈ B(Pj , ε). This program can be further refined to
involve on the local entropy of the model.

18.1 Composite hypothesis testing and Hellinger distance

Consider the following general problem. Let P and Q be two (not necessarily convex) classes of
distributions. Given iid samples X1, . . . , Xn drawn from some distribution P , we want to test,
according some decision rule φ = φ(X1, . . . , Xn) ∈ {0, 1}, whether P ∈ P (φ = 0) or P ∈ Q (φ = 1).
By the minimax theorem, the optimal error is given by the total variation between the worst-case
mixtures:

min
φ

{
sup
P∈P

P (φ = 1) + sup
Q∈Q

Q(φ = 0)

}
= 1− dTV(co(P⊗n), co(Q⊗n)), (18.1)

wherein the notations are explained as follows:

� P⊗n , {P⊗n : P ∈ P} consists of all n-fold products of distributions in P;

� co(·) denotes the convex hull, that is, the set of all mixtures. For example, for a parametric
family, co({Pθ : θ ∈ Θ}) = {Pπ : π ∈ ∆(Θ)}, where Pπ =

∫
Pθπ(dθ) is the mixture under the

mixing distribution π, and ∆(Θ) denotes the collection of all probability distributions (priors)
on Θ.

� The distance d (e.g. total variation dTV) between for two sets A and B is defined as usual by
that of the closest pairs: d(A,B) , infa∈A,b∈B d(a, b).
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The optimal test that achieves (18.1) is the likelihood ratio given by the worst-case mixtures, that
is, the closest1 pair of mixture (P ∗n , Q

∗
n) such that dTV(P ∗n , Q

∗
n) = dTV(co(P⊗n), co(Q⊗n)).

The exact result (18.1) is unwieldy as the RHS involves finding the least favorable priors over
the n-fold product space. The following result, due to Le Cam, is a “single-letter” upper bound in
terms of the Hellinger separation. It is the consequence of the more general tensorization property
of Rényi divergence (of which Hellinger is a special case). Here we give a straightforward argument.

Theorem 18.1.

min
φ

{
sup
P∈P

P (φ = 1) + sup
Q∈Q

Q(φ = 0)

}
≤ exp

{
−n

2
inf

P∈P,Q∈Q
H2(P,Q)

}
, (18.2)

For this, we need the following key lemma:

Lemma 18.1. For any sets of distributions Pi and Qi,

1− 1

2
H2

(
co

(
n⊗
i=1

Pi

)
, co

(
n⊗
i=1

Qi

))
≤

n∏
i=1

(
1− 1

2
H2(co(Pi), co(Qi))

)
.

Proof. Denote Aff , 1− 1
2H

2. By induction it is sufficient to consider n = 2 and we aim to show

Aff(co(P1 ⊗ P2), co(Q1 ⊗Q2)) ≤ Aff(co(P1), co(Q1)) ·Aff(co(P2), co(Q2)). (18.3)

Any element of co(P1 ⊗ P2) corresponds to a joint distribution PX1X2 where

� X1 and X2 are conditionally independent given some latent variable Z, i.e., PX1X2|Z =
PX1|Z ⊗ PX2|Z ;

� For any z, PX1|Z=z ∈ P1 and PX2|Z=z ∈ P2.

Similarly, we have QX1X2 ∈ co(Q1⊗Q2) with QX1X2|Z = QX1|Z⊗QX2|Z , QX1|Z=z ∈ Q1, QX2|Z=z ∈
Q2 for any z.

Let αi = Aff(co(Pi), co(Qi)) for i = 1, 2. Then

Aff(PX1X2 , QX1X2) =

∫ √
PX1X2(dx1dx2)QX1X2(dx1dx2)

=

∫ √
PX1(dx1)QX1(dx1)

{∫ √
PX2|X1=x1

(dx2)QX2|X1=x1
(dx2)

}
︸ ︷︷ ︸

Aff(PX2|X1=x1
,QX2|X1=x1

)

(a)

≤ α2 ·Aff(PX1 , QX1)
(b)

≤ α1α2

where (a) follows from the crucial observation that PX2|X1=x1
=
∫
PX2|Z=zPZ|X1=x1

(dz) ∈ co(P2)
and QX2|X1=x1

∈ co(Q2) likewise; (b) follows from the fact PX1 ∈ co(P1) and QX1 ∈ co(Q1). This
proves the desired (18.3).

Now we finish the proof of Theorem 18.1:

1In case the closest pair does not exist, we can replace it by an infimizing sequence.
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Proof. From (18.1) we get

1− dTV(co(P⊗n), co(Q⊗n))
(a)

≤ 1− 1

2
H2(co(P⊗n), co(Q⊗n))

(b)

≤
(

1− 1

2
H2(co(P), co(Q))

)n
≤ exp

(
−n

2
H2(co(P), co(Q))

)
where (a) follows from (4.10); (b) follows from Lemma 18.1.

In the sequel we will apply Theorem 18.1 to two disjoint Hellinger balls (both are convex).

18.2 Hellinger guarantee on Le Cam-Birgé’s pairwise comparison
estimator

The idea of constructing estimator based on pairwise tests is due to Le Cam ([LC86], see also
[vdV02, Section 10]) and Birgé [Bir83]. We are given n i.i.d. samples X1, X2, · · · , Xn generated
from P , where P ∈ P is the distribution to be estimated. Here let us emphasize that P need not be
a convex set. Let the loss function between the true distribution P and the estimated distribution
P̂ be their squared Hellinger distance, i.e.

`(P, P̂ ) = H2(P, P̂ ).

Then, we have the following result:

Theorem 18.2 (Le Cam-Birgé). Denote by NH(P, ε) the ε-covering number of the set P under the
Hellinger distance (cf. Definition 14.3). Let εn be such that

nε2n ≥ logNH(P, εn) ∨ 1.

Then there exists an estimator P̂ = P̂ (X1, . . . , Xn) taking values in P such that for any t ≥ 1,

sup
P∈P

P [H(P, P̂ ) > 4tεn] . e−t
2

(18.4)

and, consequently,
sup
P∈P

EP [H2(P, P̂ )] . ε2n (18.5)

Remark 18.1. Let’s compare this result with lower and upper bounds in terms of the KL covering
number:

1. Lower bound: Based on Fano’s inequality (cf. Section 14.2) we have a minimax lower bound
ε2n for the KL divergence loss in terms of the KL covering number, where ε2n is given by

logNKL(P, ε2n) � nε2n. (18.6)

Note that (??) and (18.6) look tantalizingly similar, except that the covering number is with
respect to Hellinger and KL, and the loss function is for Hellinger and KL respectively, so
they are not directly comparable.
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2. Upper bound: Recall Theorem 16.1 due to Yang-Barron which provides a general upper bound
for density estimation under the KL divergence loss (stronger than Hellinger) in terms of the
KL covering number. It should be remarked that the estimator of Yang-Barron in general
does not belong to the original space P (unless P is convex, which fails for most parameter
models); in the language of learning theory, such an estimator is called improper. In contrast,
the Le Cam-Birgé estimator is proper, just like MLE; in the case of a parametric family
P = {Pθ : θ ∈ Θ}, this means the construction yields a parameter estimator θ̂ ∈ Θ for the loss
function `(θ, θ̂) , H(Pθ, Pθ̂).

Proof of Theorem 18.2. It suffices to prove the high-probability bound (18.4). Abbreviate ε = εn
and N = NH(P, εn). Let P1, · · · , PN be a maximal ε-packing of P under the Hellinger distance,
which also serves as an ε-covering (cf. Theorem 14.1). Thus, ∀i 6= j,

H(Pi, Pj) ≥ ε,

and for ∀P ∈ P, ∃i ∈ [N ], s.t.
H(P, Pi) ≤ ε,

Denote B(P, ε) = {Q : H(P,Q) ≤ ε} denote the ε-Hellinger ball centered at P . Crucially, Hellinger
ball is convex 2 thanks to the convexity of squared Hellinger distance as an f -divergence (cf. Theo-
rem 4.1). Indeed, for any P ′, P ′′ ∈ B(P, ε) and α ∈ [0, 1],

H2(ᾱP ′ + αP ′′, P ) ≤ ᾱH2(P ′, P ) + αH2(P ′′, P ) ≤ ε2.

Next, consider the following pairwise comparison problem, where we test two Hellinger balls
(composite hypothesis) against each other:{

Hi : P ∈ B(Pi, ε)
Hj : P ∈ B(Pj , ε)

for all i 6= j, s.t. H(Pi, Pj) ≥ δ = 4ε.
Since both B(Pi, ε) and B(Pj , ε) are convex, applying Theorem 18.1 yields a test ψij =

ψij(X1, . . . , Xn), with ψij = 0 corresponding to declaring P ∈ B(Pi, ε), and ψij = 1 corresponding
to declaring P ∈ B(Pj , ε), such that ψij = 1− ψji and the following large deviation bound holds:
for all i, j, s.t. H(Pi, Pj) ≥ δ,

sup
P∈B(Pi,ε)

P (ψij = 1) ≤ e−
n
8
H(Pi,Pj)

2
, (18.7)

where we used the triangle inequality of Hellinger distance: for any P ∈ B(Pi, ε) and any Q ∈
B(Pj , ε),

H(P,Q) ≥ H(Pi, Pj)− 2ε ≥ H(Pi, Pj)/2 ≥ 2ε.

For i ∈ [N ], define the random variable

Ti ,

{
maxj∈[N ]H

2(Pi, Pj) s.t. ψij = 1, H(Pi, Pj) > δ;

0, no such j exists.

2Note that this is not entirely obvious because P 7→ H(P,Q) is not convex (for example, consider p 7→
H(Bern(p),Bern(0.1)).
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Basically, Ti records the maximum distance from Pi to those Pj outside the δ-neighborhood of Pi
that is confusable with Pi given the present sample. Our density estimator is defined as

P̂ = Pi∗ , where i∗ ∈ arg min
i∈[N ]

Ti. (18.8)

Now for the proof of correctness, assume that P ∈ B(P1, ε). The intuition is that, we should
expect, typically, that T1 = 0, and furthermore, Tj ≥ δ2 for all j such that H(P1, Pj) ≥ δ. Note
that by the definition of Ti and the symmetry of the Hellinger distance, for any pair i, j such that
H(Pi, Pj) ≥ δ, we have

max{Ti, Tj} ≥ H(Pi, Pj).

Consequently,

H(P̂ , P1)1{H(P̂ , P1) ≥ δ} = H(Pi∗ , P1)1 {H(Pi∗ , P1) ≥ δ}
≤ max{Ti∗ , T1}1 {max{Ti∗ , T1} ≥ δ} = T11 {T1 ≥ δ},

where the last equality follows from the definition of i∗ as a global minimizer in (18.8). Thus, for
any t ≥ 1,

P [H(P̂ , P1) ≥ tδ] ≤ P [T1 ≥ tδ]

≤ N(ε)e−2nε2t2 (18.9)

. e−t
2
, (18.10)

where (18.9) follows from (18.7) and (18.10) uses the assumption that nε2 ≥ 1 and N ≤ enε2 .

18.3 Refinement using local entropy

Just like Theorem 16.1, while they are often tight for nonparametric problems where the metric
entropy grows superlogarithmically, for finite-dimensional models the direct application of Theo-
rem 18.2 results in a slack by a log factor. For example, for a d-dimensional parametric family,
e.g., the Gaussian location model or its finite mixtures, the metric entropy usually behaves as
logNH(ε) � d log 1

ε . Thus when n & d, Theorem 18.2 entails choosing ε2n � d
n log n

d , which falls

short of the parametric rate E[H2(P̂ , P )] . d
n which are typically achievable.

As usual, such a log factor can be removed using the local entropy argument. To this end, define
the local Hellinger entropy:

Nloc(P, ε) , sup
P∈P

sup
η≥ε

NH(B(P, η) ∩ P, η/2). (18.11)

Theorem 18.3 (Le Cam-Birgé: local entropy version). Let εn be such that

nε2n ≥ logNloc(P, εn) ∨ 1.

Then there exists an estimator P̂ = P̂ (X1, . . . , Xn) taking values in P such that for any t ≥ 2,

sup
P∈P

P [H(P, P̂ ) > 4tεn] ≤ e−t2 (18.12)

and hence
sup
P∈P

EP [H2(P, P̂ )] . ε2n (18.13)
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Remark 18.2 (Doubling dimension). Suppose that for some d > 0, logNloc(P, ε) ≤ d log 1
ε holds

for all sufficiently large small ε; this is the case for finite-dimensional models where the Hellinger
distance is comparable with the vector norm by the usual volume argument (Theorem 14.2). Then
we say the doubling dimension (also known as the Le Cam dimension [vdV02]) of P is at most d;
this terminology comes from the fact that the local entropy concerns covering Hellinger balls using
balls of half the radius. Then Theorem 18.3 shows that it is possible to achieve the “parametric
rate” O( dn). In this sense, the doubling dimension serves as the effective dimension of the model P.

Lemma 18.2. For any P ∈ P and η ≥ ε and k ≥ Z+,

NH(B(P, 2kη) ∩ P, η/2) ≤ Nloc(P, ε)k (18.14)

Proof. We proceed by induction on k. The base case of k = 0 follows from the definition (18.11).
For k ≥ 1, assume that (18.14) holds for k− 1 for all P ∈ P . To prove it for k, we construct a cover
of B(P, 2kη) ∩ P as follows: first cover it with 2k−1η-balls, then cover each ball with η/2-balls. By
the induction hypothesis, the total number of balls is at most

NH(B(P, 2kη) ∩ P, 2k−1η) · sup
P ′∈P

NH(B(P ′, 2k−1η) ∩ P, η/2) ≤ Nloc(ε) ·Nloc(ε)
k−1

completing the proof.

We now prove Theorem 18.3:

Proof. We analyze the same estimator (18.8) following the proof of Theorem 18.2, except that the
estimate (18.9) is improved as follows: Define the Hellinger shell Ak , {P : 2kδ ≤ H(P1, P ) < 2k+1δ}
and Gk , {P1, . . . , PN} ∩Ak. Recall that δ = 4ε. Given t ≥ 2, let ` = blog2 tc so that 2` ≤ t < 2`+1.
Then

P [T1 ≥ tδ] ≤
∑
k≥`

P [2kδ ≤ T1 < 2k+1δ]

(a)

≤
∑
k≥`
|Gk|e−

n
8

(2kδ)2

(b)

≤
∑
k≥`

Nloc(ε)
k+3e−2nε24k

(c)

. e−4` ≤ e−t2

where (a) follows from from (18.7); (c) follows from the assumption that logNloc ≤ nε2 and
k ≥ ` ≥ log2 t ≥ 1; (b) follows from the following reasoning: since {P1, . . . , PN} is an ε-packing, we
have

|Gk| ≤M(Ak, ε) ≤ N(Ak, ε/2) ≤ N(B(P1, 2
k+1δ) ∩ P, ε/2) ≤ Nloc(ε)

k+3

where the first and the last inequalities follow from Theorem 14.1 and Lemma 18.2 respectively.
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Part IV

Structured high-dimensional
estimation problems
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§ 19. Denoising sparse vectors: lower bound

This lecture focuses on the problem of denoising for a sparse vector. Let’s begin with our favorite
example, the Gaussian Location model.

Example 19.1 (GLM). Consider the p-dimensional n-sample GLM. We have

Yi = θ + Zi,

where θ ∈ Θ ⊆ Rp, i ∈ [n]. We have n i.i.d copies of Y , and the noise Z ∼ N (0, Ip). We consider
the quadratic minimax loss for this estimation problem,

R∗n(Θ) = inf
θ̂

sup
θ∈Θ

Eθ‖θ̂ − θ‖22.

Here, we add some structure for the parameter space Θ to study the so called denoising by
sparsity problem, let

Θ = {all k-sparse vectors} = B0(k) = {θ ∈ Rp, ‖θ‖0 ≤ k}, k ∈ [p],

where ‖θ‖0 = |{i : θi 6= 0}| is the number of nonzero entries of θ, indicating the sparsity of θ. We
want to analysis the asymptotic behavior of R∗n(B0(k)).

Remark 19.1. The set B0(k) can be written as a union of linear subspace of Rp.

B0(k) =
⋃

S⊆[p],|S|≤k

{θ, θSC = 0}.

Remark 19.2. To study the behavior of R∗n(B0(k)), it is sufficient to consider one sample and the
risk R∗1(B0(k)). Indeed, we have

R∗n(B0(k)) =
1

n
R∗1(B0(k)).

Proof. Since Ȳ = 1
n

∑n
i=1 Yi is the sufficient statistics of this problem, and Ȳ ∼ N (θ, 1

nIp). Given n
i.i.d. samples, it is sufficient to solve the following one-dimensional problem,

Ȳ = θ +
1√
n
Z ⇔

√
nȲ =

√
nθ + Z,

where Z ∼ N (0, Ip). Since
√
nB0(k) = B0(k), estimating

√
nθ has the same minimax risk for

estimating θ given one sample. Thus,

R∗1(B0(k)) = inf
θ̂

sup√
nθ∈
√
nB0(k)

Eθ‖
√
nθ̂ −

√
nθ‖22

= n inf
θ̂

sup
θ∈B0(k)

Eθ‖θ̂ − θ‖22

= nR∗n(B0(k)).

Thus, in the ensuing discussion, we only consider the case of n = 1.
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Remark 19.3 (The Oracle Lower bound). Note that for n = 1, given the information of the
position of nonzero entries, we have the following lower bound which has been proved before

R∗1(B0(k)) ≥ k.

Theorem 19.1. The minimax risk for sparse denoising is

R∗1(B0(k)) � k + log

(
p

k

)
� k log

ep

k
.

Furthermore, if k = o(p) and p→∞, we have the following results (proved in homework)

R∗1(B0(k)) =
(
2 + o(1)

)
k log

p

k
.

19.1 Lower bound for denoising by sparsity

We will prove the lower bound in Theorem 19.1 by the mutual information method. Consider the
following subset of Hamming space:

B = {b ∈ {0, 1}p : wH(b) = k},

where wH(b) is the Hamming weights of b. Suppose that b is drawn uniformly from the set B, and
θ = τb, where

τ =

√
1

100
log

p

k
.

Thus, we have the following Markov chain which represents our problem model,

b→ θ → Y → θ̂ → b̂.

Denote the set G = τB, so θ ∈ G. The mutual information is upper bounded by the radius of set G,

I(θ; θ̂) ≤ I(θ;Y ) ≤ radkL(N (θ, Ip), θ ∈ G)

≤ sup
θ∈G

D(Pθ‖P0)

= sup
θ∈G

1

2
‖θ‖22 =

kτ2

2
.

To give a lower bound for I(θ; θ̂), consider

b̂ = arg min
b∈B

‖θ̂ − τb‖22.

Since b̂ is the minimizer of ‖θ̂ − τb‖22, we have,

‖τ b̂− θ‖2 ≤ ‖τ b̂− θ̂‖2 + ‖θ − θ̂‖2 ≤ 2‖θ − θ̂‖2.

Thus,
τ2dH(b, b̂) = ‖τ b̂− θ‖22 ≤ 4‖θ − θ̂‖22,

116



where dH denotes the Hamming distance between b and b̂. Suppose that E‖θ̂ − θ‖22 = ετ2k. Then
we have EdH(b, b̂) ≤ 4εk. Our goal is to show that ε is at least a small constant by the mutual
information method:

I(b̂; b) ≥ min
EdH(b,b̂)≤4εk

I(b̂; b)

= H(b)− max
EdH(b,b̂)≤4εk

H(b|b̂)

= log

(
p

k

)
− max

EdH(b,b̂)≤4εk
H(b⊕ b̂|b̂)

≥ log

(
p

k

)
− max

EwH(b⊕b̂)≤4εk
H(b⊕ b̂).

Note the following fact1,

max
EwH(W )=m,W∈{0,1}p

H(W ) = ph

(
m

p

)
.

Combine this with the previous bound, we get

I(b̂; b) ≥ log

(
p

k

)
− ph(

4εk

p
).

On the other hand, we have

I(b̂; b) ≤ I(θ;Y ) ≤ k

2
τ2 =

k

200
log

p

k
.

Note that h(α) � −α logα for α < 1
4 . WLOG, since k ≤ p

16 , we have ε ≥ c0 for some universal
constant c0. Therefore

R∗ ≥ ετ2k & k log
p

k
.

Combining with the result in the oracle lower bound, we have the desired.

R∗ & k + k log
p

k
.

Note: For constant sparsity, i.e., k = O(1), we cannot let each coordinate of θ to be i.i.d. Bernoulli
random variable, i.e. θi ∼ Bern(kp ). Since in this case, ‖θ‖0 ∼ Binomial(p, kp ), which, for large p and
fixed k, is close to Poisson distribution Poi(k). Then with a constant probability, θ is not k sparse.

Remark 19.4. For the case k = o(p), the sharp asymptotics is

R∗k,p ≥ (2 + op(1))k log
p

k
.

To prove this result, we need to first show that for the case k = 1,

R∗1,p ≥ (2 + op(1)) log p.

Next, show that for any k, the minimax risk is lower bounded by the Bayesian risk with the block
prior. The block prior is that we divide the p-coordinate into k blocks, and pick one coordinate
from each p/k-coordinate uniformly. With this prior, one can show

R∗k,p ≥ kR∗1,p/k = (2 + op(1))k log
p

k
.

1It can be easily verified that the maximum is achieved with the distribution Bern(m
p

)⊗p, write this distribution as

q(w) = (m
p

)wH (w)(1− m
p

)p−wH (w). For any p(w) satisfies E(wH(W )) = m, we have H(W ) = −D(p‖q) +Ep[log 1
q(w)

] ≤
Ep[log 1

q(w)
] = m log p

m
+ (p−m) log p

p−m = ph(m
p

).
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§ 20. Denoising sparse vectors: upper bound

Let θ ∈ Θ = B0(k) = {θ ∈ Rp : ‖θ‖0 ≤ k}, be a sparse vector. We observe Y = θ + Z, where
Z ∼ N (0, Ip). Recall that the last lecture obtains the upper bound on the minimax risk for the
problem using the mutual information method as

R∗n(Θ) = inf
θ̂

sup
θ∈Θ

Eθ[‖θ̂ − θ‖22] & k log
(p
k

)
.

This lecture focuses on obtaining the upper bound to the minimax error by analyzing the risk
corresponding to (1) the maximum likelihood estimator (2) thresholding estimators.

20.1 Upper bound for denoising by sparsity

In this subsection, we will prove the upper bound for 19.1. We will use the following results on the
maxima of Gaussian, proved in our homework.

Y = θ + Z, Z ∼ N (0, Ip),

then,
‖Z‖∞ ≤

√
2 log p+ op(1).

Given this result, it is natural to consider the following minimization problem,

� `0-minimization
θ̂ = arg min ‖θ‖0, s.t. ‖y − θ‖∞ ≤ τ =

√
2 log p.

� `1-minimization
θ̂ = arg min ‖θ‖1, s.t. ‖y − θ‖∞ ≤ τ =

√
2 log p.

However, we can only show the estimator given by these two constraint minimization problem satisfy
(see Section 20.3)

sup
‖θ‖0≤k

Eθ‖θ − θ̂‖22 . k log p,

which does not match the desired result (inside the log). Thus, we will look at the Maximum
Likelihood estimator. For Gaussian distribution,

Pθ(y) ∝ exp

(
−‖y − θ‖

2
2

2

)
.

Thus, the MLE is equivalent to the minimum distance rule,

θ̂MLE = arg min
‖θ‖0≤k

‖y − θ‖22.

We can show for this constrained least square problem,

sup
‖θ‖0≤k

Eθ‖θ − θ̂MLE‖22 . k log
ep

k
.
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Proof. Let h = θ̂MLE − θ. Thus,

‖Z − h‖22 = ‖θ̂MLE − y‖22 ≤ ‖θ − y‖22 = ‖z‖22.

It is equivalent to

‖h‖22 ≤ 2〈h, z〉
≤ 2 sup

‖u‖0≤2k
〈u, z〉

= 2‖h‖2 sup
‖u‖0≤2k,u∈Sp−1

〈u, z〉,

where Sp−1 is the unit sphere in Rp. Let A = Sp−1 ∩ B0(2k), then E supu∈A〈u, z〉 , w(A) is the
Gaussian width defined before. We have shown

E‖h‖2 ≤ 2w(A).

Remark 20.1. Estimators, θ̂ are typically efficiently computable for the denoising problem defined
above. Further, adaptive estimators that function in the absence of knowledge of k can be defined.

20.2 Maximum Likelihood estimator and risk upper bound

20.2.1 MLE and Basic Inequality

The maximum likelihood estimator for the denoising problem under additive Gaussian noise is given
by

θ̂MLE(y) ∈ arg min
θ̃∈B0(k)

‖y − θ̃‖22. (20.1)

We now show that ∀θ ∈ B0(k),

E‖θ̂MLE − θ‖22 . k log
(p
k

)
holds both, under expectation and with high probability. For ease of notation, we shall henceforth
refer to the ML estimator as θ̂.

We observe that the ground truth θ is a feasible solution of (20.1). Since the estimator minimizes
the `2 distance, we have

‖Z − h‖22 = ‖y − θ̂‖22 ≤ ‖y − θ‖22 = ‖Z‖22,

where h = θ̂ − θ. Thus ‖h‖0 ≤ 2k. Hence we have

‖h‖22 ≤ 2 〈h, Z〉 = 2‖h‖2
〈
Z,

h

‖h‖2

〉
≤ 2‖h‖2 sup

u∈Sp−1∩B0(2k)

〈Z, u〉

⇔ ‖h‖2 ≤ 2 sup
u∈Sp−1∩B0(2k)

〈Z, u〉 . (20.2)
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20.2.2 Risk upper bound through Gaussian width

Let G = Sp−1 ∩B0(2k). Thus, from (20.2), we have

E [‖h‖2] ≤ 2E
[

sup
u∈G
〈u, Z〉

]
= 2w(G),

where w(·) is the Gaussian width. We know that Sudakov minoration lower bounds the Gaussian
width as

w(G) & ε
√

log (N(G, ‖ · ‖2, ε)) �
√
k log

(ep
k

)
,

as long as ε � 1. The above result follows from the Gilbert-Varshamov lower bound via packing
Hamming spheres.

However we are interesting in an upper bound for the Gaussian width here. One way to obtain
this is using Dudley’s entropy integral method [Dud67],

w(G) .
∫ rad(G)

0

√
log(N(G, ‖ · ‖2, ε))dε

.
∫ 1

0

√
log

(
1

ε

)k ( p
2k

)
dε (20.3)

�
√
k log

pe

k
,

where (20.3) follows from the fact that the vectors projected onto the set of support vectors lie on
S2k−1 and the fact that there are

(
p
2k

)
possible support vector combinations.

20.2.3 Risk upper bound through covering argument

We now provide an alternate proof to show that the upper bound is held with high probability
(consequently in expectation). Let J represent a set of indices. Let us partition G as

G = ∪|J |=2kGJ = ∪|J |=2k

{
x ∈ Rp : supp(x) = J, xJ ∈ S2k−1

}
.

Hence, we have
sup
u∈G
〈u, Z〉 = max

|J |=2k
sup
u∈GJ

〈u, Z〉 = max
|J |=2k

‖ZJ‖2.

Fix an index set J such that |J | = 2k. Let U = {u1, . . . , uN} be an ε-net of GJ . Thus, the set
of vectors form a cover of a 2k dimensional sphere. Thus,

N = N(S2k−1, ‖ · ‖2, ε) ≤
(

3

ε

)2k

.

Now, ∀u ∈ GJ , ∃i ∈ [N ] such that ‖u− ui‖2 ≤ ε. Thus, ∃r ∈
√

2GJ such that u = ui + r. Thus we
have

sup
u∈GJ

〈u, Z〉 ≤ max
i∈[N ]

〈ui, Z〉+ sup
r∈
√

2GJ

〈r, Z〉 .

Now, we know that
sup

r∈
√

2GJ

〈r, Z〉 ≤
√

2ε sup
u∈GJ

〈u, Z〉 .
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Using this, we have
sup
u∈GJ

〈u, Z〉 . max
i∈[N ]

〈ui, Z〉 ,

when ε is an appropriately chosen constant. Here 〈ui, Z〉 ∼ N (0, 1) as ‖ui‖2 = 1.
Since

(
p
2k

)
choices of index sets are possible, we bound the tail probability using union bound as

P
[

sup
u∈G
〈u, Z〉 > t

]
≤
∑
|J |=2k

P

[
sup
u∈GJ

〈u, Z〉 > t

]

≤
∑
|J |=2k

∑
i∈[N ]

P [〈ui, Z〉 > t]

≤
(
p

2k

)
exp(ck)Q(t) ≤ exp

(
2k log

p

2k

)
exp(ck) exp

(
− t

2

2

)
,

where the last step follows from bounding the size of the ε-net and the Q-function. Thus, for

t �
√
k log ep

k , (scaled by an appropriately large constant), the tail probability is arbitrarily low.

Thus, with high probability,

sup
u∈G
〈u, Z〉 .

√
k log

pe

k
.

20.2.4 Risk upper bound using tail bound for χ2 distribution

As observed earlier,
sup
u∈G
〈u, Z〉 = max

|J |=2k
‖ZJ‖2.

Since Z ∼ N (0, Ip), ‖ZJ‖22 ∼ χ2
2k for a given J . We first study a few properties of the χ2 random

variable.
Let L ∼ χ2

m. Then, E [L] = m, Var(L) � m i.e.σL �
√
m.

Theorem 20.1 ([?]). If L ∼ χ2
m, then

P
[
L−m > S

√
m+ S2

]
≤ exp

(
−S2

2

)
P
[
L−m < −S

√
m
]
≤ exp

(
−S2

2

)
.

Now, applying the above concentration inequality for m = 2k, S =
√
ck log p

k , we have

P
[
‖ZJ‖22 > 2k + k

√
c log

p

k
+ ck log

p

k

]
≤ P

[
‖ZJ‖22 > k log

pe

k

]
≤ exp

(−ck log p
k

2

)
.

Thus, with high probability,

sup
u∈G
〈u, Z〉 .

√
k log

pe

k
.

121



20.3 Thresholding schemes and Risk upper bounds

20.3.1 Hard and Soft thresholding

For the denoising problem defined above, the hard thresholding estimate corresponding to the
threshold τ is given by

θ̂HT(y)i =

{
yi, if |yi| > τ

0, if |yi| ≤ τ

Similarly, the soft thresholding estimate is given by

θ̂ST(y)i =


yi − τ, if yi > τ

yi + τ, if yi < −τ
0, if |yi| ≤ τ

The HT estimate is not continuous and the corresponding risk function does not vary monotoni-
cally. On the other hand, the soft thresholding avoids both these issues.

The hard and soft thresholding estimators can alternatively be written in the form of penalized
objective functions. Consider the problem defined as follows:

θ′(y) = arg min
θ̃∈Rp

‖y − θ̃‖22 + λ‖θ̃‖0.

Then, for appropriately chosen penalty factor λ, θ′(y) = θ̂HT(y). Similarly, for the problem

θ′(y) = arg min
θ̃∈Rp

‖y − θ̃‖22 + λ‖θ̃‖1,

for appropriately chosen λ, θ′(y) = θ̂ST (y).
Note: Under such thresholding schemes, we may not necessarily obtain a k-sparse vector as we

desire. However, we shall ignore this fact as we are interested in only the risk upper bounds.

20.3.2 `∞-constrained procedure

Consider the following `∞-constrained formulation of the problem

θ̂(y) ∈ arg min
θ̃∈Rp:‖y−θ̃‖∞≤τ

‖θ̃‖0.

We observe that the hard thresholding estimate is a feasible solution to the above problem. (The set
that minimizes the above objective function is in reality a continuum of points.) The constraint of
interest is that ‖y − θ̃‖∞ ≤ τ . Thus, setting θ̃i = 0 when |yi| ≤ τ and θ̃i = yi when |yi| > τ satisfies
the constraint. Further, this estimate also minimizes the `0 norm and thus θ̂(y) is a feasible solution.

Theorem 20.2. For all θ ∈ B0(k), θ̂ a feasible solution to the above problem, for τ =
√

2 log p,
with high probability,

‖θ̂ − θ‖22 ≤ 16k log p.

Proof. We shall decompose the proof into three steps.
Step 1: Set τ to ensure feasibility of ground truth.
Since Y = θ + Z,

‖y − θ‖∞ = ‖Z‖∞ .
√

2 log p whp.
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Thus we observe that the ground truth is feasible high probability.
Step 2: Analyze structure of error.
The error is given by h = θ̂ − θ. Since θ is a feasible solution,

‖θ̂‖0 ≤ ‖θ‖0 ≤ k.

Thus, ‖h‖0 ≤ 2k.
Step 3: Bound `2 norm.

‖h‖22 ≤ ‖h‖2∞‖h‖0
≤ 2k‖θ̂ − θ‖2∞
≤ 2k(‖θ̂ − y‖∞ + ‖y − θ‖∞)2 (20.4)

≤ 8kτ2 = 16k log p,

where (20.4) follows from the triangle inequality. We note that all the above statements hold with
high probability following the statement of feasibility.

Remark 20.2. How to convert the high-probability bound in Theorem 20.2 to one in expectation,
i.e., E‖θ̂ − θ‖22 . k log p? Note that we need to account for the rare-event that that ‖Z‖∞ is large
and we hope to prove this without assuming that θ is bounded.

Similarly, consider the problem

θ̂(y) ∈ arg min
θ̃∈Rp:‖y−θ̃‖∞≤τ

‖θ̃‖1.

We observe here that for any θ̃ satisfying the constraint, ‖θ̃‖1 ≥
∑p

i=1(|y| − τ)1 {|y| > τ}. The soft
thresholding estimate satisfies the above bound and the constraint and is thus a feasible solution to
the problem.

Theorem 20.3. For all θ ∈ B0(k), θ̂ a feasible solution to the above problem, for τ =
√

2 log p,
with high probability,

‖θ̂ − θ‖22 ≤ 32k log p.

Proof. We proceed in similar fashion to the earlier proof.
Step 1: Set τ to ensure feasibility of ground truth.
Since Y = θ + Z,

‖y − θ‖∞ = ‖Z‖∞ .
√

2 log p whp.

Thus we observe that the ground truth is feasible with high probability.
Step 2: Analyze structure of error.
The error is given by h = θ̂ − θ. Thus ‖h‖∞ ≤ 2τ . Let J = supp(θ). Define the cone

CJ = {x ∈ Rp : ‖xJc‖1 ≤ ‖xJ‖1} . (20.5)

We now have

‖hJ‖1 − ‖hJc‖1 =
∑
i∈J
|θ̂i − θi| −

∑
i∈Jc
|θ̂i| ≥ ‖θ‖1 − ‖θ̂‖1 ≥ 0,

which follows from the triangle inequality and the feasibility of θ. Thus h ∈ CJ .
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Step 3: Bound `2 norm.

‖h‖22 ≤ ‖h‖1‖h‖∞ (20.6)

≤ 4τ‖hJ‖1
≤ 4τ

√
k‖hJ‖2 (20.7)

≤ 4τ
√
k‖h‖2

⇔ ‖h‖22 ≤ 32k log p,

where (20.6) and (20.7) follow from Holder’s inequality and Cauchy-Schwarz inequality respectively.

Remark 20.3 (Approximate Sparsity). Let J be a set of indices of size k. Let h ∈ CJ =
{x ∈ Rp : ‖xJc‖1 ≤ ‖xJ‖1}. Consider the set of k largest elements in hJc indexed by the set K.
Then,

‖h(J∪K)c‖22 ≥
1

2
‖h‖22.

Proof. For every element, we have

|h(i)
Jc | ≤

1

i
‖hJc‖1.

Thus,

‖hJc‖22 ≤
p−k∑
i=k+1

|h(i)
Jc |

2 ≤
p−k∑
i=k+1

1

i2
‖hJc‖21

≤ 1

k
k‖hJc‖22 ≤ ‖hJ∪K‖22,

which follows from Cauchy-Schwarz inequality and the fact that h ∈ CJ .

Remark 20.4. 1. When the vector is sufficiently sparse, specifically k = o(p),

R∗ ≤ (2 + o(1))k log
p

k
.

Further, the bound can be achieved in the adaptive case too.

2. If k = Θ(p), i.e, k
p → α ∈ (0, 1] as p→∞, then,

R∗ = p (β(α) + o(1)) ,

where β(α) is a constant dependent on α.
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§ 21. Minimax rates for sparse linear regression

In the last lecture we analyzed the k-sparse Gaussian location model in high dimension (the denoising
problem) and proved minimax rate for estimating the location parameter. In this lecture we extend
the earlier ideas to sparse linear regression in high dimension. We prove a minimax lower bound
and then obtain upper bounds on the risk of a few procedures.

21.1 Problem setup: Sparse linear regression

The sparse linear regression model is

Yn×1 = Xn×pθp×1 + Z, Z ∼ N (0, In), (21.1)

where X ∈ Rn×p is the design matrix and θ ∈ Rp is an unknown k-sparse parameter vector. In
this lecture we are concerned with the case when n << p but n ≥ k, i.e., we have more predictors
in the design matrix than we have samples.

Interpretation: Y is a noisy linear combination of the columns of the design matrix X. The goal
here is to estimate θ, given Y and X. Note that the system has more unknowns than the number of
equations and hence is indeterminate even without the noise. Estimation is made possible due to
the k-sparsity structure.
Note: We consider here random design matrices only. More precisely we have

Xij
i.i.d∼ N (0, 1/n),

so that the columns have roughly unit norm.
The next theorem proves a lower bound on the minimax risk for estimating θ in the k-sparse

regression model.

Theorem 21.1. The minimax risk for estimating θ in the model defined by Equation (21.1) is
lower bounded by

R∗ = R∗(p, k, n) = inf
θ̂

sup
‖θ‖0≤k

Eθ‖θ̂ − θ‖22 & k log
ep

k
, ∀n.

Proof. Note that (Xi, Yi)’s are i.i.d sampled from a distribution Pθ. We show that the KL-diameter
for two different θ is exactly same as that in p-dimensional gaussian location model, i.e.,

D(Pθ0‖Pθ1) =
1

2
‖θ0 − θ1‖2.

We derive the result as follows,
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D(PXi,Yi|θ0‖PXi,Yi|θ1) = EXi [D(PYi|Xi,θ0‖PYi|Xi,θ1)]

= EXi [D(N (〈Xi, θ0〉 , 1)‖N (〈Xi, θ1〉 , 1))]

= EXi [
1

2
〈Xi, θ0 − θ1〉2]

=
1

2
EXi [(θ0 − θ1)′X ′iXi(θ0 − θ1)]

=
1

2
(θ0 − θ1)′E[X ′iXi](θ0 − θ1)

=
1

2n
‖θ0 − θ1‖2.

Hence,

D(Pθ0‖Pθ1) = D(P⊗nXi,Yi|θ0‖P
⊗n
Xi,Yi|θ1) =

1

2
‖θ0 − θ1‖2.

The result then follows from the analysis of denoising (regression with identity design) from previous
lecture.

From the previous discussion we have, R∗ & k log ep
k for any n, which is identical to the minimax

rate of the denoising problem for any n. This is reasonable, because even with full observation
n & p, which roughly corresponds to the denoising problem we cannot beat this rate. Surprisingly,
as long as n & k log ep

k , the denoising rate is attainable and we have R∗ � k log ep
k , achieved by, e.g.,

the maximum likelihood estimator. This is proved in Section 21.2.
Note that MLE is computationally expensive. A computable alternative procedure is the Dantzig

selector [CT07]. As analyzed in Section 21.3 It is guaranteed to achieve the rate R∗ . k log p as
long as n ≥ k log ep

k . This falls slightly sort of the optimal rate. However unlike MLE, the procedure
is completely adaptive and can be cast as a linear programming problem. More recently a procedure
called SLOPE [SC15] has been proposed which achieves the optimal rate. In particular its risk
coincides with the minimax rate with sharp constant, namely, R∗ ≤ (2 + o(1))k log ep

k as p → ∞
and k = o(p), provided that n & k log ep

k .

21.2 Analysis of MLE

The MLE in this case is defined to be any solution (may or may not be unique) to the constrained
least-square, which is a combinatorial optimization problem:

θ̂MLE ∈ arg min
‖θ‖0≤k

‖Y −Xθ‖22. (21.2)

Unfortunately the optimization problem is NP-hard in the worst case and we only know how to
solve it through exhaustive search.

Theorem 21.2. Whenever n ≥ Ck log ep
k for some sufficiently large constant C, ∀θ ∈ B0(k).

‖θ̂MLE − θ‖22 . k log
ep

k
, (21.3)

‖X(θ̂MLE − θ)‖22 . k log
ep

k
, (21.4)

hold with high probability.
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Proof. Since θ̂ is a minimizer, we have

‖Y −Xθ̂‖22 ≤ ‖Y −Xθ‖22 = ‖Z‖22.

On the left hand side we have,

‖Y −Xθ̂‖22 = ‖Y −Xθ +Xθ −Xθ̂‖22 = ‖Z −Xh‖22,

where h = θ̂ − θ. Hence we have,
‖Z −Xh‖22 ≤ ‖Z‖22,

which leads to the basic inequality

‖Xh‖22 ≤ 2 〈Z,Xh〉
= 2Z ′Xh

≤ 2‖h‖2 sup
u∈Sp−1∩B0(2k)

Z ′Xu.

[TODO: alternatively, we can do

‖Xh‖22 ≤ 2 〈Z,Xh〉 = 2‖Xh‖2
〈
Z,

Xh

‖Xh‖2

〉
≤ 2‖Xh‖2 sup

v∈Sp−1∩XB0(2k)

Z ′v.

and hope to use union bound and metric entropy to show the supremum is also
√

log
(
p
k

)
. Then we get

‖Xh‖22 . k log ep
k without assumption on X. ]

Note that the left hand side is not the estimation error, instead it is the prediction error
‖Xh‖22 = ‖Xθ̂−Xθ‖22. Hence to conclude both (21.3) and (21.4) from the basic inequality, it suffices
to show

(a) ‖h‖2 . ‖Xh‖2, (Restricted isometry property)

(b) supu∈Sp−1∩B0(2k) Z
′Xu .

√
k log ep

k , with high probability.

We first prove (b).

sup
u∈Sp−1∩B0(2k)

Z ′xu = ‖Z‖w(G) .

√
k log

ep

k
,

where w(G) is the Gaussian width of the set Sp−1 ∩ B0(2k) and from last lecture we know,

w(G) .
√
k log ep

k .

For (a) we will show that

inf
‖h‖0≤k

‖Xh‖2
‖h‖2

& c if n & k log
ep

k
,

where c is a constant. First note that,

inf
u6=0

‖Au‖2
‖u‖2

= σmin(A).

For any feasible h, Xh = XJhJ , where J = supp(h) is the support of h and XJ is the n× k matrix
whose columns are the columns of X that corresponds to the rows in the support J . Then we have

inf
‖h‖0≤k

‖Xh‖2
‖h‖2

= min
|J |≤k

σmin(XJ).
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For a fixed J , σmin(XJ) concentrates to 1−
√

k
n . Hence an union bound gives,

P
[

min
|J |≤k

σmin(XJ) < t

]
≤
(
p

k

)
P[σmin(X[k]) < t].

Using the tail bound

P

[
σmin(X[k]) < 1−

√
k

n
− t√

n

]
≤ exp(−t2/2),

and choosing t = 4k log ep
k and n = 100k log ep

k , we have 1 −
√

k
n −

t√
n
≥ 0.5 and consequently,

P[min|J |≤k σmin(XJ) < 0.5]→ 0. This completes the proof.

21.3 Dantzig selector

The Dantzig selector can written as the following optimization problem,

min ‖θ‖1, s.t ‖X ′(Y −Xθ)‖∞ ≤ τ. (21.5)

This optimization problem can be efficiently solved as a linear programming. Another computable
procedure for k-sparse regression is the LASSO, which can be written as the following optimization
problem

min ‖Y −Xθ‖22 + λ‖θ‖1, θ ∈ Rn. (21.6)

Note that one of the reasons X ′ is added to the constraint in the Dantzig selector in (21.7) is to
make the solution rotation-invariant. Precisely, if U ∈ O(n) be an n× n orthogonal rotation matrix,
then UY = UXθ + UZ. Note that in this case, θ̂(X,Y ) = θ̂(UX,UY ).

Theorem 21.3. Let the Dantzig selector θ̂DS denote a minimizer of (21.7). As long as n ≥ Ck log ep
k

for some sufficiently large constant C, for any θ ∈ B0(k),

‖θ̂DS − θ‖22 . k log p, (21.7)

‖X(θ̂DS − θ)‖22 . k log p, (21.8)

hold with high probability.

Proof. Paralleling that of Theorem 20.3 for the denoising problem, the proof is divided in three
steps.

Step 1: Set τ to guarantee the ground truth is feasible. We choose

‖X ′Z‖∞ ≤ τ =
√

2 log p,

so that θ is feasible.
Step 2: Structure of the error h = θ̂ − θ. This step is identical to the proof of Theorem 20.3

because the objective function is the same (`1 norm). Let J be the support of θ. Recall the cone
(20.5), that is,

CJ , {h : ‖hJc‖1 ≤ ‖hJ‖1}. (21.9)

Since ‖θ̂‖1 ≤ ‖θ‖1, we have h ∈ CJ . Furthermore, we have

‖X ′Xh‖∞ ≤ 2τ
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Indeed, due to feasility of θ and θDS,

‖X ′Xh‖∞ = ‖X ′X(θ̂ − θ)‖∞
= ‖X ′(Y −Xθ)−X ′(Y −Xθ̂)‖∞
≤ ‖X ′(Y −Xθ)‖∞ + ‖X ′(Y −Xθ̂)‖∞
≤ 2τ.

Step 3: Bound The risk. We have,

‖Xh‖22 = 〈Xh,Xh〉
= h′X ′Xh

=
〈
X ′Xh, h

〉
≤ ‖X ′Xh‖∞‖h‖1 (Hölder)

≤ 2τ2‖hJ‖1
≤ 4
√
kτ‖hJ‖2 (Cauchy-Schwartz)

≤ 4
√
kτ‖h‖2.

Now we need to show one last thing to complete the proof, which play the same role of RIP in the
analysis of MLE in Theorem 21.2:

‖h‖22 . ‖Xh‖22 w.h.p ∀h ∈ CJ , (21.10)

which shows that X preserves the distance on the cone CJ (instead of all sparse vectors). To prove
(21.10) we use the special feature of the cone CJ defined in (21.9), that for any h ∈ CJ , half of the
energy of h is on 2k coordinates, i.e. h is almost 2k-sparse.

For notational simplcity, suppose the entries h are ordered in decreasing magnitudes: Let
J = supp(θ) and hJ corresponds to the first k coordinates. We divide the remaining h after first
block into blocks of size k and name the blocks K1,K2, . . . and the vectors h1, h2, . . ., such that
hKi = hi.

Let a = hJ∪K1 = hJ + h1. By construction, it has more than 1/2 of the energy, i.e.,

‖a‖22 ≥
1

2
‖h‖22

and define,

b , h(J∪K1)c =
∑
i≥2

hi.

Then

‖Xh‖22 = ‖Xa+Xb‖22
≥ ‖Xa‖22 + 2 〈Xa,Xb〉 (21.11)

Since X satisfies the restricted isometry property, for n ≥ ck log ep
k , there exists c1(c) with c1 → 1 if

c→∞, such that

‖Xa‖22 ≥ c1‖a‖22 ≥
c1

2
‖h‖22.

Now we need to just show that the cross term 〈Xa,Xb〉 is small in magnitude. For this we use the
following restricted decorrelation lemma,
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Lemma 21.1. Let n ≥ ck log ep
k . Then, with high probability, for all u, v ∈ B0(2k) we have,

| 〈Xa,Xb〉 | ≤ c2‖u‖‖v‖,

where c2 = c2(c) and c2 → 0 if c→∞.

Then we have,

〈Xa,Xb〉 =
∑
j≥2

〈Xa,Xhj〉

≤
∑
j≥2

〈Xa, hXj〉

≤
∑
j≥2

‖a‖2‖hj‖2 (Lemma 21.1)

≤ c2‖h‖2
∑
j≥2

√
k‖hj‖∞

≤ c2‖h‖2
∑
j≥2

√
k
‖hj−1‖1

k
(By ordering)

≤ c2√
k
‖h‖2(

∑
j≥2

‖hj−1‖1)

≤ c2√
k
‖h‖2‖hJc‖1 (Property of cone)

≤ c2√
k
‖h‖2‖hJ‖1

≤ c2√
k
‖h‖22.

Reverting back to (21.11) we have,

‖Xh‖22 ≥ (c1/2− c2)‖h‖22 & ‖h‖22.

This completes the proof.

Remark 21.1 (Adaptivity issues). Note that the Dantzig selector procedure is adaptive to k, but
not to σ. To see this consider the following high dimensional k-sparse regression problem,

Y = Xθ + Z, Z ∼ N (0, σ2In).

If σ is known then we can set τ = σ
√

2 log p, but typically σ is not known.
A similar problem arises with LASSO as well. In (21.6), if σ is known then the optimal

λ = 2σ
√

log p, but if σ is unknown then λ is a tuning parameter. As a remedy for this another
procedure called square root LASSO was proposed which can be written as the following optimization
problem,

min ‖Y −Xθ‖2 + λ‖θ‖1, θ ∈ Rn.

The optimal λ =
√

log p even when σ is unknown. However the downside is that this optimization
problem is not easy to solve.
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Part V

Functional estimation and composite
hypothesis testing
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§ 22. Functional estimation & testing

In this chapter, we will be interested in analyzing the sample complexity and minimax rates for
the functional estimation problem introduced earlier. We will also consider the hypothesis testing
paradigm so that we can utilize important tools such as LeCam’s method for proving bounds and
analyzing the minimax rate.

Formally, the setting is as follows: Assume that θ is an unknown parameter in the parameter
space Θ and θ generates the data X according to the distribution Pθ. For a fixed real valued
functional T on θ, i.e, T : Θ → R, we wish to estimate T based on the observations through the
estimator T̂ (X).

In the estimation paradigm, the setting can be pictorially represented as follows:

θ X

T = T (θ) T̂ (X)

Pθ

In the hypothesis testing paradigm, we are interested in determining the class of parameters
that gave rise to the observations. Formally, given t0, t1 ∈ R, the problem is formulated as:

H0 : T ≤ t0,
H1 : T ≥ t1.

Equivalently, we can also think of the above hypothesis testing as a composite hypothesis testing of
θ as follows:

H0 : θ ∈ Θ0 = {θ : T (θ) ≤ t0},
H1 : θ ∈ Θ1 = {θ : T (θ) ≥ t1}.

Example 22.1. Consider the Gaussian location model X ∼ N (θ, Ip) , θ ∈ Rp. Let T : Rp → R be
given by T (θ) = ‖θ‖. A possible test would be determining if ‖θ‖ is too small or too large given
some thresholds. Specifically,

H0 : ‖θ‖ ≤ 1,

H1 : ‖θ‖ ≥ 3.

22.1 Lower bounds on minimax risk for functional estimation

Since T takes only real values where as Θ can be arbitrary high dimensional space, such as Euclidean
space Rp, T can be thought of as a low dimensional representation of the parameter space Θ. Thus
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H0

H1

Figure 22.1: ‖θ‖ ≤ 1 vs. ‖θ‖ ≥ 3.

it suggests if we can employ techniques such as LeCam’s two-point argument to prove lower bounds
on the minimax risk estimation of T (θ).

To this end, recall the LeCam’s two-point method discussed in Lecture 9. The key idea in the
two-point argument is the fact that if we can estimate a parameter, we can also test it efficiently.
We reduced the task of estimation to that of the binary hypothesis testing, i.e, for fixed θ0, θ1 ∈ Θ,

H0 : θ = θ0,

H1 : θ = θ1

to derive lower bounds on the minimax risk R∗ (under quadratic loss). In particular, we showed that

R∗ = inf
θ̂

sup
θ∈Θ

Eθ
[
(θ − θ̂)2

]
& sup

θ0 6=θ1
‖θ0 − θ1‖2 (1− dTV (Pθ0 , Pθ1)) .

In a similar vein, we can consider the following binary hypothesis testing for T (for some
t0, t1 ∈ R)

H0 : T ≤ t0, (22.1)

H1 : T ≥ t1

to obtain a lower bound on the minimax risk for estimation of T . Specifically, if π0 ∈M(Θ0), π1 ∈
M(Θ1) are any two priors on Θ0 and Θ1 respectively, we obtain

R∗ = inf
θ̂

sup
θ∈Θ

Eθ
[
(T (θ)− T̂ (X))2

]
& (t0 − t1)2 (1− dTV (Pπ0 , Pπ1)) . (22.2)

Thus our task reduces to finding two priors π0, π1 so that the lower bound in (22.2) would be
maximized, or roughly speaking, we want to pick two priors that would ensure maximum confusion
in testing of the two hypothesis.

Now we study a closely related concept of sample complexity for the analysis of the same.

22.2 Estimation of ‖θ‖ in GLM

Our aim is to prove that for the p-dimensional GLM where the data X ∼ N (θ, 1
nIp), θ ∈ Rp, the

minimax risk R∗ for the estimation of T (θ) = ‖θ‖ obeys R∗ �
√
p
n .

First we give a preview of this result and other estimation tasks in terms of a closely related
concept: sample complexity. The proofs of these results is similar to that of those concerning
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average and minimax risk. Recall from Lecture 3, where we defined the sample complexity to be the
minimum number of samples required to achieve a prescribed estimation error, either in expectation
or in probability with high confidence.

Estimation tasks Sample complexity

T (θ) = θ n∗ � p
T (θ) = θ1 n∗ � 1

T (θ) = θmax n∗ � log p

T (θ) = ‖θ‖2 n∗ � √p

One important observation is the fact that to estimate ‖θ‖2, one can employ a plug-in estimator
where we first estimate θ and then compute ‖θ‖2. However, this naive procedure requires as many
samples as that are required to estimate θ. Instead, we can perform much better by using only

√
p

samples to estimate ‖θ‖2.
Instead of the setting in (22.1), where both the hypotheses are composite, we consider a simplified

testing scenario where only one of the hypotheses is composite and hence more tractable.

H0 : θ = 0,

H1 : ‖θ‖2 ≥ ρ

Pictorially,

H0

H1

Figure 22.2: θ = 0 vs. ‖θ‖ ≥ ρ.

We can further simplify this to the observation of one sample case making use of the fact that,
to incur a minimum probability of error (say 0.01), max ρ for n-sample GLM =max ρ for 1 sample GLM√

n
.

Thus our model reduces to

X ∼ N (θ, Ip), θ ∈ Rp.

22.2.1 Draw backs of two-point argument

A naive application of LeCam’s two-point argument for the estimation of ‖θ‖ through the binary
hypothesis testing of H0 : θ = θ0 vs. H1 : θ = θ1 would yield

R∗ & (‖θ0‖ − ‖θ1‖)2 (1− dTV (N (θ0, Ip),N (θ1, Ip)))

= 2 (‖θ0‖ − ‖θ1‖)2Q

(
‖θ0 − θ1‖

2

)
.
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Since ‖θ0‖−‖θ1‖ ≤ ‖θ0−θ1‖ by triangle inequality and sup ‖θ0 − θ1‖2Q
(
‖θ0−θ1‖2

2

)
� 1, we see that

this approach does not yield any useful lower bound. Thus we lose the much needed dependence of
the minimax risk R∗ on the dimension of our data, p.

Forgoing the two-point approach wherein we assume uniform distribution on two fixed parameters
θ0, θ1, we want to choose a prior π supported on {θ : ‖θ‖2 ≥ t} such that the total variation distance
dTV (P0, Pπ) is bounded away from 1. In other words, we want to choose a prior π so that Pπ
closely resembles P0 in the sense that the probability of error for testing is bounded away from 0.
Note that Pπ denotes the distribution on the data X which is given by Pπ = π ∗ N (0, Ip) whereas
P0 = N (0, Ip).

Recall from Lecture 5, the following chain of inequalities for KL divergence, χ2 distance and
total variation obtained using the concept of joint range. We have

χ2(P‖Q) ≥ log
(
χ2(P‖Q) + 1

)
≥ D(P‖Q) ≥ dTV(P,Q) log

1 + dTV(P,Q)

1− dTV(P,Q)

for any two distributions P,Q. This relation suggests that a sufficient condition to ensure dTV (P0, Pπ)
to be bounded away from 1, or equivalently 1− dTV (P0, Pπ) & 0, is to make χ2(P0, Pπ) . 1. In this
regard, we need the following lemma which gives an alternative characterization of χ2-distance.

Lemma 22.1 (Ingster-Suslina method). Let Θ be a parameter space and for each θ ∈ Θ, let Pθ be a
family of probability distributions on a measure space X and let Q also be a distribution on X . Then

χ2(Pπ‖Q) = E[G(θ, θ̃)]− 1,

where θ, θ̃
i.i.d.∼ π, G(θ, θ̃) =

∫ PθPθ̃
Q and Pπ =

∫
Pθπ(dθ) is the mixture.

Proof. For any two distributions P and Q, we have

χ2(P‖Q) =

∫
(P −Q)2

Q
= VarQ

(
P

Q

)
= EQ

(
P

Q

)2

− 1 =

∫
P 2

Q
− 1.

Thus, χ2 (Pπ‖Q) =
∫ P 2

π
Q − 1 and

∫
P 2
π

Q
=

∫
PπPπ
Q

=

∫ ∫
Pθ(x)π(dθ)

∫
Pθ̃(x)π(dθ̃)

Q(x)
µ(dx)

Fubini
=

∫ ∫
π(dθ)π(dθ̃)

∫
PθPθ̃
Q

µ(dx)

= E[G(θ, θ̃)].

In the case of GLM, E[G(θ, θ̃)] can be computed explicitly and hence we obtain the following
corollary.

Corollary 22.1. For Pθ = N (θ, Ip) and Q = N (0, Ip), then

χ2(Eθ∼π[N (θ, Ip)]‖N (θ, Ip)) = E[exp〈θ, θ̃〉]− 1.
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Proof. Since Pθ = N (θ, Ip), we have

G(θ, θ̃) =

∫ 1
(2π)p/2

exp
(
−‖x−θ‖2

2

)
1

(2π)p/2
exp

(
−‖x−θ̃‖2

2

)
1

(2π)p/2
exp

(
−‖x‖2

2

)
=

∫
1

(2π)p/2
exp

(
−1

2

(
‖x− θ‖2 + ‖x− θ̃‖2 − ‖x‖2

))
=

∫
1

(2π)p/2
exp

(
−1

2

(
‖x‖2 − 2〈x, θ + θ̃〉+ ‖θ + θ̃‖2 − 2〈θ, θ̃〉

))
= exp(〈θ, θ̃〉)

∫
1

(2π)p/2
exp

(
−‖x− θ − θ̃‖

2

2

)
= exp(〈θ, θ̃〉).

Example 22.2 (Gaussian mixtures). Consider the symmetric two-component Gaussian distribution
1
2N(−θ, 1) + 1

2N(θ, 1), where θ ≥ 0. Next we show that

D

(
1

2
N(−θ, 1) +

1

2
N(θ, 1)

∥∥∥N(0, 1)

)
= O(θ4), θ → 0 (22.3)

This should be contrasted with the behavior usual Gaussian mean model D(N(θ, 1)‖N(0, 1)) = Θ(θ2).
We see that by symmetrization, the distribution now is significantly closer to the standard normal
(indeed, the mean is zero now). In fact, θ now is much more difficult to estimate in the sense that,
with n independent samples, the minimax quadratic risk scales as Θ(n−1/2), much slower than the
usual parametric rate Θ(n−1):

� The lower bound simply follows from Le Cam’s two-point argument in conjunction with the
observation (22.3).

� To show the upper bound, with n independent samples X1, . . . , Xn, first estimate θ2 by

θ̂2 = 1/n
∑

i(X
2
i −1). Then instead of directly taking the square root, compute θ̂ =

√
θ̂2 + 1/n

to improve stability.

To show (22.3), we bound KL by χ2 from above and invoke Corollary 22.1:

χ2

(
1

2
N(−θ, 1) +

1

2
N(θ, 1)

∥∥∥N(0, 1)

)
= E exp(XX̃)− 1 = E exp(θ2B)− 1 = cosh(θ2)− 1 = Θ(θ4),

where X, X̃
i.i.d.∼ ± θ equally likely and B is Rademacher.
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§ 23. Functional Estimation: LeCam’s Method, Risk Upper Bound

In the previous lecture we considered the problem of functional estimation and the idea of using
LeCam’s method by averaging over multiple points to obtain better estimates of the lower bound
for minimax risk. In this lecture, we first use LeCam’s method to obtain the lower bound and later
describe an estimator obtain the matching upper bound for the minimax risk for the estimation of
the `2-norm of GLM.

Consider the p-dimensional GLM. Let θ ∈ Θ = Rp and X ∼ N (θ, 1
nIp). Let T (θ) = ‖θ‖2. Then,

R∗(Θ) = inf
T̂

sup
θ∈Rp

Eθ[(T̂ − T )2] �
√
p

n
.

Owing to the scaling property, it suffices to prove the result for the 1-sample GLM.

23.1 LeCam’s Method Lower Bound

In order to employ LeCam’s method, consider the binary detection problem defined by{
H0 : θ = 0

H1 : ‖θ‖2 ≥ ρ
.

Let π(·) be a distribution on {θ : ‖θ‖2 ≥ ρ}, P0 = N (0, Ip) and

Pπ =

∫
N (θ, Ip)π(dθ).

Then by LeCam’s method we saw in the previous lecture that

R∗ ≥ ρ2 (1− dTV(P0, Pπ)) & ρ2,

when 1− dTV(P0, Pπ) & 0. From the bounds on the total variational distance, we know that the
above condition is satisfied when χ2(Pπ, P0) . 1, i.e., the χ2 distance is bounded.

From the Ingster-Suslina method, we know that

χ2(Pπ, P0) = E
[
G(θ, θ̃)

]
− 1,

where θ, θ̃
i.i.d∼ π and

G(θ, θ̃) =

∫
Pθ(dx)Pθ̃(dx)

P0(dx)
.

For the GLM,

G(θ, θ̃) = exp
(〈
θ, θ̃
〉)

.

Remark 23.1. As an aside, we note that

E
[
exp

(〈
θ, θ̃
〉)]
≥ exp

(
E
[〈
θ, θ̃
〉])

= exp
(〈

Eθ,Eθ̃
〉)

= exp
(
‖Eθ‖22

)
> 1.

We now consider three priors and bound the χ2 distance in each case.
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23.1.1 Uniform distribution on sphere

Let θ, θ̃
i.i.d∼ Unif(ρSp−1). Let θ = ρu, θ̃ = ρũ where ‖u‖22 = ‖ũ‖22 = 1. Hence,

E
[
exp

(〈
θ, θ̃
〉)]

= E
[
exp

(
ρ2 〈u, ũ〉

)]
.

We now exploit the fact that the inner product of directions in high dimensions is small. Let

u = Z
‖Z‖2 , ũ = Z̃

‖Z̃‖2
, where Z, Z̃

i.i.d∼ N (0, Ip) and let ρ2 = c
√
p. Then,

E
[
exp

(〈
θ, θ̃
〉)]

= E

exp

c√p
〈
Z, Z̃

〉
‖Z‖2‖Z̃‖2

 = E [exp (cY )] ,

where

Y =

√
p
〈
Z, Z̃

〉
‖Z‖2‖Z̃‖2

.

Now, by the Central Limit Theorem and the fact that ‖Z‖2 = OP (
√
p),〈

Z, Z̃
〉

√
p

D→ N (0, 1),
‖Z‖2√
p

P→ 1,
‖Z̃‖2√
p

P→ 1.

Thus, from Slutsky’s theorem, Y
D→ N (0, 1). But we are interested in the convergence of the MGF

of Y . Here is a useful result:

Lemma 23.1 ([Koz47, Theorem 1]). Let Xn
D−→X. Define

M(x) , sup
n

P [|Xn| ≥ x] . (23.1)

If M(x) satisfies
lim
x→∞

M(x)e|t|x = 0 (23.2)

for all |t| ≤ α for some α > 0. Then for all |t| ≤ α, the moment generating functions ϕn(t) =
E [exp(tXn)] and ϕ(t) = E [exp(tX)] are finite. Moreover, ϕn(t)→ ϕ(t) as n→∞.

Here, we have Y ∈ [−√p,√p]. Thus, by Hoeffding’s inequality the tail of Y is exponentially
bounded. Thus, the MGF of Y converges to the MGF of N (0, 1) which is given by

E [exp (sX)] = exp

(
1

2
s2

)
, when X ∼ N (0, 1).

Thus 1− dTV(P0, Pπ) & 0 and R∗ &
√
p.

23.1.2 Uniform distribution on hypercube

Let ρ = cp
1
4 and θ, θ̃

i.i.d∼ Unif
(
cp−

1
4 {±1}p

)
.

E
[
exp

(〈
θ, θ̃
〉)]

= E
[
exp

(
c2

√
p

〈
W, W̃

〉)]
= E

[
exp

(
c2

√
p
Gp

)]
,

138



where Gp =
〈
W, W̃

〉
=
∑p

i=1WiW̃i. Now,

E
[
exp

(
WiW̃i

)]
=

1

2

(
exp

(
c2

√
p

)
+ exp

(
− c2

√
p

))
.

Using Taylor’s expansion, we have

exp(x) + exp(−x)

2
= 1 +

x2

2!
+
x4

4!
+ · · · ≤

∑
n

(x2)n

n!
= exp(x2).

Thus we have

E
[
exp

(〈
θ, θ̃
〉)]

=

(
1

2

(
exp

(
c2

√
p

)
+ exp

(
− c2

√
p

)))p
≤ exp(c4).

This consequently implies that for a sufficiently small constant, the χ2 distance is small as well.
Thus, 1− dTV(P0, Pπ) & 0 and R∗ &

√
p.

23.1.3 Uniform prior on sparse vectors

Let us consider the binary hypothesis test given by{
H0 : θ = 0

H1 : ‖θ‖2 ≥ ρ, θ ∈ Rp+
.

Now, the priors considered earlier can’t be used. In this context, we shall use sparse vectors and a
uniform prior to bound the χ2 distance.

Consider the set of k-sparse vectors and let θ, θ̃
i.i.d∼ Unif{θ ∈ {0, ε}p : |supp(θ)| = k}. Let

I = supp(θ), Ĩ = supp(θ̃). Let ρ = cp
1
4 . Then

‖θ‖2 = ε
√
k = ρ = cp

1
4 .

Let k =
√
p. Then ε = c. Then

E
[
exp

(〈
θ, θ̃
〉)]

= E
[
exp

(
c2
〈
1I , 1Ĩ

〉)]
= E

[
exp

(
c2|supp(I ∩ Ĩ|

)]
.

Owing to the symmetry of the problem, it suffices to fix I to be {1, . . . , k} and consider the
expectation with respect to the uniform distribution on Ĩ. Thus B = |supp(I ∩ Ĩ)| is distributed as
Hypergeometric(p,

√
p,
√
p).

Theorem 23.1 ([Hoe63, Theorem 4]). Let the population C = {c1, . . . , cN}. Let X1, . . . , Xn

denote a random sample without replacement from C and Y1, . . . , Yn denote a random sample with
replacement. Let f(·) be a continuous and convex function. Then,

E

[
f

(
n∑
i=1

Xi

)]
≤ E

[
f

(
n∑
i=1

Yi

)]
.

As a corollary of the above theorem, we have
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Corollary 23.1. Let B ∼ Hypergeometric(p,
√
p,
√
p) and B̃ ∼ Binom(

√
p, 1√

p). Then,

E [exp (sB)] ≤ E[exp(sB̃)] =

(
1− 1
√
p

+
1
√
p

exp(s)

)√p
.

Thus, we have,

E[exp(〈θ, θ̃〉)] ≤
(

1 +
1
√
p

(
exp(c2)− 1

))√p
≤ exp

(
exp

(
c2
)
− 1
)
.

Hence for a sufficiently small c, we see that the TV distance is bounded away from 1 and thus
R∗ &

√
p.

23.2 Risk Upper Bound

Having obtained the risk lower bound using LeCam’s method, we now seek an estimator that
achieves the matching upper bound on the risk. That is, given X ∼ N (0, Ip), we seek to obtain an
estimator T̂ = T̂ (X) of T = ‖θ‖2, such that

sup
θ∈Rp

Eθ
[(
T̂ − T

)2
]
.
√
p.

We shall first consider the plug-in estimator T̂ = ‖X‖2. Here we note from the triangle inequality
that

|T̂ − T | = |‖X‖2 − ‖θ‖2| ≤ ‖Z‖2 = OP (
√
p).

Consequently, Eθ[(T̂ − T )2] . p. However, we can verify that this bound is tight - consider the case
where θ = 0. This increased risk can be attributed to the presence of a bias in the estimator. That
is, we have

Eθ
[
‖X‖22

]
= Eθ

[
‖Z + θ‖22

]
= Eθ

[
‖Z‖22

]
+ ‖θ‖22 + Eθ [2 〈Z, θ〉] = p+ ‖θ‖22.

In order to negate this bias, define the estimator T̂ =
√(
‖X‖22 − p

)
+

, where (x)+ = max(x, 0).

We shall split the analysis of risk of the estimator into two cases.
Case 1: ‖θ‖2 ≤ p

1
4

Here we have

Rθ = Eθ
[(
T̂ − ‖θ‖2

)2
]
≤ 2Eθ

[
T̂ 2
]

+ 2‖θ‖22 ≤ 2E [|S|] +O(
√
p),

where S = ‖X‖22 − p. We now note that

Eθ
[∣∣‖X‖22 − p∣∣] ≤ ‖θ‖22 + 2Eθ [| 〈θ, Z〉 |] + Eθ

[∣∣‖Z‖22 − p∣∣] = OP (
√
p),

owing to the Central Limit Theorem and the fact that ‖θ‖22 ≤
√
p. Using this, we have Rθ .

√
p,∀‖θ‖2 ≤ p

1
4 .

Case 2: ‖θ‖2 ≥ p
1
4

In this case, let us rewrite the estimation error as follows

T̂ − T =
√
S+ − ‖θ‖2 =

S+ − ‖θ‖22√
S+ + ‖θ‖2

.
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Thus, we have

|T̂ − T | ≤
|
(
‖X‖22 − p

)
+
− ‖θ‖22|

‖θ‖2
≤ |‖X‖

2
2 − p− ‖θ‖22|
‖θ‖2

=
|‖Z‖22 + ‖θ‖22 + 2 〈θ, Z〉 − p− ‖θ‖22|

‖θ‖2

≤ |‖Z‖
2
2 − p|
‖θ‖2

+
|2 〈θ, Z〉 |
‖θ‖2

,

where the last step follows from the triangle inequality. Further, we have

|‖Z‖22 − p| = OP (
√
p)

and
|2 〈θ, Z〉 |
‖θ‖2

= |2
〈

θ

‖θ‖2
, Z

〉
| = OP (1),

as
〈

θ
‖θ‖2 , Z

〉
∼ N (0, 1). Thus, using the fact that ‖θ‖2 ≥ p

1
4 , we have

|T̂ − T | . p
1
4 ⇔ Rθ .

√
p.

Thus, summarizing the two cases, we observe that

sup
θ∈Rp

Eθ[(T̂ − T )2] .
√
p

and thus R∗ � √p.

Example 23.1 (Covariance model and independence testing). Let X1, . . . , Xn
i.i.d∼ N (0,Σ) where

Σ is a p× p-dimension Covariance matrix which is to be estimated. Under this model,

� estimating Σ with l(Σ̂,Σ) = ‖Σ̂− Σ‖op needs Θ(
√
p) samples;

� estimating T (Σ) = ‖Σ‖op with l(T̂ , T ) = (T̂ − T )2 also needs Θ(
√
p) samples.

Example 23.2 (Looseness of χ2-method and sharp constant by truncated χ2). Let X ∼ N (θ, Ip)

and T = T (θ) = θmax , maxi∈[p] θi. Let l(T̂ , T ) =
(
T̂ − T

)2
. Then,

R∗ = inf
T̂

sup
θ∈Rp

Eθ
[(
T̂ − T

)2
]

=
1

2
(1 + o(1)) log p, as p→∞.

The results of the above examples are proved in the next lecture.
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§ 24. Functional estimation and testing

Outline:

� GLM: estimating θmax. More careful application of χ2-method yields the sharp constant.

� Covariance matrix (independence testing): estimating a scalar functional can require as many
samples needed as estimating the whole parameter.

� Uniformity testing: Is lottery fair?

24.1 GLM: estimating θmax

The model of the observations are the same as before: X = θ + Z where Z ∼ N(0, Ip). We want to
estimate the magnitude of θ, i.e., T (θ) = θmax. We will show the minimax risk with sharp constant
in high dimensions:

inf
T̂

sup
θ∈Rp

Eθ(T̂ − θmax)2 =

(
1

2
+ o(1)

)
log p, p→∞.

Upper bound: Let’s first analyze the maximum likelihood estimator, namely, Xmax. Consider
θ = αe1 Then Xmax = max {α+ Z1, Z2, . . . , Zp} ≈ max

{
α+ Z1,

√
2 log p

}
. The picture is the blue

curve in Fig. 24.1. A better idea in this case is to decrease Xmax by
√

2 log p/2, which will reduce
the worst case error.

Let T̂ = Xmax −
√

2 log p
2 . WLOG, consider θmax = θ1. Then

T̂ − θmax = max
i

{
Xmax −

√
2 log p

2
− θmax

}
≤ max

i
Zi −

√
log p

2

w.h.p.
≤

√
log p

2
(1 + o(1)),

T̂ − θmax ≥ X1 −
√

2 log p

2
− θmax = Z1 −

√
log p

2
≥ OP

(
−
√

log p

2
(1 + o(1))

)
.

Lower bound: Consider two hypotheses:

H0 : θ = 0, H1 : θmax ≥ τ.

Put a prior on H1: θ ∼ Uniform {τe1, τe2, . . . , τep}. Then under H0 the sample X ∼ P0 = N(0, Ip)
and under H1 the sample X ∼ Pπ = 1

p

∑p
i=1N(τei, Ip). The goal is to show that dTV(P0, Pπ)→ 0

when τ =
√

(2− ε) log p for any ε > 0.
In this problem, directly applying χ2-method yields the minimax rate but not the sharp constant:

Let θ = τeI and θ̃ = τeĨ , where I, Ĩ
i.i.d.∼ Uniform[p].

χ2(Pπ‖P0) = E exp〈θ, θ̃〉 − 1 = E exp
(
τ21{I 6=Ĩ}

)
− 1 =

exp(τ2)− 1

p
.
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Truth

Xmax

T

2 log p /2

2 log p

α

Figure 24.1: Maximum likelihood estimator and improvement via de-biasing.

Therefore χ2(Pπ‖P0)→ 0⇔ τ√
log p

< 1 and we conclude that R∗ ≥ 1+o(1)
4 log p.

We can apply χ2-method more carefully by conditioning on some high probability event. The
main idea is that low probability event has vanishing contribution on the total variation distance
but may contribute a lot to the χ2 distance. Let τ =

√
(2− ε) log p and let

E =

{
max
i
Xi ≤

√
2 log p

}
.

Since maxi Zi ≤
√

2 log p with high probability, and Zi = OP (1) for any fixed i, E is an high
probability event under both P0 and Pπ. Denote by PE0 and PEπ the probability measure conditioned

on E, that is, PE0 (·) = P0(·∩E)
P0(E) . Note that

dTV(P0, P
E
0 ) = 1− P0(E), dTV(Pπ, P

E
π ) = 1− Pπ(E). (24.1)

By triangle inequality, it suffices to show that dTV(PE0 , P
E
π )→ 0. By the formula for conditional

probability, the likelihood ratio is
PEπ
PE0

=
P0(E)

Pπ(E)

Pπ
P0

1E .
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Applying χ2-method on PE0 and PEπ , we obtain that∫
P 2
π

P0
1E = Eθ,θ̃∼π

[∫
PθPθ̃
P0

1E

]
= Eθ∼πEX∼Pπ

[
exp

(
−‖θ‖

2
2

2
+ 〈θ,X〉

)
1E

]
= EX∼PπEI

[
exp

(
−τ2/2 + τ〈X, eI〉

)
1E
]

=

(
1− 1

p

)
E
[
exp

(
−τ2/2 + τN(0, 1)

)
1E
]

+
1

p
E
[
exp

(
−τ2/2 + τX1

)
1E
]

≤
(

1− 1

p

)
+

1

p
exp

((
−2− ε

2
+
√

2(2− ε)
)

log p

)
.

Note that −(2−ε)/2+
√

2(2− ε) < 1 as long as ε > 0. Therefore
∫ P 2

π
P0

1E = 1+o(1) and consequently

χ2(PEπ ‖PE0 ) = o(1) =⇒ dTV(PEπ , P
E
0 ) = o(1)

(24.1)
=⇒ dTV(Pπ, P0) = o(1)

LeCam
=⇒ R∗ ≥ 1 + o(1)

2
log p,

where we applied LeCam’s method for quadratic risk in Theorem 10.2.

24.2 Covariance matrix model

Let X1, . . . , Xn
i.i.d.∼ N(0,Σ), where Σ is the covariance matrix with size p× p. A sufficient statistic

for Σ is the sample covariance matrix:

S =
1

n

n∑
i=1

XiX
′
i.

Let Θ =
{

Σ : ‖Σ‖op ≤ λ
}

. The minimax risk for estimating Σ under the operator norm is

R∗1 , inf
Σ̂

sup
Σ∈Θ

E‖Σ̂− Σ‖2op � λ2
(

1 ∧ p
n

)
.

Even if we only want to estimate the operator norm, a scalar functional of Σ, the difficulty in terms
of the minimax rate is the same as estimating Σ itself:

R∗2 , inf
‖̂Σ‖op

sup
Σ∈Θ

E
(
‖̂Σ‖op − ‖Σ‖op

)2
� λ2

(
1 ∧ p

n

)
.

Note that ‖Σ̂‖op is a viable estimator for ‖Σ‖op. By the triangle inequality of the operator norm,

R∗2 . R∗1.

It suffices to show an upper bound for estimating Σ and the same lower bound for estimating ‖Σ‖op.
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Upper bound for estimating Σ: Note a trivial upper bound that R∗1 ≤ λ2. It remains to
show that R∗1 . λ2p/n when n & p. Consider the sufficient statistic S. We want to show that for
any ‖Σ‖op ≤ λ,

‖S − Σ‖op
w.h.p
≤ λ

√
p

n
,

when n & p. Let Xi = Σ1/2Zi then Zi
i.i.d.∼ N(0, Ip) and S = Σ1/2( 1

n

∑n
i=1 ZiZ

′
i)Σ
′1/2. Let S̃ ,

1
n

∑n
i=1 ZiZ

′
i then

‖S − Σ‖op = ‖Σ1/2(S̃ − Ip)Σ′1/2‖op ≤ ‖Σ1/2‖op‖S̃ − Ip‖op‖Σ′1/2‖op = λ‖S̃ − Ip‖op.

We use the result that, with high probability,

‖S̃ − Ip‖2op .
√
p

n
+
p

n
.

The intuition for the above result is that

‖S̃ − Ip‖2op ≤ sup
‖v‖=1

‖S̃v‖2 + 1− 2 inf
‖v‖=1

‖S̃v‖ ≈ (1 +
√
p/n)2 + 1− 2(1−

√
p/n) = 4

√
p

n
+
p

n
.

When n & p we have ‖S̃ − Ip‖op
w.h.p.

.
√
p/n.

Lower bound for estimating ‖Σ‖op: Let a, b > 0 be two parameters to be specified in the end.
Consider two hypotheses:

H0 : Σ = Σ0 = aI, H1 : Σ = Σv = aI + bvv′,

where under the alternative Σ is a rank-one perturbation from the identity matrix. Then the

operator norms under H0 and H1 are separated by b. Put a prior on H1 that v ∼ Uniform
{
±1√
p

}p
.

Applying the χ2-method, we obtain that

χ2 + 1 = Ev,ṽ
∫
N(0,Σv)

⊗nN(0,Σṽ)
⊗n

N(0,Σ0)⊗n
= Ev,ṽ

(∫
N(0,Σv)N(0,Σṽ)

N(0,Σ0)

)n
= Ev,ṽ

(√
|Σ0|

|Σv||Σṽ||Σ−1
v + Σ−1

ṽ − Σ−1
0 |

)n
= Ev,ṽ

(
det

(
Ip −

b2

a2
vv′ṽṽ′

))−n/2
= Ev,ṽ

(
det

(
Ip −

b2

a2
〈v′, ṽ〉vṽ′

))−n/2
.

Applying matrix determinant lemma that det(A+ uv′) = (1 + v′A−1u) det(A) yields that

χ2 + 1 = Ev,ṽ
(

1− b2

a2
〈v′, ṽ〉2

)−n/2
≤ Ev,ṽ exp

(
nb2

2a2
〈v′, ṽ〉2

)
.

Note that the distribution of 〈v′, ṽ〉 is the same as 1
p

∑p
i=1Ri where Ri is an i.i.d. Rademacher

random variable taking values ±1 with probability 1/2. Then 〈v′, ṽ〉 is concentrated on [− 1√
p ,

1√
p ]
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(this can be made rigorous through Hungarian coupling). The problem boils down to the following
simple optimization:

max b

s.t. 0 ≤ a ≤ a+ b ≤ λ,
nb2

a2p
≤ c,

for some constant c. The optimal solution is

b =
λ

1 +
√
n/cp

� λ
(

1 ∧
√
p

n

)
.

24.3 Uniformity testing: Is the lottery fair?

Let X1, . . . , Xn
i.i.d.∼ P where P is a distribution on [k]. Consider two hypotheses:

H0 : P = Uniform[k], H1 : dTV(P,Uniform[k]) ≥ ε.

A test is a function ψ : [k]n → {0, 1} and we want the probability of error to be

P⊗n0 (ψ = 1) + sup
P∈H1

P⊗n(ψ = 0) ≤ 1%.

The sample complexity n∗(k, ε) is defined by the minimum sample size n such that a satisfactory
test exists.

Theorem 24.1 ([Pan08]).

n∗(k, ε) �
√
k

ε2
.

Remark 24.1. In comparison, estimating P by P̂ such that EdTV(P, P̂ ) ≤ ε requires� k/ε2 samples,
achieved by the empirical distribution. In other words, in order for the empirical distribution P̂ to
be ε-close to the true distribution P , we need a lot more samples.

Remark 24.2 (Sufficient statistics for symmetric functionals). To estimate a distribution or any
functional thereof, a sufficient statistic is the histogram (N1, . . . , Nk) where Ni records the number of
appearances of symbol i. Since the total variation distance is permutation invariant (symmetric), a
further sufficient statistic is the histogram of histogram, commonly known as profiles or fingerprints,
(ϕ1, . . . , ϕn), where ϕi counts the number of symbols that appear exactly i times, i.e.,

ϕi =
∑
j

1 {Nj = i}.

Note that here the sufficiency should be understood operationally, in that for estimating symmetric
functionals, it does not deteriorate the worst-case risk if one restrict to estimators as functions of
the profiles alone. This sufficiency does not come with a factorization theorem in the usual sense of
Fisher and Neyman, since this summary is not sufficient for other estimating tasks, e.g., estimating
P1.

More generally, we have the following result, which is in the same spirit of the theory of invariant
estimators:
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Lemma 24.1. Let θ ∈ Θ ⊂ Rd where Θ is closed under permutation. Let the observation X ∼ Pθ
is also Rd valued. Let F (θ) be a real-valued functional to be estimated. Assume that: for any
permutation σ ∈ Sd, for any θ ∈ Θ

1. Permutation invariance of the model: σ(X) ∼ Pσ(θ).

2. Permutation invariance of the functional: F (σ(θ)) = F (θ).

Then the minimax estimator is permutation invariant.

Proof. Given any proposed estimator F̂ , define F̃ by averaging the input over all permutations:

F̃ (x) , Eσ[F̂ (σ(x))] =
1

d!

∑
σ∈Sd

F̂ (σ(x)),

where σ is an independent random permutation. We show that the worst-case risk of F̃ is no worse
than that of F̂ . Fix θ0 ∈ Θ. The idea is to consider the prior which is the random permutation of
θ0. Denote the risk of an estimator F̂ at θ by R(F̂ , θ) = Eθ[(F (θ)− F̂ (X))2]. Then the risk of F̃ at
θ0 is controlled by

R(F̃ , θ0) = Eθ0 [(Eσ[F̂ (σ(X))]− F (θ0))2]

(a)
= Eθ0 [(Eσ[F̂ (σ(X))]− F (σ(θ0)))2]

(b)

≤ Eθ0Eσ[(F̂ (σ(X))− F (σ(θ0)))2]

(c)
= Eσ[R(F̂ ,σ(θ0))]

≤ sup
θ∈Θ

R(F̂ , θ)

where (a) and (c) follows from the permutation invariance of the functional and the model, respec-
tively; (b) is Jensen’s inequality. Taking supremum over θ0 of the LHS shows that the modified F̃ is
at least as good as F̂ in the worst case.

Upper bound: Our test statistic is ϕ1. This is related to “birthday paradox”: consider k days
and n people,

P[no identical birthday] =
k

k

k − 1

k
. . .

k − n+ 1

k
= exp

(
n−1∑
i=1

log(1− i/k)

)
≈ exp(−n2/2k).

When n .
√
k then ϕ1 ≈ n. The intuition is that the coincidence is least likely under uniform

distribution: ϕ1 is large (close to n) under H0 and ϕ1 is small under H1.

By definition ϕ1 =
∑k

i=1 1Ni=1. We can compute that E0[ϕ1]−E1[ϕ1] & n2ε2

k and Var0[ϕ1] . n2

k .

If n &
√
k
ε2

then
√

Var0[ϕ1] . E0[ϕ1] − E1[ϕ1]. Under H1 we can also compute that
√

Var0[ϕ1] .
E0[ϕ1]− E1[ϕ1]. The picture is shown as below and the detailed computation is referred to [Pan08].
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E1[ϕ1] E0[ϕ1]Threshold

x

y

Lower bound: Consider two hypotheses:

H0 : P = Uniform[k], H1 : P = PI = (p1, . . . , pk),

where I ⊆ [k] is of size k/2 and

pi =

{
1+ε
k , i ∈ I,

1−ε
k , i 6∈ I.

Put a uniform prior on H1 where I is chosen uniformly at random from all subsets of size k/2. The
goal is to show that

dTV

 1(
k
k/2

) ∑
|I|=k/2

P⊗nI ,Uniform[k]⊗n

 < c

for some constant c < 1. A sufficient condition is that

χ2

 1(
k
k/2

) ∑
|I|=k/2

P⊗nI

∥∥∥∥∥Uniform[k]⊗n

 <∞.

Applying the Ingster-Suslina method (Lemma 22.1):

χ2 + 1 = EI,Ĩ

∫ P⊗nI P⊗n
Ĩ

P⊗n0

= EI,Ĩ

(∑ PIPĨ
P0

)n
= EI,Ĩ

(
4ε2|I ∩ Ĩ|

k
+ 1− ε2

)n

≤ EI,Ĩ exp

(
nε2

(
4|I ∩ Ĩ|

k
− 1

))
,

where I ∩ Ĩ ∼ Hypergeometric(k, k/2, k/2). Applying the convex stochastic dominance of the
binomial distribution over the hypergeometric distribution (Corollary 23.1), we obtain that

χ2 + 1 ≤ EI,Ĩ exp

(
nε2

(
4Binom(k, 1/2)

k
− 1

))
=

(
exp(2nε2/k) + exp(−2nε2/k)

2

)k/2
≤ exp

(
1

2

(
2nε2

k

)2
k

2

)
<∞,

when n .
√
k
ε2

, where we used the inequality that ex+e−x
2 ≤ ex2/2 (by Taylor expansion).
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§ 25. Approximation-theoretic methods for functional estimation

In this lecture, we discuss the powerful idea of “approximation theory” and its use in functional
estimation, by considering our favorite example of p-dimensional Gaussian Location Model (GLM):

� X ∼ N (θ, Ip), θ ∈ [−1, 1]p , Θ.

� T (θ) = ‖θ‖1, `(T, T̂ ) = (T − T̂ )2.

Notice that we already investigated the case where the functional was T (θ) = ‖θ‖2, where we knew
that R∗ � √p. However, in this case where the statistic T (·) = ‖ · ‖1 has a kink at 0, we should
adopt elegant techniques of the approximation theory. In fact, what we are going to prove (spoiler
alert!) is the following:

R∗ , inf
T̂

sup
θ∈Θ

E[(T − T̂ )2] �
(
p · log log p

log p

)2

.

25.1 Upper bound

25.1.1 Unbiased estimator does not exist.

Benchmark: Suppose we use a näıve estimator of T̂ (X) = ‖X‖1. This estimator is definitely not
the best; when θ = 0, then T (θ) = 0 but T̂ = ‖Z‖1 � p and therefore suffering the quadratic risk of
Θ(p2)!

In the above benchmark, we observed that it is ‘bias’ that is the main culprit. So let’s see if we
could get an ‘unbiased’ estimator of T (θ).

Unfortunately, that is not possible even in the simplest 1-dimensional scenario: Having X ∼
N (θ, 1) we want to find an estimator T̂ (X) such that Eθ[T̂ (X)] = |θ|. If we expand the (lhs),∫ ∞

−∞
T̂ (x)

1√
2π

exp

(
−(x− θ)2

2

)
dx = |θ|.

It is easy to see that the (lhs) is differentiable in θ everywhere regardless of what T̂ is (thanks to
the smoothness of the pdf of N (θ, 1)). In fact, it is an analytic function1 of θ. On the other hand,
(rhs) is not differentiable in θ at θ = 0, and is not an analytic function.

Hence, it is impossible to have an unbiased estimator of T (θ). However, we certainly can bound
the magnitude of the bias, by ‘approximating’ T (θ) with a set of analytic functions. Namely, we are
going to use the friendly polynomials to approximate T (θ) = |θ|.

1infinitely differentiable with the everywhere convergent Taylor series!
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Figure 25.1: Example of approximating f(x) = |x| with a degree-10 polynomial.

25.1.2 Bounding bias: Polynomial approximation

Let us denote the set of degree-d polynomials by Pd , {q : deg(q) ≤ d}, where q(x) =
∑d

i=0 aix
i. To

contend with bias, we are interested in the task of uniform approximation: Given f : [0, 1]→ R,
we want to find a polynomial q which achieves

Ed(f) , inf
deg(q)≤d

‖q − f‖∞

= inf
deg(q)≤d

sup
x∈[0,1]

|q(x)− f(x)|.

This is an infinite-dimensional linear programming, and at the same time, (d + 1)-dimensional
convex optimization.

Here are some useful facts.

� Stone-Weierstrass theorem: Polynomials are dense in C[0, 1]. In other words, for all continuous

f : [0, 1]→ R, we know that Ed(f)
d→∞−−−→ 0. This follows from the explicit construction below.

� Bernstein’s construction: Uniform convergence is possible for any continuous f : [0, 1]→ R,
i.e. there exists a sequence of polynomials indexed by the degree {bd}∞d=0 which uniformly
converges to f as d→∞. Here’s one way to do it, due to Sergei Bernstein. For a function f ,
let’s define Bernstein polynomial of f of degree d as

Bd(x) ,
d∑

k=0

f

(
k

d

)(
d

k

)
xk(1− x)d−k =

d∑
k=0

f

(
k

d

)
P [Binom(d, x) = k] = EY∼Binom(d,x)[f(Y/d)].

Since Y/d→ x in distribution and f is a continous (hence bounded) function on [0, 1], then
Bd(x)→ f(x) for any x ∈ [0, 1] (pointwise convergence). To upgrade to uniform convergence,
simply invoke the uniform continuity of f and Chebyshev inequality.2

2Indeed, |E[f(Y/d)− f(x)]| ≤ E[|f(Y/d)− f(x)|1 {|Y/d− x| ≤ ε}] + ‖f‖∞P [|Y/d− x| > ε] ≤ sup|x′−x|≤ε |f(x′)−
f(x)|+ ‖f‖∞/d, where ε is arbitrary.
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[add lower bound with f(x) = |x− 1| and show that for 1-Lip, 1/
√
d is tight.]

� Jackson-type inequality : For a smoother f , we can do better. Whenever Lip(f) ≤ 1, Jackson’s
inequality implies that there exists a q ∈ Pd such that maxx∈[−1,1] |q(x)− |x|| ≤ C

d for some
constant C. While the details would not be stated here, the main idea is to use Fourier series.

Equipped with these tools, we now have the following program in mind: We have the statistic
T (θ) =

∑p
i=1 |θi|, which can be approximated by some T̃ (θ) =

∑p
i=1 qd(θi) where qd is a degree-d

polynomial function. While T (θ) cannot be estimated unbiasedly, we can unbiasedly estimate T̃ (θ)
with some estimator T̂ (X). Then, the bias of this estimator in estimating true T (θ) would be

E[T̂ (X)− T (θ)] = T̃ (θ)− T (θ) ≤ Cp

d
.

Now, the whole story is about estimating degree-d polynomial qd unbiasedly. In other words, we
want to unbiasedly estimate moments of the empirical distribution of 1

p

∑
i θi.

25.1.3 Estimating moments: Orthogonal polynomials

In this subsection, we introduce a systematic way of estimating the moments of θ when we can
observe X ∼ N (θ, 1). We are going to use a basis for the space of polynomials, called orthogonal
polynomials.

First, we need to define an inner product of two functions. We define it as a ‘weighted’ integral
of the product of two functions. Here, we choose the weight φ(x) to be a pdf of N (0, 1), which
would make this definition of inner product useful under the additive Gaussian noise assumption.
Our inner product is defined as follows: when f, q : R→ R,

〈f, q〉 ,
∫ +∞

−∞
f(x)q(x)φ(x)dx = E[f(Z)q(Z)], Z ∼ N (0, 1).

Now, we apply the Gram-Schmidt process to the family of monomials {1, x, x2, x3, . . .} to form
an orthogonal basis {H0, H1, H2, . . .}, which we call Hermite polynomials. In other words, we
define Hermite polynomials as follows:

Hk , xk −
k−1∑
i=0

〈Hi, x
k〉

〈Hi, Hi〉
Hi,

for example, H0 = 1, H1 = x,H2 = x2 − 1, . . .. Note that we only did orthogonalization not
normalization.

Here are some properties of Hermite polynomials:

� Orthogonality: 〈Hk, Hi〉 = k!1 {k = i}.

� Basis for L2: {H0, H1, H2, . . .} forms an orthogonal basis for L2(R, ϕ).

� Basis for Pd: {H0, H1, H2, . . . ,Hd} forms an orthogonal basis for Pd.

� Monic: the leading coefficient of each Hermite polynomial is 1.

Lemma 25.1 (Estimating monomials). If X ∼ N (θ, 1), then E[Hk(X)] = θk, i.e. Hk(X) is an
unbiased estimator of θk.
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Proof. Instead of using their explicit formula, we use the defining properties of Hermite polynomials.
Let Z ∼ N (0, 1). Note that Hk(X) = Hk(θ+Z) is a deg-k polynomial in Z, which can be expressed
as a linear combination of the basis {H0, . . . ,Hk} as Hk(θ+Z) =

∑k
i=0 aiHi(Z). Note that ai = ai(θ)

is a polynomial in θ and deg(ai) ≤ k − i. Since Hk is monic, we have a0 = θk. By orthogonality
and H0 = 1, we have

E[Hk(X)] =
k∑
i=0

aiE[Hi(Z)] = a0 = θk.

25.1.4 Recipe of an estimator: Selecting right d

The story so far is as follows: We fix some d ∈ N, and find the best approximation of |x| on [−1, 1] of

degree d, q(x) =
∑d

i=0 aix
i by the Jackson-type inequality. Then, we have E

[∑d
i=0 aiHi(xj)

]
= q(θj)

for each coordinate j ∈ [p]. Now, our estimator for ‖θ‖1 is

T̂ ,
p∑
j=1

[
d∑
i=1

aiHi(xj)

]
.

Then, we know that

� (systematic error) |bias(T̂ )| ≤ Cp
d (proved in the previous sections) and

� (stochastic error) Var(T̂ ) =
∑p

j=1 Var
(∑d

i=1 aiHi(xj)
)
. p · d! where d! is from the norm of

the Hermite polynomials. We also used the fact that ai are not too big, usually ≤ C · d for
some constant C.

We see that as d grows, the bound on bias decreases while the bound on variance increases. We

might hope to find a ‘sweet spot,’ where bias2 � Var⇔ p2

d2 ≈ p · d!⇔ d ≈ log p
log log p (using Stirling’s

expansion) so that the squared error is minimized. Plugging in, we get want we wanted:

E
(
T̂ − ‖θ‖1

)2
.

(
p · log log p

log p

)2

.

The method we used might seem a little bit ad hoc, but since we can show that this is the best
(as will be followed in the next section), we are happy with it. For details, the readers may refer
to the beautiful paper of Cai and Low [CL11], and the basic idea goes back to Nemirovski [?] and
Lepski et al. [LNS99].

25.2 Lower bound

25.2.1 Composite vs. Composite: 1-dimensional reduction

We now show that the rate of
(
p · log log p

log p

)2
is actually unbeatable. The problem is estimating one

number T (θ) = ‖θ‖1, and this is a collapsed version of the high-dimensional object. The strategy
we used for `2 norm was to convert it to a test and to run Le Cam’s method: H0 : θ = 0 vs.
H1 : ‖θ‖1 ≥ ρ. Unfortunately, this doesn’t work; the best we can get this way is a rate of p3/2.

152



What is to blame, is that we previously simplified the test into ‘simple vs. composite’ from
the original ‘composite vs. composite’, i.e. H0 : ‖θ‖1 ≤ a,H1 : ‖θ‖1 ≥ b (it may suffice to consider
≈ a vs. ≈ b). The reason for the simplification was that the second moment calculation was too
complicated in the latter case. However, with polynomial ideas, the calculation becomes a doable

task and we can get
(
p · log log p

log p

)2
.

Figure 25.2: H0 : ‖θ‖1 ≤ a,H1 : ‖θ‖1 ≥ b

Let’s see how far we could proceed with the classic method. Let Θ0 , {θ : ‖θ‖1 ≈ a},Θ1 , {θ :
‖θ‖1 ≈ b}. Then, for any prior P ∈M(Θ0), Q ∈M(Θ1), we have

R∗ & (b− a)2(1− dTV(P ∗ N (0, Ip), Q ∗ N (0, Ip)))

and we may hope something like dTV(P ∗ N (0, Ip), Q ∗ N (0, Ip)) ≤ 0.1, or simply bounded away
from 1. However, each distribution is p-dimensional Gaussian convolved with another p-dimensional
distribution, and dTV is not easy to calculate.

Then, can we reduce it to 1-dimension? In that case, the hypotheses should look like H0 :

θ = (θ1, . . . , θp)
i.i.d.∼ P,H1 : θ = (θ1, . . . , θp)

i.i.d.∼ Q, and the data generating takes the form of

x = (x1, . . . , xp)
i.i.d.∼ (P or Q) ∗ N (0, 1), and we might use the tensorization dTV(P⊗pX , Q⊗px ) ≤

p · dTV(PX , QX) ≤ 0.1 to proceed further.
One problem is that if we take i.i.d. θ from P or Q, θ might not lie exactly on the spheres

Θ0,Θ1. But this is actually a small problem and can be fixed. If we look at T (θ):

under H0 : T (θ) =

p∑
i=1

|θi|
CLT
= p · EP |θ|+ op(

√
p),

under H1 : T (θ) =

p∑
i=1

|θi|
CLT
= p · EQ|θ|+ op(

√
p).

And if we can choose P,Q s.t. EP |θ| and EQ|θ| to be separated by � p log log p
log p >>

√
p, then we

are happy even though this is not exactly a sphere vs. sphere.
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25.2.2 Choosing P,Q: Sufficient condition of moments

Now the question is how to choose P,Q. We can formally formulate a problem as follows:

maximize : EQ|θ| − EP |θ|

subject to : dTV(P ∗ N (0, 1), Q ∗ N (0, 1)) ≤ 0.1

p

variables : P,Q ∈M([−1, 1]).

This is a convex problem, but it doesn’t mean that it is easily solvable; it is infinite-dimensional.
Thus we are going to consider a sufficient condition replacing dTV(P ∗ N (0, 1), Q ∗ N (0, 1)) ≤ 0.1

p .
Before explicitly stating the sufficient condition, consider the following problem called moment

problem: Suppose two distributions have exactly same moments. Are these two distributions the
same? Quick answer is no (when supported on R), and yes (when supported on [0, 1]). Rephrasing
the latter one, if two distributions have equal first 1, 000 moments, then their relative distance
should be very small, even after convolving with N (0, 1) (think about the Taylor’s expansion).

So the idea is to have the condition:

EP θi = EQθi i = 1, . . . , d.

for a sufficiently large d to ensure dTV(P ∗ N (0, 1), Q ∗ N (0, 1)) ≤ 0.1
p . It turns out that whenever

the above condition is satisfied, we have dTV(P ∗ N (0, 1), Q ∗ N (0, 1)) ≈ 1
(c·d!) for some constant c,

and thus it is sufficient to have d � log p
log log p . One way to show this is to use Taylor expansion and

expand with Hermite polynomials.
Now, the revised problem is:

maximize : EQ|θ| − EP |θ|
subject to : EP θi = EQθi i = 1, . . . , d,

variables : P,Q ∈M([−1, 1]).

Note that the revised problem is again infinite-dimensional, but no more a convex programming
but a linear programming.

25.2.3 Dual: again approximation of |θ| by degree-d polynomial

To solve the revised problem, we are going to show that it’s dual problem is the approximation of
|θ| by a degree-d polynomial qd. More specifically, the dual problem is

2 · Ed(|θ|) = 2 · inf
qd∈Pd

sup
θ∈[−1,1]

|qd(θ)− |θ||.

In fact, we are going to show more general result: for any f , 2·Ed(f) ≥ maxP,Q [EQf(θ)− EP f(θ)]
(we are showing only the useful direction). Note that the other direction, saying that the duality
gap is zero, is not true for free since this is an infinite-dimensional problem.

The proof is essentially by Lagrangian. For each of d constraints of the primal problem, attach
λi, i = 1, . . . , d. Then, the Lagrangian is:

L(P,Q, λ1, . . . , λd) = EQf(θ)− EP f(θ)−
d∑
i=1

λi(EQθi − EP θi)

= EQ

[
f(θ)−

d∑
i=1

λiθ
i

]
− EP

[
f(θ)−

d∑
i=1

λiθ
i

]
.
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Given the constants {λi}, the problem of choosing P,Q is merely a choosing of best θ, i.e.

max
P,Q

L(P,Q, λ1, . . . , λd) = max
θ

[f(θ)− qd(θ)]−min
θ

[f(θ)− qd(θ)]

where qd is a polynomial using λi as coefficients (we played a little trick of adding and subtracting
λ0). Note that this value is greater than the solution of the primal solution. Now, minimizing over
{λi},

min
qd∈Pd

[
max
θ

[f(θ)− qd(θ)]−min
θ

[f(θ)− qd(θ)]
]

= 2 · min
qd∈Pd

‖f − qd‖∞.

Using the results from the previous section on Ed(|θ|), we are done!
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Part VI

Advanced topics
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§ 26. Adaptation and Aggregation

26.1 Overview

We consider an estimation problem, where parameter set can be partitioned into smaller sets, each
representing a different model. If the model that corresponds to the true parameter is unknown,
can we design an adaptive estimator almost as good as the oracle estimator? See [AJ00, Yan00],
etc. The material of this lecture is from the beautiful paper of Leung and Barron [LB06].

Let R∗(Θ) = inf θ̂ supθ∈Θ E`(θ, θ̂), and Θ =
⋃
m Θm, where m is the index for models. Examples

include:

� Sparse linear regression. For sparse linear regression, Y = Xθ + Z, models can be indexed by:
1) support m = supp(θ), or 2) sparsity level m = ‖θ‖0.

� Density estimation. For density estimation, the model index could be the smoothness parameter
m = α, i.e., f ∈ Hölder(α).

There are several flavors for this problem. Given oracle estimators {θ̂m}, our goal is to find an
adaptive estimator θ̂ that satisfies one of the following three oracle inequalities (∀θ):

(MS) E`(θ, θ̂) ≤ minm E`(θ, θ̂m) + penalty.

(C) Convex combination: E`(θ, θ̂) ≤ minθ̂∈co({θm}) E`(θ, θ̂) + penalty.

(L) Linear combination: E`(θ, θ̂) ≤ minθ̂∈span({θm}) E`(θ, θ̂) + penalty.

This lecture focus on the model selection criterion.
The key for designing such an adaptive estimator is a unbiased risk estimator. Suppose

γ̂m = γ̂m(data) is an unbiased risk estimator, i.e.,

Eθ[γ̂m] = Rθ(θ̂m) = Eθ[`(θ, θ̂m)].

Using γ̂ as a proxy of the true risk, one can adopt one the following strategies for the adaptive
estimator:

1. Pick the best one. Suppose m∗ = arg minm γ̂m, then output θ̂m∗ . An variation of this strategy
is to split the samples: use the first part of the data to compute γ̂m (the unbiased risk
estimators), and the second part of the data to compute the “best” oracle estimator θ̂m∗ .

2. Mixture of all oracle estimators. Let θ̂ =
∑

mwmθ̂m, where the weights wm is larger if the
risk proxy γ̂m is smaller.
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26.2 Stein’s Unbiased Risk Estimator (SURE)

We discuss the Stein’s unbiased risk estimator in this section.

Theorem 26.1 (Stein’s Identity). Suppose Z ∼ N(0, 1). For any continuously differentiable g,

E[g′(Z)] = E[Zg(Z)],

provided both expectations are finite.

Proof. Integration by parts.

Corollary 26.1. Suppose Y ∼ N(µ, 1). Under the same assumption of Theorem 26.1,

E[g′(Y )] = E[(Y − µ)g(Y )].

Corollary 26.2. For one-dimensional GLM Y ∼ N(µ, 1), an unbiased risk estimator for µ̂ is

γ̂ = (µ̂− Y )2 + 2µ̂′ − 1.

For p-dimensional GLM Y ∼ N(µ, Ip), an unbiased risk estimator for µ̂ is

γ̂ = ‖µ̂− Y ‖2 + 2 〈∇µ̂,1〉 − p.

Proof.

E[‖µ̂− µ‖2] = E[‖µ̂− Y ‖2] + E[‖Y − µ‖2] + E[2 〈Y − µ, µ̂− Y 〉].

Clearly, ‖µ̂− Y ‖2 is an unbiased estimator of the first term, the second term equals p. By Corollary
26.1, the third term has an unbiased estimator: 2

∑p
i=1(∂iµ̂− 1) = 2(〈∇µ̂,1〉 − p).

Example: SURE can be applied to the following GLM problem. The data follows Y ∼ N(µ, In),
where the mean µ belongs to a union of subspaces, µ ∈

⋃
mEm. An special case is sparse linear

regression: Y = Xθ + Z. In this case, m = supp(θ) and Em = span(Xm). The oracle mean
estimators is

µ̂m = projEm Y = Xm(X ′mXm)−1X ′mY.

We can derive the corresponding risk estimators γ̂m using SURE. In the next section, we discuss
how µ̂m and γ̂m can be aggregated to form an adaptive estimator µ̂.

26.3 Main Result

In this section, we discuss one result using the second strategy in Section 26.1:

µ̂ =
∑
m

wmµ̂m,

where the weights wm are computed from data, and satisfy wm ≥ 0 and
∑

mwm = 1. In particular,
we use the following exponential weighting:

wm =
1

Z(β)
πm exp(−β

2
γ̂m),

where the normalization constant is Z(β) =
∑

m πm exp(−β
2 γ̂m). The prior distribution satisfies

πm ≥ 0 and
∑

m πm = 1. The exponential weighting can be interpreted as follows:
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� When β = ∞, µ̂ = µ̂m∗ , where m∗ = arg minm γ̂m. This case reduces to the first strategy
(without weighting). It fully relies on the data, and ignores the prior distribution.

� When β = 0, the aggregation uses the prior distribution only.

� When 0 < β <∞, e.g., β = 1
2 , 1, this corresponds to a Bayesian estimator.

Lemma 26.1 (Key Lemma). If µ̂m is linear in Y , then for every β ≤ 1
2 , we have

γ̂ ≤
∑
m

wmγ̂m.

Here, γ̂ is the SURE for the weighted estimator µ̂, and γ̂m is the SURE for the estimator µ̂m, which
is derived using model m.

Proof Sketch.

γ̂ =
∑
m

wmγ̂m − (1− 2β) ·
∑
m

wm‖µ− µ̂m‖2.

Clearly, 1− 2β ≥ 0, and
∑

mwm‖µ− µ̂m‖2 ≥ 0.

Corollary 26.3 (Main Result). If θ̂m is linear in Y , and β ≤ 1
2 , then

Rθ(θ̂) ≤ min
m

{
Rθ(θ̂m) +

2

β
log

1

πm

}
.

For the special case where πm = 1
M and β = 1

2 , we have

Rθ(θ̂) ≤ min
m

Rθ(θ̂m) + 4 logM.

Proof. Recall that wm = 1
Z(β)πm exp(−β

2 γ̂m). By Lemma 26.1,

γ̂ ≤
∑
m

wmγ̂m

=
∑
m

wm
2

β
log

πm
wmZ(β)

=
2

β

∑
m

wm log
πm
wm

+
2

β
log

1

Z(β)

= − 2

β
D(w||π) +

2

β
log

1

Z(β)

≤ 2

β
log

1

maxm πm exp(−β
2 γ̂m)

,

where the last inequality is due to the fact that D(w||π) ≥ 0 and Z(β) =
∑

m πm exp(−β
2 γ̂m) ≥

maxm πm exp(−β
2 γ̂m). The corollary follows from taking expectation over both sides:

Rθ(θ̂) = Eθγ̂

≤ Eθ
{

min
m

{
2

β
log

1

πm
+ γ̂m

}}
≤ min

m

{
Eθγ̂m +

2

β
log

1

πm

}
= min

m

{
Rθ(θ̂m) +

2

β
log

1

πm

}
.
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Example: In sparse linear regression, let Θ = Rp, m = supp(θ) ⊂ [p], and X = Ip. Clearly,
uniform prior is not good enough. If we choose prior πm = 1

( p
|m|)(p+1)

, then

Rθ(θ̂) ≤ ‖θ‖0 + 4 log

(
p

‖θ‖0

)
+ 4 log(1 + p).

An even better prior is πm ∝ 1

( p
|m|)e

|m|+1
.

26.4 Bayesian origin of exponential weighting

This section presents an explanation for the exponential weighting (β = 1).
Suppose the prior distribution on m is πm, and the prior distribution of µ given m is λm(µ).

Hence, the prior distribution of µ is
∑

m πmλm(µ). The Bayesian estimators are

µ̂ = E[µ|Y ], µ̂m = E[µ|Y,m].

Hence
µ̂ = E[µ|Y ] = E[E[µ|Y,m]|Y ] =

∑
m

µ̂mP (m|Y ).

By the Bayes rule, the correct weights are

wm = P (m|Y ) =
πmP (Y |m)∑
m πmP (Y |m)

. (26.1)

Next, we show that P (Y |m) has an exponential form, establishing a motivation for exponential
weighting. Suppose λm(µ) is a Gaussian prior (e.g., N(0, sPm)). Then we have

P (y|m) =

∫
φ(y − µ)λm(dµ),

where φ(·) is the Gaussian PDF. The convolution of two Gaussian PDF is still a Gaussian PDF of
the form

P (y|m) = c exp(−1

2
‖y − µm‖2). (26.2)

If µ̂m is linear in Y , then the SURE satisfies

γ̂m = ‖µ̂m − Y ‖2 + 2 〈∇µ̂m,1〉 − p = ‖µ̂m − Y ‖2 + const. (26.3)

Therefore, comparing (26.1), (26.2) and (26.3), we conclude that the weighting deduced from
Bayesian estimators is

wm ∝ πmP (Y |m) ∝ πm exp(−1

2
γ̂m),

which corresponds to the exponential weighting with β = 1.
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