Sparse Regularization for High Dimensional Additive Models

Ming Yuan
School of Industrial and Systems Engineering
Georgia Institute of Technology
Atlanta, Georgia 30332-0205
ming.yuan@isye.gatech.edu

Abstract

We study the behavior of the l_1 type of regularization for high dimensional additive models. Our results suggest remarkable similarities and differences between linear regression and additive models in high dimensional settings. In particular, our analysis indicates that, unlike in linear regression, l_1 regularization does not yield optimal estimation for additive models of high dimensionality. This surprising observation prompts us to introduce a new regularization technique that can be shown to be optimal in the minimax sense.