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Three vignettes related to John’s work

• Some puzzling things concerning invariant priors

• Some puzzling things concerning multiplicity

• What is the effective sample size?
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I. Objective Priors: Why Can’t We Have It All?

Figure 1: John at Princeton in 1965.
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An Example: Inference for the Correlation Coefficient

The bivariate normal distribution of (x1, x2) has mean (µ1, µ2) and

covariance matrix Σ =
(

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
, where ρ is the correlation

between x1 and x2.

For a sample (x11, x21), (x12, x22), . . . , (x1n, x2n), the sufficient statistics are
x = (x1, x2)′, where xi = n−1

∑n
j=1 xij , and

S =
n∑

i=1

(xi − x)(xi − x)′ =
(

s11 r
√

s11s22

r
√

s11s22 s22

)
,

where sij =
∑n

k=1(xik − xi)(xjk − xj), r = s12/
√

s11s22.
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Three interesting priors for inference concerning ρ:

• The reference prior (Lindley and Bayarri)

πR(µ1, µ2, σ1, σ2, ρ) =
1

σ1σ2(1− ρ2)
.

• The right-Haar prior

πRH1(µ1, µ2, σ1, σ2, ρ) =
1

σ2
2(1− ρ2)

,

which is right-Haar w.r.t. the lower triangular matrix group action
(a1, a2, T

l) ◦ (x1, x2)′ = T l(x1, x2)′ + (a1, a2).

• The right-Haar prior

πRH2(µ1, µ2, σ1, σ2, ρ) =
1

σ2
1(1− ρ2)

,

which is right-Haar w.r.t. the upper triangular matrix, Tu, group action.
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Credible intervals for ρ, under either right-Haar prior, can be
approximated by

• drawing independent Z ∼ N(0, 1), χ2
n−1 and χ2

n−2;

• setting ρ = Y√
1+Y 2 , where Y = − Z√

χ2
n−1

+
√

χ2
n−2√

χ2
n−1

r√
1−r2 ;

• repeating this process 10, 000 times;

• using the α
2 % upper and lower percentiles of these generated ρ to form

the desired confidence limits.

Credible intervals for ρ, under the reference prior, can be found by
replacing the first two steps above by

• Generate Σ =


 σ2

1 ρσ1σ2

ρσ1σ2 σ2
2


 ∼ Inverse Wishart(S−1, n− 1).

• Generate u ∼ unif (0, 1). If u ≤
√

1− ρ2, record ρ. Otherwise repeat.
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Lemma 1

1. The Bayesian credible set for ρ, from either right-Haar prior, has exact
frequentist coverage 1− α.

2. This credible set is the the fiducial confidence interval for ρ of Fisher 1930.

So we have it all, a simultaneous objective Bayesian, fiducial, and exact
frequentist confidence set.

Or do we? In the 60’s, Brillinger showed that, if one starts with the density
f(r | ρ) of r, there is no prior distribution for ρ whose posterior equals the
fiducial distribution.

• Geisser and Cornfield (1963) thus conjectured that fiducial and Bayesian

inference could not agree here. (They do.)

• But, since πRH(ρ | x) can be shown only to depend on the data through r, we

have a marginalization paradox (Dawid, Stone and Zidek, 1973):

πRH(ρ | x) = g(ρ, r) 6= f(r | ρ)π(ρ) for any π(·).

7



Innovation and Inventiveness in Statistics Methodologies

'

&

$

%

Can We Trust Bayesian ‘Truisms’ with Improper Priors?

Two ‘Truisms:’ If considering various priors, either

• “average” (or go hierarchical); or

• choose the empirical Bayes prior that maximizes the marginal likelihood.

1. Consider the symmetrized right-Haar prior

πS(µ1, µ2, σ1, σ2, ρ) = πRH1(µ1, µ2, σ1, σ2, ρ) + πRH2(µ1, µ2, σ1, σ2, ρ)

=
1

σ2
1(1− ρ2)

+
1

σ2
2(1− ρ2)

.

2. Any rotation Γ of coordinates yields a new right-Haar prior. The empirical

Bayes prior, πEB , is the right-Haar prior for that rotation for which s∗12 = 0, where

S∗ ≡
(

s∗11 s∗12

s∗12 s∗22

)
= ΓSΓ′ .
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(σ1, σ2, ρ) R(Σ̂1) R(Σ̂2) R(Σ̂S) R(Σ̂EB)

(1, 1, 0) .4287 .4288 .4452 .6052

(1, 2, 0) .4278 .4270 .4424 .5822

(1, 5, 0) .4285 .4287 .4391 .5404

(1, 50, 0) .4254 .4250 .4272 .5100

(1, 1, .1) .4255 .4266 .4424 .5984

(1, 1, .5) .4274 .4275 .4403 .5607

(1, 1, .9) .4260 .4255 .4295 .5159

(1, 1,−.9) .4242 .4243 .4280 .5119

Table 1: Estimated frequentist risks of various estimates of Σ, under Stein’s
loss and when n = 10; Σ̂i are the right-Haar estimates, Σ̂S is the symmetrized
prior estimate, and Σ̂EB is the empirical Bayes estimate.
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II. Bayesian Multiplicity Issues in Variable Selection

Figure 2: John Hartigan with one of his multiple grandchildren
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Problem: Data X arises from a normal linear regression model, with m

possible regressors having associated unknown regression coefficients
βi, i = 1, . . .m, and unknown variance σ2.

Models: Consider selection from among the submodels Mi , i = 1, . . . , 2m,
having only ki regressors with coefficients βi (a subset of (β1, . . . , βm)) and
resulting density fi(x | βi, σ

2).

Prior density under Mi: Zellner-Siow priors πi(βi, σ
2).

Marginal likelihood of Mi: mi(x) =
∫

fi(x | βi, σ
2)πi(βi, σ

2) dβidσ2

Prior probability of Mi: P (Mi)

Posterior probability of Mi:

P (Mi | x) =
P (Mi)mi(x)∑
j P (Mj)mj(x)

.

11



Innovation and Inventiveness in Statistics Methodologies

'

&

$

%

Common Choices of the P (Mi)

Equal prior probabilities: P (Mi) = 2−m

Bayes exchangeable variable inclusion:

• Each variable, βi, is independently in the model with unknown
probability p (called the prior inclusion probability).

• p has a Beta(p | a, b) distribution. (We use a = b = 1, the uniform

distribution, as did Jeffreys 1961, who also suggested alternative choices of the

P (Mi). Probably a = b = 1/2 is better.)

• Then, since ki is the number of variables in model Mi,

P (Mi) =

∫ 1

0

pki(1− p)m−kiBeta(p | a, b)dp =
Beta(a + ki, b + m− ki)

Beta(a, b)
.

Empirical Bayes exchangeable variable inclusion: Find the MLE p̂ by
maximizing the marginal likelihood of p,

∑
j pkj (1− p)m−kj mj(x), and use

P (Mi) = p̂ki(1− p̂)m−ki as the prior model probabilities.
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Controlling for multiplicity in variable selection

Equal prior probabilities: P (Mi) = 2−m does not control for multiplicity; it
corresponds to fixed prior inclusion probability p = 1/2 for each variable.

Empirical Bayes exchangeable variable inclusion does control for multiplicity,
in that p̂ will be small if there are many βi that are zero.

Bayes exchangeable variable inclusion also controls for multiplicity (see Scott
and Berger, 2008), although the P (Mi) are fixed.

Note: The control of multiplicity by Bayes and EB variable inclusion usually

reduces model complexity, but is different than the usual Bayeisan Ockham’s razor

effect that reduces model complexity.

• The Bayesian Ockham’s razor operates through the effect of model priors

πi(βi, σ
2) on mi(x), penalizing models with more parameters.

• Multiplicity correction occurs through the choice of the P (Mi).
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Equal model probabilities Bayes variable inclusion

Number of noise variables Number of noise variables

Signal 1 10 40 90 1 10 40 90

β1 : −1.08 .999 .999 .999 .999 .999 .999 .999 .999

β2 : −0.84 .999 .999 .999 .999 .999 .999 .999 .988

β3 : −0.74 .999 .999 .999 .999 .999 .999 .999 .998

β4 : −0.51 .977 .977 .999 .999 .991 .948 .710 .345

β5 : −0.30 .292 .289 .288 .127 .552 .248 .041 .008

β6 : +0.07 .259 .286 .055 .008 .519 .251 .039 .011

β7 : +0.18 .219 .248 .244 .275 .455 .216 .033 .009

β8 : +0.35 .773 .771 .994 .999 .896 .686 .307 .057

β9 : +0.41 .927 .912 .999 .999 .969 .861 .567 .222

β10 : +0.63 .995 .995 .999 .999 .996 .990 .921 .734

False Positives 0 2 5 10 0 1 0 0

Table 2: Posterior inclusion probabilities for 10 real variables in a simulated data set.
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Comparison of Bayes and Empirical Bayes Approaches

Theorem 1 In the variable-selection problem, if the null model (or full model)

has the largest marginal likelihood, m(x), among all models, then the MLE of p is

p̂ = 0 (or p̂ = 1.) (The naive EB approach, which assigns P (Mi) = p̂ki(1− p̂)m−ki ,

concludes that the null (full) model has probability 1.)

A simulation with 10,000 repetitions to gauge the severity of the problem:

• m = 14 covariates, orthogonal design matrix

• p drawn from U(0, 1); regression coefficients are 0 with probability p and

drawn from a Zellner-Siow prior with probability (1− p).

• n = 16, 60, and 120 observations drawn from the given regression model.

Case p̂ = 0 p̂ = 1

n = 16 820 781

n = 60 783 766

n = 120 723 747
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Is empirical Bayes at least accurate asymptotically as m →∞?

Posterior model probabilities, given p:

P (Mi | x, p) =
pki(1− p)m−kimi(x)∑
j
pkj (1− p)m−kj mj(x)

Posterior distribution of p: π(p | x) = K
∑

j
pkj (1− p)m−kj mj(x)

This does concentrate about the true p as m →∞, so one might expect that
P (Mi | x) =

∫ 1

0
P (Mi | x, p)π(p | x)dp ≈ P (Mi | x, p̂) ∝ mi(x) p̂ki(1− p̂)m−ki .

This is not necessarily true; indeed∫ 1

0

P (Mi | x, p)π(p | x)dp =

∫ 1

0

pki(1− p)m−kimi(x)

π(p | x)/K
× π(p | x) dp

∝ mi(x)

∫ 1

0

pki(1− p)m−kidp ∝ mi(x)P (Mi) .

Caveat: Some EB techniques have been justified; see Efron and Tibshirani (2001),

Johnstone and Silverman (2004), Cui and George (2006), and Bogdan et. al. (2008).

16



Innovation and Inventiveness in Statistics Methodologies

'

&

$

%

III. What is the Effective Sample Size in Generalized BIC?

Figure 3: John Hartigan in Sin City
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Data: Independent vectors xi ∼ gi(xi | θ), for i = 1, . . . , n.

Unknown: θ = (θ1, . . . , θp); θ̂ is the MLE

Log-likelihood function: l(θ) = log f(x | θ) = log (
∏n

i=1 gi(xi | θ))
where x = (x1, . . . ,xn).

Usual BIC: BIC ≡ 2l(θ̂)− p log n (Schwarz, 1978)

Generalization of BIC: 2l(θ̂)−∑p
i=1 log(1 + ni) + 2

∑p
i=1 log (1−e−vi)√

2 vi
,

• vi = ξ̂2
i

di(1+ni)
,

• the d−1
i are the eigenvalues of the observed information matrix,

• the ξi are the coordinates in an orthogonally transformed θ.

• ni is the effective sample size corresponding to ξ. What should these be?
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Ex. Group means: For i = 1, . . . , p and l = 1, . . . , r,

Xil = µi + εil, where εil ∼ N(0, σ2) .

• It might seem that n = pr but, if one followed Schwarz, one would have
(defining µ = (µ1, . . . , µp)t) that Xl = (X1l, . . . , Xpl)t ∼ Np(µ, σ2I),
l = 1, . . . , r, so that the ‘sample size’ appearing in BIC should be r.

• The ‘effective sample size’ for each µi is r, but the effective sample size
for σ2 is pr, so effective sample size is parameter-dependent.

• One could easily be in the situation where p →∞ but the effective
sample size r is fixed.

19



Innovation and Inventiveness in Statistics Methodologies

'

&

$

%

Ex. Random effects group means: µi ∼ N(ξ, τ2), with ξ and τ2 being
unknown. What is the number of parameters (see also Pauler (1998))?

(1) If τ2 = 0, there is only one parameter ξ.

(2) If τ2 is huge, is the number of parameters p + 2 ?

(3) But, if one integrates out µ = (µ1, . . . , µp), then
f(x | σ2, ξ, τ2) =

∫
f(x | µ, ξ, σ2)π(µ | ξ, τ2)dµ

∝ 1

σ−p(r−1) exp
{

σ̂2

2σ2

}∏p

i=1
exp

{
− (x̄i−ξ)2

2( σ2
r

+τ2)

}
,

so p = 3 if one can work directly with f(x | σ2, ξ, τ2).

Note: In this example the effective sample sizes should be ≈ p r for σ2, ≈ p

for ξ and τ2, and ≈ r for the µi’s.

Ex. Common mean, differing variances: Suppose n/2 of the Yi are
N(θ, 1), while n/2 are N(θ, 1000).
Clearly the ‘effective sample size’ is roughly n/2.
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Ex. ANOVA: Y = (Y1, . . . , Yn)t ∼ Nn(Xβ, σ2I), where X is a given n× p

matrix of 1’s and -1’s with orthogonal columns, where β = (β1, . . . , βp)t and
σ2 are unknown. Then the information matrix for θ = (β, σ2) is

Î =

(
n
σ̂2 Ip×p 0

0 n
2σ̂4

)
so that now the effective sample size appears to be n

for all parameters.

Note: The group means problem and ANOVA are linear models, so one can
have effective sample sizes from r = 1 to n for parameters in the linear model.
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Defining the ‘effective sample size’ nj for ξj:
For the case where no variables are integrated out,a possible general
definition for the ‘effective sample size’ follows from considering the
information associated with observation xi arising from the
single-observation expected information matrix I∗i = O′(I∗i,jk)O, where

I∗i,jk = −E
[

∂2

∂θj∂θk
log fi(xi | θ)

] ∣∣∣
θ=θ̂

.
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Since I∗jj =
∑n

i=1 I∗i,jj is the expected information about ξj , a reasonable way
to define nj is

• define information weights wij = I∗i,jj/
∑n

k=1 I∗k,jj ;

• define the effective sample size for ξj as

nj =
I∗jj∑n

i=1 wijI∗i,jj

=

(
I∗jj

)2

∑n
i=1

(
I∗i,jj

)2 .

Intuitively,
∑

wijI
∗
i,jj is a weighted measure of the information ‘per

observation’, and dividing the total information about ξj by this information
per case seems plausible as an effective sample size.
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THANKS ALL
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THANKS JOHN
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