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Sample covariance matrix and its eigenvalues

@ Data: n x p matrix X

e n (independent identically distributed) observations of a
random vector (X;)7_; in RP.

@ Suppose Xj-s have covariance matrix ¥,

e Often interested in estimating X, (e.g for PCA); eigenvalues:
Ai

o Standard estimator: ¥, = (X — X)/(X — X)/(n —1);

eigenvalues /;
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Role of eigenvalues: examples

@ Principal Component Analysis (PCA); large eigenvalues:

e Optimization problems: Example in risk management:
“Invest” aj in X; ;. Risk measured by var (X;a) = a'%a.
(Constraints on a in more realistic versions: e.g > a; = 1)
Role of small(/all) eigenvalues.
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Classical results from multivariate Statistics

Classical theory: p fixed, n — oo

Fact: & unbiased, \/n-consistent estimator of X:
VallE — 5| = 0p(1) .

Also, fluctuation theory (CLT) for largest eigenvalues (Anderson,
'63), under eg normality of the data

Much more is known about estimation of covariance matrices:
Efron, Haff, Morris, Stein etc...

Will focus here on “large n, large p” situation (quite common
now), so p/n has finite non-zero limit
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Visual Example
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Graphical illustration: n=500, p=2

Marchenko-Pastur Law and Histogram of empirical eigenvalues
T T T T T

X: 500+200 matrix, entries i.i.d N(0,1)

Histogram of eigenvalues of X'X/n and corresponding
Marchenko-Pastur density superimposed

05 1 15 2 25

Note: ¥ = Id, so all population (or “true”) eigenvalues equal 1.
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@ Previous plots perhaps surprising:

o In particular, CLT implies that &;; — o;; = O(n~1/2): good
entrywise estimation

@ But poor spectral estimation
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Importance of p, = p/n

Case of X =1d

Suppose entries of n x p matrix X are iid mean 0, sd 1, 4th
moment. Population covariance = Id

Let pn = p/n.

Theorem (Mar&enko-Pastur, '67)

li: (decreasing) eigenvalues of 1X'X. Assume p, — p € (0, 1].
If Fp(x) = L{#1; < x}, then

Fp = F, in probability .

F, has known density.

Support: [a, b], with a = (1 — p'/2)2, b= (1 + p'/?)?
Bias issue/inconcistency problems for these asymptotics.
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Marcenko-Pastur law illustration

Population covariance: ¥ = 1d

Here, density of limiting spectral distribution computable:

Density of Marcenko—Pastur law for varying r
35 T T T T T
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Remark about extensions/limitations

@ RMT also gives results about limiting spectral distribution of
eigenvalues when ¥ # Id

e Models of form X; = ¥1/2Y;, entries of Y; i.i.d (say 4+e¢
moments)

@ Problem: geometric implications for the data; near
orthogonality, near constant norm of X/,/p, when A\;(X)
bounded

@ Two models can have same ¥ and different limiting spectral
distributions
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Estimation problems

Previous results highlights fact that naive estimation of covariance
matrix results in inconsistency in high-dimension.

Question: can we find procedures that consistently estimate
spectral properties of these matrices? (l.e also eigenspaces) And
are more robust to distributional assumptions?

Can we exploit good entrywise estimation to improved spectral
estimation?
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Previous work
Related ideas: Banding

Scheme proposed by P. Bickel and L. Levina ('06):

@ Consider population covariance matrices with small entries
away from the diagonal

@ Technically: X, satisfies

@ Recommend banding: 6;; = 0 if |i — j| > k, otherwise keep
estimate from ¥,
o Call this estimator Bk(fp)

Theorem (Bickel and Levina)

If k < (n=Y/2log(p))~Y/(®+1), + tail decay conditions

11Bk(Xp) = Zplll2 = 0
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Sparsity
Introduction

e Oft-made assumption: many o(/,j)=0 or “small”

@ Appeal of thresholding (i.e keep large values, and put small
ones to 0)

@ Aim: find simple methods for improving estimation

@ Practical requirements: speed, parallelizability, limited
assumptions

@ Theoretical requirements: good convergence properties, in
spectral norm (||| - |||2)

@ Estimator not sensitive to ordering of variables
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What is a good estimator?

Requirement: N
I1%p = Zplll2 =0

where (for symmetric matrices)

[IMl[l2 = 01(M) = VA1 (M*M) = max|Xi(M)] .

Convergence of ||| - |||2 implies
o Consistency of all eigenvalues (Weyl's inequality)

@ Consistency of stable subspaces corresponding to separated
eigenvalues (Davis-Kahan sin § theorem)

Our aim: permutation equivariant estimator, operator-norm
consistent
Our strategy: (hard) thresholding
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Standard notion of sparsity
lll-suited for spectral problems

Standard notion : count number of non-zero elements

11 1 1
L' % % 7 I % 0 0
L 1 0 0 — = 0
L v 5
E=] : 0 E=|0 ﬁ 1 %
1 " - 1
\{5 0 0 1 (1) : 1. 7
7% 0 0 0 ... 0 5 1
Eigenvalues Ej: Eigenvalues Ej:
p 1 mk
14,/621 1 1+fcos(p+1)
(mu|t|p||C|ty: p-2) k=1,.
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Adjacency matrices

1 L L 1

R VP

Ve 1 0 0
Ei=1: 0

1

? 0 0 1 0

B 0 0 1

1 1 1 |

1 1 0 . 0
Ar=|: .0 ®

1 0 0 1 O

1 0 O o1
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Adjacency matrices

1
1 & 0 0
1 7 L 0
VP ) VP 1
E=|9 % ! %
. . 1
1- ﬁ
0 ... 0 & 1
1 1 0 0

—_
=
—_
o
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Adjacency matrices and graphs: comparison

Closed walks of length k

Closed walk: start and finishes at same vertex
Length of walk: number of vertices it traverses
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Adjacency matrices and graphs

Connection with spectrum of covariance matrices

Closed walk (length k) v: i = ip — ... = ik — k41 = 01
Weight of YWy = 0’(/1, 12) . O'(ik, Il)

o(1,1) o(1,1)

0(2,2) 0(6,6)

o(5,6)

(3,3 a(5,5)

o(4.4) o(4,4)

trace (Zk> = Z/\f‘(Z) = Z Wy

vECp(k)
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Notion of sparsity compatible with spectral analysis
A proposal

@ Given ¥, p X p covariance matrix, compute adjacency matrix
Ap = Lo(ij)20
@ Associate graph G, to it

e Consider Cp(k) =
{closed walks of length k on the graph with adjacency matrix A,}
and ¢,(k) = Card {C,(k)} = trace (A¥) .

Call sequence of ¥, -sparse if
Vk € 2N, ¢p(k) < f(k)pk—D+1

where f(k) independent of pand 0 < 5 < 1
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Examples
Computation of sparsity coefficients

o Diagonal matrix : A, =1d,. ¢(k) = p, for all k. Sparsity
coefficient: 0.

@ Matrices with at most M non-zero elements on each line
#(k) < pMk~1. Sparsity coefficient: 0.

@ Matrices with at most Mp“ non-zero elements on each
line (k) < M1 ppk=1) Sparsity coefficient: o
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Assumptions underlying results

In all that follows,
@ X,(/,i) stay bounded
@ X;; have infinitely many moments
© Rows of (n x p) data matrix X i.i.d
Q p/n—1€(0,00)
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Simple case: gap in entries of covariance matrix

Gaussian MLE, centered case

e Xj; centered; cov(Xj) =X
@ Suppose X, (3-sparse, 3 =1/2—mnand n >0

1 o . .
Sp =" D XX, and To(Sp)(i,4) = Sp(isJ)1is, (i) cn-o -
i=1

To(Sp)= thresholded version of S, at level Cn™“
Then, if o = +¢€, e <n/2,

1 Ta(Sp) — Zplll2 — Oip.
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Beyond truly sparse matrices
Approximation by sparse matrices

How does thresholding perform on matrices approximated by
sparse matrices?

@ Suppose 3T, (X)) = fp, (-sparse.
® Suppose ||, — Zpll2 — 0.

@ Suppose Jap < a1 < 1/2 — g such that adjacency matrix of
(i,4)'s such that Cn=®* < |o(i,j)| < Cn~?° is 7-sparse,
v < ag — Co, o > 0.

Proposition

Then conclusions of theorem above apply: for a € (v, a1),

1 Ta(Sp) = Zplll2 = 0ip.
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Complements

Theorems apply to sample covariance matrix, i.e
(X = X)(X = X)/(n—1), not just the Gaussian MLE

Also to correlation matrices

Finite number of moments possible

p = n" for certain r depending on

Proof provides finite n, p bounds on deviation probabilities of
1 Ta(Sp) — Xplll2

Example: Zf,l)(i,j) = pli=l, and T, = P’Zf,l)P, P random
permutation matrix

@ Can be approximated by ip =T, 12¢(Xp)

° fp is asymptotically O-sparse

@ Proposition above applies when moment conditions satisfied
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Sharpness of 1/2-sparse assumption

Consider
1 ax a3 ... op
(6% 1 0 0
p= : 0
ap-1 0 0 1 O
Qp 0O O 1
with, e.g, a; =

T
Y, 1/2-sparse (ei genvalues A, (1+yp—1and1's)

Oracle estimator (O ( p)) of X, inconsistent in Gaussian case:
110(xp) — Lpll3 = 3275(di — ai)?

1/2 — 1 sparsity assumption “sharp”
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Practical observations
Asymptopia?

Practical implementation

@ Practicalities: implemented thresholding technique using FDR
at level 1/,/p

@ Theory: great results possible; Practice: good results (n,p a
few 100's to a few 1000's); maybe not as good as hoped for.

@ Practice very good when few coefficients to estimate; far away
from “o/\/n" (unsurprisingly)

e Making “mistakes” OK. Softer techniques (Huber-type) might
be good alternatives, especially for non-sparse matrices

@ Eigenvector practice somewhat “disappointing”. In hard
situations, performs OK. In less hard situations, results
comparable or a bit worse than sparse PCA.
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Conclusions

@ Highlighted some difficulties in covariance estimation in “large
n, large p” setting
@ Proposed notion of sparsity compatible with spectral analysis
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Real world example
Data Analysis: Portfolio of Industry Indexes

Data:

@ Daily Returns 48 Indexes, by Industry: Agriculture, Toys,
Beer, Soda, etc... from Kenneth French's website at
Dartmouth. p = 48

@ 2 years of observations n = 504

Effect of shrinkage on smallest eigenvalue:
llempmcal ~ 0.023
fghrunk ~ 0.217
Through Subsampling, get (0.205,0.303) 95% Cl
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Data Analysis: Portfolio of Industry Indexes

Scree plot for Industry Index Portfolio data

Smallest eigenvalue ~ .02

Figure: Scree plot for Industry index data
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Data Analysis: Portfolio of Industry Indexes

Subsampling distribution of adjusted
estimator of

smallest eigenvalue

Industry indexes

n=504
" p=48

“ number Repetitions: 500
©~ number subsamples: 450

= empirical smallest eigenvalue ~ .02

. I L
005

01 015

Figure: Subsampling distribution of estimator
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(Easy) Example 1: Toeplitz(1,.3,.4)

n= p =500

3~
Population covariance:
Toeplitz(1,0.3,0.4) ;
2.5 n=p=500 -
=
oL
1.5
Thresholded matrix eigenvalues:
1k
05 Population eigenvalues
0 Il Il Il Il Il Il Il Il Il J
0 50 100 150 200 250 300 350 400 450 500
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(Easy) Example 1: Toeplitz(1,.3,.4)

n= p =500

3-
Population covariance:
Toeplitz(1,0.3,0.4)
2.5 n=p=500 )
2+ p
Vi
1.5
1k
05 Population eigenvalues
| e
0 = | I I | | I | I I ]
0 50 100 150 200 250 300 350 400 450 500
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(Easy) Example 1: Toeplitz(1,.3,.4)

n= p =500

Thresholded matrix eigenvalue\)

Population covariance:

Toeplitz(1,0.3,0.4)
n=p=500

Sample Covariance eigenvalues———

Population eigenvalues

50

I
100

I
150

1 1
200 250

1
300

1
350

1 1 ]
400 450 500
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Example 2: Toeplitz(2,.2,.3,0,-.4)

n= p =500

35
Population covariance: -l
Toeplitz(2, .2,.3,0,-.4)
3r n=p=500 4
2.5 4

Population Spectru

Spectrum Thresholded Matrix

1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450 500
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Example 2: Toeplitz(2,.2,.3,0,-.4)

n= p =500

8l Population covariance:

Toeplitz(2, .2,.3,0,-.4)

n=p=500
71
61
51

Sample Covariance Matrix——— 3/'

aF ’ B

Population Spectrul

0 Spectrum Thresholded Matrix 4

1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450 500

onal sparse cova



Example 2: Toeplitz(2,.2,.3,0,-.4)

Independent simulation

3.5

25

0.5

Population covariance:
Toeplitz(2, .2,.3,0,-.4)
n=p=500

Blue: Thresholded Matrix eigenvalues h

Green + : oracle banded matrix
ed .: oracle matrix

I
150

1 1 1 1
200 250 300 350 400 450 500
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Estimating the theoretical frontier

Practical implementation

@ Data: from Fama-French website.
@ Year 2005-2006. n = 252.

@ Those are p = 48 industry indexes.

Orders of magnitude:

o= —0.0401, 8 = 0.3449 , v = 14.2261 .
3= -0.0324 ,b=0.0887 ,¢ = 11.5163

Also,

5 = 4.9050 , d = 1.0208
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Estimating the theoretical frontier

Practical implementation: 252 days, 47 assets; raw data

Correction to empirical frontier: 1 year of data
0.1 T T T T T

Target Returns
o o
a 8
T T

o

o

R
T

0.03— -
0.02— -
001 m—— Naive Plug-in Estimator
Corrected Estimator
0 1 1 1 1 1 1 1
0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48
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Estimating the theoretical frontier
Practical implementation: 252 days, 47 assets; simulations
Correction of efficient frontier: simulation results

0.1 h
Eil
E
s
E
0.09- i
i
/
0.08 ¥
¥
F
i
0.07- -
E3
0.06 - 4
0.051— 1
%
0.04- -
g
I
F
0,03 + g
i
m— Efficient frontier
Mean of Corrected Frontier L
+  Bottom of 95% ClI for corrected frontier
Top of 95% ClI for corrected frontier
Median of Corrected Frontier
Mean uncorrected Frontier M
Bottom of 95% Cl for uncorrected frontier

+

—— Top of 95% ClI for uncorrected frontier
T T
0.42 0.44

T
0.38 0.4

o

o

~

T
-

O [+

w
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Eigenfaces
An interesting example of PCA

Question: compression of digitized pictures of human faces.

Idea: Gather a database of faces.

Example: ORL face database: 10 pictures of 40 distinct
subjects

Pictures are say 92*%112=10304 pixels, 256 levels of gray
images. Code them as vectors. Get data matrix X.

Run Principal Component Analysis on the corresponding
matrix

Eigenvectors corresponding to large eigenvalues are
“eigenfaces”.

Need only a few numbers to approximate a new face:
coefficients of its projection on eigenfaces.
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Some eigenfaces for ORL face database

Data obtained from Wikipedia. Copyright by AT&T Laboratories
Cambridge.
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