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Empirical Bayes:
General Background

* n Parameters to be estimated: 0,,...,0 . [

e Observe X ~ fe,.> independent. Let X = (Xl,..,Xn).
e Estimate 6. byo, (X)

e Component-wise Loss and Overall Risk

L(Gi,6i)=(5i—0i)2 and

R(Q,Q) = %ZE@. [L(Giﬁl. (X))}



Bayes Estimation
e “Pretend” {6, } are iid, with a (prior) distribution G, .
e Under G, the Bayes Procedure would be
A% =(87...60): 6% (x,)=E(6) x,)
| Note: 5Z.G" depends only on X; (and on G,,).]
e [t would have Bayes risk

B,1(G,)=B(G,.A%)=E, (r(e.a7)).

[Note: Because of the scaling of sum-of-squared-error-loss by 1/7
1t 1s the case that B(Gn) 1s also the coordinate-wise Bayes risk, ie,

B(G,)=E, [E (6,-5° (Xl.))z}. |



Empirical Bayes
e Introduced by Robbins:
An empirical Bayes approach to statistics, 3 Berk Symp, 1956
¢ “Applicable when the same decision problem presents itself
repeatedly and independently with a fixed but unknown a priori
distribution of the parameter.” Robbins, Ann Math Stat, 1964

® Thus: Fix G. Let G, = G for all n.
e Try to find a sequence of estimators, An (Xn ), that are

asymptotically as good asA°.
® je, want

B.(G.4,)-B,(G)~o0.

e Much of the subsequent literature emphasized the sequential
nature of this problem.



The Fixed-Sample Empirical Goal

e Even earlier Robbins had taken a slightly different perspective.
Asymptotically subminimax solutions of compound decision problems,

2" Berk Symp., 1951. See also Zhang (2003). Robbins began,

e “When statistical problems of the same type are considered in large
groups...there may exist solutions which are asymptotically ... [desirable]”

e That 1s, one can benefit even for fixed, but large, » (and even 1f
G may change with n).
e To measure the desirability we propose
B.(G,.4,)-B .(G,)
5,(G,)

e Here, G is a (very inclusive) subset of priors. [But not all

> 0.

( 1 ) Sup G G,

priors].



Independent Normal Means
e Observe,

X ~ N(Ql.,Gz), i=1,..,n, indep.
with o° known. Let ¢ _, denote normal density with Var = o
o Assumeb. ~ G , iid. Write G = G , for convenience.

e Consider the i-th coordinate. Write 6. =60, x. = x for convenience
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e The Bayes estimator (for Squared error loss) 1s
5% ()= £, (6] =]
¢ Denote the marginal den51ty of X as
)= .(x-06)G(d8).
e As a general notatlon, let y ( )= o, (x) — X



(=)=

0-x)op ,(x—0)G(d6)

Jo,.(x-6)a(ae)
e Differentiate inside the integral (always OK), to write

(%) Yo (x) = o gg**,((j))

e Moral of (*): A really good estimate of the marginal density
g (x) should yield a good approximation to 7 (x)

Validity of (*) is proved in Brown (1971).



Proposed Non-Parametric Empirical-Bayes Estimator
e Let 4 be a bandwidth constant (to be chosen later).

e Estimate g~ (x) by the kernel density estimator
~ l <1 x—X.
ei(5)-Zo,r-x)- 12105

o The normal kernel has some nice properties, to be explained later.

¢ Define the NP EB estimator by A= (51,..,5n) with

Si | }7 » 8 ( i).
(x) ( ) 8h( i)
e A useful formula is

~ ! | X, — - X,
B (eX)= 2 ””[ j ]




A Key Lemma:
o et Gf denote the sample CDF of X = (Xl,..,Xn).

o Let gzav denote the marginal density when X, ~ N (Gi,v).

eleto’=1andlet v=1+A*

Lemma 1: E[g;j (x)] =g, (x)andE[(éZ’ (x)} = g;v, (x)
Proof:

0§Z:é§*(p

ne

* E|GX|=CDF of X =G+g,.
e Hence, E[g;i(x)]:E[Gf*(phz]:G*gol*gohz =G*Q .

The proof for the derivatives is similar. ©
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Derivation of the Estimator

The expression for the estimator appears in red at the beginning
and end of the following string of (approximate) equalities.

’
*

g .
o ylG = Z’l by the fundamental equation (*).
E6.
8c1 86 .
2l = 2% sincev=1+h" =1.
g-G,l gG,v
« ’ ~*/
Ecy
o G* = gfl from the Lemma
gG,v gh

via plug-in Method-of-Moments 1n numerator and denominator.
See Jiang and Zhang (2007) for a different scheme based on a Fourier kernel.
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A Tale of Two Formulations
“Compound” and “Empirical Bayes”
“Compound” Problem:

elet@, = {9(1),..,9(n)} and {((_) = {X(l),..,X(n)} denote the order

statistics of 6 and X, resp.
e Consider estimators of the form

0= {5,-} J 61’ = 5()61.;2{(,))

These are called Simple-Symmetric est’s. SS denotes all of them.
e (Given Q(.) the optimal SS rule 1s denoted asA% Tt satisfies

R(Q,AQ<') ) —inf,  R(0,A).

AeSS
e The goal of Compound decision theory 1s to find rule(s) that do
almost as well as A% , as judged by a criterion like (1).
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The Link Between the Formulations
EB Implies CO

e Recall that Gf“ denotes the sample CDF on(.).
e Then, A € SS implies

R(6,A)= E{lE[Q —B(Xi;g((.))}z}: B(G;?(-),A).

n

e Consequently: If An 1s EB [in the sense of (1)] then 1t 1s also
Compound Optimal in the sense of: V8 3 Gf g .

R[n] (Qn’An ) —inf, R[n] (Qn ,A)

ianeSS R[n] (Qn ’A)

(1°)

<8n%0
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The Converse: CO = EB
e To MOTIVATE the converse, assume A €8S 1s CO 1n that

R[n] (Qn.’An)_ ianeSS R[n] (Qn’A) <e > 0.
1aneSS R[n] (Qn ? A)
e Suppose this holds when © 1s ALL possible vectors 6

—>]’l.

(1) >Po co,

e Under a prior G, the vector 6 has 11d components, and
A Q
B[n] (Gn’A) ~ E(B[n] (Gn( | ’A) Q('))'

e Truth of (1") for all @ then implies truth of its Expectation over

the distribution of Q(.) under G,,. This yields (1).

e In reality (1”) does not hold for all 8 , but only for a very rich

subset. Hence the proof requires extra details.
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“Sparse” Problems

e An initial motivation for this research was to create a CO - EB
method suitable for “Sparse” settings.

e The proto-typical sparse CO setting has
(sparse) 0, = (19 ,190,191,.,191)
with = (1— Oc)n values ¥, and only orn valuesd),.
e Here, o 1s near 0, but ¢, ¥, may be either known or unknown.
e Situations with o = 0(1/ n) can be considered extremely sparse.

e Situations with, say, o = 1/ n'"®,0< e <1 are moderately sparse.

e Sparse problems are of interest on their own merits (eg in
genetics) — for example, as in Efron (2004-+).

o And for their importance in building nonparametric regression
estimators — see eg, Johnstone and Silverman (2004).
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(Typical) Comparison of NP-EB Estimator with Best Competitor

#Signals | Est’r | Value | Value | Value | Value
=3 =4 =5 =7
5 |5 |53 |49 | 42 | 27
5 Best | 34 32 17 7
other
50 51 ) 179 | 136 | 81 40
50 Best | 201 | 156 | 95 92
other
500 51 . 484 | 302 | 158 | 48
500 Best | 829 | 730 | 609 | 505
other

Table: Total Expected Squared Error (via simulation; to nearest integer)
Compound Bayes setup with n=1000; ‘most’ means =0 and others =“Value”
“Best Other” is best performing of 18 studied in J & S (2004).

0, ,.is our NP — EB est’r with v=1.15
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Statement of EB - CO Theorem

Assumptions:
e &’ >( 3Qn C {Gn ZB[H](GH) > ne'}.
Hence, (only) moderately sparse settings are allowed.
+G c{G,:G,([-c,.c,])=1}>C,=0(n") ve>o0.
n

We believe this assumption can be relaxed, but it seems that

some sort of uniformly light-tail condition on G 1s needed.
n

Theorem: Let /i’ =1/d, with d [log(n) — o &d, =o(n") V& >0.

Then (under above assumptions) Ansatisﬁes (1).

[Note: n=1000 & d =log(n) =>v=1+ d~' =1.15, as in Table.]
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Heteroscedastic Setting

EB formulation:
¢ 0’,..,0° known
n

e Observe X, ~ N(Gl.,(ff), indep.,i =1,..,n.
o Assume (EB)6. ~ G , indep.,
e but G, unknown, except forG €G .

n

e Loss function, risk function, and optimality target, (1), as before.
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Heuristics
e Bayes estimator on i-th coordinate has

v/ (x)= af(g;'(x,.)/g; (x))

e Previous heuristics suggest approximating g; (xl.) by

g;z (xi) = g;(wz) (xl')

e And then estimating g:’;z o) (xl_) as the average of

g;(nﬁ) (xi) = ¢h2:af(1+42)—o,§ (xz' - Xk)’k =L..,n.
e To avoid impossibilities, need to use
B, :(af(1+z2)—a§) .

+
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e Resulting estimator has

7 () =ore” (x)/2 (x)
with h]il. as above, and
] Zl{k: 2 >0} (k)q)hg’i (xl. - Xk)
gi (X)— k zk‘/[{k‘hzf,PO}

¢ (With 1nessential modifications) this 1s the estimator used in
Brown (AOAS, 2008).
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