Non-parametric Empirical Bayes and Compound Bayes Estimation of Independent Normal Means

L. Brown

Statistics Department, Wharton School University of Pennsylvania <u>lbrown@wharton.upenn.edu</u>

Joint work with E. Greenshtein

Conference:

Innovation and Inventiveness of John Hartigan April 17, 2009

Topic Outline

- 1. Empirical Bayes (Concept)
- 2. Independent Normal Means (Setting + some theory)
- 3. The NP-EB Estimator (Heuristics)
- 4. "A Tale of Two Concepts" – Empirical Bayes and Compound Bayes
- 5. (Somewhat) Sparse Problems
- 6. Numerical results
- 7. Theorem and Proof
- 8. The heteroscedastic case heuristics

Empirical Bayes: General Background

- *n* Parameters to be estimated: $\theta_1, ..., \theta_n$. [θ_i real-valued.]
- Observe $X_i \sim f_{\theta_i}$, independent. Let $\mathbf{X} = (X_1, ..., X_n)$.
- Estimate θ_i by $\delta_i(\mathbf{X})$.
- Component-wise Loss and Overall Risk $L(\theta_i, \delta_i) = (\delta_i - \theta_i)^2$ and

$$R(\underline{\theta},\underline{\delta}) = \frac{1}{n} \sum E_{\theta_i} \left[L(\theta_i, \delta_i(\mathbf{X})) \right]$$

Bayes Estimation

- "Pretend" $\{\theta_i\}$ are iid, with a (prior) distribution G_n .
- Under G_n the Bayes Procedure would be

$$\Delta^{G_n} = \left(\delta_1^{G_n}, \dots, \delta_n^{G_n} \right) : \delta_i^{G_n} \left(X_i \right) = E \left(\theta_i \middle| X_i \right).$$

[*Note*: $\delta_i^{G_n}$ depends only on X_i (and on G_n).]

• It would have Bayes risk

$$B_{[n]}(G_n) = B(G_n, \Delta^{G_n}) = E_{G_n}(R(\underline{\theta}, \Delta^{G_n})).$$

[*Note*: Because of the scaling of sum-of-squared-error-loss by 1/n it is the case that $B(G_n)$ is also the coordinate-wise Bayes risk, ie,

$$B(G_n) = E_{G_n} \left[E_{\theta_i} \left(\theta_i - \delta_i^{G_n} \left(X_i \right) \right)^2 \right].$$

Empirical Bayes

- Introduced by Robbins:
 - An empirical Bayes approach to statistics, 3rd Berk Symp, 1956
- "Applicable when the same decision problem presents itself repeatedly and independently with a fixed but unknown a priori distribution of the parameter." Robbins, *Ann Math Stat*, 1964
- Thus: Fix G. Let $G_n = G$ for all n.
- Try to find a sequence of estimators, $\tilde{\Delta}_n(\mathbf{X}_n)$, that are asymptotically as good as Δ^G .
- *ie*, want

$$B_{[n]}(G, \tilde{\Delta}_n) - B_{[n]}(G) \rightarrow 0.$$

• Much of the subsequent literature emphasized the sequential nature of this problem.

The Fixed-Sample Empirical Goal

- Even earlier Robbins had taken a slightly different perspective. Asymptotically subminimax solutions of compound decision problems, 2nd Berk Symp., 1951. See also Zhang (2003). Robbins began,
- "When statistical problems of the same type are considered in large groups...there may exist solutions which are asymptotically ... [desirable]"
- That is, one can benefit even for fixed, but large, n (and even if G_n may change with n).
- To measure the desirability we propose

(1)
$$\sup_{G_n \in \mathcal{G}_n} \frac{B_{[n]}(G_n, \tilde{\Delta}_n) - B_{[n]}(G_n)}{B_{[n]}(G_n)} \to 0.$$

• Here, \mathcal{G}_n is a (very inclusive) subset of priors. [*But not all priors*].

Independent Normal Means

• Observe,

$$X_i \sim N(\theta_i, \sigma^2), i = 1, ..., n$$
, indep.

with σ^2 known. Let φ_{σ^2} denote normal density with Var = σ^2 .

- Assume $\theta_i \sim G_n$, *iid*. Write $G = G_n$, for convenience.
- Consider the *i*-th coordinate. Write $\theta_i = \theta$, $x_i = x$ for convenience
- The Bayes estimator (for Squared error loss) is $\delta^{G}(x) = E_{G}(\theta | X = x)$
- Denote the marginal density of *X* as

$$g^*(x) = \int \varphi_{\sigma^2}(x-\theta) G(d\theta).$$

• As a general notation, let $\gamma^G(x) = \delta_G(x) - x$

• Note that

$$\gamma^{G}(x) = \delta^{G}(x) - x = \frac{\int (\theta - x) \varphi_{\sigma^{2}}(x - \theta) G(d\theta)}{\int \varphi_{\sigma^{2}}(x - \theta) G(d\theta)}$$

• Differentiate inside the integral (always OK), to write

(*)
$$\gamma^G(x) = \sigma^2 \frac{g^{*'}(x)}{g^{*}(x)}.$$

• Moral of (*): A **really good** estimate of the marginal density $g^*(x)$ should yield a good approximation to $\gamma^G(x)$.

Validity of (*) is proved in Brown (1971).

Proposed Non-Parametric Empirical-Bayes Estimator

- Let *h* be a bandwidth constant (to be chosen later).
- Estimate $g^*(x)$ by the kernel density estimator

$$\tilde{g}_{h}^{*}(x) = \sum \varphi_{h}(x - X_{i}) = \frac{1}{n} \sum \frac{1}{h} \varphi_{1}\left(\frac{x - X_{i}}{h}\right)$$

- *The normal kernel has some nice properties, to be explained later.*
- Define the NP EB estimator by $\tilde{\Delta} = (\tilde{\delta}_1, ..., \tilde{\delta}_n)$ with

$$\tilde{\delta}_i(x_i) - x_i = \tilde{\gamma}_i(x_i) = \sigma^2 \frac{\tilde{g}_h^{*'}(x_i)}{\tilde{g}_h^{*}(x_i)}.$$

• A useful formula is

$$\tilde{g}_{h}^{*'}(x;\mathbf{X}) = \frac{1}{nh} \sum \frac{X_{i} - x}{h^{2}} \varphi\left(\frac{x - X_{i}}{h}\right).$$

A Key Lemma:

- Let $\hat{G}_n^{\mathbf{X}}$ denote the sample CDF of $\mathbf{X} = (X_1, ..., X_n)$.
- Let $g_{G,v}^*$ denote the marginal density when $X_i \sim N(\theta_i, v)$.
- Let $\sigma^2 = 1$ and let $v = 1 + h^2$

Lemma 1:
$$E\left[\tilde{g}_{h}^{*}(x)\right] = g_{G,v}^{*}(x)$$
 and $E\left[\tilde{g}_{h}^{*'}(x)\right] = g_{G,v}^{*'}(x)$.

Proof:

Derivation of the Estimator

The expression for the estimator appears **in red** at the beginning and end of the following string of (approximate) equalities.

• $\gamma_1^G = \frac{g_{G,1}^*}{g_{G,1}^*}$ by the fundamental equation (*). • $\frac{g_{G,1}^*}{g_{G,1}^*} \approx \frac{g_{G,v}^*}{g_{G,v}^*}$ since $v = 1 + h^2 \approx 1$. • $\frac{g_{G,1}^*}{g_{G,v}^*} \approx \frac{\tilde{g}_h^*}{\tilde{g}_h^*}$ from the Lemma

via plug-in Method-of-Moments in numerator and denominator. See Jiang and Zhang (2007) for a different scheme based on a Fourier kernel. A Tale of Two Formulations "Compound" and "Empirical Bayes"

"Compound" Problem:

- Let $\underline{\theta}_{(\cdot)} = \left\{ \theta_{(1)}, ..., \theta_{(n)} \right\}$ and $\underline{X}_{(\cdot)} = \left\{ X_{(1)}, ..., X_{(n)} \right\}$ denote the order statistics of $\underline{\theta}$ and \underline{X} , resp.
- Consider estimators of the form

$$\vec{\delta} = \left\{ \delta_i \right\} \quad \Rightarrow \quad \delta_i = \delta \left(x_i; x_{(\cdot)} \right)$$

These are called *Simple-Symmetric* est's. SS denotes all of them.

• Given $\underline{\theta}_{(\cdot)}$ the optimal **SS** rule is denoted as $\Delta^{\underline{\theta}_{(\cdot)}}$. It satisfies

$$R\left(\underline{\theta}, \Delta^{\underline{\theta}_{(\cdot)}}\right) = \inf_{\Delta \in \mathbf{SS}} R\left(\underline{\theta}, \Delta\right).$$

• The goal of Compound decision theory is to find rule(s) that do almost as well as $\Delta^{\underline{\theta}_{(\cdot)}}$, as judged by a criterion like (1).

The Link Between the Formulations

EB Implies CO

- Recall that $\hat{G}_{n}^{\underline{\theta}_{(\cdot)}}$ denotes the sample CDF of $\underline{\theta}_{(\cdot)}$.
- Then, $\Delta \in \mathbf{SS}$ implies $R(\theta, \Delta) = E\left\{\frac{1}{n}\sum_{i=1}^{n} \left[\theta_{i} - \delta\left(X_{i}; X_{(\cdot)}\right)\right]^{2}\right\} = B\left(\hat{G}_{n}^{\theta_{(\cdot)}}, \Delta\right).$
- Consequently: If $\tilde{\Delta}_n$ is EB [in the sense of (1)] then it is also <u>Compound</u> <u>Optimal in the sense of: $\forall \theta \ni \hat{G}_n^{\theta} \in \mathcal{G}_n$.</u>

(1')
$$\frac{R_{[n]}(\underline{\theta}_{n},\Delta_{n}) - \inf_{\Delta \in SS} R_{[n]}(\underline{\theta}_{n},\Delta)}{\inf_{\Delta \in SS} R_{[n]}(\underline{\theta}_{n},\Delta)} < \mathcal{E}_{n} \to 0$$

• To MOTIVATE the converse, assume $\tilde{\Delta}_n \in SS$ is CO in that (1') $\sup_{\underline{\theta}_n \in \Theta_n} \frac{R_{[n]}(\underline{\theta}_n, \tilde{\Delta}_n) - \inf_{\Delta \in SS} R_{[n]}(\underline{\theta}_n, \Delta)}{\inf_{\Delta \in SS} R_{[n]}(\underline{\theta}_n, \Delta)} < \varepsilon_n \to 0.$

- Suppose this holds when Θ_n is ALL possible vectors $\underline{\theta}_n$.
- Under a prior G_n the vector $\underline{\theta}$ has iid components, and $B_{[n]}(G_n, \Delta) = E \left(B_{[n]}(\hat{G}_n^{\underline{\theta}_{(\cdot)}}, \Delta) \middle| \underline{\theta}_{(\cdot)} \right).$
- Truth of (1') for all $\underline{\theta}_n$ then implies truth of its Expectation over the distribution of $\underline{\theta}_{(\cdot)}$ under G_n . This yields (1).
- In reality (1') does not hold for all $\underline{\theta}_n$, but only for a very rich subset. Hence the proof requires extra details.

"Sparse" Problems

- An initial motivation for this research was to create a CO EB method suitable for "Sparse" settings.
- The proto-typical sparse CO setting has

(sparse) $\underline{\theta}_{(\cdot)} = (\vartheta_0, \dots, \vartheta_0, \vartheta_1, \dots, \vartheta_0, \vartheta_1, \dots, \vartheta_1)$ with $\approx (1 - \alpha)n$ values ϑ_0 and only αn values ϑ_1 .

- Here, α is near 0, but ϑ_0 , ϑ_1 may be either known or unknown.
- Situations with $\alpha = O(1/n)$ can be considered *extremely* sparse.
- Situations with, say, $\alpha \approx 1/n^{1-\varepsilon}$, $0 < \varepsilon < 1$ are *moderately* sparse.
- Sparse problems are of interest on their own merits (eg in genetics) for example, as in Efron (2004+).
- And for their importance in building nonparametric regression estimators see eg, Johnstone and Silverman (2004).

(Typical) Comparison of NP-EB Estimator with Best Competitor

#Signals	Est'r	Value =3	Value =4	Value =5	Value =7
5	$ ilde{\delta}_{_{1.15}}$	53	49	42	27
5	Best other	34	32	17	7
50	$ ilde{\delta}_{_{1.15}}$	179	136	81	40
50	Best other	201	156	95	52
500	$ ilde{\delta}_{_{1.15}}$	484	302	158	48
500	Best other	829	730	609	505

<u>Table</u>: Total Expected Squared Error (via simulation; to nearest integer) Compound Bayes setup with n=1000; 'most' means =0 and others ="Value" "Best Other" is best performing of 18 studied in *J* & *S* (2004).

 $\tilde{\delta}_{1.15}$ is our NP – EB est'r with v = 1.15

Statement of EB - CO Theorem

Assumptions:

•
$$\exists \varepsilon' > 0 \ \ni \mathcal{G}_{n} \subseteq \left\{ G_{n} : B_{[n]}(G_{n}) > n^{\varepsilon'} \right\}.$$

Hence, (only) moderately sparse settings are allowed.

•
$$\mathcal{G}_{n} \subseteq \left\{ G_{n} : G_{n} \left(\left[-C_{n}, C_{n} \right] \right) = 1 \right\} \ni C_{n} = O(n^{\varepsilon}) \forall \varepsilon > 0.$$

We believe this assumption can be relaxed, but it seems that some sort of uniformly light-tail condition on \mathcal{G} is needed.

Theorem: Let $h_n^2 = 1/d_n$ with $d_n/\log(n) \to \infty \& d_n = o(n^{\varepsilon}) \forall \varepsilon > 0$. Then (under above assumptions) $\tilde{\Delta}_n$ satisfies (1).

[Note:
$$n = 1000 \& d_n = \log(n) \Rightarrow v = 1 + d^{-1} \approx 1.15$$
, as in Table.]

Heteroscedastic Setting

EB formulation:

- $\sigma_1^2,...,\sigma_n^2$ known
- Observe $X_i \sim N(\theta_i, \sigma_i^2)$, indep., i = 1, ..., n.
- Assume (EB) $\theta_i \sim G_n$, indep.,
- but G_n unknown, except for $G_n \in \mathcal{G}_n$.
- Loss function, risk function, and optimality target, (1), as before.

Heuristics

• Bayes estimator on *i*-th coordinate has

$$\gamma_i^G(x_i) = \sigma_i^2 \left(g_{\sigma_i^2}^{*'}(x_i) / g_{\sigma_i^2}^{*}(x_i) \right).$$

• Previous heuristics suggest approximating $g_{\sigma_i^2}^*(x_i)$ by

$$g_{\sigma_i^2}^*(x_i) \approx g_{\sigma_i^2(1+\ell^2)}^*(x_i)$$

• And then estimating $g^*_{\sigma_i^2(1+\ell^2)}(x_i)$ as the average of

$$g^*_{\sigma^2_i(1+\ell^2)}(x_i) \approx \varphi_{h^2 = \sigma^2_i(1+\ell^2) - \sigma^2_k}(x_i - X_k), k = 1, ..., n.$$

• To avoid impossibilities, need to use

$$h_{k,i}^2 = \left(\sigma_i^2\left(1+\ell^2\right)-\sigma_k^2\right)_+.$$

• Resulting estimator has

$$\gamma_i^G(x_i) = \sigma_i^2 \left(\tilde{g}^{*'}(x_i) / \tilde{g}^{*}(x_i) \right)$$

with $h_{k,i}^2$ as above, and

$$\tilde{g}_{i}^{*}(X) = \frac{\sum_{k} I_{\{k: h_{k,i}^{2} > 0\}}(k) \varphi_{h_{k,i}^{2}}(x_{i} - X_{k})}{\sum_{k} I_{\{k: h_{k,i}^{2} > 0\}}}.$$

• (With inessential modifications) this is the estimator used in Brown (AOAS, 2008).