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Topic Outline 
 
1.  Empirical Bayes (Concept) 
 

2.  Independent Normal Means (Setting + some theory) 
 

3.  The NP-EB Estimator (Heuristics) 
 

4.  “A Tale of Two Concepts” 
   – Empirical Bayes and Compound Bayes 
 

5.  (Somewhat) Sparse Problems   

6.  Numerical results 
 

7.  Theorem and Proof 
 

8.  The heteroscedastic case – heuristics 
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Empirical Bayes: 
General Background 

 
• n Parameters to be estimated: 
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Bayes Estimation 
• “Pretend” 

 
!

i
{ } are iid, with a (prior) distribution Gn . 

• Under Gn the Bayes Procedure would be 
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[Note: 
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G
n  depends only on Xi (and on Gn).] 

• It would have Bayes risk 
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Empirical Bayes  
• Introduced by Robbins:  

  An empirical Bayes approach to statistics, 3rd Berk Symp, 1956 
• “Applicable when the same decision problem presents itself 

repeatedly and independently with a fixed but unknown a priori 
distribution of the parameter.” Robbins, Ann Math Stat, 1964 

• Thus: Fix G. Let 
 
G

n
= G  for all n.  

• Try to find a sequence of estimators, 
   
!!

n
X

n
( ), that are 

asymptotically as good as !
G .  

• ie, want 
 

   
B

n!" #$
G, !%

n( )& B
n!" #$

G( )' 0. 

• Much of the subsequent literature emphasized the sequential 
nature of this problem. 
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The Fixed-Sample Empirical Goal 
• Even earlier Robbins had taken a slightly different perspective. 

  Asymptotically subminimax solutions of compound decision problems, 
  2nd Berk Symp., 1951. See also Zhang (2003). Robbins began, 
• “When statistical problems of the same type are considered in large 

groups...there may exist solutions which are asymptotically ... [desirable]” 
• That is, one can benefit even for fixed, but large, n (and even if 

 
G

n
 may change with n). 

• To measure the desirability we propose  

(1) 
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• Here, 
  
G

n
is a (very inclusive) subset of priors. [But not all 

priors]. 
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Independent Normal Means 
• Observe, 

 
  
X

i
~ N !

i
,"

2( ), i = 1,..,n , indep. 

with  ! 2 known. Let 
 
!

" 2
 denote normal density with Var =  ! 2. 

• Assume
  
!

i
~ G

n
, iid. Write 

 
G = G

n
, for convenience. 

• Consider the i-th coordinate. Write 
  
!

i
= ! , x

i
= x  for convenience 

• The Bayes estimator (for Squared error loss) is 
 

 
!

G
x( ) = E

G
" X = x( ) 

• Denote the marginal density of X as  

  
g! x( ) = "

# 2
x $%( )G d%( )& . 

• As a general notation, let 
 
! G

x( ) = "
G

x( )# x  
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• Note that 

  

! G
x( ) = "G

x( )# x =
$ # x( )%& 2

x #$( )G d$( )'
%

& 2
x #$( )G d$( )'

 

• Differentiate inside the integral (always OK), to write 

(*) 
  

! G
x( ) = " 2

g
#$ x( )

g
#

x( )
. 

• Moral of (*): A really good estimate of the marginal density 

 
g
!

x( ) should yield a good approximation to 
 
! G

x( ). 
 
 

Validity of (*) is proved in Brown (1971). 
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Proposed Non-Parametric Empirical-Bayes Estimator 

• Let h be a bandwidth constant (to be chosen later). 
• Estimate 

 
g
!

x( ) by the kernel density estimator 
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• The normal kernel has some nice properties, to be explained later. 

• Define the NP EB estimator by 
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n( ) with 

 
   

!!
i

x
i( )" x

i
= !#

i
x

i( ) = $ 2
!g

h

%& x
i( )

!g
h

% x
i( )

. 

• A useful formula is 

    

!g
h

!" x;X( ) =
1

nh

X
i
# x

h2$ %
x # X

i

h

&

'(
)

*+
. 



 10 

A Key Lemma: 
 

• Let 
   
Ĝ

n

X  denote the sample CDF of 
   
X = X

1
,.., X

n
( ). 

• Let 
  
g

G ,v

!  denote the marginal density when
  
X

i
~ N !

i
,v( ). 

• Let  ! 2
= 1 and let   v = 1+ h

2 
 

Lemma 1: 
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%
&
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Proof:  
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1
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• Hence, 
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v
. 

 The proof for the derivatives is similar. ☺ 
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Derivation of the Estimator 

 

The expression for the estimator appears in red at the beginning 
and end of the following string of (approximate) equalities. 

• 
  

!
1

G
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g
G ,1

" #

g
G ,1

"
by the fundamental equation (*). 

• 
  

g
G ,1

! "

g
G ,1

!
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g
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! "

g
G ,v

!
since  v = 1+ h

2
!1. 

• 
   

g
G ,v

! "

g
G ,v

!
#
!g

h
!"

!g
h
!

from the Lemma 

via plug-in Method-of-Moments in numerator and denominator. 
See Jiang and Zhang (2007) for a different scheme based on a Fourier kernel. 
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A Tale of Two Formulations 
“Compound” and “Empirical Bayes” 

“Compound” Problem: 
• Let 

   
!! (") = !

(1)
,..,!

(n){ } and 
   !
X

(!)
= X

(1)
,.., X

(n){ } denote the order 
statistics of  !!  and

  !X , resp.  
• Consider estimators of the form 

   !
! = !

i
{ }  "  !

i
= ! x

i
;!x(#)( ) 

These are called Simple-Symmetric est’s. SS denotes all of them. 
• Given 

  
!! (") the optimal SS rule is denoted as  ! !

"
( #) . It satisfies 

    
R !! ,"

!!( #)( ) = inf
"$SS

R !! ,"( ). 
• The goal of Compound decision theory is to find rule(s) that do 

almost as well as   ! !
"

( #) , as judged by a criterion like (1). 
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The Link Between the Formulations 
 

EB Implies CO 
 

• Recall that 
   
Ĝ

n

!!( ")  denotes the sample CDF of
  !
!

(")
. 

• Then,  ! "SS implies 
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n
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i
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i
; !X (%)( )&

'
(
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,
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.
/
0
= B Ĝ

n
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• Consequently: If 

  
!!

n
 is EB [in the sense of (1)] then it is also 

Compound Optimal in the sense of: 
    
!!" # Ĝ

n

!" $G
n
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The Converse: CO ⇒ EB 
• To MOTIVATE the converse, assume 

   
!!

n
"SS  is CO in that 

(1′)    
    

sup
!!n
"#

n

R
n$% &'
!!n

, "(
n

( )) inf
("SS

R
n$% &'
!!n

,(( )
inf

("SS
R

n$% &'
!!n

,(( )
< *

n
+ 0. 

• Suppose this holds when 
 
!

n
 is ALL possible vectors 

  !
!

n
. 

• Under a prior Gn the vector 
 !!  has iid components, and 

   
B

[n]
G

n
,!( ) = E B

[n]
Ĝ

n

!"( #) ,!( ) !"(#)( ). 
• Truth of (1′) for all 

  !
!

n
 then implies truth of its Expectation over 

the distribution of 
  !
!

(")
 under Gn. This yields (1). 

• In reality (1′) does not hold for all 
  !
!

n
, but only for a very rich 

subset. Hence the proof requires extra details. 
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“Sparse” Problems 
• An initial motivation for this research was to create a CO - EB 

method suitable for “Sparse” settings. 
• The proto-typical sparse CO setting has  

(sparse)  
  !
!

(")
= #

0
,................................,#

0
,#

1
,.,#

1( ) 
with 

  
! 1"#( )n values 

 
!

0
 and only  !n values

 
!

1
. 

• Here, !  is near 0, but 
 
!

0
,!

1
 may be either known or unknown. 

• Situations with 
  
! = O 1 n( ) can be considered extremely sparse. 

• Situations with, say,   ! "1 n
1#$

, 0 < $ <1 are moderately sparse. 
• Sparse problems are of interest on their own merits (eg in 

genetics) – for example, as in Efron (2004+). 
• And for their importance in building nonparametric regression 

estimators – see eg, Johnstone and Silverman (2004). 
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 (Typical) Comparison of NP-EB Estimator with Best Competitor 
 

#Signals Est’r Value 
=3 

Value 
=4 

Value 
=5 

Value 
=7 

5 
  
!!
1.15

 53 49 42 27 
5 Best 

other 
34 32 17 7 

50 
  
!!
1.15

 179 136 81 40 
50 Best 

other 
201 156 95 52 

500 
  
!!
1.15

 484 302 158 48 
500 Best 

other 
829 730 609 505 

Table: Total Expected Squared Error (via simulation; to nearest integer) 
Compound Bayes setup with n=1000; ‘most’ means =0 and others =“Value” 

“Best Other” is best performing of 18 studied in J & S (2004). 

  
!!
1.15

is our NP – EB est’r with v = 1.15 
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Statement of EB - CO Theorem 
 
Assumptions:  
•  ! "# > 0 $

   
G

n
! G

n
: B

[n]
G

n
( ) > n

"#{ }. 

Hence, (only) moderately sparse settings are allowed. 
• 

   
G

n
! G

n
:G

n
"C

n
,C

n
#$ %&( ) = 1{ } ' C

n
= O n

(( ) )( > 0. 

We believe this assumption can be relaxed, but it seems that 
some sort of uniformly light-tail condition on 

  
G

n
 is needed. 

Theorem: Let 
  
h

n

2
= 1 d

n
 with 

  
d

n
log(n)!" &

  
d

n
= o n

!( ) "! > 0. 
Then (under above assumptions) 

  
!!

n
satisfies (1). 

 
[Note: n = 1000 & 

  
d

n
= log(n) ⇒  v = 1+ d

!1
"1.15, as in Table.] 
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Heteroscedastic Setting 
 

EB formulation: 
• 

  
!

1

2
,..,!

n

2  known 
• Observe

  
X

i
~ N !

i
,"

i

2( ), indep.,  i = 1,..,n. 
• Assume (EB)

  
!

i
~ G

n
, indep.,  

• but Gn unknown, except for
  
G

n
!G

n
. 

• Loss function, risk function, and optimality target, (1), as before. 
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Heuristics 
• Bayes estimator on i-th coordinate has 

  
!

i

G
x

i( ) = " i

2
g
"

i
2

# $ x
i( ) g

"
i
2

#
x

i( )( ). 
• Previous heuristics suggest approximating 

  
g
!

i

2

"
x

i( ) by  

   
g
!

i

2

"
x

i( ) # g
!

i

2
1+!

2( )
"

x
i( ) 

• And then estimating 
   
g
!

i

2
1+!

2( )
"

x
i( ) as the average of  

   
g
!

i
2

1+!
2( )

" x
i( ) #$

h2
=!

i
2

1+!
2( )%! k

2
x

i
% X

k( ),  k = 1,..,n. 

• To avoid impossibilities, need to use  

   
h

k ,i

2
= !

i

2
1+ !

2( )"! k

2( )
+

. 
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• Resulting estimator has 

   
!

i

G
x

i( ) = " i

2
!g
#$ x

i( ) !g#
x

i( )( ) 
with 

  
h

k ,i

2  as above, and 

   

!g
i

! X( ) =
I

k: h
k ,i
2
>0{ }

k( )"
h

k ,i
2

x
i
# X

k( )
k

$

I
k: h

k ,i
2
>0{ }

k

$
. 

• (With inessential modifications) this is the estimator used in 
Brown (AOAS, 2008).  


