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Motivating Example  
AIDS Clinical Trial ACTG320 

 Study Objective: to compare the efficacy of  
  3-drug combination therapy: Indinarvir+Zidovudine/Stavudine+Lamivudine 
  2-drug alternatives: Zidovudine/Stavudine  + Lamivudine 

 Study population: HIV infected patients with CD4 ≤ 200  
 and at least three months of prior zidovudine therapy 
  1156 patients randomized: 577 received 3-drug; 579 received 2-drug 

 Study conclusion: 3-drug combination therapy was  
 more effective compared to the 2-drug alternatives 

 Question: 3-drug therapy beneficial to all subjects? 



Age 
CD4wk 0  

log10RNAwk 0 

Predictor Z  
2-drug 

3-drug 

Treatment Benefit 
Of 3 drug (vs 2 drug) | Z 

Age:                12 
CD4：          170 
log10RNA:  3.00 

Age:  41 
CD4:  10 
log10RNA: 5.69 

Likely to benefit from the 3-drug? 
How much benefit would there be? 

No  two drug 
Treatment Benefit : 0 units of CD4 ↑ 

Yes  three drug 
Treatment Benefit : 500 units of CD4 ↑ 

Outcome Y 
Change in CD4 from week 0 to 24 



Background and Motivation   

  Treatment × covariate interactions 

  Testing for h(Z; β) = 0  
  Helpful for identifying Z that may affect treatment benefit 

  Estimation of h(Z, β)  
  Robust estimators of may be obtained for certain special cases (Vansteelandt et al, 2008) 

  Issues arising from quantifying treatment benefit: 
  Model based inference may be invalid under model mis-specification  
  Fully non-parametric procedure may be infeasible  

  # of subgroups created by Z may be large  difficult to control for the inflated type I error  

€ 

E(Y |Z,Trt) = g{m(Z,α) + Trt × h(Z;β)}



  Notation: 
  Z: Covariates; Y: Outcome 
  Trt: Treatment Group (independent of Z) 

  Trt = 1: experimental treatment   (Y1, Z1) 
  Trt = 0: placebo/standard treatment   (Y0, Z0) 

  Data: {Yki, Zki, i=1, …, nk, k = 0, 1} 

  Objective: to approximate the treatment 
benefit conditional on Z: 

€ 

η true(Z) = E(Y1 −Y0 |Z1 = Z0 = Z)

Quantifying Subgroup 
Treatment Benefits 



  To approximate             , we may approximate
 E(Yk | Zk) via simple working models: 

€ 

E(Yk |Z k = Z) = gk (β k

' Z)

Quantifying Subgroup 
Treatment Benefits 

€ 

η true(Z)

€ 

η true(Z) = E(Y1 |Z1) − E(Y0 |Z0)

  Step 1: based on the working models, one may 
obtain an approximated treatment benefit 

      is the solution to the estimating equations 

€ 

ˆ η (Z) = g1( ˆ β 1
'Z) − g0( ˆ β 0

'Z)

€ 

w(β,Z ki)Z ki
i=1

nk

∑ {Yki − gk (β'Z ki)} = 0



Quantifying Subgroup 
Treatment Benefits 

  Step 2: estimate the true treatment benefit 
among 

  Estimate             non-parametrically as            with the 
synthetic data                               and obtain 

   �

€ 

ϖ v = {Z : ˆ η (Z) = v}

€ 

Δ(v) = µ1(v) −µ 0(v)

€ 

where µk (v) = E{Yk | ˆ η (Z k ) = v} = E(Yk |Z k ∈ ϖ v )

€ 

µk (v)

€ 

 {Yki, ˆ η (Z ki)}i=1,...,nk

€ 

ˆ µ k (v)



              as the intercept of the solution to 

    

    
€ 

    ˆ S kv (µ,b) =
1

h−1ˆ ε kvi

 

 
 

 

 
 Kh (ˆ ε kvi) Yki −Η(µ + b ˆ ε kvi){ }

i=1

n

∑

€ 

 ˆ ε kvi =ψ{ ˆ η (Z ki)}−ψ(v)

Quantifying Subgroup 
Treatment Benefits 

€ 

ˆ µ k (v)



Inference Procedures  
for Subgroup Treatment Benefits 

  Consistency of the estimator for Δ(v) : 

  h : O(n-d) with 1/5 < d < 1/2  

  Pointwise CI: 

  Simultaneous CI: 

€ 

supv | ˆ Δ (v) −Δ(v) |  =Op{(nh)1/ 2 log(n)}

€ 

ˆ W (v) = (nh)1/ 2{ ˆ Δ (v) −Δ(v)} ~ N(0,σ2(v))

€ 

ˆ S = supv | ˆ W (v) / ˆ σ (v) |

€ 

P{an ( ˆ S − dn ) < x}→ e−2e − x



Selection of Bandwidth 

  h : O(n-d) with 1/5 < d < 1/2  

  Select h to optimize the estimation of                                       

  Obtain h by minimizing a cumulative residual 
  under correctly model specification 

  The resulting bandwidth has an order n-1/3 

€ 

Δ(v) = E{Y1i −Y0 j | ˆ η (Z0i) = v, ˆ η (Z1 j ) = v}

€ 

E n1
−1 Y1iI(Z1i ≤ z)

i=1

n1

∑ − n0
−1 Y0 j I(Z0 j ≤ z)

j=1

n0

∑
 
 
 

  

 
 
 

  
= E[Δ{η(Z)}I(Z ≤ z)]



Interval Estimation  
via Resampling Procedures 

  Approximate the dist of                                              by 

                                                     mean 1, variance 1 ⊥ data 

         obtained via perturbed estimating functions for  € 

ˆ W *(v) = (nh)1/ 2 Kh ( ˆ ε 1vi )

Kh ( ˆ ε 1vi )
i=1

n1
∑

{Y1i − ˆ µ 1(v)}(N1i −1) −
i=1

n1

∑

              (nh)1/ 2 Kh ( ˆ ε 0vj )

Kh ( ˆ ε 0vj )
j=1

n0
∑

{Y0 j − ˆ µ 1(v)}(N0 j −1)
j=1

n0

∑ + (nh)1/ 2 ˆ Δ (v; ˆ β 
1

*, ˆ β 0
*) − ˆ Δ (v){ }

€ 

w(β,Z ki)Z ki
i=1

nk

∑ {Yki − gk (β'Z ki)}Nki = 0



Example  
AIDS Clinical Trial 

  Objective: assess the benefit of 3-drug combination 
therapy vs the 2-drug alternatives across various 
sub-populations  

  Predictors of treatment benefit:  
  Age, CD4wk0, logCD4wk0, log10RNAwk0 

  Treatment Response: 
  Immune response (continuous) 

  change in CD4 counts from baseline to week 24 
  E(Y | Z) : linear regression 

  Viral response (binary) 
  RNA level below the  limit of detection (500 copies/ml) at week 24 
  E(Y | Z) : logistic regression 



Immune Response Viral Response 



Evaluating the System 
for Assessing Subgroup Treatment Benefits 

  Cumulative residual:  

  Integrated sum of squared residuals                      minimized under 
correct models 

€ 

R(z) = E(Y1 −Y0 |Z1 = Z0 = Z) − ˆ Δ { ˆ η (Z)}[ ]Z∈Ω z
∫  dF(Z)

      = E{Y1I(Z1 ∈ Ωz)}− E{Y0I(Z0 ∈ Ωz)}− E[ ˆ Δ { ˆ η (Z)}I(Z ∈ Ωz)}

€ 

R(z)2dw(z)∫



Efficiency augmentation  
with auxiliary variables 

  Use auxiliary variables A to obtain              based on 

  for example: 

  Find optimal weights wopt to minimize  

€ 

var{ ˆ Δ (v) + w' ˆ e (v)}

€ 

ˆ e (v) ≈ 0

€ 

E{ f (A1) − f (A 0) |Z1 = Z0 = Z} = 0

€ 

ˆ e (v) =

Kh (ˆ ε 1vi)A1i
i
∑

Kh (ˆ ε 1vi)
i
∑

−

Kh (ˆ ε 0vj )A 0 j
j
∑

Kh (ˆ ε 0vj )
j
∑



Efficiency augmentation  
with auxiliary variables 

  Obtain optimal wopt based on the joint dist of  

  Regress {Ei(v)} against {ei(v)} to obtain wopt and the augmented 
estimator  

  The mean squared residual error of the regression, MRSE(v), while 
valid asymptotically, tends to under estimate the variance of the 
augmented estimator 

€ 

{ ˆ Δ (v), ˆ e (v)}

€ 

(nh)1/ 2{ ˆ Δ (v) −Δ(v)} ≈ (nh)−1/ 2 Ei(v);
i=1

n

∑    (nh)1/ 2 ˆ e (v) ≈ (nh)−1/ 2 e i(v)
i=1

n

∑

€ 

var{ ˆ Δ w opt
(v)} >> MRSE(v)

€ 

ˆ Δ w opt
(v) = ˆ Δ (v) + wopt

' (v)ˆ e (v)



Efficiency augmentation  
with auxiliary variables 

  To approximate the variance of 

  Double bootstrap: computationally intensive 
  Bias correction via a single layer of resampling: 

€ 

ˆ Δ w opt
= ˆ Δ + wopt

' ˆ e 

€ 

var( ˆ Δ w opt
) ≈ MRSE + trace( ˆ Σ we

2 )

ˆ Σ we = ˆ Σ e
−1 E{ˆ e *ˆ e *'ˆ ε ∗ | Data}

E{(N −1)3}
ˆ ε ∗ = residual of linear regression with {( ˆ Δ b

* − ˆ Δ , ˆ e b
* ),b =1,...,B}



# of Auxiliary 
Variables 

5 9 17 41 

Naïve .90 .88 .87 .86 
Bias Corrected .92 .93 .93 .96 
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