
Maps in S

Richard A. Becker
Allan R. Wilks

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

The ability to draw geographical maps is an indispensable tool when ana-
lyzing or displaying geographically oriented data such as network data or census
information. We describe a new map-producing mechanism integrated with the S
system for data analysis. The map software features both line and area drawing,
adaptation to plotting device resolution, map projections and a flexible user inter-
face. The facility currently has a repertoire of three geographical databases,
describing the national, state and county boundaries of the USA.

February 11, 1993

Maps in S

Richard A. Becker
Allan R. Wilks

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

1. The need for maps

The ability to draw geographical maps is an indispensable tool when analyzing or display-
ing geographically oriented data. This may simply mean being able to draw the national bound-
ary of the USA, or it may mean being able to color each county of the USA a different color,
according to the values of some variable. When specifying a map to be drawn, we may wish to
name regions, such as New Jersey, or Northeastern USA, or we may wish to restrict the plotting
to a range of longitudes and latitudes. We may wish to see national, state or county boundaries.
We may wish to show the map in different projections. Rather than plotting, we may want to
know the coordinates of the boundaries of various regions, perhaps for later plotting or for com-
puting region areas or centers.

The usa function in S (Becker, et al 1988) provides a few of these facilities. The new map
and mapproject functions in S, described in this memo, provide all of the facilities just
described, and more. The fact that these functions are embedded in a data analytic environment is
critical to their usefulness, in that the data analyst has a wide range of computational and graphi-
cal tools that are fully integrated with map drawing. In Section 2 we describe the capabilities of
map and mapproject, by presenting a series of examples of their use. Then in Section 3 we
give a discussion of the issues involved in organizing and accessing map data, which is typically
massive and has complicated structure. In Section 4 we take up the problem of the parsimonious
representation of connected sequences of line segments, and in Appendix A we give a linear time
algorithm for computing such representations. Detailed documentation for map and
mapproject are reproduced in Appendix B. Finally, information on map projections is given
in Appendix C.

2. Making maps in S

The map function is an interface to geographical databases. In developing its capabilities
we have used data supplied by the US Census Bureau (see References), which describes all
county boundaries in the United States. From this data we constructed three geographical data-
bases with information on national, state and county boundaries in the USA. The information in
each geographical database is organized into three files. The first file has descriptions of
polylines. These are sequences of points on the earth’s surface, which, when joined in order by
line segments, form a part of the map, typically a political or natural boundary. The second file
describes polygons in terms of polylines, that is, each polygon is given as a list of polyline num-
bers, indexing polylines from the polyline file, which, when traversed in the given order, form a
closed area of the map. Finally, a third file gives names to each of the polygons in the second
file. It is primarily through these names that the map data is accessed. Polygons are named with
a convention that allows several polygons to be accessed with one name, such as referring to the
two parts of Michigan with the name ‘‘Michigan.’’

- 2 -

2.1. Simple Maps

A simple map of the national boundaries of the continental USA may be produced with the
S expression map(’usa’) (see Figure 1(a)). To include state boundaries, use
map(’state’), and to get a full map of all county boundaries use map(’county’) (Figures
1(b) and 1(c)). In general, the first argument to map is the name of a geographical database, and
with no other arguments, map will draw all the polylines for that database. Currently usa,
state, and county are the only available databases. (But see Becker and Wilks (1991) for a
description of how to build new databases.)

(a)

(b)

(c)
Figure 1. Three maps showing (a) national, (b) state, and (c) county boundaries.

- 3 -

The following table gives statistics for the sizes of these three databases:

Database Segments Polylines Polygons___

usa 7241 10 10
state 11350 169 63

county 46127 8941 3082___

Nine of the ten polygons in the first database are islands (Manhattan, Staten Island, Nantucket,
etc.). Only the continental USA is represented, so Alaska and Hawaii are missing. Thus the state
database consists of the 48 continental states, plus the District of Columbia. There is quite a bit
of variability in how individual states partition their territory into counties; sometimes they are
not even called counties. For a discussion of the 3073 counties of the USA (in 1972), see
Lerner’s County and City Databook (1972), pages xxi-xxvii.

2.2. Selecting by Region

An optional second argument to map lists the names of particular regions to draw. For
example,

> map(’state’, c(’new york’,’New Jersey’,’penn’))

will produce a map of the boundaries of the three given states (see Figure 2). Notice that region
names may be capitalized and abbreviated (by truncation). Illustrating the fact that a state may
consist of more than one polygon, map(’state’, ’mich’) produces a map of Michigan,
which has two polygons, as in Figure 3.

Figure 2. Map of New York, New Jersey and Pennsylvania.

Now it may be that we wish to refer to just one of these polygons; using map, this is possi-
ble, because each of the polygons has a unique name. To find the names of the Michigan poly-
gons, but not do any plotting we may say

> map(’state’, ’mich’, namesonly=T, plot=F)
[1] "michigan:north" "michigan:south"

This illustrates the scheme we have used in naming polygons: if a region is naturally composed of

- 4 -

several polygons the individual polygons are named by a region name, followed by a ‘‘:’’ and a
qualifying name. Region names in the county database include a state name and a county name,
separated by a comma. For example:

> map(’county’, ’washington,san juan’, namesonly=T, plot=F)
[1] "washington,san juan:lopez island" "washington,san juan:orcas island"
[3] "washington,san juan:san juan island"

Incidentally, Washington, DC is denoted by district of columbia in the state database
and by district of columbia,washington in the county database.

Figure 3. Outline of Michigan, with its two separate pieces.

The second argument to map() can be an arbitrary regular expression (see egrep(1) in the UNIX
manual), to help pick out collections of regions. For example, map(’state’,’.*dakota’)
could be used to make a map of the Dakota’s.

2.3. Selecting by Latitude and Longitude

Specifying a list of region names is one of two ways of saying what we want in the map to
be plotted. The other way is to restrict drawing to a range of longitudes, a range of latitudes, or
both. Map expects all longitudes and latitudes to be expressed in degrees east of Greenwich and
degrees north of the equator. Longitude ranges from − 180° to 180° and latitude from − 90° to
90°. This means, for example, that the USA is bounded by negative longitudes. Consider the
standard S dataset ozone.xy, which gives the longitude and latitude of a number of ozone mon-
itoring sites; for these sites ozone.median gives the median ozone concentration for a two-
month period in 1974. We may plot this data (Figure 4) on a base map, with:

> map(’state’, xlim=range(ozone.xy$x), ylim=range(ozone.xy$y))
> text(ozone.xy, ozone.median)
> box()

- 5 -

59

58

90
8050
47 81

56

55 72

62
100

97
91

80

81
76

75
85

94

80
82

74

68
60 85

34

66

65

73

63

62
36
5442 52

64

65

60

56

64

Figure 4. The ozone data is plotted on a map that covers its range.

2.4. Interior and Boundary Lines

In making a base map we sometimes would like to show the state boundaries in a color or
line style different than the national boundaries. To do this, we distinguish between interior and
boundary polylines. For a given call to map, an interior polyline is one that is part of the bound-
ary of two of the polygons to be plotted; all other polylines (bounding only one such polygon) are
called boundary. Thus to make our base map we might say

> map(’state’, interior=F)
> map(’state’, boundary=F, lty=2, add=T)

The result of these commands is shown in Figure 5.

Figure 5. State map showing state boundaries in a different line style.

By default, both the boundary and interior arguments are TRUE. The add argument,

- 6 -

FALSE by default, allows overplotting on the current map, and lty=2 is a standard graphical
parameter that requests line style 2.

2.5. Filled Regions

One of the main advantages of having polygon information in our maps is that we can draw
filled regions according to statistical data. This is accomplished with the fill=T argument to
map. As an example, we construct a map (Figure 6) showing the percent Republican vote in the
1900 election:

> state.names <- unix(’tr "[A-Z]" "[a-z]"’, state.name)
> map.states <- unix(’sed "s/:.*//"’, map(names=T, plot=F))
> state.to.map <- match(map.states, state.names)
> color <- votes.repub[state.to.map, votes.year == 1900] / 100
> map(’state’, fill=T, col=color)
> map(’state’, add=T)

The first expression changes uppercase to lowercase in the standard S dataset giving state names,
so that these can be compared with the names returned by map. Next the complete set of state
polygon names is requested (using map(names=T,plot=F); the default database is
’state’) and the trailing portions (from the ‘‘:’’ onwards) are removed so that we have a list of
the state for which each polygon is a part or the whole. Then we create state.to.map that
gives the translation from the ordering of the states known to S (alphabetical) to the ordering
known to the mapping mechanism. By using this vector, as in the next expression, all the pieces
of a state will be colored the same color. The state.to.map vector is a useful one to keep
around, for it will work in any context where the ordering of the state data is as here. Notice that
unless such a vector is being reused, it will usually be the case that there will be a step like this
one, finding the translation between the ordering for the regions in your data and the ordering
according to map. In general, the translation will have to be computed each time the set of
selected polygons changes.

Figure 6. Percent Republican vote in 1900; darker regions correspond to higher values, but
white means missing.

The expression that computes colors depends on the fact that the data are percentages, so

- 7 -

they can simply be divided by 100 to get colors appropriate for a PostScript printer, via the
postscript() device function in S. The fill argument in the second call to map says to fill
polygons, rather than draw lines. The col argument is a vector of color numbers that are
matched up with the selected polygons, which in this case is all of them. Map will use the i th

color to paint the i th polygon (and will reuse colors cyclically, if necessary). The final call to
map with add=T specified, overlays the picture with state boundaries. This is useful because
there are some missing numbers in the 1900 results—Wyoming, Arizona, New Mexico and Okla-
homa were not yet states. For missing colors map simply draws nothing, and putting on the state
boundaries clearly marks out these missing regions.

Note that the i th color is matched to the i th polygon that map finds, and not to the i th name
you give it. This is important when region names are abbreviated; in the call

map(’county’, ’new jersey’, fill=T, col=1:21)

all 21 counties of New Jersey are matched by new jersey and they are filled with the given 21
colors.

2.6. Map Coordinates

The return value of map is either the names of the polygons that were selected for plotting
or the coordinates of the polylines or polygons that it retrieves from the databases, with the fill
argument determining whether polylines or polygons are returned. If map actually does plotting,
i.e., if plot=TRUE, the returned value is non-printing. In the coordinate case, the return value is
a list and the coordinates are contained in components of the list named x and y. These compo-
nents contain all of the coordinates in two long vectors; to be useful we must have a way of dis-
tinguishing where in these vectors one polyline (or polygon) ends and the next begins. This is
done by following the end of the coordinates for each polyline (or polygon) with an NA in each
vector. With no further processing this scheme is already useful, as most S graphics functions
that accept x and y data will also accept NAs as well. For example, the lines function will ‘‘lift
the pen’’ when it encounters NA; this means that handing the value map(...,fill=F,...)
to lines we can get a map (up to projection) that map would have produced, assuming the coor-
dinate system has been set up. Similarly, the value of map(...,fill=T,...) can be used in
a call to polygon. Though this is convenient, we will usually want to do more with the returned
vector, so it is useful to write a function vapply that takes a vector and a function and applies
the function to each contiguous section of non-NA values in the vector:

vapply <- function(x, fun)
{

n <- length(x)
breaks <- (1:n)[is.na(x)]
starts <- c(1, breaks + 1)
ends <- c(breaks - 1, n)
p <- length(starts)
result <- logical(p)
for(i in 1:p)

result[i] <- fun(x[starts[i]:ends[i]])
result

}

As an example of the use of vapply, suppose we wish to draw a map of New Jersey, with its
counties outlined and labelled. We first get the county names. Then we call map with fill=T
to get an NA separated list of the polygon coordinates. Using vapply on the x and y compo-
nents of this returned data, we can compute the median x and y coordinates of each polygon.
These medians are then used to position the text labels.

- 8 -

nj.name <- unix("sed ’s/.*,//’",
map(’county’, ’new jersey’, plot=F, names=T))

nj.center <- lapply(
map(’county’, ’new jersey’, fill=T, plot=F)[c(’x’,’y’)],
function(x) vapply(x, median))

map(’county’, ’new jersey’)
text(nj.center, nj.name, cex=.75)

Figure 7(a) shows the result; part (b) shows what happens when means are used in place of medi-
ans, while the centers in (c) were are picked manually by eye. In general the automatic placement
of labels is a hard problem. A reasonable procedure might be to move away from a middle value,
looking for a long horizontal stretch, and stopping when enough room for the label is found. For
some interesting recent progress on this problem, as well as further references, see Cook and
Jones (1990).

atlantic

bergen

burlington
camden

cape may

cumberland

essex

gloucester

hudson

hunterdon

mercer

middlesex

monmouth

morris

ocean

passaic

salem

somerset

sussex

union

warren

(a)

atlantic

bergen

burlingtoncamden

cape may

cumberland

essex

gloucester

hudson

hunterdon

mercer

middlesex

monmouth

morris

ocean

passaic

salem

somerset

sussex

union

warren

(b)

atlantic

bergen

burlington

camden

cape may

cumberland

essex

gloucester

hudson

hunterdon

mercer

middlesex

monmouth

morris

ocean

passaic

salem

somerset

sussex

union

warren

(c)
Figure 7. New Jersey with county labels; positions have been computed in several ways. In (a)
the mean of the coordinates of the bounding polygon is used, while in (b) the median is used. The
labels were placed manually by eye in (c).

2.7. Map Projections

Maps are flat representations of pieces of the nonflat (according to most people) earth. As
such, a projection must always be used. The default used by map is to use longitute and latitude
as x and y coordinates, adjusting the aspect ratio to be about 1 in the middle of the map. Many
map projections have been proposed down through the centuries, and map can draw maps in a
number of these by calling on the library of projection routines written by McIlroy (1990). By
using the projection argument to map, a projection different than the default may be speci-
fied, and consequently a different coordinate system will be set up. Some projections require

- 9 -

additional parameters, and these should be supplied in the parameters argument. For exam-
ple,

> map(’state’, proj=’albers’, param=c(30,40))

produces a state map (Figure 8) using an equal-area Albers projection with true scale at latitudes
30° and 40°. Details on projections are supplied in Appendix C, which is adapted from McIlroy
(1990).

AL

AZ
AR

CA CO

CT

DE

FL

GA

ID

IL IN

IA

KS
KY

LA

ME

MD

MA
MI

MN

MS

MO

MT

NB
NV

NH

NJ

NM

NY

NC

ND

OH

OK

OR

PA

RI

SC

SD

TN

TX

UT

VT

VA

WA

WV

WI

WY

Figure 8. An equal area Albers projection of the USA with true scale at latitudes 30° and 40°.

Of course, once we have produced a map using a projection, we will probably want to plot
some data on it, and this data likely needs to be projected into the same coordinate system. The
mapproject function facilitates this task. It takes x and y data, together with projection
and parameters arguments, just as in map, and returns a list with x and y components giving
the projected data. As a simple example of its use, the state abbreviations in Figure 9 were added
using the S datasets state.center, which contains longitude and latitude for central points in
each state, and state.abb, which is a vector of state abbreviations. The command was

> text(mapproject(state.center), state.abb, cex=.75)

Normally, mapproject takes arguments like map, specifying the map projection and its
parameters—in fact, when you give these arguments to map, it just passes them on to
mapproject. Notice, however, that neither a projection nor parameters were specified in the
call to mapproject above. This is possible because mapproject always saves a copy of the
details of the last projection it did on the session (frame 0) dataset .Last.projection. Val-
ues from this dataset are used, as needed, when further calls to map or mapproject are made.
In addition, if you don’t specify the projection in a call to map or mapproject, you can give
one or more parameters as NA and these will be filled in from the previous values. This gives a
simple way of experimenting with the parameters of a projection. For example, you could try:

> map(proj=’albers’, par=c(30,40))
> map(par=c(20,50)) # another Albers projection
> map(par=c(NA,80)) # yet another; par=c(20,80) is implied

- 10 -

2.8. Resolution

The detail with which a map is drawn should ideally not exceed the resolution of the device
on which it is being drawn. This can have an impact on the speed of drawing or the quality of the
picture or both (see Section 4 for further discussion of this point). Map will automatically choose
a level of detail that tries to match the current device resolution. However, this can be overridden
with the resolution argument. If 0, this argument will force the map to be drawn to the full
resolution available in the database. In the USA databases we have been using, this corresponds
to roughly one kilometer. A nonzero value of resolution should be thought of as a number of
device pixels. Roughly speaking, if successive points on a polyline are within this number of pix-
els of each other, they get merged into one point. Section 4 and Appendix A give more detail on
how this is done. The default value of resolution is 1.

To illustrate the effect of changing resolution, see Figure 9, where the state map has been
plotted at resolutions 0, 1, 5, and 20. The definition of a pixel in this case is a printer dot, about
one three hundredth of an inch. The number of coordinate pairs defining these four maps is
11519, 3208, 1066 and 681, respectively.

(a) (b)

(c) (d)
Figure 9. State map drawn at four resolutions: 0, 1, 5, and 20 respectively. The first map shows
all the data in the state database, the second is adjusted to expunge consecutive points that are
within a printer pixel of each other, while the remaining two pictures do the same thing for points
within 5 and 20 pixels of each other. The number of coordinate pairs defining these four maps is
11519, 3208, 1066 and 681, respectively.

- 11 -

3. Geographical database organization

The typically large amounts of data associated with maps must be organized so that relevant
information can be accessed in a timely fashion. Hand-drawn maps are made up of curved and
straight lines. Such a line is approximated in our databases by a linear spline, that is, a sequence
of short line segments, which, when joined together in order, never deviate too far from the origi-
nal line. As mentioned earlier, we call such an object a polyline. The lowest level of information
in one of our databases is therefore a collection of polylines, each of which is a list of longitude,
latitude coordinate pairs. (It might be thought that we could, as a lower level of information, have
a list of all coordinate pairs, with a polyline being a list of references to pairs. This leads, how-
ever, to more storage and longer access times.)

Besides being fundamental objects of interest, polylines are efficient, both for storage and
for transmission to a plotting device. The older S usa function does just this. The problem with
storing just polyline information is that there is no information on closed regions. Thus, for
example, given all the polylines that describe the USA national and state boundaries, it is impos-
sible to determine which ones bound, say, New Jersey. In fact, it may be that there is no set of
polylines in the database that bound exactly New Jersey. This would be the case, for example, if
the entire eastern seaboard coastline were stored as one polyline.

Thus, as a second level of information we keep a list of polygons, each of which is a list of
references to polylines. These polylines, taken in order, exactly trace out the polygon. This
implies some restrictions on which polylines are stored in the polyline file. In particular, if poly-
lines are to be nonoverlapping, they must terminate at any point at which three or more line seg-
ments meet.

A map database consists of three files. In the first file, we store polyline information in the
following form. Each polyline is given a reference number beginning at one; this is also done for
the polygons. On one file, there is a list of all the polylines in the map, in order of their reference
number. For each polyline we store its length (number of coordinate pairs) its minimum and
maximum extent in both longitude and latitude, the reference numbers of the polygons to its left
and right, and the list of coordinate pairs in order from its beginning to its end. (Left and right are
well-defined because the polyline has a beginning and an end.) For polylines that bound only one
polygon (coastal polylines, for example), zero is stored as the polygon reference number for the
appropriate side. This is why polygon reference numbers are numbered from one.

In the polyline file, the information for each polyline, other than the actual coordinate list, is
of fixed size. Therefore, we lay the file out with the fixed information for each of the polylines at
the beginning of the file, together with a pointer for each polyline to the place where its coordi-
nates are kept. This allows essentially random access to the polylines, at the expense of having to
make an extra reference to the file for each one. If the file were not particularly large, this scheme
would not be necessary, as the entire file could be read into main memory at the time it was first
accessed. This would not work if the file were large, as the long startup time needed to read the
file would be intolerable, especially for simple maps.

On the second file there is a list of all the polygons in the database, in order of their refer-
ence number. As with the polyline file, the polygon file begins with the fixed size information
for each polygon, namely, its length (number of polylines), its minimum and maximum extent in
both longitude and latitude, and a pointer to the sequence of reference numbers of its polylines.
These reference numbers are stored as positive or negative, according as they are to be traversed
in the direction given in the polyline file, or in the reverse direction. This is why polylines are
numbered from one.

Finally, a third file contains names for each of the polygons. Each line of this ASCII file
has a polygon number and a name. There is a naming convention that allows several polygons to

- 12 -

be grouped conceptually into one region: the region is given a name and the individual polygons
have the region name, a ‘‘:’’, and a qualifier.

Thus, each of our geographical databases is comprised of polygon, polyline and name files.
The exact format of these files, together with information about constructing them, is given in
Becker and Wilks (1991).

4. Parsimonious polylines

One frustration with plotting maps is that if the plotting device has fairly low resolution (say
a CRT screen) and the map is highly detailed then there are many line segments ‘‘drawn’’ that are
not even one pixel in length, so the plotting takes much longer than it needs to, and there may be
an overly dense look in some regions. Map uses its resolution argument to attempt to pro-
duce polylines that are matched to the resolution of the plotting device. It does this by replacing
each polyline with a new one that has the same endpoints as the first, but possibly deletes some of
the interior vertices. We call this process thinning the polyline. McIlroy (1990) uses a simple
algorithm to thin polylines: the user can supply an argument that says to delete every nth point of
each polyline. This simple rule usually works quite well, but can obviously have problems if the
deleted points of a polyline are important in determining its shape. In addition, it is difficult auto-
matically to choose n.

A reasonable criterion for thinning is that the thinned polyline, when plotted on the given
device, should look the same as if the unthinned polyline had been plotted. Pavlidis (1982) gives
one solution to this problem in section 12.5. For a more recent paper, with a number of other bib-
liographic references, see Cromley and Campbell (1990). Pavlidis’ algorithm is based on the idea
of near-colinearity of groups of points, and proceeds in a divide-and-conquer fashion to thin
regions of a polyline that are almost colinear. (Incidentally, there is a notational conflict between
our use of thinning, and the use Pavlidis makes of it, which is entirely different, and which
involves reducing two-dimensional data rather than one-dimensional data.)

In Appendix A we present a ‘‘greedy’’ algorithm for thinning, whose running time is linear
in the number of points in the original polyline. It is interesting that in spite of its linearity, the
computation is sufficiently expensive that it may actually take longer to thin a polyline than sim-
ply to draw the whole thing. One possibility is to precompute several versions of the polyline
database at various resolutions and to use the appropriate one at the time of plotting. Since poly-
gons are lists of references to polylines, only the polyline portion of the database needs to be
thinned. An earlier version of our software did this, but with current hardware, the speedup is
now marginal.

It is worth noting that if thinning is done on the fly, it is important always to thin in the
same direction for a given map, say in the positive orientation of polylines. This is because the
algorithm may produce a different polyline when thinned in the reverse direction. If two adjacent
polygons are to be drawn as filled regions, the polyline which is their common boundary gets
thinned twice in opposite orientations and the two resulting polygons may overlap or have gaps
on that boundary. Alternatively, polylines can be thinned symmetrically by thinning separately
from each end to the middle of the polyline.

5. Directions

There are several directions in which we would like to carry our ideas. In the first place, we
would like to develop more databases. An obvious first choice is a world map with country
boundaries. The relevant data is available, but the problem is that it contains many regions
(mostly islands), all of which would need to be manually named. However, this would be useful
to have, given that AT&T is trying to do more international business, and can expect to collect
more international data as time goes on. Other interesting databases might show the telephone

- 13 -

LATA’s or the Metropolitan Statistical Areas of the United States, or the ZIP code regions.

Now that we have a general capability to produce base maps in S, it would be useful to aug-
ment the standard datasets in S to include other map data such as networks (telephone, road, rail,
etc.) cities and towns.

Our current database organization is insufficient to represent more complicated relationships
among geographical regions, such as the nesting that occurs with an island in a lake in a country.
This shortcoming does not seem to matter for political maps, though, which tend to have a more
regular, nonnested structure.

6. Summary

Through a series of examples, we have illustrated a new capability in S to create geographi-
cal maps of many varieties. This is based on a format for geographical databases that supports
descriptions of both polylines and named polygons. Of the many features of this software, the
most important are the ability to select map regions by name and to fill them with color (in con-
strast to merely outlining them).

The software described in this memo runs under the current research version of S. Please
contact the second author for information about availability.

- 14 -

References

Becker, Richard A., John M. Chambers, and Allan R. Wilks (1988), The New S Language, Wads-
worth & Brooks/Cole, Pacific Grove, California.

Becker, Richard A., and Allan R. Wilks (1991), ‘‘Geographical Databases for S’’, (to appear).

Cook, Anthony C. and Christopher B. Jones (1990), ‘‘A Prolog Interface To a Cartographic Data-
base For Name Placement,’’ Proceedings of the 4th International Symposium on Spatial Data
Handling, Volume 2, Zurich, Switzerland.

Cromley, Robert G. and Gerard M. Campbell (1990), ‘‘A Geometrically Efficient Bandwidth
Line Simplification Algorithm,’’ Proceedings of the 4th International Symposium on Spatial
Data Handling, Volume 1, Zurich, Switzerland.

Lerner, William (1972), County and City Data Book 1972: A Statistical Abstract Supplement,
U.S. Bureau of the Census, Washington, D.C.

McIlroy (1990), documentation for proj(3) from Tenth Edition UNIX manual, Volume I.

Pavlidis, Theo (1982), Algorithms for Graphics and Image Processing, Computer Science Press,
Rockville, Maryland.

US Department of Commerce, Census Bureau, County Boundary File, computer tape, available
from Customer Services, Bureau of the Census, Washington, D.C. 20233.

- 15 -

Appendix A: Thinning

Part of the difficulty in thinning polylines is in formulating the correct statement of the
problem. Our goal is to reduce the number of vertices in a polyline in such a way that only the
unnecessarily fine detail is removed. This is partly because we wish to reduce the amount of
information that is sent to the plotting device. In fact, the plot of a thinned polyline is often a
better pictorial representation than the plot of the full polyline. This happens, for example, when
a coastline has a lot of detail; the full polyline, when plotted on a low resolution device, may
appear as just a very thick line, while the thinned version can be much crisper. The following for-
mulation seems to capture the essence of these goals.

Problem: Given n points x 1 ,x 2 , . . . ,x n in the plane, and given δ > 0, find integers
1 = i 1 < i 2 < . . . < i k = n such that the polyline determined by x i 1

, ... ,x ik
,

thickened by δ, contains the entire polyline determined by the original points.

The thickening of a polyline by δ is the set of all points that are within δ of the polyline. If we
think of δ as the resolution of the plotting device, then it is approximately true that when a poly-
line is plotted, what actually gets drawn is its thickening by δ. Therefore, by plotting the polyline
that solves the Problem, we are approximately plotting the full polyline. Further, if we think of
the solution to the Problem as parameterized by δ, then by adjusting δ we can, for example, pro-
duce a version of a coastline segment that is crisp for a given plotting device.

Solving the Problem as given appears to be a relatively expensive optimization problem.
Fortunately, there is a ‘‘greedy’’-type algorithm that is linear in n, and that appears to do fairly
well at giving an optimum or near-optimum solution. The algorithm proceeds from one end of
the polyline to the other, adding points to the reduced polyline only when needed. Suppose that
we have added points x i 1

, . . . ,x ir
to the reduced polyline. We imagine circles of radius δ cen-

tered at each of the original points (see Figure 10). Draw a wedge, anchored at x ir
whose rays are

tangent to the circle around x ir + 1. This wedge must contain x ir + 2, if we intend to drop x ir + 1

from the list. In case the wedge does contain x ir + 2, we drop x ir + 1 and consider x ir + 2 for dele-
tion. To do this we create a new wedge, tangent to the circle around x ir + 2, and intersect it with
the old wedge (since x ir + 1 must continue to remain within δ of the new polyline). The new
wedge is shaded at the end in Figure 10. We continue this process of refining our wedge until a
point on the original polyline falls outside the wedge; the point just before that one then becomes
x ir + 1

.

As mentioned at the end of Section 4, thinning must be consistent in a single map. An inte-
rior polyline on a map with fill=T will get used twice, once for each of the regions it bounds.
If it is thinned in opposite directions each time, the region boundaries will not properly mesh.
This can be solved by using symmetric thinning, in which each half of the polyline is thinned
from the end to the middle. One simple consequence of this modification is that polylines with
fewer than 5 points are never thinned.

- 16 -

first wedge

second wedge

xir

xir+1 xir+2 = xir+1

since the next point is
outside the second wedge

Figure 10. Illustration of the intersecting wedges that are kept as successive points are tested for
deletion. All disks are of radius δ. The first wedge spans the tangents to the disk around x ir

+ 1
and the second wedge is the intersection of the first wedge with the span of the tangents to the disk
around x ir

+ 2. Since the third point is within the (second) wedge, the second point may be delet-
ed. However, the fourth point falls outside the wedge, so the third point is not deleted and thus be-
comes the next point (x ir + 1

) in the thinned sequence.

Appendix B: S documentation for map and mapproject.

map map

_ __

 _ __

Draw Geographical Maps

map(database, regions) # simple form
map(database="state", regions=".", xlim=, ylim=, boundary=T, interior=T,

fill=F, color=1, projection=, parameters=, orientation=,
resolution=1, plot=T, add=F, namesonly=F)

ARGUMENTS
database character string naming the geographical database from which map is to get its information. Currently

the only choices are three USA databases: "usa" for national boundaries, "state" for state bound-
aries and "county" for county boundaries.

regions character vector that names the polygons to draw. Each database is composed of a collection of poly-
gons, and each polygon has a unique name. When a region is composed of more than one polygon, the
individual polygons have the name of the region, followed by a colon and a qualifier, as in
michigan:north and michigan:south. Each element of the regions argument is matched as a
regular expression against all the polygon names in the database and matches are selected for drawing
(but see xlim, ylim and color=, each of which can potentially modify this list). The default selects
all polygons in the database.

xlim two element numeric vector giving a range of longitudes, expressed in degreees, to which drawing
should be restricted. Longitude is measured in degrees east of Greenwich, so that, in particular, loca-
tions in the USA have negative longitude. If fill=TRUE, polygons selected by region must be en-
tirely inside the xlim range. The default value of this argument spans the entire longitude range of the
database.

ylim two element numeric vector giving a range of latitudes, expressed in degrees, to which drawing should
be restricted. Latitude is measured in degrees north of the equator, so that, in particular, locations in
the USA have positive latitude. If fill=TRUE, polygons selected by region must be entirely inside
the ylim rang The default value of this argument spans the entire latitude range of the database.

boundary logical flag that says whether to draw boundary segments. A boundary segment is a line segment of
the map that bounds only one of the polygons to be drawn. This argument is ignored if fill is TRUE.

interior logical flag that says whether to draw interior segments. An interior segment is a line segment of the
map that bounds two of the polygons to be drawn. This argument is ignored if fill is TRUE.

fill logical flag that says whether to draw lines or fill areas. If FALSE, the lines bounding each region will
be drawn (but only once, for interior lines). If TRUE, each region will be filled using colors from the
color= argument, and bounding lines will not be drawn.

color vector of colors. If fill is FALSE, the first color is used for plotting all lines, and any other colors are
ignored. Otherwise, the colors are matched one-one with the polygons that get selected by the region
argument (and are reused cyclically, if necessary). A color of NA causes the corresponding region to be
deleted from the list of polygons to be drawn. Polygon colors are assigned after polygons are deleted
due to values of the xlim and ylim arguments.

projection character string that names a map projection to use. See Appendix C of the Reference for a description
of this and the next two arguments. The default is to use a rectangular projection with the aspect ratio
chosen so that longitude and latitude scales are equivalent at the center of the picture.

parameters numeric vector of parameters for use with the projection argument. This argument is optional only
in the sense that certain projections do not require additional parameters. If a projection does require
additional parameters, these must be given in the parameters argument. See Appendix C of the Ref-

map 17

18 map S Function Documentation

erence for details.
orientation up to three numbers specifying the orientation of non-standard projections. Default is c(90,0,m),

where m is the middle of the longitude range. See Appendix C of Reference for details.
resolution number that specifies the resolution with which to draw the map. Resolution 0 is the full resolution of

the database. Otherwise, just before polylines are plotted they are thinned: roughly speaking, succes-
sive points on the polyline that are within resolution device pixels of one another are collapsed to a
single point (see the Reference for further details).

plot logical flag that specifies whether plotting should be done. If plot is TRUE the return value of map
will not be printed automatically .

add logical flag that specifies whether to add to the current plot. If FALSE, a new plot is begun, and a new
coordinate system is set up.

namesonly logical flag that says whether just the names of selected polygons will be returned as a character vector.
If FALSE, map coordinates are returned.

Graphical parameters (see par) may also be supplied as arguments to this function.

VALUE
The polygons selected from database, through the regions, xlim, and ylim arguments, are out-
lined (fill is FALSE) or filled (fill is TRUE) with the colors in color. Names or coordinates of se-
lected polygons are returned, depending on the value of the namesonly argument.

When namesonly is TRUE, the return value is a character vector of the names of the polygons that
were selected for drawing. When namesonly is FALSE, the return value is a list with x and y compo-
nents. If fill is FALSE, these vectors are the coordinates of successive polylines, separated by NAs. If
fill is TRUE, the vectors have coordinates of successive polygons, again separated by NAs. Thus the
return value can be handed directly to lines or polygon, as appropriate.

After a call to map for which the projection argument was specified there will be a dataset
.Last.projection on frame 0, containing information about the projection used. This will be used
for subsequent calls to map; see the documentation for mapproject for further details.

EXAMPLES
map() # state map of the USA
map(’usa’) # national boundaries
map(’county’, ’new jersey’) # county map of New Jersey
map(region=c(’new york’,’new jersey’,’penn’)) # map of three states
map(proj=’bonne’, param=45) # Bonne equal-area projection of states
map(’county’, ’washington,san’, names=T, plot=F)

names of the San Juan islands in Washington state
map(xlim=range(ozone.xy$x), ylim=range(ozone.xy$y))

text(ozone.xy, ozone.median)

plot the ozone data on a base map
map(interior=F); map(boundary=F, lty=2, add=T)

national boundaries in one color, state in another

REFERENCE

R. A. Becker, and A. R. Wilks, "Maps in S", AT&T Bell Laboratories Technical Memorandum, December, 1990.

S Function Documentation

mapproject mapproject

_ __

 _ __

Apply a Map Projection

mapproject(x, y, projection="mercator", parameters=, orientation=)

ARGUMENTS
x,y two vectors giving longitude and latitude coordinates of points on the earth’s surface to be projected.

A list containing components named x and y, giving the coordinates of the points to be projected may
also be given. Missing values (NAs) are allowed. The coordinate system is degrees of longitude east of
Greenwich (so the USA is bounded by negative longitudes) and degrees north of the equator.

projection= optional character string that names a map projection to use. See Appendix C of the Reference for a
description of this and the next two arguments.

parameters= optional numeric vector of parameters for use with the projection argument. This argument is op-
tional only in the sense that certain projections do not require additional parameters. If a projection
does require additional parameters, these must be given in the parameters argument.

orientation= optional; up to three numbers specifying the orientation of non-standard projections. Default is
c(90,0,m), where m is the middle of the longitude range. See Appendix C of the Reference for de-
tails.

VALUE
list with components named x and y, containing the projected coordinates. NAs project to NAs. Points
deemed unprojectable (such as north of 80 degrees latitude in the Mercator projection) are returned as
NA. Because of the ambiguity of the first two arguments, the other arguments must be given by name.
Each time mapproject is called, it leaves on frame 0 the dataset .Last.projection, which is a list
with components projection, parameters, and orientation giving the arguments from the call
to mapproject or as constructed (for orientation). Subsequent calls to mapproject will get
missing information from .Last.projection. Since map uses mapproject to do its projections,
calls to mapproject after a call to map need not supply any arguments other than the data.

EXAMPLES
map(proj=’bonne’, param=45)

text(mapproject(state.center), state.abb)

Bonne equal-area projection with state abbreviations

REFERENCE

R. A. Becker, and A. R. Wilks, "Maps in S", AT&T Bell Laboratories Technical Memorandum, December, 1990.

mapproject 19

- 20 -

Appendix C: Projections (adapted from McIlroy (1990))

Each standard projection is displayed with the Prime Meridian (longitude 0) being a straight verti-
cal line, along which North is up. The orientation of nonstandard projections is specified by the
three parameters lat, lon, and rot. Imagine a transparent gridded sphere around the globe. First
turn the overlay about the North Pole so that the Prime Meridian (longitude 0) of the overlay
coincides with meridian lon on the globe. Then tilt the North Pole of the overlay along its Prime
Meridian to latitude lat on the globe. Finally again turn the overlay about its ‘North Pole’ so that
its Prime Meridian coincides with the previous position of (the overlay’s) meridian rot. Project
the desired map in the standard form appropriate to the overlay, but presenting information from
the underlying globe.

In the descriptions that follow, each projection is shown as a function call; if it requires parame-
ters, these are shown as arguments to the function. The descriptions are grouped into families.

Equatorial projections centered on the Prime Meridian (longitude 0). Parallels are straight hori-
zontal lines.

mercator() equally spaced straight meridians, conformal, straight compass courses
sinusoidal() equally spaced parallels, equal-area, same as bonne(0)
cylequalarea(lat0) equally spaced straight meridians, equal-area, true scale on lat0
cylindrical() central projection on tangent cylinder
rectangular(lat0) equally spaced parallels, equally spaced straight meridians, true
scale on lat0
gall(lat0) parallels spaced stereographically on prime meridian, equally spaced straight
meridians, true scale on lat0
mollweide() (homalographic) equal-area, hemisphere is a circle

Azimuthal projections centered on the North Pole. Parallels are concentric circles. Meridians are
equally spaced radial lines.

azequidistant() equally spaced parallels, true distances from pole
azequalarea() equal-area
gnomonic() central projection on tangent plane, straight great circles
perspective(dist) viewed along earth’s axis dist earth radii from center of earth
orthographic() viewed from infinity
stereographic() conformal, projected from opposite pole
laue() used in xray crystallography
fisheye(n) stereographic seen through medium with refractive index n

Polar conic projections symmetric about the Prime Meridian. Parallels are segments of concen-
tric circles. Except in the Bonne projection, meridians are equally spaced radial lines orthogonal
to the parallels.

conic(lat0) central projection on cone tangent at lat0
simpleconic(lat0,lat1) equally spaced parallels, true scale on lat0 and lat1
lambert(lat0,lat1) conformal, true scale on lat0 and lat1
albers(lat0,lat1) equal-area, true scale on lat0 and lat1
bonne(lat0) equally spaced parallels, equal-area, parallel lat0 developed from tangent
cone

Projections with bilateral symmetry about the Prime Meridian and the equator.
polyconic() parallels developed from tangent cones, equally spaced along Prime
Meridian
aitoff() equal-area projection of globe onto 2-to-1 ellipse, based on azequalarea
lagrange() conformal, maps whole sphere into a circle
bicentric(lon0) points plotted at true azimuth from two centers on the equator at lon-
gitudes ±lon0, great circles are straight lines (a stretched gnomonic projection)

- 21 -

elliptic(lon0) points are plotted at true distance from two centers on the equator at
longitudes ±lon0
globular() hemisphere is circle, circular arc meridians equally spaced on equator, circu-
lar arc parallels equally spaced on 0- and 90-degree meridians
vandergrinten() sphere is circle, meridians as in globular, circular arc parallels
resemble mercator

Doubly periodic conformal projections.
guyou() W and E hemispheres are square
square() world is square with Poles at diagonally opposite corners
tetra() map on tetrahedron with edge tangent to Prime Meridian at S Pole, unfolded into
equilateral triangle
hex() world is hexagon centered on N Pole, N and S hemispheres are equilateral triangles

Miscellaneous projections.
harrison(dist,angle) oblique perspective from above the North Pole, dist earth
radii from center of earth, looking along the Date Line angle degrees off vertical
trapezoidal(lat0,lat1) equally spaced parallels, straight meridians equally spaced
along parallels, true scale at lat0 and lat1 on Prime Meridian

Retroazimuthal projections. At every point the angle between vertical and a straight line to
‘Mecca’, latitude lat0 on the prime meridian, is the true bearing of Mecca.

mecca(lat0) equally spaced vertical meridians
homing(lat0) distances to ‘Mecca’ are true

Maps based on the spheroid. Of geodetic quality, these projections do not make sense for tilted
orientations. For descriptions, see corresponding maps above.

sp_mercator()
sp_albers(lat0,lat1)

