Theory Qualifying Exam Yale University Department of Statistics 9:00 A.M.-4:00 P.M. January 8, 2008

There are 12 questions. Please start the answer to each question on a new sheet of paper. Reference to books or notes is not permitted.

- 1. An urn contains 600 red balls and 400 black balls. A random sample of size 50 is taken without replacement. Let X denote the number of red balls in the sample. Show that the probability mass function of X is unimodal.
- 2. Hidden inside each box of Primate brand breakfast cereal is a small plastic figure of an animal: an ape, a baboon, or a chimp. Suppose a fraction α of the very large population of cereal boxes contain apes, a fraction β contain baboons, and a fraction γ contain chimps. Find the expected number of boxes you need to buy before you have at least one figure of each type.
- 3. Let $\{y_{ij} : i = 1, ..., r, j = 1, ..., c\}$ be a set of observations with the unusual property that y_{ij} is 1 if i = j = 1 and 0 otherwise. Suppose we fit an additive model to the data, by finding values \hat{t} , \hat{a}_i , \hat{b}_j to minimize $\sum_{ij} (y_{ij} t a_i b_j)^2$.
 - (a) Find the values of \hat{t} , the \hat{a}_i 's and the \hat{b}_j 's if they are subjected to the "sum constraints" $\sum_i \hat{a}_i = 0 = \sum_j \hat{b}_j$.
 - (b) Find the values of \hat{t} , the \hat{a}_i 's and the \hat{b}_j 's if they are subjected to the "treatment constraints" $\hat{a}_1 = 0 = \hat{b}_1$.
- 4. Three random points are chosen independently from the uniform distribution on a disc of unit radius. Find the probability that the center of the disc lies in the convex hull of the three points.
- 5. Suppose X_0, X_1, \ldots, X_n is a Markov chain on a finite state space, with transition matrix P and initial distribution μ . Define $Y_i = X_{n-i}$ for $i = 0, 1, \ldots, n$.
 - (a) Show that $\{Y_i : i = 0, 1, ..., n\}$ is also a Markov chain, with transition probabilities that might not be stationary.
 - (b) If μ is the stationary distribution for P, show that the Y-chain also has stationary transition probabilities.
- 6. Consider the choice of a set estimator C_X for a parameter $\theta \in \mathbb{R}$ based on one observation X from the $N(\theta, 1)$ distribution, using the loss function

 $L(\theta, C) = ($ Lebesgue measure of $C) - 1\{\theta \in C\}$

Show that the set $C_X = [X - c_0, X + c_0]$ is minimax for a suitably chosen constant c_0 .

- 7. Suppose T is an unobserved random variable with density $g(t) = \frac{1}{2}t^2e^{-t}\{t > 0\}$, which is generated independently of a random variable B for which $\mathbb{P}\{B = +1\} = 1/2 = \mathbb{P}\{B = -1\}$. We observe B and $X = \theta + BT$ for an unknown $\theta \in \mathbb{R}$.
 - (a) Find the Fisher information function for a single observation (X, B).
 - (b) Suppose we only observe X and not B. Show that the Fisher information is the same as for part (a).
 - (c) If (X, B) were observed, would X be a sufficient statistic for θ ?
- 8. Let \mathbb{P}_{θ} denote the uniform distribution on $[0, \theta]^2$, for $\theta > 0$. That is, the coordinates x_1 and x_2 are independent Uniform $[0, \theta]$ under \mathbb{P}_{θ} . Let $S := x_1 + x_2$ and $M := \max(x_1, x_2)$. Consider estimation of θ with loss function $L(\theta, a) := (\theta a)^2$.
 - (a) Explain why $\mathbb{E}_{\theta}(S \mid M = m)$ is preferred to S for estimating θ .
 - (b) Explain why $\mathbb{E}_{\theta}(2x_1 \mid S)$ is preferred to $2x_1$ for estimating θ .
 - (c) Explain why $\mathbb{E}_{\theta}(3M/2 \mid S = s)$ is not preferred to 3M/2 for estimating θ .
- 9. Suppose X_n has a Bin (n, p_n) distribution with variance $\sigma_n^2 = np_n(1 p_n)$ that converges to 1 as n tends to infinity. Show that $(X_n np_n)/\sigma_n$ cannot converge in distribution to N(0, 1).
- 10. Suppose Z_1, \ldots, Z_k are independent random vectors, each distributed $N(0, I_n)$. Let u_0 be a fixed unit vector in \mathbb{R}^n . Show that the squared length of the component of u_0 in the subspace spanned by Z_1, \ldots, Z_k is distributed like A/(A+B) where A and B are independent with $A \sim \chi_k^2$ and $B \sim \chi_{n-k}^2$.
- 11. Let P and Q be probability measures on a set \mathcal{X} and f be a measurable function from a set \mathcal{X} into another set \mathcal{Y} . Write \tilde{P} for the distribution of f under P and \tilde{Q} for its distribution under Q. [You may assume \mathcal{X} and \mathcal{Y} are finite if you wish to avoid measure theoretic details.]
 - (a) Show that the relative entropy $D(\tilde{P}||\tilde{Q})$ is less than or equal to D(P||Q).
 - (b) Let \widetilde{P} denote the Bin(n, p) distribution and \widetilde{Q} denote the Poisson(np) distribution. Show that $D(\widetilde{P}||\widetilde{Q}) = O(np^2)$.
- 12. Suppose an urn initially contains r red balls and b black balls. At step n a ball is selected at random from the urn, then replaced by d_n balls of the same color, where d_n is a positive random integer that might depend on the outcomes of the first n-1 draws. After completion of the *n*th step, let R_n denote the number of red balls and B_n the number of black balls in the urn. Show that $X_n := R_n/(R_n + B_n)$ is a martingale with respect to a suitable filtration.