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Abstract: Subspace algorithms have been established in the last decades as an alternative
to prediction error methods for the estimation of linear dynamical systems. Conceptual
simplicity and numerical feasability have been the main arguments in favor of the
approach. This article gives a presentation of the mainstream approach and tries to
convince the reader, that this class of algorithms has its virtues. Strengths and weaknesses
of the approach are discussed.
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1. INTRODUCTION

’Subspace algorithms’ is a technical term, which is
both, too broad and misleading. Too broad, since the
term is used in many different contexts in totally dif-
ferent meanings. Misleading, because even if one adds
the context the term is not connected to a particular
algorithm or class of algorithms, but rather to a gen-
eral idea. Subspace algorithms have their origins in
the algorithms of Zeiger and McEwen (1974) and Ho
and Kalman (1966). As such, they bear elements of
realization algorithms. However, the main idea centers
around the concept of the state, as being an interface –
in a sense to be made more clear below – between the
past and the future, stated loosely. These early ideas
have been developed further leading to the three most
well known algorithms:

• N4SID (numerical algorithms for subspace state
space system identification) proposed by Van Over-
schee and DeMoor (1994)

• MOESP(multivariable output error state space)
system identification procedure proposed by Ver-
haegen (1994)

1 Support by the Austrian FWF under the project number P14438-
INF is gratefully acknowledged.

• CCA (canonical correlation analysis) proposed
asCVA(canonical variate analysis) by Larimore
(1983).

All three of them are used in the context of linear
dynamical systems operating in open loop. Follow-
ing the suggestion of the algorithms in parallel the
analysis of the properties of these algorithms and the
adaptation to different model classes occured. The
general idea of the method has been adapted to lead
to algorithms for the closed loop case (Chou and
Verhaegen, 1999; Verhaegen, 1993; Ljung and Mc-
Kelvey, 1996b), frequency domain data (McKelvey,
1995), bilinear models (Favoreel, 1999; Chen and Ma-
ciejowksi, 2000; Chou, 1994), piecewise linear mod-
els (Babuskaet al., 1997), time-varying parameters
(Gustafsson, 1999; Verdult and Verhaegen, 2002; Oku
and Kimura, 2002), Hammerstein models (Gomez and
Baeyens, 2002), continuous-time models (Haverkamp
et al., 1997; Ohsumi and Kawano, 2002), errors-in-
variables problems (Chou and Verhaegen, 1997), in-
tegrated processes (Bauer and Wagner, 2002), hidden
markov chains (Andersson, 2002). Here we will only
discuss the case of stationary, linear, discrete time,
time invariant systems.
The aim of this paper is to present the concept of sub-
space algorithms in a unified way in order to highlight



the similarities between the various algorithms. The
discussion will present the algorithms in much de-
tail, while trying to keep the exposition self contained
in order to allow also readers from related areas to
follow. At many places the comparison to prediction
error methods will be considered, since the subspace
methods are an alternative to these methods. It is the
purpose of this paper to point out situations, where
there are advantages of the subspace approach over the
prediction error approach.

2. STATE SPACE MODELS

In this paper the model class considered will always
be the class of linear, discrete time, finite dimensional,
time invariant state space models, given by

xt+1 = Axt +But +Kεt

yt = Cxt +Dut + εt
(1)

Here (yt)t∈Z denotes thes-dimensional output pro-
cess, observed fort = 1, . . . ,T, (εt)t∈Z denotes thes-
dimensional innovations, which for simplicity are as-
sumed to be i.i.d. Gaussian random variables with zero
mean and variance matrixΩ > 0. As usual the noise
is assumed to be unobserved. Furthermore(ut)t∈Z de-
notes them-dimensional input process, observed for
t = 1, . . . ,T. Then dimensional state process(xt)t∈Z is
also not observed. The system matricesA∈Rn×n,B∈
Rn×m,C ∈ Rs×n,D ∈ Rs×m and K ∈ Rn×s are to be
estimated.
In the following some important properties of state
space systems are discussed. Since it is assumed, that
these concepts are known to all readers, the discussion
is very brief. For a more detailed discussion we refer
to (Hannan and Deistler, 1988, Chapter 1). Central to
the definition of the model is the concept of a state:
xt is introduced in order to describe all the dynamics
present in the model, as the observation equation is a
static one. For so calledwhite boxmodels derived on
the basis of physical principles, the state possesses a
specific interpretation. In this talk only the so called
black box modelling approach will be considered.
Here only the input/output map is of interest and the
state does not have any physical meaning, but is only
a mathematical object to conveniently decsribe the
dynamics of the system. As such, the state of a system
is not unique: Any change fromxt to zt = Txt using
a nonsingular matrixT ∈ Rn×n results in a different
model (TAT−1,TB,CT−1,D,TK), which represents
the same input/output map. In this case,(A,B,C,D,K)
and (TAT−1,TB,CT−1,D,TK) are calledobserva-
tionally equivalent. A state space representation of
an input/output map is calledminimal, if there exists
no state space representation of the same input/output
map with lower state dimension. In that case the inte-
gern is called theorderof the system.
The significance of the state in the state space models
comes from the fact, that it summarizes all the dynam-
ics in the model: Given the state trajectory, the ouput

is obtained from the static observation equation. As a
note we remark, that state space systems hence can be
seen as very special hidden markov models. The state
is not observed, but given the model and trajectories of
the inputut and the outputyt for t = 1, . . . ,T, the state
xT+1 can be estimated. Assume, that the system is sta-
ble and strictly minimum-phase, i.e. that|λmax(A)|< 1
and|λmax(A−KC)|< 1 hold. Hereλmax(.) denotes an
eigenvalue of maximal modulus of a matrix. The best
estimate of the state in the mean square sense (assum-
ing the input to be a covariance stationary stochastic
process) is calculated by the Kalman filter. If the in-
put/output data is available fort = T,T−1,T−2, . . .,
then the steady state Kalman filter estimate of the state
coincides with the state, since

xT+1 =
∞

∑
j=0

(A−KC) j [KyT− j +(B−KD)uT− j ]

considering timeT to be the ’present’. Therefore, the
state can be recovered from the knowledge of the
history of the input/output data. On the other hand, the
prediction of the output is one of the main goals for
identification. Consider (forf ≥ 0)

yT+ f = CxT+ f +DuT+ f + εT+ f

= C(AxT+ f−1 +BuT+ f−1 +KεT+ f−1)
+DuT+ f + εT+ f

= · · ·
= CAf xT +DuT+ f + εT+ f

+
f−1

∑
j=0

(
CAj BuT+ f− j−1 +CAj KεT+ f− j−1

)

= CAf xT +
f

∑
j=0

L j uT+ f− j +
f

∑
j=0

K j εT+ f− j

(2)

where the last equation defines the impulse response
sequencesL j ∈ Rs×m,K j ∈ Rs×s, j ≥ 0, i.e. L0 =
D,K0 = I ,L j = CAj−1B,K j = CAj−1K, j > 0. This
equation decomposes the outputyT+ f into three com-
ponents:CAf xT gives the contribution of the state at
initial time T, ∑ f

j=0L juT+ f− j the contribution of the

future and the present of the input and∑ f
j=0K jεT+ f− j

the contribution of the future and present of the noise.
If one assumes open loop operation, then the input is
uncorrelated with the noise. The state, being a func-
tion of the past input/output data also is uncorrelated
with the noise. Therefore the best linear mean square
prediction ofyT+ f based on the whole input sequence
ut , t ∈ Z and the past of the outputys,s < T, say
y(T + f |T), equals

y(T + f |T) = CAf xT +
f

∑
j=0

L juT+ f− j

The following two facts constitute the role of the state
in state space models:

(1) The state is a function of the past input/output
data.

(2) The state summarizes all information contained
in the past input/output measurements that is
relevant for the prediction of the future output.



In this sense, the state is the interface between the past
and the future. This basic fact lies at the heart of all
subspace algorithms.
Choosing two integersf andp, the following vectors
can be defined for arbitrary time instantt:

Y+
t, f =




yt

yt+1
...

yt+ f−1


 ∈ R

f s,Z−t,p =




yt−1

ut−1
...

yt−p

ut−p



∈ Rp(m+s)

Additionally U+
t, f is defined usingut analogously to

Y+
t, f andE+

t, f is defined using the innovationsεt . Let
Kp denote the matrix corresponding to the finite
Kalman filter, such that

nt = xt −KpZ−t,p

is orthogonal toZ−t,p, i.e. uncorrelated. From projection
arguments in combination with (̄A = A−KC)

xt = Āpxt−p +
p−1

∑
j=0

Ā j(Kyt− j−1 +(B−KD)ut− j−1)

it follows that‖nt‖ ≤ ‖(A−KC)p‖‖xt−p‖ and there-
fore for p large the strict minimum-phase assumption
implies that the error termnt is small. Combining the
equations (2) foryt+ j , j = 0, . . . , f −1 one obtains the
following central equation:

Y+
t, f = O f xt +U fU

+
t, f +E f E

+
t, f

= O f KpZ−t,p +U fU
+
t, f +E f E

+
t, f +O f nt

= O f KpZ−t,p +
(
U f +O f N f ,p

)
U+

t, f +N⊥
t

(3)

where N⊥
t = E f E

+
t, f + O f (nt −N f ,pU

+
t, f ), denoting

the projection in mean square sense ofnt onto
U+

t, f by N f ,pU
+
t, f . HereO f = [C′,A′C′, · · · ,(Af−1)′C′]′

denotes the truncated observability matrix,U f =
[Li− j ]i, j=1,..., f the Toeplitz matrix of the impulse re-
sponsesL j , where L j = 0, j < 0 is used. E f =
[Ki− j ]i, j=1,..., f ,K j = 0, j < 0. This equation is a vector
equation fort ∈ Z. Often this equation is written as
a matrix equation having the above equation (3) for
t = p+1, p+2, . . . ,T− f as its columns. The structure
of the matrices containing the data caused the term
’data Hankel matrices’. We will put forward a different
view of the equation.
The central equation (3) decomposes the vectorY+

t, f

into three components:O f KpZ−t,p,(U f +O f N f ,p)U+
t, f

andN⊥
t . For t = p+1, . . . ,T− f the vectorsY+

t, f ,U
+
t, f

andZ−t,p can be built using input/output datayt ,ut , t =
1, . . . ,T. Hence the equation

Y+
t, f = βzZ

−
t,p +βuU

+
t, f +N⊥

t , t = p+1, . . . ,T− f

has the following interesting features:

• Under the assumption of open loop operation,
the vectorN⊥

t is uncorrelated with the remaining
terms on the right hand side of the equation. Un-
der the closed loop assumption,U+

t, f andN⊥
t are

correlated, butZ−t,p andN⊥
t remain uncorrelated.

• The matrixβz has rankn, the system order.
• βu = U f +O f N f ,p →U f for p→ ∞.
• N⊥

t → E f E
+
t, f for p→ ∞.

• E f E
+
t, f is an MA(f) process.

These observations build the basis for the subspace
algorithms.

3. DESCRIPTION OF THE ALGORITHMS

Most subspace algorithms share a common outline.
They can be decomposed into three main steps2 :

(1) Use the central equation to estimateβz,βu by
regressingY+

t, f onto Z−t,p and U+
t, f for the open

loop case. In the closed loop case, given an
estimateβ̂u of U f , an estimate ofβz is obtained
using regression ofY+

t, f − β̂uU
+
t, f onto Z−t,p. This

leads to estimates[β̂z, β̂u].
(2) The estimateβ̂z will typically be of full rank,

whereasO f Kp is of rank n. Hence a rankn
approximationÔ f K̂p of β̂z is obtained.

(3) Based on the estimateŝO f ,K̂p andβ̂u, estimates
of the system matrices are obtained.

This outline is shared by most of the commonly used
subspace procedures. In particularMOESPandCCAfit
into this framework, whereasN4SID uses a slightly
different third step while using the same first two
steps. Note, that the description was given for the open
loop case and the closed loop case, whereas most of
the literature only considers the open loop case.
In the following, we will describe the various ap-
proaches to the three steps in more detail, where the
emphasis will be on a discussion with respect to ap-
plicability to real world data sets, numerical aspects
and also asymptotic properties, above all consistency
issues and asymptotic variance considerations.

3.1 Step 1: Regression

The first step in the procedure is a regression. Least
squares regression is maybe the best understood sta-
tistical method. Efficient numerical procedures exist.
The pitfalls are understood to a large extent. Using
recursive regression methods, one immediately ob-
tains recursive subspace methods (cf. e.g. Oku and
Kimura, 2002). In particular, the regression faced in
subspace methods has

• lagged output variables as regressors
• residuals, which are not white.
• reduced rank coefficient matrices
• for p = ∞ the matrixU f has a rich structure, i.e.

it is block Toeplitz.

2 This decomposition has been given in (Peternellet al., 1996).
A similar view of the algorithms and in particular the use of the
regression interpretation is independently given in (Shi, 2002).



• potential problems with illconditioning due to
multicollinearity.

The consequences of these facts are discussed next.

3.1.1. Lagged Output Variables Different possible
choices with respect to the initial and end conditions
are possible. The regression equation was written for
t = p + 1, . . . ,T − f . As for ARX systems, setting
the initial and end conditions to be equal to zero, the
regressions can be calculated using the estimates of
the covariance sequence, since inY+

t, f ,U
+
t, f and Z−t,p

lagged versions of the two processesyt andut appear.
This is equivalent to extending the regression equation
to t = 1, . . . , p andt = T− f +1, . . . ,T, while replac-
ing missing values with zeros. It will be clear from
the following, that throughout the algorithms not the
observed processes themselves are needed, but the es-
timates of the firstf + p−1 covariances are sufficient.
A different approach is to discard the time instants,
where some variables are not observed and to use
the regression equation only fort = p+ 1, . . . ,T− f .
Arguments paralleling the autoregressive case could
be made keeping in mind, that the obtained estimate is
β̂z rather than the system matrices themselves: Setting
initial and end conditions to zero definitely leads to se-
rious distortions forf andp relatively large in compar-
ison toT. Additionally a different argument has been
put forward in favor of not using covariance estimates:
For linear equations it is known, that solving the least
squares problem using the QR decomposition is nu-
merically favorable to solving the normal equations.
This is the reason for using the QR decomposition in
the original versions ofMOESPandN4SID. It is the
belief of the author that the contribution of the numer-
ical errors to the total error is minor. Therefore the
decision, how to choose the initial and end conditions
in the regression should be based on statistical grounds
rather than for numerical reasons.
There are cases, where the idea of viewing subspace
algorithms as being a nonlinear function of the esti-
mated sample covariances is beneficial. First of all,
this view is very convenient for the derivation of
asymptotic properties of the estimators obtained from
using the subspace approach. Basically this idea un-
derlies all results proving consistency and asymptotic
normality (with the exception of the case that there is
an integrator present in the data generating process).
But secondly, and more important for the practitioner,
basing the estimation on estimated covariances brings
many convenient features:

• Huge sample sizes can be dealt with: Calculating
the sample covariances can be done even for very
large data sets in a few seconds. On the contrary,
the regression matrix can become huge even for
moderate sample sizes: Choosingf = p = 30
e.g. for a three dimensional input and three di-
mensional output observed for 5000 time instants
results inZ−t,p being of dimension 180 and witht

varying between 31 and 4970 the corresponding
regression matrix would be of dimension 180
times 4940 containing approx. 890.000 entries.
The QR decomposition of the originalMOESP
algorithm, which calculates in effect the regres-
sion, would thus have to be performed on a ma-
trix of size 360 times 4940 having more than 1.6
million entries.

• Missing values: Due to the dynamic structure of
the regression single irregularily missing values
might reduce the effective sample size substan-
tially. The estimated covariances, however, do
not suffer such a loss in accuracy.

• Outliers: Covariance estimators exist, which are
robust with respect to outlying data points. These
might be easier to apply than robustifications for
the regression itself.

• Time varying parameters: Recursive covariance
estimators can be used in order to cope with time
varying parameters, although this might not be
preferable.

3.1.2. Nonwhite residuals Recall that the residu-
als are equal toE f E

+
t, f + O f (nt −N f ,pU

+
t, f ). These

are nonwhite, sinceE+
t, f andE+

t−1, f have a consider-

able overlap and becausent −N f ,pU
+
t, f is nonwhite.

Choosingp large, the second problem can be made
negligible, whereas the first problem remains. The
usual solution to the problem of correlated errors is to
use the GLS estimator rather than the OLS estimator
with an estimate of the covariance matrix of the resid-
uals. However, there exist cross restrictions between
the regression parameters and the noise covariance
matrix, which is a problem for GLS estimation. Fur-
thermore it is noted, that̂βz is only an intermediate
estimate, therefore it might not prove essential to use
an optimal estimator in this stage.

3.1.3. Reduced rank regressionIt has been noted,
that O f Kp has rank equal to the system ordern,
whereas the estimatêβz typically has full rank (forf
and p sufficiently large). A natural idea would be to
incorporate the reduced rank property already in the
regression. Consider a regression problem

yt = βzzt +βuut +nt

whereyt ,ut andzt are observed fort = 1, . . . ,T and the
rank ofβz = αβ ′ is restricted to be equal ton. In order
to simplify notation, let〈at ,bt〉 = ∑T

t=1atb′t , whereat

and bt here stand for any of the processesyt ,zt or
ut . First consider the criterion function (n̂t(α,β ,βu) =
yt −αβ ′zt −βuut )

LT(α,β ,βu) = tr[Wf 〈n̂t(α,β ,βu), n̂t(α,β ,βu)〉]
for some positive definite weighting matrixWf = W′

f .
The solution to this problem can be found e.g. in
(Reinsel, 1998) and is given using the SVD of3

3 Here the symmetric square root of a matrix is used.



W1/2
f 〈y⊥t ,z⊥t 〉Ŵ−

p = Û Σ̂V̂ ′ = ÛnΣ̂nV̂
′
n + R̂n (4)

whereÛ ∈ R f s× f s denotes the matrix of left singular
vectors andÛn is the principal submatrix constituted
of the firstn columns,V̂ andV̂n are the corresponding
quantities corresponding the right singular vectors and
Σ̂n = diag(σ̂1, σ̂2, . . . , σ̂n), where σ̂1 ≥ . . . ≥ σ̂n >
σ̂n+1 ≥ 0 are the estimated singular values ordered
decreasing in size. The residuals from a regression of
yt ontout are denoted byy⊥t = yt−〈yt ,ut〉〈ut ,ut〉−1ut .

Similarily z⊥t is defined. FurtherŴ−
p = 〈z⊥t ,z⊥t 〉−1/2.

This leads to a minimum of̂β = (Ŵ−
p )−1V̂n andα̂ =

(Wf )−1/2ÛnΣ̂n. Clearly the minimum is not unique.
Alternatively, pseudo maximum likelihood estimation,
i.e. estimation based on the Gaussian likelihood for
i.i.d. white noisent as the criterion function, can
be used. Note, that this criterion function leads to
reasonable estimators, even ifnt is not Gaussian white
noise. It follows from similar arguments to the ones
given above, that the solution in this case is identical
to the one given above forWf = 〈y⊥t ,y⊥t 〉−1.
This procedure applied to the regression used in the
subspace approach leads to the SVD

W1/2
f 〈Y+,⊥

t, f ,Z−,⊥
t,p 〉Ŵ−

p

whereŴ−
p = 〈Z−,⊥

t,p ,Z−,⊥
t,p 〉−1/2 andZ+,⊥

t, f ,Z−,⊥
t,p denote

the residuals from regression ontoU+
t, f . It will be seen

below, that these choices are used in some procedures.

3.1.4. Structure inU f It has been suggested to use
the block Toeplitz structure inU f in the regression
in order to obtain better estimates ofβz in (Peternell
et al., 1996). In that paperp → ∞ has been used
as a justification for neglectingO f (nt −N f ,pU

+
t,p).

In some simulation examples also advantages in the
accuracy have been shown. There is no general result
backing the intuition of better estimates obtained by
using the structure. In the case of white noise inputs,
moreover, the restricted regression approach does not
lead to more accurate estimates, as is shown in (Bauer,
1998). A disadvantage of the restricted regression
method is the significant increase in the computational
complexity.

3.1.5. Multicollinearity There are two different
kinds of multicollinearity problems, and each has to
be dealt with differently. The first kind is the obvi-
ous problem of perfectly correlated regressors. This
occurs e.g. if certain deterministic terms such as the
constant are included as inputs. The solution in this
case is simply to omit the corresponding variables and
this multicollinearity does not introduce any serious
problems. The second problem is concerned with al-
most perfect collinearities. Again, the viewpoint of a
regression analysis is helpful in this respect: Ridge re-
gression techniqes can be used in this case and in fact
have been proposed (Shi, 2002; Gustafsson, 1999).

3.2 Step 2: Rankn approximation

In the second step of the subspace algorithms the
estimateβ̂z is approximated by a rankn matrix. This
is usually accomplished using a weighted singular
value decomposition: LetŴ+

f ∈ R f s× f s and Ŵ−
p ∈

Rp(s+m)×p(s+m) be two symmetric positive definite
matrices. Then consider the SVD

Ŵ+
f β̂zŴ

−
p = Û Σ̂V̂ ′ = ÛnΣ̂nV̂

′
n + R̂n

Note, that this SVD is totally analogous to the SVD in
(4), which uses a special choice of̂W−

p . Therefore the
reduced rank regression approach leads to the same re-
sult as the unrestricted regression approach combined
with a weighted rankn approximation.N4SID does
not have this interpretation, since it uses a different
weightingŴ−

p , but bothMOESPandCCAfall into this
category.
In this step, (almost) all the user choices to be taken
in subspace algorithms are of crucial importance. The
integersf and p define the dimensions of the matrix
on which the SVD is performed. A lower bound on
these integers has to be imposed, in order to make
sure, that the essential dynamics of the system can
be estimated. The weighting matriceŝW+

f and Ŵ−
p

have to be chosen, which influence the approximation
quality. And finally the order of the estimated system,
n say, has to be prescribed in this step.
Order estimation is a - in my opinion - neglected topic.
There have been two different approaches proposed:
Estimating the order using criterion minimization and
alternatively statistical rank testing (for a discussion
see e.g. Camba-Mendez and Kapetanios, 2001). Esti-
mating the order has been based mostly on criterion
functions comparing the norm of the neglected part of
the SVD, i.e.R̂n, to a penalty function:

IC(n) = ‖R̂n‖2 +
C(T)d(n)

T
whered(n) = ns+ n(s+ m) + sm denotes the num-
ber of parameters needed to parametrize the state
space systems of the form (1).C(T) > 0,C(T)/T →
0 is a term penalizing large models. The choice of
C(T) determines the properties of the estimates of
the order, obtained as the minimizing argument of
the criterion. With respect to the norm, the two norm
(‖R̂n‖2 = σ̂2

n+1, SVC, Bauer (2001)) and the Frobenius
norm (‖R̂n‖2 = ∑M

j=n+1 σ̂2
j ,M = min{ f s, p(s+ m)},

NIC, Peternell (1995)) have been proposed. Based
on different grounds also‖R̂n‖2 = 1−∑M

j=n+1 log(1−
σ̂2

j ) has been proposed (Camba-Mendez and Kapetan-
ios, 2001).
The statistical testing approach is based on a series of
tests on the rank of a matrix according to the ideas of
Gragg and Donald (1997): The series is started at the
hypothesis of the order of the system being equal to
null. If the null hypothesis is rejected, the null hypoth-
esis is adapted, now saying that the order is equal to
one. This procedure is continued as long as the null is
rejected.



For both methods the asymptotical properties have
been derived, mainly proving consistency. Small sim-
ulation studies compare the various approaches, but
to the best of my knowledge no procedure has been
found to be superior. Also the motivation for the es-
timation methods is relatively weak, basically only
hinging on consistency. But of course, many consis-
tent procedures can be defined.

3.3 Step 3: Estimation of system matrices

From the previous steps, the estimates

Ô f = (Ŵ+
f )−1/2ÛnΣ̂n,K̂p = ((Ŵ−

p )−1V̂n)′

andβ̂u have been obtained. Up to now, the discussion
did not distinguish between the various different ap-
proaches, except for pointing to different choices of
weighting matrices, which however only apply for the
default algorithms. There is no difficulty in applying,
say,CCAusing the weighting scheme put forward in
MOESP. The estimation of the system matrices, how-
ever, is where the differences in the algorithms show
up. Hence this section is divided into two subsections,
the first one dealing with theMOESPtype of meth-
ods, whereas the second one deals with state based
approaches.

3.3.1. MOESPtype of methods The distinctive fea-
ture of this type of algorithms is the usage of the ma-
trix β̂u in the estimation. The estimation hinges on the
estimatesÔ f andβ̂u and most algorithms in this class
only estimate(A,B,C,D), the subsystem describing
the effects of the input on the output. The noise model
is included in the estimation, since it is hoped that
by doing this the estimation accuracy is increased. It
is debatable, whether this is really true. Chiuso and
Picci (2002) find examples, where the joint modelling
approach leads to worse estimates, than seperately
modelling the systems(A,B,C,D) and(A,K,C).
In the first part of step 3, theMOESPtype of approach
uses the structure of the matrixO f : DefineO f as the
submatrix ofO f , which is obtained by omitting the
first block row. Then obviously

O f = O f−1A

Letting Ô f be defined as the firstf − 1 block rows

of Ô f this equation can be used in order to obtain an
estimateÂ of A as the least squares solution to

Ô f = Ô f A+ r

The estimateĈ is defined as the first block row of
Ô f . This procedure is usually termed ’shift invariance
approach’.
Given these two estimates, a number of different pro-
cedures for the estimation ofB andD have been pro-
posed and it does not seem to be clear, which approach
is to be favored. (Ljung and McKelvey, 1996a) pro-
pose to use the representationyt = ∑∞

j=0L jut− j + vt

as the basis for the estimation ofB and D, asL0 =
D,L j =CAj−1B, j > 0 are linear inB andD and hence
given estimates ofA andC the estimates ofB andD
are obtained as

(B̂, D̂) = argmin
T

∑
t=1
‖yt −L(ut ,B,D)‖2

whereL(ut ,B,D) = ∑t−1
j=0L jut− j is linear inB andD.

Closed form expressions for the solution exist.
Alternatively the structure ofβu = U f +O f N f ,p can
be used to construct estimates ofB andD. This is in
fact done in the originalMOESPprocedure. Note, that
U f , being a matrix whose entries areL j , is linear inB
andD. LetO⊥

f ∈R f s×( f s−n) denote a matrix, such that

O ′
f O

⊥
f = 0, while O⊥

f is of full column rank. Further
let U f = L(A,B,C,D). Then

(O⊥
f )′βu = (O⊥

f )′U f = (O⊥
f )′L(A,B,C,D)

If estimated quantitites replace true quantities, the
equation only holds approximately andB andD can
be determined using least squares fitting on the vec-
torized equations:

vec((̂O⊥
f )
′
β̂u) = vec((̂O⊥

f )
′
L(Â,B,Ĉ,D))+ r

There are two issues related to this equation: The first

issue is the choice of the estimatê(O⊥
f ), which is

based on an estimate ofO f . Two possible choices are
Ô f and [Ĉ′, Â′Ĉ′, . . . ,(Âf−1)′Ĉ]′. The second issue is
the distribution ofr. Given (A,C), Chiuso and Picci
(2002) give the variance ofr and find an estimate of
the variance in order to obtain GLS estimates.
For all these procedures it is unclear, which is the
preferable one. Except for a few simulation examples,
no evidence exists. Moreover, the estimation of the
system matrices corresponding to the noise character-
istics usually is neglected. There exist procedures to
estimate the matrixK, however, we will not present
them. For the case of no observed inputs present only
realization methods can be seen to fall into theMOESP
type of algorithms.

3.3.2. The state approach Contrary to theMOESP
type of approach, the state approach uses the estimate
K̂p and neglectsÔ f andβ̂u. Recalling that the state is
equal to

xt = KpZ−t,p +nt

an estimate of the state can be given asx̂t = K̂pZ−t,p, t =
p+1, . . . ,T. This estimate can be used in the observa-
tion equation in place of the true statext in order to
obtain an estimate ofC andD from

yt = Ĉx̂t + D̂ut + ε̂t

This also defines an estimateε̂t of the innovations.
Secondly, if an estimatẽxt+1, t = p+1, . . . ,T is avail-
able, the state equation could be used in order to obtain
estimates ofA,B andK using the regression equation

x̃t+1 = Âx̂t + B̂ut + K̂ε̂t + rt



One obvious estimate is̃xt+1 = x̂t+1, x̃T+1 = 0 using
the shifted estimated state sequence. Alternative es-
timates for x̃t+1 have been proposed in the original
N4ISD procedure and recently by Chiuso and Picci
(2002). In the case of no observed inputs, the formulae
are valid without a change, settingm= 0.

4. SOME ASYMPTOTIC RESULTS

After having described the algorithm in detail, in this
section the main theoretical results are cited, which
are important in order to obtain an understanding of
the possible applications of the algorithms. We will
not state the results in full technical detail, but rather
refer to the original sources for the interested reader.

4.1 MOESPtype of procedures

Corresponding to this class of procedures, there only
exists a limited set of results on the asymptotic proper-
ties. The effects of the user choices (f , p, the weight-
ing matrices) on the asymptotic properties are not
well understood. For all procedures, consistency has
been fairly well investigated and cases, where the
algorithms are not consistent, have been singled out
(Jansson and Wahlberg, 1998). Also asymptotic nor-
mality has been proved (Bauer and Jansson, 2000) and
the calculations of the asymptotic variance described
in detail (Jansson, 2000). It is known, that the choice
of Ŵ+

f does not influence the accuracy of the esti-
mated poles of the system, i.e. the eigenvalues ofA
(Jansson, 1997).
Corresponding to the effects of the weighting matrices
on the asymptotic bias in the case of underspecifica-
tion of the order, there exist a number of examples,
which show that in some cases, the bias can be af-
fected to the favor of the modeller. However, there
do not exist any results making this observation more
concrete than rules of thumb based on a couple of
observations. Also the effects of the choices of the
weightings on the asymptotic variance are not well
understood. The expressions derived so far do not pro-
vide good insights. With respect to the effects of the
choice of f and p almost no advice exists to the best
of the knowledge of the author. An invited session at
this conferences is dedicated to these topics, which are
an area of ongoing research, which also needs impact
from applications.

4.2 State approach

For the state approach, there is much more knowledge
present on the effects of the various user choices. Two
different cases are distinguished: For the case of no
observed inputs or white noise inputs, the asymptotic
properties of subspace algorithms are well understood.

For the case of coloured input, the situation ressembles
much the situation for theMOESPtype of procedures.

4.2.1. No observed inputs or white noise inputs
In this case, the procedure based onx̃t+1 = x̂t+1

is understood quite completely with respect to the
asymptotic properties. A necessary condition in or-
der to achieve consistency in this setting is to let
p tend to infinity as a function of the sample size
(cf. Deistleret al., 1995). If additionally asymptotic
normality of the estimators is to be ensured, then
p ≥ −d logT/(2log|λmax(A−KC)|) for some arbi-
trary d > 1 is assumed in the proofs (cf. Baueret
al., 1999). This bound depends on unknown system
quantities. However, it can be shown (cf. e.g. Hannan
and Deistler, 1988, Theorem 6.6.3) that2p̂AIC fulfills
this bound almost surely, wherêpAIC is the order esti-
mated usingAIC in an autoregressive approximation
of the output processyt .
In the case of no observed inputs there exist expres-
sions for the asymptotic bias term for underspecifi-
cation of the order, which also include some results
on the dependence of the bias distribution over fre-
quency on the choice of the weighting matrix (cf.
Bauer, 1998, Chapter 2). However, these results are
not very sharp and particularly not of much use in
practice. For the case of correctly specified order,
(Bauer and Ljung, 2002) provide very transparent ex-
pressions for the asymptotic variance, which reveal the
influence of the weightingŴ+

f and the choice off

on the asymptotic accuracy.̂W−
p has been shown to

be of no concern in this case in (Baueret al., 2000).
The bottom line of these results is that theCCAchoice
of the weighting matrices is optimal for each fixed
f . Furthermore, the asymptotic accuracy for theCCA
estimates increases monotonically withf . This im-
plies, that an optimal procedure has to usef → ∞.
(Bauer, 2000) finally shows, that in the case of no
observed inputs,CCA together with f = p = 2p̂AIC

leads to a procedure, which asymptotically is equiva-
lent to prediction error methods and hence in the case
of Gaussian innovations achieves the optimal accuracy
given by the Cramer Rao lower bound.
(Dahlen and Scherrer, 2001) show, thatCCAis asymp-
totically equivalent to a procedure, which performs
balanced model reduction on a preliminary AR esti-
mate in the sense, that the difference of the obtained
estimates tends to zero faster than1/

√
T. This pro-

vides an alternative interpretation of the procedure,
giving also some motivation to the choice ofp as
suggested above.
In the case of white noise observed inputs, the vari-
ance expressions given in (Bauer and Ljung, 2002)
are still valid. Asymptotic equivalence to prediction
error methods also has been shown. Therefore in these
cases,CCAcan be seen as an equivalent of (pseudo)
maximum likelihood methodsunder the assumption
of correctly specified order.



4.2.2. Coloured inputs In the case of coloured ob-
served inputs some examples have been given, which
show, that in this caseCCAdoes not achieve opti-
mal accuracy. The knowledge about the asymptotic
properties is limited to the basic results of consis-
tency (Peternellet al., 1996) and asymptotic normality
(Bauer, 1998). Expressions for the asymptotic vari-
ance exist, but are computationally demanding.

5. APPLICATION TO STOCK RETURN DATA

In order to illustrate the advantages of subspace
based state space modeling we use a data set of so
called ’high frequency’ stock returns, provided by
Tim Bollerslev. The data set is further described in
Bollerslev and Zhang (2003). The data set consists
of five-minute returns on a value weighted market
portfolio consisting of more than 6000 of the largest
issues traded on the NYSE, NASDAQ and AMEX
stock exchanges. The sample consists of 1761 trading
days from January 2, 1993 through December 1, 1999.
For each trading day, 79 five minute returns are given,
resulting in a total of 139119 observations. The data
set hence covers an extended period in time and is also
quite demanding with respect to its size.
One commonly used hypothesis in financial econo-
metrics is the so called ’efficient market hypothesis’,
which basically means that the knowledge of past
return data cannot be used to obtain a forecast of
future returns, which beats the no change prediction
systematically. For daily return data this hypothesis
seems to be rather accurate and modelling the mean
return is not a rewarding task. For five minute returns
by contrast, even a simple AR(1) model already beats
the no change prediction on average. Hence, fitting an
ARMA model to the five minute return series seems
to make sense.
Financial data sets share a number of commonly found
characteristics:

• Heteroskedasticity: Conditional on the past, the
variance of the innovations varies.

• ’Fat tails’: The amount of ’large’ innovations is
higher than would be expected from a normal
density, i.e. the distribution of the innovations is
leptokurtic.

Subspace algorithms are known to be robust with re-
spect to certain forms of heteroskedasticity including
the commonly used GARCH models (Bauer, 2002).
The leptokurtosis can be dealt with using outlier ro-
bust covariance estimators. Usually the analysis of
financial data is done in two steps: First a model for
the conditional mean is derived in order to obtain
an estimate of the innovations. Secondly a model for
the conditional variance (or respectively a model for
the squared innovations) is derived based on the es-
timated innovations. For efficiency of estimation the
final model is estimated jointly.
Therefore, consider a state space model estimated for
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Fig. 1. Step function for the estimated11-th order
transfer function.

the whole data set: As the outlier robust estimator of
the covariance sequence we used the trimmed mean,
where we neglect 5% percent of the data. These co-
variance estimates are then inserted into the subspace
algorithm and a model of order 11 (estimated from the
data) is estimated for the full data set. In this step the
integersf andp have been specified externally. A plot
of the estimated step function can be seen in picture 1.
The plot shows that the immediate effects dominate,
while there is some influence on the first halfday. The
step response levels out at a value of approximately
1.35after half a day, although there is some fluctuation
at the period length one half day.
Due to the extended time span (7 years), time con-
stancy of the system is highly questionable. As an
alternative to the constant parameter model, the data
set has been partitioned into blocks of 10 consecutive
trading days, resulting in 176 data sets of 790 data
points each. For each data block, a seperate model has
been specified and estimated. A number of different
techniques for the specification have been tried out,
including the estimation of robust estimators for the
covariances, fully automated model selection proce-
dures, and robust estimation for fixed model structure
(eleventh order model). As a criterion to compare the
time varying models to the constant parameter model,
the one step ahead prediction error on the following
ten trading days for the time varying models is com-
pared to the prediction error on the same data set
for the constant parameter model. This comparison is
friendly to the constant model, since there all the data
was used for estimation. Nevertheless, the time vary-
ing models perform better, as can be seen in figure 2,
showing the quotient of the standard deviation of the
one step ahead prediction error on the 10 consecutive
trading days to the standard deviation of the one step
ahead prediction using the constant parameter model.
The plot shows, that the time varying models outper-
form the constant parameter model in the first half of
the observation period, while it is somewhat worse on
the second half. Overall the difference is negligible.
Thus on these grounds the constant parameter hypoth-
esis is rejected and the model for the mean is given
by the time varying parameter models. These models
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Fig. 3. Mean of squared residuals for the various days
(upper plot) and for different five minute intervals
(lower plot).

result in an overallR2 of 0.11.
Figure 3 shows, that the variability as measured by
the daily means of the squared errors is not constant
over the various days. Also the variability is not con-
stant for the various five minute intervals, as docu-
mented by the lower plot. It can be clearly seen, that
the most variability in the stock returns occurs five
minutes after the opening of the market. One com-
monly used model for this sort of data is the so called
GARCH model (Bollerslev, 1986). Squared GARCH
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Fig. 4. Estimated covariance sequence of the squared
innovations adjusted for intra day means.

processes have been interpreted as a linearily filtered
heteroskedastic white noise including a nonzero in-
tercept. Therefore the usual modeling techniques can
be used. Clearly in our case, the deterministic term
depends on the particular five minute interval and
cannot be chosen as constant. Two alternatives are
the introduction of one dummy for each interval or a
parametric model for the distribution over time. We
will here only deal with the dummy approach, imple-
mented by subtracting the trimmed mean (10%) of the
squared innovations for each five minute time period.
The (trimmed, 10 %) estimated covariance sequence
can be seen in figure 4. The plot shows some of the
features, that are often found in these data sets: The
covariance at lag one is already rather small compared
to the covariance at lag0 (correlation of about0.18).
The remaining covariances show a slow decay and a
cyclical behaviour at the daily frequency.
In principle there are a number of different strategies
to model the conditional variability: These include one
model for all instances, a different model for each five
minute interval or a multivariate model for the vector
of all 79 five minute returns jointly. Each of these has
its drawbacks: Building one univariate model is the
most restrictive model. On the other hand, one model
for each five minute interval leads to a large amount of
work due to the necessity to specify 79 models. The
multivariate model also has a number of drawbacks:
First of all, the information set is different: Whereas
in the univariate models, the prediction is performed
on the basis of all returns up to timet, the multivariate
model predicts on the basis of all data up to the last day
and hence does not take into account the returns of the
current day. Secondly, the properties of multivariate
GARCH models are largely unknown. Especially the
positivity constraint is problematic. Hence logarithms
are taken, which also leviates the problems due to the
leptokurtosis.
Using subspace methods, multivariate models can be
estimated and specified for output dimension 79 with-
out big problems. The specification step is numeri-
cally feasible, as the main computational load in this
case lies in the calculation of the covariance sequence,
which can be done prior to model estimation. The
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Fig. 6. Logarithm of the sum of the squared innova-
tions plotted against the estimates of the state in
the multivariate model.

automatic procedure estimates the order to equal 1.
Plot 5 shows the mean squared errors of the loga-
rithm of the squared residuals, which have been cor-
rected for the mean for given five minute interval, the
mean squared errors for the multivariate model and
the mean squared error for the univariate model. It
is observed, that both models substantially reduce the
mean squared error over the naive model of constant
volatility. The univariate model performs a bit worse
for the early returns, but better for the late returns.
The explanation for this lies in the different amount of
information on which the prediction is based. Never-
theless, if one considers the estimated logarithm of the
determinant of the residual variance, the multivariate
model results in133.01, whereas the univariate model
only achieves133.48. The number of parameters is
2∗ 79 = 158 for the multivariate model and166 for
the univariate model. The one dimensional state can
be interpreted as an estimate of the logarithm of the
mean squared errors of the various days, as can also
be seen in a scatter plot (cf. Figure 6).

6. COMPARISON TO PREDICTION ERROR
METHODS

Subspace methods are an alternative to prediction
error methods in the sense, that they can be used
to fit linear dynamical models to input/output data.
It has been cited, that for the case of no observed
inputs one particular method, namelyCCAachieves
the same asymptotic accuracy as the prediction er-
ror method, while being much more computationally
efficient (especially for large sample sizes). For the
case of coloured observed inputs, no subspace method
has been proven up to now to provide asymptotically
efficient estimates. All the results given above only
correspond to asymptotic reasoning. The question re-
mains, what place subspace methods should take in
the toolbox of the model builder? My personal views,
which are definitely not shared by all people in the
community, are the following: At the very least, sub-
space methods for properly chosen user parameters
lead to good initial estimates, which can then be used
in gradient based optimization methods. This view
is implementated in the fully automaticpem proce-
dure in the system identification toolbox ofMATLAB.
Based on theoretical arguments, however, for the case
of no observed inputs, there is no reason for rejecting
the estimates obtained usingCCA in favor of esti-
mates obtained from numerical optimization of crite-
rion functions.
Additionally there are a number of situations, where
subspace methods can be a useful alternative:

• Model specification: Subspace algorithms pro-
vide an additional possibility for estimation of
the order.

• Systems with moderate output dimension. For
output dimension say up tos = 5 prediction
error methods are probably still computationally
feasible, while subspace algorithms provide a
quick second look at the data.

• Automatic modelling: Providing rules of thumb
for the choice of f and p and the weighting
matrices, combined with order estimation proce-
dures, immediately renders the subspace meth-
ods into an automatic modelling method: data in,
estimated system out (cf. Bauer and de Waele,
2003).

In a number of cases, subspace algorithms seem to
be the only choice, since prediction error methods for
state space models are not feasible:

• Very large data sets. In the example the number
of sampling instants was equal to 139119. This
data set can still be dealt with using standard pre-
diction error methods. Order estimation on this
data set using prediction error methods neverthe-
less becomes infeasible. Using the subspace ap-
proach, much larger data sets can be dealt with.

• Many outputs. In the application example a sys-
tem for a 79 dimensional output has been es-



timated. Using prediction error methods this
would be numerically infeasible. Even autore-
gressive modelling would not be feasible, since
for an AR(1) system,792 = 6241 parameters
would need to be estimated. Hence, reduced rank
regression in an autoregressive setting represents
the only alternative in this case.

• Many models at a time. Again, the example con-
sidered used a model for two consecutive weeks,
resulting in a total of 176 models to be estimated.
Using prediction error methods, the only choice
due to time restrictions would be to use the same
model structure for all models. Subspace meth-
ods on the contrary allow for specification of
each model at a time.

• Input selection. In econometrics (but also in
other disciplines) it is common, that there exists
only a set of regressors, which are seen as in-
fluental, but not necessary each in fact is. Hence
the first step usually is input selection, i.e. the
specification, which of the potential inputs con-
tributes to the output. Typically in this step a
huge number of models has to be estimated and
hence only a computationally feasible method is
of use.

It should be stressed again, that this list is only my
personal belief. It definitely is not complete and some
of the points are debatable.
Finally I would like to correct a possible misunder-
standing: I do not argue, that subspace methods are
superior to prediction error methods. In many cases,
prediction error methods are still the better tool. In
particular simulations indicate, that the small sample
properties of subspace methods are quite poor for
very small samples, such as the ones typically found
in macroeconometrical applications. In this case, the
estimates are of use only as initial estimates. Addition-
ally, it is not possible to include prior information into
algorithms easily. Therefore, they are only of interest
for black box modelling. And last, but not least, there
are still many topics, which are not completely clari-
fied: (Bauer and de Waele, 2003) show, that although
nice on a theoretical ground, the automatic modelling
approach based on the recommendations of this paper
works surprisingly poor in certain test cases. This is
an indication, that especially the choice of the user
supplied quantitiesf , p,Ŵ+

f ,Ŵ−
p and the order of the

system has to be analyzed in more depth, also from
the perspective of finite sample properties, which are
relevant for applications.
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