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Introduction 2

General setup: We are given a dataset of (multivariable)

input (ut ∈ R
m) and (multivariable) output (yt ∈ R

s)

measurements (classified) at discrete time instants

t = 1, . . . ,T .

We want to estimate a linear dynamical model describing

the data set and obtain accuracy measures for the

purposes of

• prediction

• simulation

• validation of Theory

We do not have any knowledge on process, noise, ...
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Introduction 2-a

General setup: We are given a dataset of (multivariable)

input (ut ∈ R
m) and (multivariable) output (yt ∈ R

s)

measurements (classified) at discrete time instants

t = 1, . . . ,T .

We want to estimate a linear dynamical model describing

the data set and obtain accuracy measures for the

purposes of

• prediction

• simulation

• validation of Theory

We do not have any knowledge on process, noise, ...

Simplest linear dynamic model: ARX model

yt = a1yt−1 + · · ·+apyt−p +b0ut + · · ·+bqut−q + vt

Estimation: least squares fitting, explicit solution.

D. Bauer EOS, TU Wien



Introduction 2-b

General setup: We are given a dataset of (multivariable)

input (ut ∈ R
m) and (multivariable) output (yt ∈ R

s)

measurements (classified) at discrete time instants

t = 1, . . . ,T .

We want to estimate a linear dynamical model describing

the data set and obtain accuracy measures for the

purposes of

• prediction

• simulation

• validation of Theory

We do not have any knowledge on process, noise, ...

Simplest linear dynamic model: ARX model

yt = a1yt−1 + · · ·+apyt−p +b0ut + · · ·+bqut−q + vt

Estimation: least squares fitting, explicit solution.

Next level of complexity: ARMAX

vt = εt + c1εt−1 + · · ·+ crεt−r

D. Bauer EOS, TU Wien



ARMAX Processes 3

Assumptions:

� (εt)t∈Z is white noise process (square integrable,

mean zero, constant variance, uncorrelated for

different time instants).

� (ut)t∈Z stationary

� for a(z) = I−a1z−·· ·−apzp (z complex variable)

holds deta(z) �= 0, |z| ≤ 1 (stability assumption)

Then for b(z) = b0 + · · ·+bqzq,c(z) = I + c1z+ · · ·+ crzr

a(z)−1b(z) = l(z) =
∞

∑
j=0

L jz
j, a(z)−1c(z) = k(z) =

∞

∑
j=0

Kjz
j

are power series expansions converging on |z| ≤ 1.

Define: yt = ∑∞
j=0 L jut− j +∑∞

j=0 Kjεt− j.

Convergence in mean square guaranteed.

D. Bauer EOS, TU Wien



ARMAX Processes 3-a

Assumptions:

� (εt)t∈Z is white noise process (square integrable,

mean zero, constant variance, uncorrelated for

different time instants).

� (ut)t∈Z stationary

� for a(z) = I−a1z−·· ·−apzp (z complex variable)

holds deta(z) �= 0, |z| ≤ 1 (stability assumption)

Then for b(z) = b0 + · · ·+bqzq,c(z) = I + c1z+ · · ·+ crzr

a(z)−1b(z) = l(z) =
∞

∑
j=0

L jz
j, a(z)−1c(z) = k(z) =

∞

∑
j=0

Kjz
j

are power series expansions converging on |z| ≤ 1.

Define: yt = ∑∞
j=0 L jut− j +∑∞

j=0 Kjεt− j.

Convergence in mean square guaranteed.

Then

• (yt)t∈Z is stationary

• (yt)t∈Z fulfills the ARMAX VDEs for t ∈ Z.

D. Bauer EOS, TU Wien



ARMAX Processes 4

yt −a1yt−1 −·· ·−apyt−p

= ∑∞
j=0 L jut− j +Kjεt− j −a1(L jut− j−1 +Kjεt− j−1)−

·· ·−ap(L jut− j−p −Kjεt− j−p)

= L0ut +K0εt +(L1 −a1L0)ut−1 +(K1 −a1K0)εt−1+

· · ·+(L j −a1L j−1 − . . .apL j−p)ut− j

+(Kj −a1Kj−1 − . . .apKj−p)εt− j + . . .

Coefficients are exactly the coefficients obtained in a

comparison of coefficients in

a(z)k(z) = c(z), a(z)l(z) = b(z)

(k(z), l(z)) pair of transfer functions describes the

input/output mapping as well as the dynamics of the noise

in the system.

D. Bauer EOS, TU Wien



ARMAX Processes 4-a

yt −a1yt−1 −·· ·−apyt−p

= ∑∞
j=0 L jut− j +Kjεt− j −a1(L jut− j−1 +Kjεt− j−1)−

·· ·−ap(L jut− j−p −Kjεt− j−p)

= L0ut +K0εt +(L1 −a1L0)ut−1 +(K1 −a1K0)εt−1+

· · ·+(L j −a1L j−1 − . . .apL j−p)ut− j

+(Kj −a1Kj−1 − . . .apKj−p)εt− j + . . .

Coefficients are exactly the coefficients obtained in a

comparison of coefficients in

a(z)k(z) = c(z), a(z)l(z) = b(z)

(k(z), l(z)) pair of transfer functions describes the

input/output mapping as well as the dynamics of the noise

in the system.

W.r.o.g. assume detc(z) �= 0, |z| < 1 (minimum-phase).

Example: scalar MA(1): vt = εt + c1εt−1.

Evtvt− j =


σ2(1+ c2

1) , j = 0,

σ2c1 , j = ±1,

0 , else

Get the same covariance for ηt +1/c1ηt−1, where ηt has

variance σ2c2
1.
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State Space Systems 5

yt = a1yt−1 + · · ·+apyt−p +b0ut + . . .bqut−q + εt + · · ·+ crεt−r

x′t = [y′t−1, . . . ,y
′
t−p,u

′
t−1, . . . ,u

′
t−q,ε ′t−1, . . . ,ε

′
t−r]

′

Define:

A =



a1 . . . . . . ap b1 . . . . . . bq c1 . . . cr

I 0 0

0
.
.
. 0

I 0

0 0

I 0

.
.
.

I 0

0

I

.
.
.

I 0



B′ = [b′0, . . . ,0, I,0, . . . ],K′ = [I,0, . . . ,0, I,0, . . . ],

C = [a1, . . . ,ap,b1, . . . ,bq,c1, . . . ,cr],D = b0

Follows:

yt = Cxt +Dut + εt

xt+1 = Axt +But +Kεt

LINEAR, TIME INVARIANT, DISCRETE TIME,

FINITE DIMENSIONAL, STATE SPACE SYSTEMS.

D. Bauer EOS, TU Wien



State Space Systems 6

yt = Cxt +Dut + εt

= C(Axt−1 +But−1 +Kεt−1)+Dut + εt

= CA(Axt−2 +But−2 +Kεt−2)+CBut−1 +

CKεt−1 +Dut + εt

= . . .

= Dut +
∞

∑
j=1

CA j−1But− j + εt +
∞

∑
j=1

CA j−1Kεt− j

=
∞

∑
j=0

L jut− j +
∞

∑
j=0

K jεt− j

Therefore

• K0 = I,Kj = CA j−1K, j > 0

• L0 = D,L j = CA j−1B, j > 0

Transferfunction:

k(z) = ∑∞
j=0 K jz j = I +∑∞

j=0 CA jz j+1K = I + zC(I − zA)−1K

l(z) = ∑∞
j=0 L jz j = D+ zC(I− zA)−1B

K j,L j are called impulse response coefficients.

D. Bauer EOS, TU Wien



State Space Systems 7

Exactly the rational transfer functions correspond to

ARMAX systems.

For each ARMAX system there exists a state space

representation.

For each (finite dimensional) state space system the

corresponding transfer functions are rational.

ARMAX and state space systems are two different

representations of the same mathematical object, the

transfer function!

Kronecker Theorem

A pair of transfer functions (k(z), l(z)) is rational in z if

and only if the rank of the Hankel matrix H of its power

series coefficients is of finite rank n.

Here

H =


[K1,L1] [K2,L2] [K3,L3] . . .

[K2,L2] [K3,L3]

[K3,L3]
...



D. Bauer EOS, TU Wien



State Space Systems 8

Uniqueness of State Space Representations

Question: Given a pair of rational transfer functions

(k(z), l(z)). Can we describe the state space systems that

correspond to this pair?

Minimality:

� Observability: O = [C′,A′C′,(A2)′C′, · · · ]′

� Controllability: C = [[B,K],A[B,K],A2[B,K], · · · ]
(A,B,C,D,K) minimal ⇔ rank O = rank C = dim(xt).
Note: H = OC !

If a system is not minimal, the state dimension can be

reduced without changing the corresponding pair of

transfer functions.

Uniqueness of State Space Systems: Under the

minimality constraint, unique up to the choice of the

basis:

Two minimal state space systems (A,B,C,D,K) and

(Ã, B̃,C̃,D̃, K̃) are observationally equivalent,if and only

if there exists a nonsingular transformation matrix S, such

that

Ã = SAS−1, B̃ = SB,C̃ = CS−1, D̃ = D, K̃ = SK

D. Bauer EOS, TU Wien



State Space Systems 9

Stability assumption: |λmax(A)| < 1 for a minimal system

(A,B,C,D,K).
Minimum-phase assumption: |λmax(A−KC)| ≤ 1.

Let Sn = {(A,B,C,D,K), minimal, stable,

minimum-phase, order n}.

Let π : Sn → Mn :

(A,B,C,D,K) �→ (I + zC(I− zA)−1K,D+ zC(I− zA)−1B)

D. Bauer EOS, TU Wien



State Space Systems 9-a

Stability assumption: |λmax(A)| < 1 for a minimal system

(A,B,C,D,K).
Minimum-phase assumption: |λmax(A−KC)| ≤ 1.

Let Sn = {(A,B,C,D,K), minimal, stable,

minimum-phase, order n}.

Let π : Sn → Mn :

(A,B,C,D,K) �→ (I + zC(I− zA)−1K,D+ zC(I− zA)−1B)

Question: How can we describe Mn parsimoniously?

Answer: Canonical form:

Bijective mapping Mn → Sn that assigns one state space

system to each pair of transfer function (k(z), l(z)).

Essentially selects one particular system from each class

of observationally equivalent systems.

A canonical form hence can be seen as a subset of Sn.

D. Bauer EOS, TU Wien



State Space Systems 10

Canonical forms are used to construct

Parameterization: Mapping from some real parameter set

to Mn i.e. ∀θ ∈ Θ

φ(θ) = (A(θ),B(θ),C(θ),D(θ),K(θ))

(k(z;θ), l(z;θ)) = π(φ(θ))

where usually φ(θ) lies in the image of the canonical

form.

• Highly nonlinear mapping.

• for multi-output systems there exists no continuous

parameterization of Mn: Usually pieces of Mn are

defined, which are parameterized.

D. Bauer EOS, TU Wien



State Space Systems 10-a

Canonical forms are used to construct

Parameterization: Mapping from some real parameter set

to Mn i.e. ∀θ ∈ Θ

φ(θ) = (A(θ),B(θ),C(θ),D(θ),K(θ))

(k(z;θ), l(z;θ)) = π(φ(θ))

where usually φ(θ) lies in the image of the canonical

form.

• Highly nonlinear mapping.

• for multi-output systems there exists no continuous

parameterization of Mn: Usually pieces of Mn are

defined, which are parameterized.

Number of parameters needed, heuristic argument:

counting entries in (A,B,C,D,K): n2 +nm+ sn+ sm+ns

- degree of freedom in choice of state basis (n2):

2ns+m(n+ s)

D. Bauer EOS, TU Wien



Pseudo-Maximum Likelihood Estimation 11

Assume the probabilistic model is the state space model

with Gaussian innovation sequence εt with mean zero

and variance Ω > 0 (additional s(s+1)/2 parameters).

Parameter set: θ ∈ Θ⊂ R
ns+sm+nm+ns+s(s+1)/2.

Let Y +
1,T = [y′1, · · · ,y′T ]′ and U+

1,T = [u′1, · · · ,u′T ]′

-2 times the Log - Likelihood of Y+
1,T :

L(Y +
1,T ;θ,U+

1,T ) = logdetΓT (θ)+
[
Ỹ +

1,T (θ)
]′

ΓT (θ)−1
[
Ỹ +

1,T (θ)
]

Ỹ +
1,T (θ) = Y +

1,T −LT (θ)U+
1,T

LT (θ) has

[C(θ)A(θ)i−2B(θ), · · · ,C(θ)B(θ),D(θ),0, · · · ] as its i-th

row.

ΓT (θ) ... covariance of Ỹ +
1,T (θ) according to θ .

ML estimate:

θ̂ = argmaxθ∈ΘL(Y+
1,T ;θ,U+

1,T )

Notes:

� Assumptions on the parameter space have to be

imposed in order to ensure the feasibility of this

definition.

� In order to find the maximum of the likelihood

function, all pieces of Mn have to be searched in

D. Bauer EOS, TU Wien



Pseudo-Maximum Likelihood Estimation 12

principle. However, there is one generic piece, which

usually suffices.

� Asymptotic properties well studied: Hannan &

Deistler (1988) contains consistency, asymptotic

normality, LIL, order estimation methods and their

consistency, procedures to obtain initial values

inclusively analysis, approximation properties, ...

� Actual calculation: Using the Kalman filter

recursions for the recursive evaluation of the inverse

helps in numerical calculation of the criterion

function.

� Approximations: Neglecting the effect of initial

values one arrives at a least squares type of criterion:

L(Y +
1,T ;θ,U+

1,T )≈−T logdet(Ω)−
T

∑
t=1

εt(θ)′Ω−1εt(θ)

Known as prediction error methods.

� Nonlinear optimization problem: Starting values?

Local optima? Numerical problems for high

dimensional parameter spaces

This is motivation to search for different estimation

schemes!

D. Bauer EOS, TU Wien



Subspace Methods 13

Center of attention in subspace methods is the state:

Inserting εt = yt −Cxt −Dut one obtains for given

(A,B,C,D,K), that (strict minimum-phase assumption!)

xt = Axt−1 +But−1 +Kεt−1

= Axt−1 +But−1 +K(yt−1 −Cxt−1 −Dut−1)

= (A−KC)xt−1 +(B−KD)ut−1 +Kyt−1

= ∑∞
j=1 Ā j−1B̄ut− j + Ā j−1Kyt− j

= K Z−
t

where Ā = (A−KC), B̄ = B−KD.

K = [[K, B̄], Ā[K, B̄], · · · ]
Z−

t = [y′t−1,u
′
t−1,y

′
t−2,u

′
t−2, · · · ]′

denotes the vector of the whole past of zt = [y′t ,u′t ]′.

Therefore: The state xt at time t is contained in the past of

the joint process zt , i.e. xt ∈ σ{zt−1,zt−2, · · ·}.

Furthermore:

xt = KpZ−
t,p + Āpxt−p

where

Kp = [[K, B̄], · · · , Āp−1[K, B̄]],Z−
t,p = [y′t−1,u

′
t−1, · · · ,ut−p]′

D. Bauer EOS, TU Wien



Subspace Methods 14

Prediction of yt : in mean square sense

yt+ j = Cxt+ j +Dut+ j + εt+ j

= CAxt+ j−1 +CBut+ j−1 +Dut+ j +CKεt+ j−1 + εt+ j

= · · ·

= CA jxt +
j

∑
l=0

Llut+ j−l +
j

∑
l=0

Klεt+ j−l

Meaning: Let Z−
t = [z′t−1,z

′
t−2, · · · ]′,U+

t = [u′t ,u′t+1, · · · ]′.
Then prediction of yt+ j on the basis of Z−

t and U+
t is

equal to

yt+ j|t = CA jxt +
j

∑
l=0

Llut+ j−l

Concluding:

� The state lies in the past of the joint process.

� Given the whole input series, the state is sufficient

statistic for prediction of the future of yt based on

the input process ut and the past of yt .

Some people say: The state is an interface between the

past and the future.

D. Bauer EOS, TU Wien



Subspace Procedures 15

Central equation for subspace algorithms:

Y +
t, f = O f KpZ−

t,p +U f U
+
t, f +O f Āpxt−p +E f E+

t, f

= βzZ−
t,p +βuU+

t, f +N+
t, f

[Y +
t, f ,U+

t, f ,E
+
t, f ] =


yt ut εt

...
...

...

yt+ f−1 ut+ f−1 εt+ f−1

,

Z−
t,p =

[
z′t−1 . . . z′t−p

]′
,zt = [y′t ,u′t ]′,

O f =


C

CA
...

CA f−1

, E f =



I 0

CK I
. . .

...
. . .

. . . 0

CA f−2K · · · CK I



U f =



D 0

CB D
. . .

...
. . .

. . . 0

CA f−2B · · · CB D


Kp = [[K,B−KD], · · · , Āp−1[K,B−KD]], Ā = A−KC.

D. Bauer EOS, TU Wien



Subspace Procedures 16

Most subspace algorithms for linear discrete time systems

share some common structure:

Central equation suggests to use LS in

Y +
t, f = βzZ

−
t,p +βuU+

t, f + residuals (∗)

Basic Outline:

1. Estimate [O f Kp,U f ] using the above equation (∗).

This results in an estimate β̂z ∈ R
f s×p(m+s) (and an

estimate β̂u).

2. Approximate the typically full rank matrix β̂z by a

rank n matrix Ô f K̂p.

3. Estimate the state as x̂t = K̂pZ−
t,p and use LS in the

system equations to estimate the system matrices.

Different algorithms use various ways to perform the

three basic steps. Most popular methods: MOESP

(Verhaegen), N4SID (DeMoor & VanOverschee), CCA

(Larimore). Some of these use different Step 3.

Rest of the talk: Present the Larimore algorithm as a

prototype and give some of the known results on the

asymptotic properties.

D. Bauer EOS, TU Wien



Subspace Procedures 17

Step 1: LS fit, autoregressive structure.

Y +
t, f = βzZ

−
t,p +βuU+

t, f +N+
t, f

Data available only for t = p+1, . . . ,T − f .

Choosing initial and end effects:

• set initial effects to zero: LS fit can be expressed as a

nonlinear function of the estimated covariance

sequence of zt . Immediate to obtain

– robust estimators

– estimators for data sets with missing data

– (recursive estimators)

• use only available data: avoids bias, LS fit via QR

decomposition.

Both approaches can be implemented to handle large data

sets in reasonable time.

D. Bauer EOS, TU Wien



Subspace Procedures 18

Step 2: Rank n approximation:

Let Ŵ +
f ∈ R

f s× f s and Ŵ−
p ∈ R

(s+m)p×(s+m)p be two

nonsingular (a.s.) matrices. Then consider the SVD

Ŵ +
f β̂zŴ

−
p = ÛΣ̂V̂ T = ÛnΣ̂nV̂ T

n + R̂

Results in approximation

Ô f K̂p = [(Ŵ+
f )−1ÛnΣ̂1/2

n ][Σ̂1/2
n V̂ T

n (Ŵ−
p )−1]

Commonly used weighting matrices (comp. Peternell,

1995, Van Overschee 1995)

Alg. Ŵ +
f Ŵ−

p

CCA (Γ̂+,Π
f )−1/2 (Γ̂−,Π

p )1/2

N4SID I f s (Γ̂−
p )1/2

MOESP I f s (Γ̂−,Π
p )1/2

Freq. W. (KW (i− j))i, j (Γ̂−,Π
p )1/2

Γ̂+,Π
f = Γ̂y,y − Γ̂y,uΓ̂−1

u,uΓ̂u,y, Γ̂−,Π
p = Γ̂z,z − Γ̂z,uΓ̂−1

u,uΓ̂u,z,

where u stands for U+
t, f , y for Y +

t, f and z for Z−
t,p. KW (i)

...impulse response sequence of some transfer function

kW (z) = ∑∞
j=0 KW ( j)z j having a nonsingular constant

term KW (0) and KW (i) = 0, i < 0.

D. Bauer EOS, TU Wien



Subspace Procedures 19

CCA in the no inputs case:

SVD on(
1
T

T

∑
t=1

Y +
t, f ,Y

+
t, f

)−1/2(
1
T

T

∑
t=1

Y +
t, f ,Z

−
t,p

)(
1
T

T

∑
t=1

Z−
t,p,Z

−
t,p

)−1/2

Estimates the canonical correlations between Y+
t, f and

Z−
t,p, hence the name.

Remark: The name ’subspace methods’ also is due to this

step of estimating the subspace spanned by the columns

of the observability matrix O f .

Notation is not unified. Be careful, if you read papers.

Labels like CCA and N4SID are used for different

algorithms.

D. Bauer EOS, TU Wien



Subspace Procedures 20

In this step the order has to be specified.

Basically problem of determining the rank of a perturbed

matrix β̂z.

Nonstandard, since the perturbation is also singular.

Can be done based on the estimated singular values

σ̂1 ≥ σ̂2 ≥ . . . .

Define:

NIC(n) = ‖R̂n‖2 +
d(n)CT

T
where d(n) denotes number of parameters,

CT > 0,CT /T → 0 a penalty term.

• Peternell (1995): Frobenius norm ∑M
j=n+1 σ̂2

j

• Bauer (1998): Two norm σ̂2
n+1

• Camba-Mendez and Kapetanios (2001):

‖R̂n‖2 = −∑M
j=n+1 log(1− σ̂2

j )

By choosing the penalty CT large enough, consistency

can be shown.

Also rank testing procedures exist (sequential testing

approaches).

Underresearched area!

D. Bauer EOS, TU Wien



Subspace Procedures 21

Intuitive idea: Use rank restricted regression techniques.

Impose rank restriction on βz = O f Kp:

1. Least squares estimation: Estimation problem:

N+
t, f = Y +

t, f −βzZ
−
t,p −βuU+

t, f

[β̃z, β̂u] = argmin tr

[
W

1
T

T

∑
t=1

N+
t, f (N

+
t, f )

′
]

under rank[βz] = n.

2. ML estimation under Gaussian i.i.d. distributed

noise: Under rank[βz] = n

[β̃z, β̂u] = argmin logdet

[
1
T

T

∑
t=1

N+
t, f (N

+
t, f )

′
]

Solution to ML problem is equivalent to solving the LS

problem for

W =

(
T−1

T

∑
t=1

Y +,Π
t, f (Y +,Π

t, f )′
)−1

where Y +,Π
t, f denotes the residuals from the regression of

Y +
t, f on U+

t, f .
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Solution to the reduced rank regression problem is found

via SVD: unrestricted estimate:

β̂z =

(
T

∑
t=1

Y +,Π
t, f (Z−,Π

t,p )′
)(

T

∑
t=1

Z−,Π
t,p (Z−,Π

t,p )′
)−1

SVD: W 1/2β̂zŴ
−
p = ÛΣ̂V̂ ′ = ÛnΣ̂nV̂ ′

n + R̂n

where

• Z−,Π
t,p denotes the residuals from the regression of

Z−
t,p on U+

t, f .

• Ŵ−
p = (T−1 ∑T

t=1 Z−,Π
t,p (Z−,Π

t,p )′)1/2.

• Ûn ∈ R
f s×n,V̂n ∈ R

(s+m)p×n

• Σ̂n = diag(σ̂1, . . . , σ̂n) ∈ R
n×n: σ̂1 ≥ σ̂2 ≥ σ̂n > 0

are the dominating n singular values.

Reduced rank estimator

β̃z = Ô f ˆKp = W−1/2ÛnΣ̂nV̂ ′
n(Ŵ−

p )−1

This is exactly what is done in CCA!
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Step 3: Estimation of the System Matrices: The main

idea of this procedure is due to W. Larimore (1983).

From step 2 of the subspace algorithm we use

K̂p = Σ̂1/2
n V̂ T

n (Ŵ−
p )−1 to estimate the state as

x̂t = K̂pZ−
t,p. Knowing the state, the system matrices can

be estimated using linear regressions in the system

equations.

Notation: 〈at ,bt〉 = 1
T ∑T

t=1 at bT
t . Then:

[Ĉ,D̂] = 〈yt ,

 x̂t

ut

〉〈
 x̂t

ut

 ,

 x̂t

ut

〉−1

[
Â, B̂

]
= 〈x̂t+1,

 x̂t

ut

〉〈
 x̂t

ut

 ,

 x̂t

ut

〉−1

Estimation of K:

Let ε̂t = yt −Ĉx̂t − D̂ut . Then estimate K using least

squares in x̂t+1 = Kε̂t + rt (assuming a direct feedthrough

term D is also estimated).

If no direct feedthrough term is estimated (i.e. D = 0):

ε̂t = yt −Ĉx̂t is included in the second equation above.
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Assumptions on the noise:εt is a strictly stationary

martingale difference sequence adapted to the sequence

of sigma algebras Ft = σ{εt ,εt−1, · · ·} (No Gaussianity

required!) fulfilling:

E{εt |Ft−1} = 0

E{εtε ′t |Ft−1} = Ω = Eεtε ′t
E{εt,aεt,bεt,c|Ft−1} = ωa,b,c

E{ε4
t,a} < ∞

The input is generated by a stable and strictly

minimum-phase state space system where the noise

fulfills the above assumptions. The true order n is known.

Assumptions on Inputs: ARMA, generated by white

noise (mean zero martingale difference sequence

fulfilling the properties stated before), strictly

minimum-phase and stable

Assumptions on weighting matrices:

• f constant not depending on T : Ŵ +
f →Wf > 0 a.s.

• f → ∞: either Ŵ+
f = I or CCA choice.

Ŵ−
p : CCA choice. No influence on asymptotic variance.
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Under assumption of known order:

Known asymptotic properties

• Strong consistency of transfer function, if

f ≥ n, p = p(T ) → ∞, p(T ) = o(logTa)

for some 0 < a < ∞. I.e. for fixed z = eiω

k̂(z) = π(Â, B̂,Ĉ,D̂, K̂) → k0(z) a.s.

• Strong consistency for system matrices on a generic

subset of Mn:

Â → A0, B̂ → B0,Ĉ →C0, D̂ → D0, K̂ → K0

• Asymptotic normality for a generic subset of Mn, if

additionally liminfT −2p(T ) logρ0/ logT > 1:

√
T vec(Â−A0, B̂−B0,Ĉ−C0, D̂−D0, K̂−K0)

d→N (0,V )

• p̂ that fulfills the above assumption can be estimated

using AIC in an ARX approximation of yt .

D. Bauer EOS, TU Wien



Subspace Procedures 26

Special case: No inputs, m = 0.

� Explicit expression for asymptotic variance V for

fixed f :

M1M′
1 +M2

[
Γz ⊗

{
O†[E f (I f ⊗Ω)E ′

f ](O
†)′
}]

M′
2

where W = (W +
f )′W+

f .

O† = (O ′
f WO f )−1O ′

f W , M1 and M2 do not depend

on f or W+
f . Γz = EZ−

t,∞(Z−
t,∞)′.

� Ŵ−
p does not appear in the expression, W+

f enters

explicitely.

� For each fixed f the optimal choice is according to

CCA, i.e. Ŵ+
f = (T−1 ∑T

t=1 Y +
t, f (Y

+
t, f )

′)−1/2 with

minimal variance

M1M′
1 +M2

[
Γz ⊗ (O ′

f WO f )−1
]

M′
2

� Optimal variance is monotonically decreasing in f !

� Procedure using min( f , p) ≥ −d logT
2logρ0

,d > 1,

max( f , p) = o((logT )a) is asymptotically

equivalent to prediction error methods (for correctly

specified system order n).
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General case:

• White inputs ut : same results as in the no inputs

case.

• Coloured inputs ut :

– No simple expressions for V exist.

– Influence of f not known.

– Effects of W+
f not known.

– Not equivalent to pseudo ML.

Approximation results for misspecified order (smaller

than the true order):

Explicit expressions can be found. Interpretation is not

known.
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