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Abstract

This article analyzes exponential tilting estimator with weak instruments in a nonlinear framework. The
limits of these estimators under standard identification assumptions are derived by Imbens, Spady and
Johnson (1998) and Kitamura and Stutzer (1997). We obtain the new limits when the instruments are
weakly correlated with the moment restrictions. First, we show that Lagrange Multipliers are affected by
weak instruments and this results in the inconsistent estimates for the weakly identified parameters. In this
paper, we obtain the limits of both Lagrange Multiplier estimates and the estimates of the parameters in
moment restrictions. The limit of the estimators of Lagrange Multipliers are no longer normally distributed
and depends on the limits of the parameter estimates. In this respect, weak instrument asymptotics are
different from standard asymptotics, where the two limits are uncorrelated. This dependence affects the
limit of J statistic which is not nuisance parameter free. We suggest a new J statistic which is robust to
identification and the dependency problem. The results related to limit of Lagrange Multipliers and J test are
new in this literature. The limits of the parameter estimators are also derived and they are asymptotically
equivalent to the continuously updating version of GMM in the case of weak instrument asymptotics in Stock
and Wright (2000). Tests that are robust to identification problem are also obtained. These are Anderson-
Rubin and Kleibergen type of test statistics. The limits are nuisance parameter free and x? distributed. We
can also build confidence intervals by inverting these test statistics.
JEL Classification: C2,C4,C5.

Keywords: Lagrange multipliers, weak instruments, information theory.

*Department of Economics, WW Posvar Hall 4501, Pittsburgh, PA 15260. email: caner@pitt.edu. The author
thanks Yuichi Kitamura and Werner Ploberger for comments and suggestions.



1 Introduction

In recent literature, Stock and Wright (2000) have shown that GMM’s asymptotic properties change
when the instruments are weakly correlated with moment conditions. They show that the limits are
not asymptotically normal and the new limits involve nuisance parameters. This weak instrument
asymptotics give better results in small samples. Inference that is robust to identification is also
pursued by Stock and Wright (2000) and they propose an Anderson-Rubin (1949) like test statistic.
The limit is x?, with degrees of freedom equal to the number of orthogonality conditions. Kleibergen
(2002) also provides an LM-like test statistic which is nuisance parameter free. This statistic has also
x? limit with degrees of freedom equal to the number of parameters being tested. This has usually
better power properties than the Anderson-Rubin like test when there are many instruments.
Confidence intervals are built by inverting these two test statistics. Confidence intervals that are
based on LM like statistic of Kleibergen (2002) are never empty whereas Anderson-Rubin based
confidence intervals may be empty when the overidentifying restrictions are invalid.

To improve the small sample properties of GMM, Newey and Smith (2001) take a different
direction. In a recent article, they propose Generalized Empirical Likelihood Estimators. These in-
clude continuous updating, exponential tilting, and empirical likelihood estimators. They compare
higher-order asymptotic properties of these estimators and GMM. They find that bias-corrected
empirical likelihood is asymptotically efficient relative to the other bias-corrected exponential tilt-
ing, continuous updating, and GMM two-step estimators. However, as stated in Imbens, Spady and
Johnson (1998) exponential tilting has also desirable properties compared to empirical likelihood.
Efficient estimates of implied probabilities are used rather than an inefficient 1/7 as in empirical
likelihood. Influence function of exponential tilting is less affected by perturbation in the Lagrange
Multipliers compared to empirical likelihood.

In this paper, we analyze exponential tilting with weak instruments. Imbens, Spady and Johnson
(1998) and Kitamura and Stutzer (1997) consider the same model with standard identification
conditions. Our paper analyzes the case with weak instruments. We consider the weak instrument
setup of Stock and Wright (2000). This is important to applied researchers since we have to see how
the asymptotics of exponential tilting may be changing when there is an identification problem.
We analyze both estimation and testing issues. We show that Lagrange Multipliers associated with
orthogonality conditions are affected by weak instruments problem. This results in the inconsistency
of the estimates of the weakly identified parameters. We also derive the limit of estimates Lagrange
Multipliers. This is not asymptotically normal and depends on nuisance parameters. This limit also
involves the limit of the parameter estimates of the moment restrictions. This is unlike the standard
asymptotics covered in the cases of exponential tilting and empirical likelihood of Kitamura and
Stutzer (1997), Qin and Lawless (1994), Smith (2000). Since the limit of J statistic in this case is not

nuisance free as well, we propose a new J statistic that is robust to identification and dependency



problem.

We also derive the limits of the parameter estimates in the moment restrictions. The limits
of the estimators are asymptotically equivalent to continuously updating GMM case with weak
identification in Stock and Wright (2000).

We propose two tests that are robust to identification problem: Anderson-Rubin and Kleibergen
type of test statistics. We show that their limits are x? and nuisance free. Confidence intervals can
also be built using these test statistics. We also conduct simulation exercises to analyze the small
sample properties of these tests.

We should also mention that our paper is not a simple extension of Stock and Wright (2000) or
Kleibergen (2002). We deal with a constrained optimization problem and its theoretical derivations
are not obvious from the aforementioned papers. We introduce new proofs for overcoming the
obtacles introduced by the constraints and the associated Lagrange Multipliers.

A related paper is by Guggenberger (2003) . He analyzes the Generalized Empirical Likelihood
Estimators with weak identification. The proof technique in our paper is entirely different because
we show that the problems in orthogonality conditions are reflected in identification problems of
concentrated Lagrange Multipliers, since they are shadow prices of these constraints. Compared to
Guggenberger (2003) we derive two new results , the first one is the limit of Lagrange Multipliers
and the second one is the introduction and derivation of the new limit of J test.

Section 2 introduces the assumptions and the model. Section 3 derives the limits of the estima-
tors. Section 4 considers tests that are robust to identification and confidence intervals. Section 5
conducts simulations. Section 6 concludes. The appendix contains all the proofs. “==-" represents
weak convergence of random functions on compact parameter space with uniform metric. The

existence of the estimator of concentrated Lagrange Multiplier is dealt with in Technical Appendix.

2 The Estimator

Suppose we are given the following moment condition:
E,[f(xt,00)|Z)) =0 t=1,--- T, (1)

where f(zt,0) = (f1,--+,fr)', v component vector of observable real valued function. 6 € ©, ©
is a compact subset of R?, 6 is in the interior of © and w; is the stochastic vector process. E,
represents the expectation with respect to the probability measure p. Z; is the s vector of the
instruments. We introduce the notation that helps us understand the estimation. Let v represent

the vector (Lagrange Multiplier) associated with convex optimization problem associated with the

constraints in (1) as in Kitamura and Stutzer (1997). Let v € R"™ and ¢+(8) = f(x+,0) Q) Zt,



rs > d. As in Kitamura and Stutzer (1997)

(0) = argmin 1,1, @)
and

0y = arg maé(E €7@ ()], (3)

In order to estimate the parameter vector, the exponential tilting estimator in Kitamura and

Stutzer (1997) is used. The estimator is

(b, 97) = arg max min Qr(6,7), (4)
€6 v
where we set
1 T
3 —— E "1 (6)
QT(Q?,‘Y) - T po e’Y ‘ .

From this point let E[.] represent E,[.]. We introduce the concept of empirical process ¥z (6) that

is useful for deriving the limit of estimators.

WZwt — Eyy(6)

and 9(91,92) = Han—)oo E'\I!T(Ql)\IIT(QQ) and \IIT( ) -1 Zt 1 'lpf( )

We make the following assumptions:

ASSUMPTIONS:
1.

E sgp[g/)t(Q)l/ft(e)/]

is positive definite.
2.

E[sup e’ (9] < 00
4<C)

for all vectors g in a neighborhood of the origin.
3. 1) (@, Z¢) is iid.
ii)

sup By (8)*° < oo, for some  § > 0.
USC)

iif)
[9¢(01) — e (62)] < By|61 — 62

where limp_, . ET ™1 Zle Bt2+6 < 00, for some § > 0.



E¢t(9) = n;}l(/z)

where 8 = (¢/,8"), ais d; x 1 and § is d2 X 1 vectors with

+ ma(B),

i) m1(6p) = 0, m1(0) is continuous in § and is bounded on O.
i) ma(Bo) = 0, ma(B) # 0, for B # Bo, R(B) is continuous, R(By) has full column rank ,
R(B) = Om2(B)/0B" is rs X d2. Note that by the iid version of the identity in (2.4) of Stock and

Wright (2000), we have
m; (6)
T1/2

= FEy(a, B) — Ev(a, B)

and

ma(B8) = Evi(ao, B)-

An explanation linking the Stock and Wright (2000) weak identification assumption to our As-
sumption 4 and justification for Assumption 4 is made in the Remarks after Assumptions.

5. Uniformly in 6 € O,

T
> [(6) = U ()][w:(6) — Tr(0)]' = 2(6,6).

t=1

M=

Livgy(9)>0} =3 0. forallt =1,2,---,T.

Ly (8)<0} “%o0. forallt =1,2,---,T.

Remarks. Assumptions 1-2 are used in the consistency proof and standard in this literature, as
shown in Kitamura and Stutzer (1997). Assumption 3 is used in deriving the limits as Assumption
B’ is used in Stock and Wright (2000). Assumption 4 is the iid version of the weak instrument
assumption used in Stock and Wright (2000). In that assumption, « is weakly identified (i.e.
in large samples unidentified), and § is identified. This is linked to the constraints in terms of
moment equations. Note that Stock and Wright (2000) used the following identity to get the weak

identification assumption for the m-dependent random variables:

T T T
ET™) ye(a,8) =[BT gu(a,8) = BT (e, B)]
t=1 t;l t:;
+ [BET™Y (o, ) — BT i(n, Bo)]
t=1 t=1
T
+ [ET_lzwt(Oéo,ﬁo)]- (5)
t=1



Then, Stock and Wright (2000) assumed the following to get the weak identification in o:

-1 d -1 d N mar(a,B)
ET™ ) (e, 8) = ET™' Y telan, ) = — 72—, (6)
t=1 t=1
where my7(0) — mq(6) uniformly in 0, and they set
T T
BT (a0, 8) = BT (e, o) = ma(B). (7)
t=1 t=1

The third term on the right hand side of (5) is zero by the orthogonality conditions. Combining

the (6)-(7) in (5) they get as their weak identification Assumption

-1 d _ mlT(Q)
ET™) (e, B) “mijz +m2(8). (8)

t=1

Our Assumption 4 is the iid version of their Assumption. In our case, the identity is

E¢t(a75) = Ei/ft(a,ﬁ) - Elﬁt(%ﬂ)
+  Eyi(ao, B) — Evi(ag, Bo)

+  Eti(eo, o). (9)
Then we assume « is unidentified in large samples, through the following similar to (6)
m1 (Oé, /B)
Ei(a, B) — B, B) = Tz (10)

and then define Evy(ay,B) = ma(8) and Eyy(ap,Bo) = 0. Using these with (10) in (9) we obtain
Assumption 4 above.
An existence proof for the solution of (2) and (4) is also provided by using those assumptions.
Assumption 5 is used for consistent estimation of variance covariance matrix. Assummption 6
is auxiliary and used to provide an alternative existence proof for the solution of (2) and (4). We
should also note that the estimation results follows when we replace iid assumption with stationary,
ergodic and m-dependent data. However this adds a lot of notation with no change in the limits

for estimators so we decided to focus on iid case.

3 Asymptotic Theory

We need a result that is helpful in deriving the limits for estimators. The following Lemma shows

that the empirical process weakly converges to a Gaussian limit. We have the following result from
section 2 of Andrews (1994):

Lemma 1. Under Assumption 3 ,

Yr(0) = ¥(0)



where W(0) is a Gaussian process, with mean zero and covariance function (61,62) .

Lemma 1 is used in the derivation of the limits for the estimators.

Assumption 4 links the moment condition restriction to the sample size; we can link the Lagrange
multiplier corresponding to the constraint to the sample size as well. This is relevant in this case
since the Lagrange Multipliers are the “shadow prices” of these constraints. So, similar to (6) of

Kitamura and Stutzer (1997), we assume
yr(a, B) = argmin Ele?V(*A)], )
¥
So instead of
¥(e, B) = arg min E[e’Y'%Z’f(aﬁ)]
¥

which is used in (2) we use the version in (11). This formulation helps us to link the weak instru-
ments problem in moment conditions to Lagrange Multipliers associated with these.
Set

(e, B) = arg min EeY(a0f)
¥

Before the consistency result for the identified parameters 3, we need the following Lemma.

Lemma 2. Under Assumptions 1-4,

P)/T(OZHB) - 7(0[0)/8) —0

uniformly in 6 € ©, where 8 = (o, ')
Note that the concentrated Lagrange Multipliers yp(c,3) corresponds to the orthogonality

condition Ev(a, ) in 1;11(/62) expression in Assumption 4ii, the (o, 3) corresponds to Eyy(ayg, 3)

by Assumption 4ii. In Assumption 4ii, it is assumed that

";T(z) = Ei(a, ) — Evi(ag, 5) — 0.

By Lemma 2 we see that the problems in identification in orthogonality conditions are also reflected
in Lagrange Multipliers. Lemma 2 is used in the proof of consistency for the identified parameters
5.

Now we show that the identified parameter’s estimator is consistent. To prove consistency we
use the Wald (1949), Wolfowitz (1949) approach used in Kitamura and Stutzer (1997). However we
take into account the unidentification of « in large samples and show that only the estimate of the
identified parameter is consistent (). Theorem 1 in this study generalizes Theorem 1 in Kitamura
and Stutzer (1997) to the weak instruments case. The major difference in this case is usage of
Lemma 2 and Lemma A.l1 in the Appendix. Via these lemmata we benefit from the identification

problem for Lagrange multipliers.

Theorem 1 . Under Assumptions 1-4,



We need to find the rate of convergence for the identified parameter estimate before the limit
laws are established.

Lemma 3. Under Assumptions 1-5,

TY2(Br — Bo) = Op(1).

In the following Theorem instead of (6, 0) we use Qg 4. Let BT(OZ) solve argmamgegQT(oz, B,97 (e, B)),

and let & solve arg maxqeca O (e, fr(a), 57 (av, Br(a))) and substitute B = B(&). We now intro-

_ '
duce the notation that is used in Theorem 2. Let z(a) = 2/02 ¥ (e, Bp), so that z(«) is a mean zero

“rs” dimensional Gaussian process with covariance function Ez(oq)z(a2)’ = Q;ll_/ﬂilﬁ((a'l,ﬁ{))', (o, ﬂ{))')Q;j/;o
and plo) = Q;;/Uzlml(a,ﬁo) . Set F(a) = Q;lﬁ/oZR(ﬁo) For any nonsingular symmetric matrix

C = CY¥CY? and C71 = c7V2CY7

Theorem 2 provides limits for exponential tilting estimators in the case of weak instruments
benefiting from the empirical process theory. This theorem uses the weak instrument asymptotics
for the limit of exponential tilting estimators unlike the standard asymptotics in Kitamura and
Stutzer (1997). Using the limit of the objective function in the following Theorem 2i , we establish
the limit for estimators in Theorem 2ii.

Theorem 2. Under Assumptions 1-5,
i)
—2T[Qr (e, o + b/TY2, 4r(a, Bo + b/TH?) = Qr(a0,Bo,v(c, Bo))]
= [¥(a, Bo) +ma(a, Bo) + R(ﬁ[))b]'ﬂ;:}go
[¥(ev, Bo) + ma(a, Bo) + R(Bo)d]

S(a,b)

X

(8, T2 (B = Fo)') 5 (0, b%)
where o = argminge S*(o),
§*(@) = [z() + pl)]'[] = F(a)(F(a) F(a) T F(a)|[2(a) + p(e)]

and
b* = —[R(Bo)' Q32 5, R(Bo)] " R(Bo)' 2 [2(0) + p(a®)]

where €.~ g, represents the variance covariance matriz described in Lemma 1 and evaluated at

0 = (a*,Bo).



Remarks. Theorem 2i provides the limit for the centralized objective function . The limit is
the same as in Theorem 1i of Stock and Wright (2000) for the continuously updated GMM case.
This can be seen by replacing the limit weight matrix in Theorem 1i of Stock and Wright (2000)
by the limit of the efficient weight matrix Q;ba We can see why we have the same limit as Stock
and Wright (2000). In the proof we first derive an asymptotically equivalent expression for 47,
by using the first order condition with respect to 7. Then we substitute this into Taylor series
expansion of appropriately centered objective function. This centered objective function is shown
to be asymptotically equivalent to Continuous Updating GMM objective function.

Theorem 2ii provides the limits for the estimators. It can be seen that these are entirely different
from the normal limits by Kitamura and Stutzer (1997) in the case of identified parameters only.

When « is identified ,o* = «p, then u(ay) = 0, since mi(ag,By) = 0 by Assumption 3i and
z(ap) = N(0,14). In this case we obtain the limits in Theorem 2 or Corollary 1 in Kitamura and

Stutzer (1997) for the case of iid data.

TY2(Br — Bo) 5 N(0,[R(Bo)' ) 5, R(Bo) 7).

The limits in our Theorem 2ii are equivalent to the limits of Continuously Updated GMM
estimators in Corollary 4 of Stock and Wright (2000).

When « is completely unidentified (i.e., in small samples as well) Evy(a, By) = 0, for all o, then
mi(a, Bp) = p(a) = 0. So the limits in Theorem 2ii simplify little so that

o = argmin §°(a) = =(a)[I — F(e)(F(a) F(e))” F(a)]z(a).
However, this cannot be used since « is a nuisance parameter vector and appears in the limit. The
case for BT does not simplify much.

Theorem 2 can also be extended to strictly stationary, ergodic, m-dependent data (i.e. m is
fixed). However, this comes at a substantial cost of notation, and the objective function should be
changing in order to allow for time dependency. The results of this section do not change when we
use strictly stationary, ergodic and m-dependent data.

In this part, we derive the large sample theory for the estimators of Lagrange Multipliers
Ar = ’)/T(éT) This gives us an idea whether their distribution is affected by weak instruments.
Also, the limit of Lagrange Multipliers affects the J statistic for overidentifying restrictions in
exponential tilting so finding that limit is important.

Theorem 3. Under Assumptions 1-5,

T4y = Q71 [W(a*, Bo) + ma(a®, Bo) + R(Bo)b"].

This shows that estimators of Lagrange Multipliers limit is clearly affected by weak instrument

asymptotics. The reason that the limit of Lagrange Multiplier is different than the standard



asymptotics stem from the limit behavior of the sample moment 7°~1/2 E?:l ¢f(éT) Since Lagrange
multiplier is expressed as a functional of that sample moment term via Assumption 4 and Theorem
2 we get a new result compared to the standard asymptotics in exponential tilting estimator. Note
that in standard asymptotics in exponential tilting of Kitamura and Stutzer (1997) or empirical
likelihood in Smith (2000), 7 and A1 are asymptotically uncorrelated. Here, we clearly see, a*,
and b* inside the limit for the estimator of Lagrange Multipliers: 4p. The main reason for this
limit in Theorem 3 is the inconsistency of &. This result for the Lagrange Multipliers in Theorem 3
is new and this affects the limit of J statistic for overidentifying restrictions used in Kitamura and
Stutzer (1997). The limit of the J statistic will not be nuisance free in the case of weak instrument
asymptotics in Theorems 2 and 3. So we propose a new J statistic which is robust to identification
problems in section 4.

Note that when there is identification of all parameters, o = «g, the limit in Theorem 3

simplifies. If & = ap, m1(ag,Bo) =0, and p(agp) = 0,

b* = —[R(Bo)' ;1 5, R(Bo)] T R(Bo)' Q5 2(on).

Then since z(ap) = Q —i/2 U (g, Bp) the limit in Theorem 3 is:

ag,fo
Q. 5. {00, B0) — R(Bo)[R(Bo)' Q) 5 R(Bo)] T R(B0) 2, 5, ¥ (e, 50)} = N(0,U),

where

U=, — Qo R(Bo)R(Bo) Q5 5, R(Bo) T R(Bo)' Q) 5,

This last expression is the standard limit that is found in empirical likelihood in Qin and Lawless

(1994), Smith (2000) and for the exponential tilting in Kitamura and Stutzer (1997).

4 Testing

The limits of estimators depends on nuisance parameters and these estimators are not consistent
. The large sample distributions of LR, Wald and LM tests depend on these estimators’ limits.
So these test statistics limits are not nuisance parameter free. We need test statistics which are
asymptotically pivotal.

In this section we introduce two tests for testing the null of Hy : 8 = 6 against Hy : 8 # 6. The
limits of these are nuisance parameter free even when there is low correlation between instruments
and first order conditions introduced as constraints in exponential tilting. The first one is an
Anderson-Rubin like test and the second one is an LM-like test. In the case of weak instruments in
GMM; Anderson-Rubin like test is introduced by Stock and Wright (2000). This is called S-based
test in Stock and Wright (2000). Since we use variance covariance matrix as Sr(.) in this paper,

in order not to cause confusion in notation we call this test Anderson-Rubin like test. Here we



introduce a similar test in exponential tilting estimator with weak instruments. First we need the
following Assumptions :

Assumption T.1. The following result holds

T
T2 3" 4y(60) % N(0, 2, .00)
t=1

Assumption T.2.
(i)

T
T D Wal60) = B (00)]1a(60) — Br(60)] L g,
t=1

where Wr(6g) = & S0, ¥:(60).

(ii).

Eed 49 < oo,
where g is in the neighborhood of zero.

These assumptions are used by Stock and Wright (2000) and Kitamura and Stutzer (1997) as
well. This is a simple central limit theorem, and variance covariance matrix estimation , these are
of course satisfied under more primitive conditions. Assumptions 3,5 provide the following theorem
but Assumptions T.1 and T.2 are weaker, so we use them here:

Theorem 4. Under Assumptions T.1 and T.2, we have the following result:

—2T[1ogQ7 (80, %7 (60))] 4 Xos

Therefore the limit is a x? distribution with degrees of freedom equal to the number of or-
thogonality conditions (rs). In the continuous updating GMM, Theorem 2 of Stock and Wright
(2000) used an Anderson-Rubin like test and derive the same limit. This is robust to identification
problem.

This Anderson-Rubin like test can be linked to Likelihood Ratio test in Kitamura and Stutzer
(1997). The likelihood ratio test for Hy : 6 =0 is :

LRy 2T (logQr (07,47 (07)) — logQr (6o, 57 (60))]

= 2T10gQr(O7,%7(07)) + AR7(6))

where AR7(6p) is the Anderson-Rubin like test in Theorem 4 :

ARy (8y) = —2T[logQr (80, 47 (60))].

As can be seen from Theorem 2 , the limit for the LR test statistic is not nuisance parameter

free due to the limit of the first term on the right hand side of the LR expression.

10



One drawback of the Anderson-Rubin like test is it may reject when the moment restrictions
are invalid. To see this point more clearly, we use the J statistic , which is used for testing the
validity of moment restrictions in Kitamura and Stutzer (1997) in exponential tilting estimator.

Rewrite AR (6y) in the following way :
ARr(00) = LRy + Jr

where Jp = —2TlogQT(éT,'?T(éT)).
Note that using Theorem 2 we see that J test is not asymptotically pivotal, also this last
decomposition above shows that violation of moment restrictions can influence AR test spuriously.
Next we try to setup a test statistic that may result in higher power than the Anderson-Rubin
like test. This is similar to Kleibergen’s (2002) test statistic for weakly identified GMM . We need

the notation below before the following assumption. Denote

T
pr(6o) = %E 81{/;;(/0) l6=6, -

Assumption T.3.The rs x 1 dimensional derivative of ¢ (0y) with respect to 6;,i =1,2,--- ,d

OY(0)

pit(fo) = 20, |6o:

18 such that
pi+(00) — Elpi+(60)] = Ai (¢i+(60) — E[gi+(60)])

with ¢;+(00) : i x 1 and A; a deterministic full rank rs x l; dimensional matriz [; < rs. The joint
limiting behavior of the sums of martingale difference series ¢(6y) and g¢;+(60) — E[q;+(60)|1¢] satisfy
the following Central Limit Theorem:
Ur(6h) | 4
%
ar(fo)

T2 = N(0,V (b))

T (6) ]
lIlq(gl))

where

=T" qu (60) — Elq:(60)]-

gr(6o) is of dimension ijl I, x 1.

Qoo00 Doy,
V(OO) — 0,Y0 0,9
Qo Qg
where dimensions of the sub matrices are Qg g, : 75 X 78, Qg0+ (0 L) x 78, Qug : (N, 1) ¥

(Zle l;) and Qg 0, = Oy, . Eaplicitly the sub matrices are

T T
s, = Jim B larl6) — Blar(6o ][ (60))

t=1 j=1

11



T T
Q= lim B[ ! ZZ q:(60) — Elge(80)]]lg; (60) — Elg; (=, 60)]I
t:l 1=1

Assumption T.4.
Eed'd(@b) ~

for all vectors g in the neighborhood of the origin.
Assumption T.5.

T
7 2l(00) — (@] 6n) — (@)}  Da
1 o -
T > [9e(00) — B (60)][q: (60) — G7 ()] & Qa4
t=1
1 T

Z[qf 60) — Gr(60))la: (60) — Gr(60)] = Qg y
t=1

where Gr(6y) = 7 Zt 1¢(00).

The instruments span only the part of the information set which is relevant to the estimation
of 8 so E[q:(0)] = E[q:(0|1;]]. Assumption T.3 assumes the existence of a simple Central Limit
Theorem for martingale difference sequences. This can be satisfied under weaker conditions. Note
that Assumptions 3 and 4 are different from the martingale diffference sequence assumption here,
so the test here is valid under martingale difference sequence assumption.

By Assumption T.3, we can also comment on the limit of the derivative for \ilT(QU). We see that
the limit only holds for that part of the derivative with respect to 8; which lies in the span of A;.
The degeneracy of the limit can happen when the derivative of f(z¢,6y) in the moment condition in
(1) is completely spanned by Z;. By choosing A; = 0, this can be avoided. In that case §p(6y) does
not exist. Another possible degenerate case is when the derivative of several elements of f(z¢,8)
with respect to 6; are identical . By specifying appropriate gr(6y) we can avoid this . These are
why we need a limit for g7 (6y) rather than pr(6p) . More on these issues are explained in detail in
Kleibergen (2002).

Instead of Assumption 2, we use the weaker Assumption T.4, and instead of Assumption 5 we
use Assumption T.5. These assumptions are standard in this literature , as seen in Kitamura and
Stutzer (1997), Kleibergen (2002), and Stock and Wright (2000).

As in Kleibergen (2002), we benefit from the first order condition in exponential empirical

likelihood : A
9Qr(6,97(0))
00

We base this test statistic on an asymptotically equivalent form of the first order condition.

=0.

The exact first order condition is given in the following equation (12), asymptotically equivalent

form is shown in the proof of Theorem 5 as equation (62)).

12



When evaluated at 6y the first order condition is, by (25) of Kitamura and Stutzer (1997);

8Q7(6,47(9))

55 | =37(80) Dr(60), (12)

where

T
DT(QO) — 1 Z M|906’3’T(90),¢(wt,00)

Dr(6y) is of dimension rs x d. Note that (12) is a simplified version of the actual first order
condition when we take the partial derivative of the objective function with respect to #. The
algebraic simplifications to reach (12) is shown in the proof of Theorem 2 in Kitamura and Stutzer
(1997).

The following Theorem extends the GMM K-statistic in Kleibergen (2002) to exponential tilting
estimators. Note that Guggenberger (2003), also considers the K-statistic in generalized empirical

likelihood models. The limit in the following Theorem 5 is the same as in Kleibergen (2002).

Theorem 5. Under Assumptions 1.3, T.4, T.5 , the K-statistic for testing Hy : 0 = 0y 1is
K(ao) = T\i’T(ag),ST(ao)71/2PST(90)71/2DT(90)ST(90)71/2\111"(90) —d) )((21

where

Ps, (0)-1/2 D1 (60) = S1(00) /> D (60)[D(60) S7(60) " Dr(60)] ' Dr(60)' S (6) ~/*

and Up(0) =T~ 337 | 4h+(60).

We show that in the proof of Theorem 5, K-statistic in our case is asymptotically equivalent to
K-statistic in Kleibergen (2002) for Continuously Updated GMM. The main difference between the
K-test in Kleibergen (2002) in the case of continuously updating GMM and the K-test developed
here for exponential tilting estimator is : the Jacobian terms of the objective functions. Given
Theorem 5 here ; the subtests can be developed easily , simply following sections 3.2 of Kleibergen
(2002).

LM test in exponential tilting estimator in Kitamura and Stutzer (1997) has the same form
as in K test statistic developed for exponential tilting. The difference between LM and K tests
in exponential tilting is: LM in Kitamura and Stutzer (1997) uses the Jacobian estimator pr(6y)
whereas K test here uses D7(6y) term. The large sample theory of p7(6p) is not independent of the
limit of \i'T(QO). So the limit of the LM depends on nuisance parameters. Note that in our K test
the Jacobian term Dr () is asymptotically independent of the average moment vector U (6p), so
this results in nuisance parameter free limit.

K statistic in Continuously Updated GMM case of Kleibergen (2002) takes the value of zero
when the GMM objective function is at its minimum, maximum and its inflection points. Note that

since the K-test that we built does not depend on exact first order condition in (12), it does not
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take the value zero when the moment restrictions are invalid. If we had instead built our test using
(12) at f7 this test could have taken the value of zero at its maximum point. However using an
asymptotically equivalent form we avoid that problem in small samples. In terms of small sample
power the K test that is built here is better in that sense compared to an alternative K test which
uses (12). By inverting Anderson-Rubin like test statistic and K tests we can have confidence
intervals for 6.

We propose a new J statistic for testing overidentifying restrictions in exponential tilting which
is robust to identification. This overcomes the difficulties associated with the limits of 4p, éT in
a standard J statistic. We can not use the standard J test statistic introduced in Theorem 3 of
Kitamura and Stutzer (1997) in exponential tilting case. We think of testing the validity of moment

restrictions:
E[¢t(90)] = 07

for all t = 1,2,---T. We can test this by testing v = 0 as well. However this restriction makes
6 unidentified. We benefit from an idea in eqaution (17) of Smith (2000). He introduces a score
based J test in empirical likelihood with standard asymptotics. We modify this for our case, since
a score based J test uses éT7 which results in limits with nuisance parameters in weak instrument
asymptotics. To overcome this problem we evaluate the score of exponential tilting estimator at
v = 0,0 = 6y, and base our J test on this restricted parameters. By our test we can test the validity
of orthogonality restrictions under the null of Hy : 8§ = 6. Note that K and J tests in exponential
tilting case introduced here are asymptotically independent using Kleibergen (p.9, 2002). This is
also clear from the form of the test statistics. So we propose to use J test in the following manner.
First test Hy : 8 = 8y by K test. Since this is asymptotically independent from J test, if we do
not reject the null we can test the the moment restrictions by J test. Specifically, the score of our

objective function Q7(.) in (4) , evaluated at v = 0,0 = 6 is:

Then J statistic is :
J(Oy) =T SC’(QQ)' [ _

where D7 (6g) is defined in (12).
Theorem 6. Under Assumptions T.3-T.5,

d
J(GU) - X72“3—d'
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5 Simulation

In this section we analyze the size and power of the Anderson-Rubin like test in Theorem 4 and
Kleibergen test statistic in Theorem 5. Our Monte Carlo setups use the representative agent

intertemporally separable consumption CAPM with CRRA preferences.

5.1 Size

We closely follow the setup in Stock and Wright (2000) for analyzing the size of the various test

statistics described in the above paragraph. The “r” Euler equations are (1) with
Cey1) “
f(Xe,0) =5 < g ) Riy1 — 6.
t

where § is the discount factor , Cy is the consumption, R; is a G x 1 vector of asset returns and i¢

is a G vector of ones. Then

Pe(6) = [6 <Cé,t1)_a Rit1— 6l ® Z. (13)

where Z; is a set of “s” instruments. Let 8 = (a,3) and both parameters are bounded. As in
Stock and Wright (2000), « is deemed to be weakly identified and 5 as strongly identified. The
design of the Monte Carlo is due to Tauchen (1986), Kocherlakota (1990), Hansen, Heaton and
Yaron (1996). We generate the artificial data for (13). These designs are consistent with Euler
equations. This is also used and explained by section 4.2 of Stock and Wright (2000) and section
7 of Kleibergen (2002). In order to generate the artificial data a 10?2 dimensional Markov chain is
calibrated to approximate a Gaussian VAR(1) fitted to consumption and dividend growth.

a \_ (0020, ( -0161 0017 1\ [ e
diy 0.004 0.414 0.117 dis_1 cais )

where ¢, is the log-growth rate of US per capita real annual consumption growth and di; is the
log-growth rate of real annual dividends on the S&P 500. The errors are independently normally
distributed with mean zero and var(e.;) = 0.014, var(e4+) = 0.0012 and cor(eqt,€q;r) = 0.43.
Then this VAR(1) generates the asset returns and consumption growth series in this simulation.
The VAR(1) coefficient matrix above adjusts the degree of weak instruments, this VAR(1) specified
here corresponds to weak instrument specification in Stock and Wright (2000) and Kleibergen
(2002).

Assumptions T.1-T.5 are satisfied under more primitive conditions as shown in p.1072 of Stock
and Wright (2000), and section 7 of Kleibergen (2002).

Four designs are described in Table 1.

In Table 2 we consider the size of Anderson-Rubin like test that is introduced in Theorem 4. We

use 17" = 50,100, 200. Size of the test is generally very good. For the designs 1,2,3 at 7" = 100, 200,
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Table 1: Monte Carlo Design

Design | «ag Bo Assets Instruments
1 1.3 097 Ty 1,7 ,c-1
2 | 137 1139 1,rs | e
3 13 097 ] 1,ci 1
4 1.3 097 riel Ll e

Note: ¢ = In(Cy/Ci—1), r'tf, ri represent consumption growth, the risk free rate, and the stock returns

respectively.

Table 2: Size at 5% level

Anderson-Rubin Test Kleibergen Test
Designs 1 2 3 4 1 2 3 4
T=50 1952 1148 6.16 1.24 | 3.84 452 5.06 5.78
T=100 | 7.24 848 4.26 0.64 518 536 4.76 8.68
T=200|6.61 644 454 032|384 574 454 9.70

Note: The test statistics are compared to 5% critical values of the limits in Theorem 4 and Theorem

5. These represent the rejection rates for the corresponding nulls in Table 1. For Anderson-Rubin
test for designs 1 and 2 rs = 3,x3 = 7.81; for design 3 rs = 4, x7 = 9.49; for design 4 rs = 8,
X% = 15.51. For Kleibergen test for all designs X% = 5.99, corresponding to d = 2. These are at all
5% levels. We conducted 5000 trials.

the size is around 5-8% at nominal level 5%. The test is conservative for design 4, rejecting less than
the nominal level. At T = 50 , size increases for designs 1 and 2 to 9.5% and 11.5% respectively.
Under the same setup , we analyzed the Kleibergen type test statistic in Theorem 5. We used x3
at 5% nominal level as the critical value (i.e., 5.99) for all designs. The size of the test is very good
and near the nominal level even in small samples such as 7" = 50 in designs 1-3, which is better
than the performance of the Anderson-Rubin like test. However when the number of orthogonality

conditions increases to rs = 8 as in Design 4, the size deteriorates in small samples.
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5.2 Power

We consider the power of the Anderson-Rubin like test and Kleibergen test. The setup for the
power exercise is as follows: for Designs 1, 3, 4 we set § = 0.98 and varied « (weakly identified
parameter) at 1.0, 1.5, 2.0, 2.5. For Design 2 , we set § = 1 and varied o = 3.7,8.7,18.7,23.7. We
reported the rejection rates at 5% actual level. So the power is size-adjusted. These finite sample
critical values can be obtained from the author on request. The results are reported in Table 3.
As can be seen from Table 3 when we move away from the false null, rejection rates get larger,
and the power improves. We have very good power in 1° = 100 in some cases: when 8 = 0.98,
a = 1.0 in designs 3 and 4, the power is around 95%. Power also improves with large samples.
Both tests show the same behavior and the results are very similar for Designs 1, 2, and 4. Only in
the case of the just identified system do we see the Kleibergen-like test slightly dominate Anderson-
Rubin like test. But we think high rejection rates, near 100%, should be interpreted with caution.
In the linear moment restriction case, Guggenberger (2002) finds these tests to be inconsistent.
Even though we did not analyze this issue in our nonlinear case, this may be true in nonlinear
case as well since the main problem is weak identification. These high rates may occur because

S7(6y)~! may be very large in some parameter settings.

6 Conclusion

This paper develops limits for exponential tilting estimators in the case of weak identification.
These are very different from the asymptotically normal ones. We also derive test statistics that
are robust to identification. Simulations show that Kleibergen type of test statistics have very good
small sample properties. An interesting topic may be developing structural change tests within this

framework.
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Table 3: Size Adjusted Power

Anderson-Rubin Test Kleibergen Test
Design 1, § =0.98 Design 1, 5 =0.98
e 1.0 1.5 2.0 2.5 1.0 1.5 2.0 2.5
T=50 |11.34 6.82 5.62 8.34 1248 6.34 5.52 T7.14
T =100 | 16.38 7.74 5.96 11.52 | 20.24 7.4 4.74 10.84
T =200 12930 844 6.54 20.3 38.44 10.34 6.18 22.72
Design 2, 8 =1 Design 2, =1
o 3.7 8.7 18.7 23.7 3.7 8.7 187 23.7
T=50 | 8.02 10.14 44.72 4822 8.16  12.56 48.74 51.50
T =100 | 14.58 34.92 88.74 91.70 | 14.32 35.96 89.60 90.04
T =200 |28.92 7840 99.96 100.00 | 31.02 76.20 99.88 99.80
Design 3, 5 =0.98 Design 3, 5 =0.98
o' 1.0 1.5 2.0 2.5 1.0 1.5 2.0 2.5
T=50 |69.86 19.14 6.46 45.18 | 78.40 21.92 8.54 54.30
T =100 |97.04 37.78 9.04 79.22 | 98.44 4256 13.00 &88.06
T=2001{99.96 64.20 11.58 98.06 | 100.00 74.76 25.48 99.66
Design 4, § = 0.98 Design 4, = 0.98
o 1.0 1.5 2.0 2.5 1.0 1.5 2.0 2.5
T=50 |69.78 17.72 524 39.54 | 66.44 16.10 3.90 23.38
T =100 | 96.68 37.04 6.81 70.20 | 96.66 32.40 4.26 60.98
T =200 1|99.98 66.24 872 9586 | 100.00 68.30 13.12 96.64

Note: The test statistics are compared to finite sample critical values that are obtained by running
the size program in Table 2 . These can be obtained from the author on request. We use the designs
in Table 1 with a change in the risk aversion coefficient and fizing the time discount at § = 0.98 in

Designs 1,3,4 and 8 =1 in Design 2. We conducted 5000 trials.
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APPENDIX

Proof of Lemma 2. We want to show that first Ee?¥*(®F) is not locally identifiable at o = .
Existence of min as a proof is given in Technical Appendix. Now we analyze the expectation term
that is minimized to obtain yr(«, 8) in (11). First, we can use the mean value theorem for 7' r(f)

around 0 to have
BeV(@h) = 1 4 ~' By (a, B)eY ¥4(a5), (14)

where 7 is in the line segment joining 0, and v and 8 is between 6, and 8,,, where 6 € © = [6;,6,],
8. represents the upper boundary of the compact ©. Choosing the lower bound makes no difference
in the proof. Technical Lemma 1 in the appendix provides the behavior of 7/¢:(6) which is useful
in proving Lemma 2.

We see by Assumptions 2 and 3 ii, and Technical Lemma 1 that uniformly in 7, 8, using Cauchy-

Scwartz inequality (detailed proof of (9) is in Technical Appendix)
Ey(0) (7P — 1) - 0. (15)
By using (15) in (14), one has
B @) (14 o/ Bypy(a, B)) — O, (16)

Then note that by Assumption 4ii, uniformly in 8 € ©,

Eip(, f) — B, B) — 0. (17)
So we can use (17) to rewrite (16):
B — (14 o Byu(a0, 5)) = 0. (18)
Next we consider
V(aw, B) = argmin Be7 V(@0 ), (19)

In (19), note that by using the analysis in (14)- (16)
EeV M@0l (14 5 By (ag, B)) — O, (20)
So clearly by (18),(20), uniformly in 6 € ©,

Ee¥t(af) _ pev'dilanB) _ (. (21)

Then given Assumption 1 and (21) and the definitions of yp (e, 8) and (o, 3) (equations (11)
and (19)) and Lemma 3.2.1 of van der Vaart and Wellner (1996) we have the desired result. Q.E.D.

We need the following lemma for the consistency proof.
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Lemma A.1. Under Assumptions 1-4, uniformly in 6 € ©,

T
1 S (@) vilad) B perian ) viios)
T

t=1

Proof of Lemma A.l. First rewrite, the term on the left-hand side of Lemma A.1,

T
(% ZGVT((M?)'W(@,/J’) _ Ee“ﬁ'(%ﬁ)'%(“ﬁ)) + (EeVT(aaﬁ)'W(aﬁ)) ) (22)
t=1

In (22) the first term can be expressed in the following way:

T
1 S errlad)brlad) _ perriad) i)
T

t=1

= y7(e, B)' + 0p(1)

T
Z — Eipi(a, B)

by taking a mean value expansion around O for yr(a, 8) 9+ (c, ) and using the analysis in the proof
of Lemma 2 (equations (14)-(16)).

Then by Lemma 2, we have yr(«, 3) — v(ap, ) and y(«ap,S) is bounded and away from +oo
which can be seen in Technical Appendix. Then Lemma 1 provides uniformly in (¢/,8') € Ax B =
o,

T
%Z¢t(a7ﬁ) - E¢t(a7ﬁ) = Op(l)'
t=1

Taking into account the results above, we obtain uniformly in 6 € ©,
1 T
7 Z (@B i) _ poyr(af)e(ap) Py o (23)

Next we need to show the following to end the proof of Lemma A.1:

Ferr(ap)di(af) _y pev(aoB) di(aos) (24)

First use the mean value theorem as used in (14)-(16) to have

RNVl = 1 4 yp(a, B) Evy(er, B) + o(1). (25)
and in the same manner
EeeodVeod) =1 4 y(ay, ) Eyu(an, 5) + o(1), (26)
Subtract (26) from (25)
Eer (@B ) _ per(eos) vilao,p)
= yr(e.f) Edila, B) — y(ao, B) Ei(ao. B) + o(1). (27)
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Add and subtract y(ap, 8) Ev¥i(a, 8) to the right hand side of the equation (27) to have
[vr (e, 8) = (o, ) Bpe(cr, B) + y(co, B) [Evpe(r, 8) — Expe(crn, B)] + o(1). (28)

Via Lemma 2 and Assumption 4, we obtain uniformly in 6 € ©,

[yr(a, B) — (e, B)) E¢pi(er, B) — 0. (29)

Then since y(ap, ) is in the interior of the convex set by Technical Appendix and by Assumption

4, Evi(a, B) — EY(ag, B) = 7;11(/2) — 0 we obtain in (28)

v(aw, B) [Evr(a, B) — Evr(ew, B)] — 0. (30)

Then use (29)-(30) in (27)-(28) to have (24). (24) and (23) gives us the desired result. Q.E.D.

Proof of Theorem 1. The first part of the proof proceeds exactly as in equations (13)-(14)
of Kitamura and Stutzer (1997). So we repeat the analysis here. Assumption 4ii implies that
there is a unique saddle point (o, B, v(ao,B0)) of the function M = EeY(@f) which is exactly
as in Kitamura and Stutzer (1997), since P(og,50) = i, v(a0,B0) = 0 and the value of the saddle
function M (v, Bo,v(a0,B0)) = 1. Assumption 4ii also implies, at & = ap and S # [y, we have
equation (13) of Kitamura and Stutzer (1997) :

M(ao,ﬁ,’y(ao,,@)) < M(a03ﬁ077(a07/60)) = 1. (31)

Next proceed exactly as in p.869 of Kitamura and Stutzer (1997) replacing § there with (g, ) in

our case, using Assumptions 1-3 via Dominated Convergence Theorem, we obtain

lim E[ sup 67(“0=/’)/)/¢’t(00=/3')]EM(ao,ﬁa’)’(aoaﬁ))a (32)
O prer(p.9)

where I'(3,d) denotes an open sphere with center 5 and radius 6. Use the compactness of © to
cover © —I'(By,d) with a suitably large number H of spheres I'(8;,d;) taking each d; small enough
so that (31)-(32) provide

E[ sup eﬁ’(aoﬁ/)/@bt(ao\ﬂ')] < M(ao,ﬁo,v(ao,ﬁo)) =1
B'ET(5,9)

We can thus find positive numbers h;, so that

E[ sup ev(auﬁ’)/ﬂ/u(aoﬁ/)] =1-2h;, j=1,2,---,H.
B'ET(B}.9;)

If we analyze the parameter space ©@ — I'(fy, ) using the equation above,

E,  sup V(o) b0 f)) = 1 _ 2p, (33)
B'€0-T(fo,8)
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where h = min; h;. Use Lemma A.1l

1 T

P[  sup — T ) Yu(aB') _ pev(ananf) h] < €/2. (34)
B'€0-T(Bo,0)
Consider (33)-(34) to have
1 T
P[  sup — () Yrlaf’) S 1 _ h] < €/2.
B'€0-T(5o,0)

By (16)(17) of Kitamura and Stutzer (1997) , noting that 47(.) is defined in (4) and y7(.) is defined
in (11),

T T
1 . 1 :
T E e’YT(avﬂ)/l/)i(avﬁ) S T E e’yT(avﬂ)/l/)i(auﬂ) + 0]3(]-)'
= t=1
For large T therefore,
1 ,
P[ sup = E eI eilaf’) 5 1 p) < e/2. (35)

B'€EO-T(Bo,8) + =1

But from Lemma A.1 and equation (34) it is clear that in the large samples « is not identified and
only the consistency of § is relevant. Then we analyze the behavior of the objective function at

(0, B0). So by (19)-(20) of Kitamura and Stutzer (1997) we have

T
1 i :
L (c0,80) 41 (e0,80) | _
P ;leew of0)Pela0fo) <1 — p/9] < ¢/2. (36)

Then Lemma A.1, and (34)-(36) imply consistency of /5’ . The main difference with the consistency
proof for all well identified parameters in Kitamura and Stutzer (1997) is Lemma 2, Lemma A.1
and equation (34). These show that weakly identified parameter vector is not consistent. Q.E.D.

Before the rate of convergence proof, we need a result for the variance covariance matrix esti-
mation, and to show consistency of 'S/T(&T,,BT), (i.e., 7 5 0).

First, for the variance covariance matrix estimation
1 & S
T > (O Z[% (0)][:(6) = Ur(6)) + r(6)¥r(6), (37)
t=1
where U7 (0) = %Z%F:l Y(0). Then see that

=7 Z% — By (0) + Ev(6).

In the above equation by Lemma 1 and Assumption 4, we have

Ur(6) = ma(B), (38)



uniformly in 6 € ©,
Use (38) and Assumption 5 in (37) to get

T
lzlﬁ (2, 0)1 (1, 8)" = Q(8,6) +ma(Bym2(6)'. (39)

ﬂ

uniformly in 6 € ©.

To save from further notation, set 4 = Y7 (érp, BT) The proof for consistency for 47 is the same
as it is in the well identified case of Kitamura and Stutzer (1997). The proof crucially depends on
the usage of an asymptotic bound which is robust to identification (p.871 of Kitamura and Stutzer
(1997)). So simply replacing the variance covariance matrix estimation in that proof with (39) here
provides the proof. We here show the proof:

By Kitamura and Stutzer (1997,p.870-871) and using (39) here we obtain the following :
1, 1 o
27 (0r,7) — Qr(67,0) = —/ 6 = Or) e (Or)' 1
@rllr,7) = Qr(0r,0) = 71 30 + s 3o v BB+ 1)

Use the definition of 47 (éT) and the above result to get

T

ir(0r) = —25100) ™ S wallr) + 0y (1), (10)
t=1

where

Note that by (39)
St(0r) = Op(1). (41)

Then, in order to prove the estimate of the Lagrange multiplier converges in probability to zero,

since we have (40) and (41), we need to show the following:

Z Yi(6r) = O(T'/?). (42)

Let g7 = where g is arbitrary rs dimensional vector, and note that

g
T1/2 »

—2T1ogQr (07, 97) < —2TlogQr(f7,97)
< —2TlogQr (80,47 (60))- (43)

But the last expression is x?2, distributed by using the proof of Theorem 3 of Kitamura and Stutzer
( 1997) or p.871 of Kitamura and Stutzer (1997). (An alternative proof is given in the proof of our
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Theorem 4).

we have by (39) and the definition of g7 ’s to have the asymptotically negligible term:

—2T1ogQ71 (07, 97)

which equals by (41)

_ _2Tglfpz¢tg?T)

a > —wt(QT);pt(eT)lgT +0,(1),

~2g 37 u(lr) + Op(1) = g’ 3 allr) + Oy (1),

But we have via (43

shows that 47 = 0 through (40) and (41).

Proof of Lemma 3. The goal of the proof is to write our objective function in such a way that

Next having a Taylor series expansion as in p.871 of Kitamura and Stutzer (1997),

), the last equation is asymptotically bounded by x?2, so we obtain (42) which

we can solve the rate of convergence from the proof in Stock and Wright (2000). First we get an

asymptotically equivalent expression of 47 from its first order condition. Then we substitute this

into the Taylor series expansion of the objective function. By appropriately centering this objective

function we can show that the problem is asymptotically equivalent to continuous updating GMM

case in Stock and Wright (2000). In order to proceed, try to derive asymptotic approximations of

our objective function. First we derive an asymptotic approximation for y7. As in equation (21)

of Kitamura and Stutzer (1997), consider the first order condition concerning r:

T
Z Yy (G, fr)elrilanin) — g,

t=1

Expand Vet (@rir) in o Taylor series around 0 to get

aT ﬂT eVﬂ/}t (&r,B7)

IIM'S

In the last equality we use

Lz
T > (0) (4 (0)0
=1

i(ér, br) + Z¢f &, B (ar, Br)'dr

~+
Il
—

Nl =
M'ﬂ

Yt (6, Br) (7T¢t(o‘T>ﬁT))

M8
u|,_.

||
N

N[ =
M'ﬂ

-
Il
—

J
1/1 (67, Br) + Z¢f (&1, Br)¢i(ar, fr)'3T

ATH )-

S Ni=
||Me

(I

1(0)')/2 = Op(1).

by Assumption 2 or 3ii via Uniform Law of Large Numbers.
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Set
Sr(fr) = : > w(Or)n(br),

where 7 = (&7, B7). By (44) and (45)

Then, use the above equation

T
Sr(0r)ir === i(0r) + Op(42 1),
and proceed

711%). (46)

. A
” - (6
T3 = — [ST(QT)_I} —Zt‘}f%( r) + 0, (T2

In (46) see that O,(T2||37|%) = 0p(T?||47])), since 47 = 0,(1) which is shown before the proof
of Lemma 3. Next, by (41) and (42)

.
[$r(6r)71] 2=t iP) — 0,

If T1/2 is the right rate of convergence for 47 then (46) simplifies and

Tl/Q,S/T - _ {ST(GAT) :| Zt 11—'1’(/72( ) +Op(]-)7

and the right hand of the above equation is O,(1). When we try another rate such as T2+ wwhere
n > 0, the right hand side of (46) converges to infinity because of (41) and (42). Also when n < 0,
the right hand side terms in(41) converge in probability to zero by (41) and (42).

One important thing we show the rate of convergence for 47, T/24p = O,(1). So we establish

the following asymptotic approximation

.
1= Sy (b) 2= 0O g ey (47)

Approximate QT(éT, 47) to the second order, where the equality after (45) explains the deriva-
tion of the order of the remainder:

T T
1 .
Qr(br.3m) =1+ S 3(Or) + ﬁ;wt (67))* + Oy ([137ll)".

t 1
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Then substitute (47) and use 47 = O,(T"1/?) in the above equation to get

Qr(br,4r) = 1—ﬁ[zlﬁt(@T)]'ST(éT)_l[Zwt(éT)]

Similarly

T ! T
Qr (80,30 (00) =1 - (M> Sr(80) (%) Yo T, (49)

I e(80)9e(60)
7 .

where S7(6p) =
Then by (48) and (49)

—2T[Qr (07,97 (0r)) — Qr(60,77(60))] =

< 0. (50)
Furthermore, using the empirical process definition and Assumption 4,

SF i(0r)
TL1/2

T
- Ti/2 > _(Wr(0r) = Byn(0r)) + T2 By (7). (51)
t=1

Use (51) to rewrite the right hand side of the equality in (50):

(U7 (67) + mi(6r) + T *ms(Br)] S7(07) [ (07) + ma (01) + T *ma(Br)] — [¥1(60) S7(60) U1 (6)] + 0p(1) <

(52) has the same structure as equation (A.1) in p.1091 of Stock and Wright ( 2000) in their rate
of convergence proof (except from the 0,(1) term). The only difference is the weight matrices. In
the rate of convergence proof in Stock and Wright (2000), they have a generic weight matrix with
the assumption that the weight matrix Wz (8) & W () uniformly over § where both matrices are

positive definite. Here, instead of that case, we have a specific Sr(0) = %Z?:l (0 (6)" B
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Q(0,0) + ma(8)m2(8) by (39) uniformly over § € ©. This is positive definite by Assumption
2. Using that information and proceeding exactly as in (A.1)-(A.5) of Stock and Wright (2000)

provides the result.Q.E.D
Proof of Theorem 2i. By (50) we have

—2T[Qr(cx, Bo +b/T?, 47(w. Bo +b/T?)) = Qr(w. Bo. (0. Ho))]

_ Zf:l e, Po + b/Tl/z)
a T1/?

!

Sr(a, By +b/TH?)71

X

+op(1), (53)

Sy pela. fo +b/TY?)
T1/2

since QT(ao,ﬁg,'y(ag,,@g)) = 1 as y(ap,B0) = 0 in the proof of Theorem 1. Then note that
we can obtain a limit for the right-hand side of the above equation as an empirical process in
(/b)) € A x B where B is compact.

So

T
T2 (e, Bo + b/TY?) = (o, fo +b/TH?)
t=1

+ ma(e, Bo + b/TH?) + T 2%my (8o + b/T?).

By Lemmata 1, 3, and Assumption 4,

(o, By + b/TH?) = ¥(a, By). (54)
ma(a, By + b/TH?) — my (e, By). (55)
T mg(Bo + b/T?) — R(Bo)b. (56)

By Assumption 5 and (39), and benefiting from mqy(5y) = 0 in Assumption 4ii,
Sr(a, Bo +b/TH?) B Q, 4, (57)

where €, 3, denote (6, 0) evaluated at 8 = (¢, 3f))'. All the limits are uniform in (¢/, V') € Ax B.
Use (54)-(57) to have the desired result.Q.E.D
Proof of Theorem 2ii. Use Theorem 2i and Lemma 3.2.1 of van der Vaart and Wellner (1996)

to have

(&, TY?(3 - By)) = (o ,b")=arg min S(a,b)
(a/ ¥ )EAXB

To obtain the concentrated limit S*(«), fix «, differentiate S(«,b) with respect to b, and after some

simple algebra

(@) = —[R(Bo)'Q 5, R(Bo) ™"
R(Bo)' 35, [ (e, o) + ma(a, Bo))-

X

27



Set S*(a) = S(a,b*(c)) and after some algebra we obtain the expression for S*(a) in Theorem
2ii as in the proof of Theorem 1ii in Stock and Wright (2000). Then use the continuous mapping

theorem and the envelope theorem to have

5 — of = inS*
& o’ = argmin (@)

Because § = B(a), TY%(5 — By) = b*(o*).Q.E.D.
Proof of Theorem 3. The consistency of 47 is shown in (37)-(43) before the proof of Lemma
3. The rate of convergence is shown in (46)-(47). For the limit, we also benefit from equation (46)

and noting that T1/232 = o,(1):

2 Zy )

T1/2,.YT —[ST(GT) Tl/,)

+ OP(I)a

where

T
. 1 . .
Sr(0r) = 7 ;wt(eT)zpt(eT)’.
Then by (39), Theorem 2ii and ma(8y) = 0 (for this last point see Assumption 4):
Sr(br) & Qu g,

Rewrite the following term using the empirical process and Assumption 4:

T T T
TN nbr) = TP (Wn8r) — Be(Gr)] + T Y Bdu(dr)
t=1 t=1

t=1

= Ur(0r) +ma(0r) + T ma(Br).

By Lemma 1, Theorem 2 and Assumption 4, we derive:

T
T2 Z¢t(éT) = U(a*, By) + mi(a™, Bo) + R(By)db*

t=1

Use this last result and the limit for S’T(éT) derived above to have:

T4, = Q71 [W(a*, Bo) + ma(a”, Bo) + R(Bo)b]-

Q.E.D.

Proof of Theorem 4. This proof shows that we can derive the limit under weaker conditions
than the proof of Theorem 3 in Kitamura and Stutzer (1997). First of all, under Assumption T.2,
and using (39) at 8 = 6y, we have the following:

Ve (60)¢e(60) 2 Q(80, 60)

IIM%
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since ma(Bp) = 0. Next see that by p.870 of Kitamura and Stutzer (1997) under Assumptions T.1

, T.2,
47(80) 2 0.

Then as in the rate of convergence proof in the first order condition for 47 (6y) (equation (45)),

expand the ¢I7(#0)'¥t(80) around 0

a(B0)e ) ul0)

o

I
N~
M=

1

-
Il

T
(80 + 3 (0040 32 (00

Il
N =
~ ITMH
2

1

+ %;wo)j:?}( 2(60)/64(60))’
1 T
= T - Y (0 21/)15 L 90) Yr(6o)
+ OplI3r (8017 (58)

In the last equality in (58) we use Assumption T.2.
Then by (58) we have

T
Sr(60)3n (60) =~ S v (80) + Oy (I (80)11)
t=1

where S7(60) = & 37 1(80)v+(60)'. Since TV20,(||37(60)]12) = 0p(1) , by 47 = O, (T~1/?).

0
TY%57(8p) = —St(60)~ 1 X 1113;( 0) + 0p(1).
We therefore derive
T i
Y () = _ST(eu)‘liztﬂﬁ 1) 4o (rm1r2), (59)

As in the rate of convergence proof (i.e., (48), (49)) using the approximation of Q7 (6y,%7(6))

to the second order and substituting (59), we have

T
Qr(to,47(00) =1 - o (Zt ;{fé 9")) (60) " (#) +0p(T 7). (60)

Here we show that we can derive (49) under much weaker conditions than in the rate of con-

vergence proof. Using (60), and using the Assumptions T1-T2, under the null

T ! T
~{log(@r(0,ir®0))] = (W) Sr(80)" <w>+(1)
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Q.E.D
Proof of Theorem 5. Note that by using (59) where we benefited from Assumptions T.1,
T.2, we obtain

41(00) = —Sr(60) U1 (60) + 0, (T7?), (61)

where \I’T(Qg) M By comparing Assumptions T.1, with T.3, it is clear that (61) can be
obtained using Assumptlon T.3 as well.

Then our test statistic use the first term on the right hand side of (61) and ignore o,(7~1/?)
term. This means that instead of (12) we use the following asymptotically equivalent form to build

the K statistic:
—ST(QD)_l\ifT(QQ)DT(QD). (62)

where

T (B0) P (z,60)
So the K test is

K(00) = TF7(00)'ST(00)™"/* Py, (49, 1/2 Dy (80) ST (00) /> U1 (60)

where Py represents the projection matrix with respect to terms in the subscript.
We try to asymptotically approximate Dr(6p) term in (12). Consider each Dr;(6y), for i =
1,2,--- .d.

_ 15,
Dri6y) = Z L

0 ,
+ Z % |eol (60)' et %4 (6). (63)

This is obtained by expanding the exponential term in Taylor’s series about 0 to first order as
in (26) of Kitamura and Stutzer (1997). Taylor’s theorem ensures the existence of vectors ;. Next

substitute (61) in (63)

1 pelh)
T 08;

t=1

Dri(fy) = l6o; — Br(60)S7(60) " 17 (6) + ()p(BT(HO)T_1/2), (64)

where

T
1 O (9) ! Al (6
Br(0y) = - ; %, lo, W1 (B0 o)
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We have to show that

Br(6y) & A;Q, 4,

(65)

where A; is rs x [; and €, g, is l; X rs and is described in Assumption T.3.

By Assumption T.3 and Assumption T.4 and using 47 (6y) TN 0, in combination with Holder’s

inequality as in (27) of Kitamura and Stutzer (1997), to get

5¢t 1pe(B0) 9 (6) ;P
Z o) i TZ 2, 1o e(B0)) B0 (66)
Furthermore rewrite
Oe(0) 0 9 3\11 (0 ~ ,
Z 20t = —Z[ D0, 22Ol Tigeltn) — ()]
ow -
¥ Tt 1 ;;,( )|9m[¢t(eo)—weo)]’
%) 8\1/
+ TZ[ ) = 22O, Tt
ovr(0), -
+ 82( )|90i\IIT(90) ; (67)
where Wr(f) = T~ L va(0) and 250, =T T, 2%,
In (67) on the right hand side, we analyze the second, third, and fourth terms. The second
term may be rewritten as:
OV (h) o), 1 -
—Z 1O ty) — (o) = 2 2 TZwt(eo) B (60)] = 0, (68)

t=1

where the last equality is obtained by using the definition of \IIT(QU)

third term is zero in the same manner. For the fourth term

1 T
= > r(60) 2 0
t=1

by Assumption T.3. Then consider

8\IIT Z 8¢t 90; - (81(/;:;6) |t90i)

By Assumption T.3

1<~ 9u(8)
+?ZE( 8t9i |<9m')'

T Zt 1 ¥¢(6p). Then the

(69)

(70)

1 ZT Oy (6) ()
f{::l a@z’ |00i_E( 891’ |90i)
1 Z

= T E plt(e()) E[Pbt(eo)]

A
Il

1



and by definition or by (15) of Kleibergen (2002)

Zamu%mo

Kleibergen (2002) analyzes the situations where J(6;9) has full rank, weak value as J(6;p) =
C; /T2, C; being a positive constant vector or J(8;0) = 0. The results above, in combination

with (69)(70) provide for the fourth term in (67)

a‘IéT( o Fr(80) B 0. (71)
Then clearly in (67)
Z%wm>= ZwlmmeWM%WHW)
1_ T
= A?T Z qit 90 qu 80))(¢t(90) - \I!T(QO))I
t=1
L A,9(q,600), (72)

by Assumption T.3 and T.5. §;+(00) = 1/1") " q;+(6o). Therefore we obtained (65) by the definition
of Br(6p) immediately after (64), and the results (66),(72).
By Assumption T.5

St(60) 5 Qg 6, - (73)
Now we simplify Dr;(6p) using (72) and (73) in (64):
Dri(6y) = pri(fo) — Aqui,HUQQ_O];QO Ty (6y) + 0p(T712), (74)

where

pri(6o) =T~ szt (60) = Z&ﬁt 195,

So,
Dr(60) = [Dr1(60),- -+ , Dri(60),- - , Dr.m (60)]-
Dy (6y) is asymptotically equivalent to the term in equation (17) of Kleibergen (2002) divided by
T. In other words if we denote Dp () term in Kleibergen (2002) (i.e., equation (17) in Kleibergen
(2002) divided by T) by Drg () to differentiate from our corresponding term we have the following

relation:

Dr(60) = Dric(80) + 0,(T3).

Then using this asymptotic equivalence and the order of the asymptotically negligible term, via

Assumption T.3, we obtain Lemma 1 and 2 of Kleibergen (2002) by following the exact same steps
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in the proofs of Lemma 1 and Lemma 2 in Kleibergen (2002). This leads to Theorem 1 in Kleibergen
(2002) and hence the desired result.

In terms of notation in K-statistic in Kleibergen (2002) (i.e., equation (22) there) instead of
fr(60)/T there we have ¥r () and instead of Vif(6y) there we have asymptotically equivalent
Sr(60). Q.E.D.

Proof of Theorem 6. We can rewrite J statistic using \TIT(Q()) =71 Ethl Y (00):

T(0) = T{‘i’T(eo)l[ST(QO)_l - ST(‘—%)_lDT(GO)(DT(90)'ST(90)_IDT(90))_1DT(HO)'ST(%)_I]‘T’T(@O)}

= T {\i}T(GO)IST(GO)_1/2M{ST(50)71/2DT(GO)}ST(OU)_I/ZQT(G'))} ) (75)

where M{ST(QO)_UQDT(QU)} =1, — P{ST(QU)_UQDT(QU)}. Rank of M is rs — d.
Note that
T
_1/23 _1/224=1 ¥1(00)
TY257(60) " 2Up(6y) = Sr(8o) 1/2 2 7{1/2
4 N(0,1,.). (76)

Using (76) in (75) we have the desired result.Q.E.D.

TECHNICAL APPENDIX

Here we can analyze the issue of existence of y(0) and §7(6). Here we provide proof based on
Lemmata A.1-A.3 of Newey and Smith (2001) or Lemmata 7-9 of Guggenberger (2003). Now we
can show that alternatively we can replace inf with min.

Technical Lemma 1. Under Assumptions 1 and 3

(i)

sup [y (8)] & 0.
06@7761_"1"

(i)
I'r C fT (9)

uniformly in 6 € O, v.w.p.a.1. where I'r = {7]||7|| < T_l/Qc;l/z} and

ep =T ?sup ||y (6)]|
60

, Tp(8) = {v € R™ : v/ () € V} ,V is an open interval containing zero.
Proof of Technical Lemma 1. By Assumption 1, since supy P(¢:(6) # 0) > 0,

l{cT:O} —0 a.s.
Then by Assumptions 1 and 3i,3ii we derive

sup |44 (6)| = 0, (T"/?).
4<C)
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via equation (B3), Lemma 3.2 of Kunsch (p.1227, 1989) and the proof of Lemma 3.2 of Kunsch
(1989) . This last proof is also used in empirical likelihood context for time series data in the proof
of Theorem 1 in Kitamura (1997). So using the last two results above with c7 definition we have

sup [y (8)] < T2z sup 144 (6) || = op(1).
GEQ,VEFT "]

This last result shows that v'¢¢(6) € I'7.Q.E.D.
Next under Assumptions 1,3,4,5 and Technical Lemma 1 following Lemmata A.2-A.3 of Newey

and Smith (2001) or Lemmata 8-9 of Guggenberger (2003) gives

T
. .1 e (8
47(0) =arg min — » €7 i(6)
vefr(e) ;
exists uniformly with probability approaching one. Similar result holds for v(6). So we are able to
replace “inf” with “min”.
An alternative proof for the existence of interior solutions for v(6) and 4r(0) is given. We
benefit from the exponential form of the objective function. Define the following hyperplane H for

eacht=1,2,---T.
H = {y:(0) € R"[/¢(0) = 0},

where ¢ is 7s x 1 vector of ones. We analyze four possible cases of the values that ¢;(6) may take
with respect to the hyperplane H.
Case 1:
V1 (0) > 0, forallt =1,2,---T.

In this case clearly analyzing the objective function in (2) or (4), ¥ — —oo, since we are in the
positive halfspace determined by H, and that value minimizes the objective function at 0.
Case 2:
V1 (0) < 0, forallt =1,2,---T.

In this case our function for all time observations are in the negative halfspace and clearly v — oo,
since with that value the objective function takes the value of zero in (2) and (4) .
Case 3:
V1 (0) = 0, forallt =1,2,---T.

In this case v can take any value, including arbitrarily large ones.

Note that combination of cases 1-3, do result in extreme values for v. (i.e. J/y:(8) < 0 or
1 (0) > 0 for all t)

So as long as our moment restrictions 1¢(#) is only one side of the hyperplane all the time we
can always optimize at very large values of v approaching oc.

Case 4: ¥(0) can take values both in negative and positive parts of halfspaces, As an example

Ye(0) < 0 for t = 1,2 and ¢4(0) > 0, for t = 3,4,---T. This does not result in arbitrarily large
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values for . The reason is if that were the case the objective function will explode to positive
infinity, which will not be optimizing value of the function.

By Assumption 6 we restrict values that () may take along different time periods. In only
case 4 the problem is well defined for our purposes.

Proof of equation (9). First by Cauchy-Scwartz inequality and using 8 = (¢/, 5')".
B(8)(7 ) — 1) < [E(|(&)P)]A[E(|e7 ™ — 1)

By Assumption 3ii, the first square bracket term on the right hand side of the above equation is

bounded and finite. For the second term first use the expansion for exponential term

VPO 1 = 54y (6) + w + ...

By Technical Lemma 1 we have almost surely

VYO _ 1 = 74,(8) + o(71(0)).

Then use this last equation and Technical Lemma 1i

T
TN 1P < (sup [ (B)) +o(1)
t=1 by
50
Then via Theorem 18.8i of Davidson (1994)
(Ble7®) —1)%)1250,

This last result combined with the boundednes of the first term in the Cauchy-Schwartz inequality

gives the desired result.

35



REFERENCES

ANDERSON, T.W., AND H.RUBIN (1949): “ Estimation of the Parameters of a Single Equa-
tion in a Complete System of Stochastic Equations,” Annals of Mathematical Statistics, 20, 46-63.

ANDREWS, D.W.K. (1994): “Empirical Process Methods in Econometrics,” Handbook of
Econometrics Vol.4 ed. by R.Engle and D.McFadden. Amsterdam:North Holland, 2247-2294.

DAVIDSON, J. (1994): Stochastic Limit Theory. Oxford University Press.

GUGGENBERGER, P. (2003): “Generalized Empirical Likelihood Tests under Partial , Weak
and Strong Identification,”. Working Paper, Yale University, Department of Economics.

HANSEN, L.P., J. HEATON, AND A. YARON (1996): “Finite Sample Properties of Some
Alternative GMM Estimators,” Journal of Business and Economic Statistics, 14, 262-280.

IMBENS, G.W., R.H. SPADY, AND P. JOHNSON (1998): “Information Theoretic Approaches
To Inference In Moment Condition Models” Econometrica, 66, 333-357.

KITAMURA, Y. (1997): “Empirical Likelihood Methods with Weakly Dependent Processes”
Annals of Statistics, 25, 2084-2102.

KITAMURA, Y. AND M. STUTZER (1997): “An Information-Theoretic Alternative to Gen-
eralized Method of Moments Estimation” FEconometrica, 65, 861-875.

KLEIBERGEN, F. (2002): “Testing Parameters in GMM Without Assuming That They Are
Identified,” Revised version of Tinbergen Institute Discussion Paper , T1 01-067/4.

KOCHERLAKOTA, N. (1990): “On Tests of Representative Consumer Asset Pricing Models,”
Journal of Monetary Economics, 26, 285-304.

KUNSCH, H.R. (1989): “The jackknife and the bootstrap for general stationary observations,”
Annals of Statistics, 17, 1217-1241.

NEWEY, W.K. AND R.J. SMITH (2001): “Higher Order Properties of GMM and Generalized
Empirical Likelihood Estimators,”. Working Paper , MIT, Department of Economics.

QIN, J. AND J. LAWLESS (1994): “Empirical Likelihood and General Estimating Equations,”
Annals of Statistics, 22, 300-325.

SMITH, R.J. (2000): “Empirical Likelihood and Inference,” in Application of Differential Ge-
ometry to FEconometrics,ed. by M.Salmon and P. Marriot. Cambridge: Cambridge University
Press.

STOCK, J.H., AND J.H. WRIGHT (2000): “GMM With Weak Identification,” Econometrica,
68, 1055-1096.

TAUCHEN, G. (1986): “Statistical Properties of Generalized Method of Moments Estimators of
Structural Parameters Obtained from Financial Market Data,” Journal of Business and Economic
Statistics, 4, 397-425.

VAN DER VAART, A. W., AND J.A. WELLNER (1996): “Weak Convergence and Empirical

Processes,” New York and Springer.

36



WALD, A. (1949): “Note on the Consistency of the Maximum Likelihood Estimate,” Annals
of Mathematical Statistics, 20, 595-601.

WOLFOWITZ, J. (1949): “On Wald’s Proof of The Consistency of the Maximum Likelihood
Estimate,” Annals of Mathematical Statistics, 20, 601-603.

37



