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S

A broad class of rank-based monotone estimating functions is developed for the semi-
parametric accelerated failure time model with censored observations. The corresponding
estimators can be obtained via linear programming, and are shown to be consistent and
asymptotically normal. The limiting covariance matrices can be estimated by a resampling
technique, which does not involve nonparametric density estimation or numerical deriva-
tives. The new estimators represent consistent roots of the non-monotone estimating equa-
tions based on the familiar weighted log-rank statistics. Simulation studies demonstrate
that the proposed methods perform well in practical settings. Two real examples are
provided.

Some key words: Accelerated life model; Censoring; Gehan statistic; Linear programming; Rank estimator;
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1. I

The accelerated failure time model or accelerated life model relates the logarithm of the
failure time linearly to the covariates (Kalbfleisch & Prentice, 1980, pp. 32–4; Cox &
Oakes, 1984, pp. 64–5). As a result of its direct physical interpretation, this model provides
an attractive alternative to the popular Cox (1972) proportional hazards model for the
regression analysis of censored failure time data.
The presence of censoring in failure time data creates a serious challenge in the semipara-

metric analysis of the accelerated failure time model. Several semiparametric estimators
were proposed around 1980, Buckley & James (1979) providing a modification of the
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least-squares estimator to accommodate censoring and Prentice (1978) proposing rank
estimators based on the well-known weighted log-rank statistics. The asymptotic proper-
ties of the Buckley–James and rank estimators were rigorously studied by Ritov (1990),
Tsiatis (1990), Lai & Ying (1991a, b) and Ying (1993) among others.
Despite the theoretical advances, semiparametric methods for the accelerated failure

time model have rarely been used in applications, mainly because of the lack of efficient
and reliable computational methods. The existing semiparametric estimating functions are
step functions of the regression parameters with potentially multiple roots, and the corre-
sponding estimators may not be well defined. Furthermore, analytical evaluations of the
covariance matrices of the estimators would require nonparametric density function esti-
mation. To bypass the variance-covariance estimation, Wei et al. (1990) developed an
inference procedure based on the so-called minimum-dispersion statistic. Calculation of
the minimum-dispersion statistics and of the semiparametric estimators involves minimis-
ations of discrete objective functions with potentially multiple local minima. Such minimis-
ation problems cannot be solved by conventional optimisation algorithms. Lin & Geyer
(1992) suggested a computational method based on simulated annealing (Kirkpatrick
et al., 1983), but their algorithm is not guaranteed to yield the true minimum.
In the present paper, we provide simple and reliable methods for implementing the

aforementioned rank estimators. We first show that the rank estimator with the Gehan
(1965)-type weight function can be readily obtained by minimising a convex objective
function through a standard linear programming technique. We then introduce a class of
monotone estimating functions to approximate the possibly non-monotone weighted log-
rank estimating functions around the true values of the regression parameters. These
estimating equations are solved through an iterative algorithm with the Gehan-type esti-
mator as the initial value. Each iteration can also be executed via linear programming.
This procedure yields a consistent root of the weighted log-rank estimating equation,
which potentially contains inconsistent roots. The covariance matrices for both the Gehan-
type and iterative estimators can be easily estimated by a resampling technique, which
does not involve density estimation.

2. P 

2·1. Accelerated failure time model and rank estimators

For i=1, . . . , n, let T
i
be the failure time for the ith subject and let X

i
be the associated

p-vector of covariates. The accelerated failure time model specifies that

log T
i
=b∞
0
X
i
+e
i
(i=1, . . . , n), (2·1)

where b0 is a p-vector of unknown regression parameters and ei (i=1, . . . , n) are indepen-
dent error terms with a common, but completely unspecified, distribution.
Let C

i
be the censoring time for T

i
. Assume that T

i
and C

i
are independent conditionally

on X
i
. We impose Conditions 1–4 of Ying (1993, p. 80). The data consist of (TB

i
, D
i
, X
i
)

(i=1, . . . , n), where TB
i
=T
i
mC
i
and D

i
=1
{T
i
∏C
i
}
. Here and in the sequel, amb=min(a, b),

and 1{.} is the indicator function.
Define e

i
(b)= log TB

i
−b∞X

i
, N
i
(b; t)=D

i
1
{e
i
(b)∏t}

and Y
i
(b; t)=1

{e
i
(b)�t}

. Note that N
i

and Y
i
are the counting process and at-risk process on the time scale of the residual. Write

S(0) (b; t)=n−1 ∑
n

i=1
Y
i
(b; t), S(1) (b; t)=n−1 ∑

n

i=1
Y
i
(b; t)X

i
.
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The weighted log-rank estimating function for b0 takes the form

U
w
(b)= ∑

n

i=1
D
i
w{b; e

i
(b)}[X

i
−X9 {b; ei (b)}],

or

U
w
(b)= ∑

n

i=1
P2
−2
w(b; t){X

i
−X9 (b; t)} dNi (b; t), (2·2)

where X9 (b; t)=S(1) (b; t)/S(0) (b; t), and w is a possibly data-dependent weight function
satisfying Condition 5 of Ying (1993, p. 90). The choices of w=1 and w=S(0) correspond
to the log-rank (Mantel, 1966) and Gehan (1965) statistics, respectively.
Let b@

w
be a root of the estimating function U

w
(b). It has been established that the

random vector nD (b@
w
−b0 ) is asymptotically zero-mean normal with covariance matrix

A−1
w
B
w
A−1
w
, where

A
w
= lim
n�2
n−1 ∑

n

i=1
P2
−2
w(b0 ; t){Xi−X9 (b0 ; t)}E2{l

< (t)/l(t)} dN
i
(b0 ; t),

B
w
= lim
n�2
n−1 ∑

n

i=1
P2
−2
w2 (b0 ; t){Xi−X9 (b0 ; t)}E2 dNi (b0 ; t),

l( . ) is the common hazard function of the error terms, and l< (t)=dl(t)/dt (Tsiatis, 1990;
Lai & Ying, 1991b; Ying, 1993). The foregoing result requires that A

w
be nonsingular.

This condition is assumed to hold in the present paper.
In general, U

w
(b) is neither continuous nor componentwise monotone in b. Thus, it is

difficult to solve the equation U
w
(b)=0, especially when b is high-dimensional. In fact,

there are potentially multiple solutions to the equation, some of which are inconsistent.
Although one may define the estimator to be a minimiser of the norm of U

w
(b), it is not

easy to locate a minimiser either, because of the discontinuity and non-monotonicity.
Another difficulty lies in the variance estimation. Since A

w
involves the derivative of the

hazard function, direct evaluation of the covariance matrix would require nonparametric
estimation of the density function, which cannot be done reliably in practical samples
with censored observations. One might estimate A

w
by the numerical derivative of n−1U

w
;

however, this kind of estimator can be highly unstable.

2·2. Gehan-type weight function

Considerable simplification arises in the special case of w(b; t)=S(0) (b; t), which is
referred to as the Gehan-type weight function. In this case, U

w
can be written as

U
G
(b)= ∑

n

i=1
D
i
S(0){b; e

i
(b)}[X

i
−X9 {b; ei (b)}],

or

U
G
(b)=n−1 ∑

n

i=1
∑
n

j=1
D
i
(X
i
−X
j
)1
{e
i
(b)∏e
j
(b)}
, (2·3)

which is monotone in each component of b (Fygenson & Ritov, 1994). It is not diffi-
cult to see that (X

i
−X
j
)1
{e
i
(b)∏e
j
(b)}
is the gradient in b of {e

i
(b)−e

j
(b)}−, where
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a−=|a |1
{a<0}

. Thus, the right-hand side of (2·3) is the gradient of the convex function

L
G
(b))n−1 ∑

n

i=1
∑
n

j=1
D
i
{e
i
(b)−e

j
(b)}−.

We denote a minimiser of L
G
(b) by b@

G
. Although b@

G
is not necessarily unique, all the

minimisers of L
G
(b) are asymptotically equivalent.

The minimisation of L
G
(b) can be carried out by linear programming: we minimise the

linear function Wn
i=1
Wn
j=1
D
i
u
ij
subject to the linear constraints u

ij
�0 and

u
ij
�−{e

i
(b)−e

j
(b)} (i, j=1, . . . , n).

This type of linear programming has been used extensively in the econometrics literature,
especially in connection with the regression quantiles introduced by Koenker & Bassett
(1978), and was previously considered by Lin et al. (1998) for the rank estimation of the
accelerated time model for counting processes. The minimisation of L

G
(b) is equivalent

to the minimisation of

∑
n

i=1
∑
n

j=1
D
i
|e
i
(b)−e

j
(b) |+ KM−b∞ ∑n

k=1
∑
n

l=1
D
k
(X
l
−X
k
)K ,

whereM is an extremely large number. The latter type of minimisation can be implemented
with the algorithm of Koenker & D’Orey (1987), which is available in S-Plus and other
software.
According to the general asymptotic theory for the rank estimators stated in § 2·1, the

random vector nD(b@
G
−b0 ) is asymptotically zero-mean normal with covariance matrix

A−1
G
B
G
A−1
G
, where A

G
and B

G
are A

w
and B

w
evaluated at w=G. As discussed before, A

G
involves the unknown hazard function, so that it is difficult to estimate the covariance
matrix analytically. We will develop a resampling scheme similar to those of Rao & Zhao
(1992), Parzen et al. (1994) and Jin et al. (2001) to approximate the distribution of b@

G
,

particularly its variance-covariance matrix.
To be specific, we define a new loss function

L *
G
(b))n−1 ∑

n

i=1
∑
n

j=1
D
i
{e
i
(b)−e

j
(b)}−Z

i
,

where Z
i
(i=1, . . . , n) are independent positive random variables with E(Z

i
)=var(Z

i
)=1,

and are independent of the data (TB
i
, D
i
, X
i
) (i=1, . . . , n). This loss function is essentially

a perturbed version of the original L
G
(b), perturbed by random variables Z

i
(i=1, . . . , n).

Minimisation of L *
G
is also a linear programming problem. Let b@*

G
be a minimiser of

L *
G
, that is a root of the estimating function

U*
G
(b)) ∑

n

i=1
D
i
S(0){b; e

i
(b)}[X

i
−X9 {b; ei (b)}]Zi .

Note that U*
G
has the same mean and approximately the same variance as U

G
. We show

in the Appendix that the asymptotic distribution of nD(b@
G
−b0 ) can be approximated by

the conditional distribution of nD(b@*
G
−b@
G
) given the data (TB

i
, D
i
, X
i
) (i=1, . . . , n).

Conditional on the data (TB
i
, D
i
, X
i
) (i=1, . . . , n), the only random elements in L *

G
(b)

are the Z
i
’s. To approximate the distribution of b@

G
, we produce a large number of realis-

ations of b@*
G
by repeatedly generating the random sample (Z1 , . . . , Zn ) while holding the

data (TB
i
, D
i
, X
i
) (i=1, . . . , n) at their observed values. The covariance matrix of b@

G
can

then be approximated by the empirical covariance matrix of b@*
G
. Confidence intervals
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for individual components of b0 can be obtained from the percentiles of the empirical
distribution of b@*

G
or by the Wald method.

2·3. General weight functions

The efficiency of the Gehan statistic and the corresponding rank estimator b@
G
depends

on the censoring distribution. The variance of b@
w
is minimised if the limit of w(t) is pro-

portional to l< (t)/l(t). Thus, it is desirable to use general weight functions. The simple
conversion of the Gehan estimating function U

G
to an L 1-type loss function does not

extend directly to the general weighted log-rank estimating functions. On the basis of b@
G
,

however, it is possible to construct weighted Gehan-type loss functions, whose minimisers
can be readily obtained by the linear programming algorithm.
We consider the following modification of (2·2):

UB
w
(b; b@ )) ∑

n

i=1
P2
−2
y{b@ ; t+ (b−b@ )∞X

i
}S(0) (b; t){X

i
−X9 (b; t)} dNi (b; t), (2·4)

where y(b; x)=w(b; x)/S(0) (b; x), and b@ is a preliminary consistent estimator of b0 , b
@
G
say.

Clearly,

UB
w
(b; b@ )= ∑

n

i=1
D
i
y{b@ ; e

i
(b)+ (b−b@ )∞X

i
}S(0){b; e

i
(b)}[X

i
−X9 {b; ei (b)}]

=n−1 ∑
n

i=1
∑
n

j=1
y{b@ ; e

i
(b@ )}D

i
(X
i
−X
j
)1
{e
i
(b)∏e
j
(b)}
.

This is the same as (2·3) except for the weights y{b@ ; e
i
(b@ )}, which are free of b. Thus,

UB
w
(b; b@ ) is monotone in each component of b and is the gradient of the following extension

of L
G
(b):

L
w
(b; b@ ))n−1 ∑

n

i=1
∑
n

j=1
y{b@ ; e

i
(b@ )}D

i
{e
i
(b)−e

j
(b)}−.

As in the case of L
G
, minimisation of L

w
( . ; b@ ) can be implemented via linear programming.

We propose the following iterative algorithm for estimating b0 :

b@ (0)=b
@
G
, b@
(k)
=arg min

b

L
w
(b; b@
(k−1)
) (k�1).

By comparing (2·2) and (2·4), we see that, if b@
(k)
converges to a limit as the number of

iterations k�2, then the limit must satisfy U
w
(b)=0. In such situations, the proposed

algorithm constitutes a numerical method for solving the original estimating equation
U
w
(b)=0. The resulting estimator is consistent although the original estimating equation

may contain inconsistent roots. In all the simulated and real datasets we have tested, b@
(k)

converges as k increases and, for k as small as 3, b@
(k)
is already close to the limit. It is

important to point out that b@
(k)
itself is a legitimate estimator for any k and the convergence

of the algorithm is not essential to the validity of the proposed method.
We show in the Appendix that, for any k, the estimator b@

(k)
is consistent and asymptoti-

cally normal. In fact, it follows from (A·5) in the Appendix that

b@
(k)
={(A

w
+D
w
)−1D

w
}kb@
G
+[I−{(A

w
+D
w
)−1D

w
}k]b@
w
+o
p
(n−D),
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where I is the p×p identity matrix,

D
w
= lim
n�2
n−1 ∑

n

i=1
P y< 0 (t)S(0) (b0 ; t){Xi−X9 (b0 ; t)}E2 dNi (b0 ; t), (2·5)

and y< 0 (t) is the derivative of y0 (t), the limit of y(b0 ; t) as n�2. Thus, b
@
(k)
is asymptoti-

cally a weighted average of b@
w
and b@

G
, and can be regarded as an approximation to b@

w
.

If {(A
w
+D
w
)−1D

w
}k�0 as k�2, then the limit of b@

(k)
as k�2, denoted by b@ (2) , is

asymptotically equivalent to b@
w
. Note that {(A

w
+D
w
)−1D

w
}k�0 as k�2 is equivalent

to all the eigenvalues of (A
w
+D
w
)−1D

w
being less than 1 in absolute value. This condition

holds if A
w
is positive definite and D

w
is nonnegative definite.

The most commonly used weight functions, including the log-rank, Prentice–Wilcoxon
(Prentice, 1978) and the more general Gr class of Harrington & Fleming (1982), are all
nonnegative and nonincreasing. For such weight functions, A

w
is indeed positive definite

provided that the distribution of X does not concentrate on a ( p−1)-dimensional hyper-
plane (Ying, 1993, pp. 81–2). It is evident from (2·5) that D

w
will be nonnegative definite

if y< 0 ( . )�0, which is true of all commonly used weight functions. Therefore, b
@@
w
is asymptoti-

cally equivalent to b@
(2)
, at least for most important weight functions.

We show in the Appendix that, under mild conditions, b@
w
−b@
(k)
=o
p
(n−D ) for any k of

order log(n) provided that {(A
w
+D
w
)−1D

w
}k�0 as k�2. This implies that, with a finite

number of iterations, b@
(k)
is asymptotically equivalent to the consistent roots of the original

estimating function U
w
(b). In practice, one would terminate the iteration process when

the difference between successive estimates is less than a certain bound. This convergence
criterion may be set on the basis of the observed b@

G
and its estimated standard error, as

demonstrated in the next section.
Although b@

(k)
can be easily obtained, it is again difficult to estimate the limiting covari-

ance matrix analytically. As in the case of b@
G
, we appeal to the resampling approach. To

be specific, we construct the perturbed objective function

L *
w
(b; b))n−1 ∑

n

i=1
∑
n

j=1
y{b; e

i
(b)}D

i
{e
i
(b)−e

j
(b)}−Z

i
,

and define b@*
(0)
=b@*
G
and b@*

(k)
=arg min

b
L *
w
(b; b@*

(k−1)
) (k�1). We show in the Appendix

that the asymptotic distribution of nD(b@
(k)
−b0 ) can be approximated by the conditional

distribution of nD(b@*
(k)
−b@
(k)
) given the data (TB

i
, D
i
, X
i
) (i=1, . . . , n). Inference about b0

can then be carried out on the basis of the empirical distribution of b@*
(k)
.

3. N 

3·1. Real examples

The results reported here and in § 3·2 are based on y=1 and y=1/S(0), which are
referred to as the Gehan and log-rank weight functions. For the resampling procedure,
we simulated the Z

i
from the unit exponential distribution and generated 500 realisations.

The results were similar when other distributions of the Z
i
were used. The Wald method

was used to construct the confidence intervals.
We first applied the proposed methods to a study on multiple myeloma reported by

Krall et al. (1975). Out of a total of 65 patients who were treated with alkylating agents,
48 died during the study and 17 survived. This is the main example in the  
of the SAS/STAT User’s Guide (1999, pp. 2608–17, 2536–641), which focused on the Cox
model with haemoglobin, , and the logarithm of blood urea nitrogen, , as the
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covariates. To improve numerical efficiencies, we standardised the two covariates log()
and  in our analysis. The parameter estimates for standardised log() and 
based on the Gehan weight function are−0·532 and 0·292 with estimated standard errors
of 0·146 and 0·169. The corresponding 95% confidence intervals are (−0·818,−0·246)
and (−0·039, 0·623).
We used the iterative algorithm to obtain the estimates based on the log-rank weight

function. The results from the Gehan weight function suggested that it is not necessary
to have accurate numbers beyond the second decimal point. Thus, we set the convergence
criterion for the iteration to be 0·01 between successive estimates. Based on this criterion,
convergence was achieved at the third iteration. The resulting estimates are −0·505 and
0·268 with 95% confidence intervals (−0·880,−0·130) and (−0·017, 0·553). The estimates
are identical up to the eighth decimal point after 5 iterations.
For further illustration, we considered the well-known Mayo primary biliary cirrhosis

data (Fleming & Harrington, 1991, Appendix D.1). The database contains information
about the survival time and prognostic factors for 418 patients. The data were used
by Dickson et al. (1989) to build a Cox proportional hazards model for the natural
history of the disease with five covariates, age, log(albumin), log(bilirubin), oedema and
log(protime); see Fleming & Harrington (1991, Table 4.6.3). We considered the same set
of covariates in our analysis. We again standardised the covariates. The estimates based
on the Gehan weight function are −0·270, 0·204, −0·593, −0·223 and −0·244 with
estimated standard errors of 0·062, 0·069, 0·071, 0·070 and 0·080. These results also sug-
gested that the convergence criterion of 0·01 can be used for calculating the log-rank-type
estimates. This criterion was again met at the third iteration. The estimates were identical
up to the eighth decimal point after 12 iterations. We display in Table 1 the results for
the unstandardised covariates. Although the conclusions are not qualitatively different,
the analysis under the accelerated failure time model provides an alternative and more
direct interpretation of the effects of covariates on the survival time, as compared to the
Cox regression analysis. The results based on the two weight functions are fairly similar.
The point estimates for the log-rank weight function are similar to those of Lin & Geyer
(1992), which were obtained by a simulated annealing algorithm.

Table 1. Accelerated failure time regression for the Mayo primary biliary cirrhosis
data

Gehan weight function Log-rank weight function
Parameter Est  95%  Est  95% 

Age −0·0258 0·0059 (−0·037, −0·014) −0·0265 0·0042 (−0·035, −0·018)
log(Albumin) 1·5906 0·5352 (0·542, 2·639) 1·6558 0·3683 (0·934, 2·378)
log(Bilirubin) −0·5789 0·0698 (−0·716, −0·442) −0·5849 0·0455 (−0·674, −0·496)
Oedema −0·8781 0·2768 (−1·421, −0·336) −0·7338 0·1781 (−1·083, −0·385)
log(Protime) −2·7680 0·9085 (−4·549, −0·987) −1·9439 0·4622 (−2·850, −1·038)

Est, estimate; , standard error; , confidence interval.

3·2. Simulation studies

Extensive simulation studies were conducted to assess the operating characteristics of
the proposed methods in practical settings. One series of the experiments mimicked the
foregoing multiple myeloma study. The failure times were generated from the model

log T=2·9413−0·5196× log()+0·2775×+e, (3·1)
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where e is a normal random variable with mean 0 and standard deviation 1·027. The
regression coefficients and the standard deviation of e in model (3·1) were estimated from
the parametric accelerated failure time model. The censoring times were generated from
the Un(0, t) distribution, where t was chosen to yield a desired level of censoring.
We first examined the difference between log-rank-type estimates obtained after a fixed
number of iterations versus those obtained after convergence. We generated 1000 datasets
with sample size of 65 from model (3·1). The standardised covariate values from the
original myeloma study were used. The algorithm was considered convergent if the differ-
ence between two consecutive estimates was less than 0·0001; convergence was usually
achieved within 10 iterations. Figure 1(a) plots the estimates obtained after convergence
versus those obtained after three iterations for the estimation of the first regression
coefficient under 20% censoring; the two sets of estimates are clearly very similar.
Figure 1(b) displays the corresponding plot for the log-rank estimates versus the Gehan
estimates, the two of which are noticeably different. Thus, the phenomenon in Fig.1(a) is
not an artifact of the closeness of the Gehan and log-rank estimates. The plots for the
estimation of the second regression coefficient and for other censoring levels revealed
similar results. The values of the log-rank estimating functions at convergence versus after
three iterations were similar: under 20% censoring, the medians of the L 1-norms of n−1UB w
among the 1000 datasets were 0·003 at convergence and 0·009 after three iterations; the
corresponding maxima were 0·07 and 0·09. These results demonstrated that a small number
of iterations is sufficient.

(a)
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(b)

Fig. 1. Comparisons of different estimates of b01 under 20% censoring: (a) log-rank-type estimates after
convergence versus log-rank-type estimates after three iterations; (b) log-rank-type estimates after convergence

versus Gehan-type estimates.

Most of the simulation studies were concerned with the performance of the proposed
inference procedures based on the Gehan-type estimator and the log-rank-type estimator
with three iterations. We considered sample sizes of 65 and 130. For n=65, the standard-
ised covariate values from the multiple myeloma dataset were used; for n=130, each
covariate value in the original dataset was duplicated. For each configuration of the
simulation parameters, we generated 500 datasets with the same set of covariate values.
The results of the simulation studies are summarised in Table 2. The parameter estimators
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Table 2. Summary statistics for the simulation studies: regression coeYcients
b01 and b02 for log() and , respectively

n Censoring Weight Parameter Bias   90%  95% 

65 0% Gehan b01 0·004 0·127 0·128 0·89 0·93
b02 0·001 0·127 0·129 0·89 0·94

Log-rank b01 −0·017 0·135 0·138 0·90 0·94
b02 −0·001 0·140 0·138 0·88 0·93

20% Gehan b01 0·003 0·137 0·134 0·87 0·93
b02 0·001 0·137 0·139 0·88 0·94

Log-rank b01 −0·006 0·138 0·148 0·91 0·95
b02 0·004 0·151 0·149 0·89 0·93

30% Gehan b01 0·0005 0·143 0·138 0·87 0·93
b02 0·0002 0·144 0·144 0·88 0·93

Log-rank b01 −0·010 0·145 0·152 0·90 0·94
b02 0·004 0·158 0·156 0·88 0·93

130 0% Gehan b01 −0·003 0·091 0·091 0·90 0·95
b02 −0·004 0·091 0·091 0·88 0·95

Log-rank b01 −0·008 0·094 0·097 0·92 0·94
b02 0·003 0·093 0·097 0·91 0·97

20% Gehan b01 −0·0001 0·097 0·096 0·89 0·95
b02 −0·005 0·098 0·098 0·89 0·95

Log-rank b01 0·005 0·108 0·105 0·88 0·94
b02 −0·001 0·106 0·107 0·90 0·96

30% Gehan b01 0·0004 0·101 0·099 0·89 0·94
b02 −0·004 0·103 0·102 0·89 0·95

Log-rank b01 −0·0001 0·111 0·107 0·87 0·93
b02 0·010 0·116 0·110 0·88 0·93

Bias, bias of the estimator; , standard error of the estimator; , mean of the standard
error estimator; 90% , coverage probability of the 90% Wald-type confidence interval;

95% , coverage probability of the 95% Wald-type confidence interval

appear to be virtually unbiased. The standard error estimators reflect well the true vari-
abilities of the parameter estimators, and the corresponding confidence intervals have
satisfactory coverage probabilities.

4. R

Fygenson & Ritov (1994) characterised the class of weight functions in (2·2) which
yields monotone estimating functions. The class is quite restrictive and involves the cen-
soring time distribution. By contrast, the class of monotone estimating functions developed
in the present paper is very broad and yields consistent roots of the original weighted log-
rank estimating equations.
On the basis of (2·4), we can obtain a one-step approximation to b@

w
for any weight

function w, as follows. Define

yA (b; x)=S(0) (b; x)−1w(b; x)I−D
w
A−1
G
,

and replace y{b@ ; t+ (b−b@ )∞X
i
} in (2·4) by yA {b@

G
; t+ (b−b@

G
)∞X
i
}. It then follows from

(A·4) in the Appendix that the resulting estimator is asymptotically equivalent to b@
w
. To
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implement this one-step estimator, one would need to estimate A
G
and D

w
. A consistent

estimator of A
G
can be easily obtained because A−1

G
B
G
A−1
G
and B

G
can be consistently

estimated from the data. The estimation of D
w
would require an estimator of l( . ), which

can be obtained either nonparametrically or parametrically.
The proposed estimators do not achieve the semiparametric efficiency bound. By adopt-

ing the approach of Lai & Ying (1991b, § 3), one can construct data-dependent weight
functions which yield asymptotically efficient estimators provided that the iterative pro-
cedure converges.
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A

Derivation of asymptotic results

Asymptotic properties of b@*
G
. Both n−1L

G
and n−1L *

G
are convex functions and, by the strong law

of large numbers, converge almost surely to the same limiting function. The first derivative of the
limiting function is zero at b0 and its second derivative at b0 is AG , which is nonsingular. Thus,
this function has a unique minimiser b0 . It then follows from convex analysis that b

@
G
�b0 and

b@*
G
�b
0
almost surely. The latter convergence is with respect to the joint probability space of

(TB
i
, D
i
, X
i
) (i=1, . . . , n) and Z

i
(i=1, . . . , n). We shall use F to denote the s-field generated by

the original data.
It follows from Theorem 2 of Ying (1993) that almost surely

U
G
(b@
G
)=U

G
(b
0
)+nA

G
(b@
G
−b
0
)+o(nD+ndb@

G
−b
0
d). (A·1)

By similar arguments,

U*
G
(b@*
G
)=U*

G
(b@
G
)+nA

G
(b@*
G
−b@
G
)+o(nD+ndb@*

G
−b@
G
d) (A·2)

almost surely. The functions U*
G
and U

G
have the same asymptotic slope matrix A

G
in (A·1) and

(A·2) because E{U*
G
(b) |F}=U

G
(b) and b@

G
and b@*

G
are consistent.

We have that U*
G
(b@
G
)=U*

G
(b@
G
)−U

G
(b@
G
)+o(nD ) since b@

G
is a root of U

G
(b). Thus

n−DU*
G
(b@
G
)=n−D ∑

n

i=1
P2
−2
S(0)(b@

G
; t){X

i
−X9 (b@G ; t)} dNi (b

@
G
; t) (Z

i
−1)+o(1).

Conditionally on F, the right-hand side of the above display is a normalised sum of independent
zero-mean random vectors. Since its conditional covariance matrix converges almost surely to B

G
,

the multivariate central limit theorem implies that n−DU*
G
(b@
G
) converges in distribution toN(0, B

G
)

almost surely. It then follows from (A·2) that the conditional distribution of nD(b@*
G
−b@
G
) given F

converges almost surely toN(0, A−1
G
B
G
A−1
G
), which is the limiting distribution of nD(b@

G
−b
0
).

Asymptotic properties of b@
(k)
. We first show that b@

(k)
is strongly consistent for any given

k. Recall that b@
(0)
=b@
G
. As a result of the strong consistency of b@ (0) , the function n−1L w (b; b

@
(0)
)

converges almost surely to lim n−1L
w
(b; b

0
), which reaches its minimum at b=b

0
. Since

n−1L
w
(b; b@

(0)
) is convex, b@ (1) must converge to b0 almost surely. Applying these arguments success-

ively for k=2, 3, . . . , we see that b@
(k)
�b
0
almost surely as n�2 for all k.

To avoid possible tail instabilities, we assume that, for any b
n
and g

n
which converge almost
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surely to b
0
and 0, respectively,

y(b
n
; t+g

n
)=y(b

n
; t)+y<

0
(t)g
n
+o(n−D+g

n
)

uniformly in t. This condition holds for virtually all the existing weight functions for t away from
the ‘endpoint’. For it to hold for all t, we typically would have to use w which is truncated at the
tail, that is w(t)=0 for t near the endpoint. Under this condition and Conditions 1–5 of Ying
(1993), we can expand UB

w
(b; b@

(k−1)
) to yield

UB
w
(b; b@

(k−1)
)= ∑
n

i=1
P y(b@ (k−1) ; t)S(0)(b; t){Xi−X9 (b; t)} dNi (b; t)

+ ∑
n

i=1
P y< 0 (t)S(0)(b; t){Xi−X9 (b; t)}X∞i dNi (b; t) (b−b@ (k−1) )

+o(nD+ndb−b@
(k−1)
d)

as n�2 and b�b0 . By Theorem 2 of Ying (1993), the first term on the right-hand side of the
above display has the linear expansion U

w
(b
0
)+nA

w
(b−b

0
)+o(nD+ndb−b

0
d). Thus,

UB
w
(b@
(k)
; b@
(k−1)
)=U

w
(b
0
)+n(A

w
+D
w
) (b@
(k)
−b
0
)−nD

w
(b@
(k−1)
−b
0
)

+o(nD+ndb@
(k)
−b
0
d+ndb@

(k−1)
−b
0
d). (A·3)

Suppose that A
G
, A
w
and A

w
+D
w
are nonsingular. By combining (A·1) and (A·3) with k=1, we

obtain

nD(b@
(1)
−b
0
)=−n−D(A

w
+D
w
)−1{U

w
(b
0
)+D

w
A−1
G
U
G
(b
0
)}

+o(1+nD db@
(1)
−b
0
d+nDdb@

G
−b
0
d). (A·4)

It then follows from recursive use of (A·3) that in general

nD(b@
(k)
−b
0
)=−n−D ∑

k

j=1
{(A
w
+D
w
)−1D

w
}j−1(A

w
+D
w
)−1U

w
(b
0
)

−n−D{(A
w
+D
w
)−1D

w
}kA−1
G
U
G
(b
0
)+o A1+nD ∑k

j=0
db@
(j)
−b
0
dB

or

nD(b@
(k)
−b
0
)=−n−D[I−{(A

w
+D
w
)−1D

w
}k]A−1

w
U
w
(b
0
)

−n−D{(A
w
+D
w
)−1D

w
}kA−1
G
U
G
(b
0
)+o A1+nD ∑k

j=0
db@
(j)
−b
0
dB . (A·5)

The asymptotic normality of nD(b@
(k)
−b
0
) then follows from that of n−DU

w
(b
0
) and n−DU

G
(b
0
).

Suppose that w is truncated at the tail and the error density is sufficiently smooth. Then it follows
from equation (4.5) of Lai & Ying (1991b) that, for some g>0 and c>0, (A·3) holds with
o(nD−g ) as the remainder term uniformly for b@

(k−1)
and b@

(k)
in an O(n−D+c ) neighbourhood of b0 .

Thus, if {(A
w
+D
w
)−1D

w
}k�0 as k�2, then all the b@

(j)
( j∏k) stay in an O(n−D+c ) neighbourhood

of b0 so that the remainder term in (A·5) becomes o(kn−g )=o(1) provided that k�2 and
k=O( log n). Hence, nD(b@

(k)
−b
0
)=nD(b@

w
−b
0
)+o
p
(1) for k�2 and k=O( log n).

Asymptotic properties of b@*
(k)
.We impose the same regularity conditions as in the previous section.

The convexity arguments and the strong law of large numbers can again be employed to establish
the strong consistency of b@*

(k)
. By definition, b@*

(k)
is a root of

UB *
w
(b; b@*

(k−1)
)) ∑

n

i=1
P y{b@*(k−1) ; t+ (b−b@*(k−1) )∞Xi}S(0)(b; t){Xi−X9 (b; t)} dNi (b; t)Zi .
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By asymptotic linear expansions similar to those used in establishing (A·3), we have

UB *
w
(b@*
(k)
; b@*
(k−1)
)= ∑
n

i=1
P y{b@ (k−1) ; t+ (b@ (k)−b@ (k−1) )∞Xi}S(0)(b@ (k) ; t){Xi−X9 (b@ (k) ; t)} dNi (b@ (k) ; t)Zi

+n(A
w
+D
w
) (b@*
(k)
−b@
(k)
)−nD

w
(b@*
(k−1)
−b@
(k−1)
)+d*
n
, (A·6)

where d*
n
=o(nD+nWk

j=0
db@
(j)
−b
0
d+nWk

j=0
db@*
(j)
−b
0
d).

We can replace the Z
i
in the first term on the right-hand side of (A·6) by Z

i
−1 since b@

(k)
is a

root of UB
w
(b; b@

(k−1)
). With this replacement, the first term has mean 0 conditionally on F, so that

the integral can be approximated by ∆w(b
0
; t){X

i
−X9 (b0 ; t)} dNi (b0 ; t). Thus,

UB *
w
(b@*
(k)
; b@*
(k−1)
)= ∑
n

i=1
P w(b0 ; t){Xi−X9 (b0 ; t)} dNi (b0 ; t) (Zi−1)

+n(A
w
+D
w
) (b@*
(k)
−b@
(k)
)−nD

w
(b@*
(k−1)
−b@
(k−1)
)+d*
n
,

which yields

nD(b@*
(k)
−b@
(k)
)=−n−D(A

w
+D
w
)−1 ∑

n

i=1
P w(b0 ; t){Xi−X9 (b0 ; t)} dNi (b0 ; t) (Zi−1)

+ (A
w
+D
w
)−1D

w
nD(b@*
(k−1)
−b@
(k−1)
)+n−Dd*

n
.

Therefore,

nD(b@*
(k)
−b@
(k)
)=−n−D[I−{(A

w
+D
w
)−1D

w
}k]A−1

w

× ∑
n

i=1
P w(b0 ; t){Xi−X9 (b0 ; t)} dNi (b0 ; t) (Zi−1)

−n−D{(A
w
+D
w
)−1D

w
}kA−1
G

× ∑
n

i=1
P S(0)(b0 ; t){Xi−X9 (b0 ; t)} dNi (b0 ; t) (Zi−1)+n−Dd*n .

Comparing the above equation with (A·5), we see that the conditional distribution of
nD(b@*
(k)
−b@
(k)
) given F converges almost surely to the limiting distribution of nD(b@

(k)
−b
0
).

Under the additional conditions stated in the last paragraph of the previous section, (A·6) can
be strengthened with d*

n
=o(n−j ) for some j>0. Hence, for k�2 and k=O( log n),

nD(b@*
(k)
−b@
(k)
) has the same asymptotic distribution as nD(b@

(k)
−b
0
).
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