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My research interests have included applications of convexity to statistics (for instance, us-

ing f -divergences [8]) as well as nonparametric estimation and minimax lower bounds [8, 9]. In

addition, I have worked with Prof. Hannes Leeb on two problems inspired by research ques-

tions that arose during an advanced course on random matrices: the concentration of measure

phenomenon for sample covariance matrices [11] and the properties of the James-Stein estima-

tor for estimating univariate linear functionals of a high-dimensional normal mean [12]. I am

also interested in Respondent Driven Sampling (RDS) [10]. In the following, I provide brief

descriptions of these problems.

Minimax Lower Bounds: In estimation problems, a widespread way of assessing the

quality of a given estimator is to compare its risk to the minimax risk. It is however typically

impossible (especially in nonparametric problems) to determine the minimax risk exactly. Con-

sequently, one attempts to obtain good lower bounds on the minimax risk and the risk of the

estimator is then compared to these lower bounds. Minimax lower bounds are hence important

and applicable in any estimation problem where the minimax criterion is used.

In [8], I proved a class of lower bounds (one for each convex function f) for the mini-

max risk in estimation problems using f -divergences between the underlying probability mea-

sures. The f -divergences are a general class of measures of dissimilarity between probability

distributions which include Kullback-Leibler divergence, chi-squared divergence, total variation

distance, Hellinger distance, etc. Special cases and straightforward corollaries of this class

of bounds include well-known inequalities for establishing minimax lower bounds like Fano’s

method, Pinsker’s inequality and inequalities based on global metric entropy conditions.

My paper [8] is inspired by the paper by Yang and Barron [14] who proved bounds for

the minimax risk using only global metric entropy characteristics of the parameter space. I

generalized their lower bound arguments to arbitrary f -divergences. This extension has at least

one non-trivial consequence: The method of Yang and Barron does not produce optimal lower
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bounds in finite dimensional estimation problems while I showed in [8, Section IV] that the

classical
√
n rate can be recovered using my bounds for the convex function f(x) = x2 − 1 (the

case of the chi-squared divergence). As a result, global metric entropy features are adequate for

obtaining rate-optimal minimax lower bounds even in finite dimensional situations. This was

not thought to be possible previously [14, Page 1574] as heretofore, homogeneous local covering

properties (as in the works of Le Cam and Birge) were thought to be necessary for obtaining

such lower bounds in parametric cases.

My inequalities developed in [8] are applicable to many types of estimation problems, includ-

ing problems of recent interest, such as the the estimation of support functions of convex bodies

(described below) and the estimation of covariance matrices. In [8, Section VI], I provided a

different proof of a recent minimax lower bound for covariance matrix estimation due to Cai,

Zhang and Zhou [2].

Reconstruction of convex bodies from noisy support function measurements:

For a convex body in Rd, its support function gives, for each direction, the distance (from the

origin) of the supporting hyperplane to the body perpendicular to that direction. The problem

of reconstructing an unknown convex body from a finite number of noisy measurements of its

support function has attracted much attention as it arises in various practical situations; please

refer to [7, Section I] for a list of applications.

Interesting statistical asymptotics arise in this setting. In [8, Section V], I proved the first

minimax lower bound for this problem. Specifically, I showed that, in a minimax sense, it is

impossible to estimate the true convex body (in the L2 metric) from n noisy support measure-

ments at a rate faster than n−2/(d+3) (no matter how the n directions for these measurements are

chosen). My lower bound complements a result of Gardner, Kiderlen and Milanfar [6, Theorem

8.2] who proved that, for an appropriate choice of the directions, the least squares estimator

converges to the true convex body at the rate n−2/(d+3) for d = 2, 3, 4 and at slower rates for

higher dimensions.

In current work [9], I have shown that if the directions are chosen independently according

to the uniform distribution on the sphere, then the least squares estimators on certain well-

chosen subsets of the space of all convex bodies achieve the rate n−2/(d+3) in all dimensions

d. The specific subsets that I considered are ε-covering sets and sets of polytopes with bounds

on the number of extreme points (vertices). For polytopes, my present proofs produce the rate

n−2/(d+3) only up to logarithmic factors.

Concentration of the spectral measure for large random matrices: This is joint

work with Prof. Hannes Leeb [11]. For random matrices Xm×n, we examined the concentration

property of the empirical measure FS associated with the eigenvalues λ1, . . . , λn of the n × n
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matrix S = X ′X/m. Specifically, we studied deviations of linear functionals of such measures,

FS(f) :=
∫
fdFS = (f(λ1) + · · · + f(λn))/n, from their median med(FS(f)) or mean EFS(f).

This problem has attracted many researchers especially in the case where all the entries Xij of X

are independent. We obtained optimal deviation bounds in a more general situation where the

m rows of X are independent but the entries are allowed to be dependent within each row. Our

results rely on general concentration of measure inequalities due to Talagrand and Hoeffding.

Properties of the James-Stein estimator: This is joint work with Prof. Hannes

Leeb [12]. We considered the estimators v′Z and v′θ̂JS(Z) for estimating linear functions v′θ of

a d-dimensional vector θ where Z ∼ N(θ, I), θ̂JS(Z) denotes the James-Stein estimator and v

is a unit vector. It is easy to see that when v is fixed, the risk of v′θ̂JS(Z) is larger than that of

v′Z in the worst case with respect to θ ∈ Rd. However, on average with respect to v, the risk

of v′θ̂JS(Z) is smaller than that of v′Z for every θ ∈ Rd. Informally, this means that v′θ̂(Z)

outperforms v′Z for many unit vectors v. We studied this phenomenon in detail quantifying for

how many v’s it occurs. We found that shrinkage estimation has certain attractive properties,

even when the goal is the estimation of a univariate normal mean.

Respondent Driven Sampling: This is joint work with Dr. Robert Heimer and Dr.

Russell Barbour of the Center for Interdisciplinary Research in AIDS, Yale University [10].

Respondent Driven Sampling (RDS) is now a popular technique for sampling from hidden pop-

ulations with a graph structure (http://www.respondentdrivensampling.org/). Although

RDS has proved to be an extremely effective sampling technique at penetrating and getting

useful samples from populations such as drug users, gay men, etc., constructing valid estima-

tors of population quantities from RDS datasets is a difficult task. The standard methods of

estimation from RDS data (e.g., see [15]) make many simplifying assumptions about the data

collection process most of which are routinely violated in practice.

My collaborators were interested in population mean estimation based on an RDS dataset

from a study (The Sexual Acquisition and Transmission of HIV Cooperative Agreement Project,

SATHCAP) of the HIV epidemic in St. Petersburg [10]. The exisiting RDS estimation tech-

niques could not be used here because the assumptions underlying those methods were rather

blatantly violated for this dataset. In our paper [10], we proposed a sampling model for RDS

that faithfully approximates the data collection process in this study. Our model is more compli-

cated than the usual models. We described a bootstrap-based method for estimating population

means from samples accrued according to this model.

Future Work: My future work interests are in several directions including relationship

between f -divergences, sub-optimality of non-linear least squares estimators when the input

dimension is high, minimax lower bounds using global entropy features for covariance matrix
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estimation, reconstruction of convex bodies from brightness functions and inference from RDS

data. More details are given below.

The f -divergences, like Kullback-Leibler, chi-squared, Hellinger etc., repeatedly appear in

mathematical statistics. In many arguments, one frequently needs to switch from one f -

divergence to another. It is therefore of interest to understand the precise inequalities that

exist between two arbitrary f -divergences. In [8, Corollary II.3], I proved a sharp inequality

between a symmetrized form of arbitrary f -divergences and total variation distance. Sharp

inequalities between f -divergences and total variation distance have been proved in [13]. I am

interested in extending these results to the case of two arbitrary f -divergences, as opposed to

total variation distance and one arbitrary f -divergence. I have promising partial results in this

direction.

I want to understand more deeply why some standard methods of estimation fail in high

dimensions. An example is the least squares estimator on the whole parameter space for the

estimation of convex bodies from noisy support function measurements which appears to become

sub-optimal (although not rigorously shown yet) when the input dimension d ≥ 5. Another

example is the maximum likelihood estimator for density estimation in the class of densities

with uniformly bounded second derivatives on [0, 1]d which becomes sub-optimal for d ≥ 4 (the

behavior with respect to the dimension d seems to be different in these two examples but it

is actually the same because the support functions are defined on the unit sphere which is of

dimension d− 1). Although there exist heuristic arguments (e.g., the entropy integral diverges

in high dimensions) and rigorous arguments in cleverly constructed parameter spaces [1, Section

4], I feel that the general phenomenon is not well understood.

I plan to continue working on minimax lower bounds, with special emphasis on modern

estimation problems including covariance matrix estimation and functional regression. One of

the major contributions of Yang and Barron [14] is that global entropy features of the parameter

space determine the minimax lower bounds in standard density and regression problems. In my

paper [8], I generalized their method and noted that this also holds for standard parametric

estimation. The current lower bound arguments for covariance estimation problems (e.g., [2,

3]) and functional regression (e.g., [4]), although much more involved than those for density

estimation and regression, are still of the local type (inspired by methods of Le Cam and Birge)

and I am interested in exploring if these lower bounds can also be obtained using global features

of the parameter space. The advantage of global methods over local methods is explained in

detail in Yang and Barron [14].

I am interested in nonparametric estimation problems that involve ideas from convex geom-

etry. One example is the problem of reconstruction of convex bodies from support functions
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that I described previously. A general source for such problems is the field of Geometric To-

mography [5], which deals with the reconstruction of geometric objects from data about its

projections or sections. For example, a basic problem in Geometric Tomography [5, Problem

4.12] is the problem of reconstruction of an (origin-symmetric) convex body from noisy mea-

surements of the area of the shadows of the body on hyperplanes. This can be viewed as a

nonparametric regression problem where the regression function is the brightness function of an

origin-symmetric convex body (brightness function gives the areas of the shadows of the body

on hyperplanes). Although some results are known for this problem e.g., consistent estimators

and some rates of convergence [6, Section 7], several issues are not yet resolved e.g., minimax

lower bounds, optimal rates of convergence in all dimensions, implementable algorithms for the

estimators achieving optimal rates, etc.

I am interested in developing inference methodology from data collected according to Re-

spondent Driven Sampling (RDS). Usually, while collecting RDS data from, say, drug users, it

is common practice to ask each subject the question: How many drug users do you know?. The

idea is that the answer to this question can be taken to be the degree of the subject in the pop-

ulation graph and knowledge of the degrees is necessary for population parameter estimation.

However, for the model that we considered in [10], degrees alone are not sufficient and more

information about the true graph is needed for accurate estimation. Consequently, we can either

work with the sample degrees alone and make assumptions about the true graph structure or

we can try to get more data from the subjects about the true graph. We took the first approach

in [10] and worked with a specific assumption about the true graph. The second option is still

unexplored and I hope to address it in future work.
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