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Lower bounds for the minimax risk using
f -divergences, and applications

Adityanand Guntuboyina

Abstract—Lower bounds involving f -divergences between the
underlying probability measures are proved for the minimax risk
in estimation problems. Our proofs just use simple convexity
facts. Special cases and straightforward corollaries of our bounds
include well known inequalities for establishing minimax lower
bounds such as Fano’s inequality, Pinsker’s inequality and
inequalities based on global entropy conditions. Two applications
are provided: a new minimax lower bound for the reconstruction
of convex bodies from noisy support function measurements
and a different proof of a recent minimax lower bound for the
estimation of a covariance matrix.

Index Terms—f -divergences; Fano’s inequality; Minimax
lower bounds; Pinsker’s inequality; Reconstruction from support
functions.

I. INTRODUCTION

CONSIDER an estimation problem in which we want
to estimate θ ∈ Θ based on an observation X from

{Pθ, θ ∈ Θ} where each Pθ is a probability measure on a
sample space X . Suppose that estimators are allowed to take
values in A ⊇ Θ and that the loss function is of the form
`(ρ) where ρ is a metric on A and ` : [0,∞) → [0,∞) is a
nondecreasing function. The minimax risk for this problem is
defined by

R := inf
θ̂

sup
θ∈Θ

Eθ`(ρ(θ, θ̂(X))),

where the infimum is over all measurable functions θ̂ : X → A
and the expectation is taken under the assumption that X is
distributed according to Pθ.

In this article, we are concerned with the problem of
obtaining lower bounds for the minimax risk R. Such bounds
are useful in assessing the quality of estimators for θ. The
standard approach to these bounds is to obtain a reduction
to the more tractable problem of bounding from below the
minimax risk of a multiple hypothesis testing problem. More
specifically, one considers a finite subset F of the parameter
space Θ and a real number η such that ρ(θ, θ′) ≥ η for
θ, θ′ ∈ F, θ 6= θ′ and employs the inequality R ≥ `(η/2)r,
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where
r := inf

T
sup
θ∈F

Pθ {T 6= θ} , (1)

the infimum being over all estimators T taking values in F .
The proof of this inequality relies on the triangle inequality
satisfied by the metric ρ and can be found, for example,
in [1, Page 1570, Proof of Theorem 1] (Let us note, for the
convenience of the reader, that the notation employed by Yang
and Barron [1] differs from ours in that they use d for the
metric ρ, εn,d for our η and Nεn,d for the finite set F . Also
the proof in [1] involves a positive constant A which can be
taken to be 1 for our purposes. The constant A arises because
Yang and Barron [1] do not require that d is a metric but rather
require it to satisfy a weaker local triangle inequality which
involves the constant A.)

The next step is to note that r is bounded from below by
Bayes risks. Let w be a probability measure on F . The Bayes
risk r̄w corresponding to the prior w is defined by

r̄w := inf
T

∑
θ∈F

wθPθ {T 6= θ} , (2)

where wθ := w {θ} and the infimum is over all estimators T
taking values in F . When w is the discrete uniform probability
measure on F , we simply write r̄ for r̄w. The trivial inequality
r ≥ r̄w implies that lower bounds for r̄w are automatically
lower bounds for r.

The starting point for the results described in this paper is
Theorem II.1, which provides a lower bound for r̄w involving
f -divergences of the probability measures Pθ, θ ∈ F . The
f -divergences ([2]–[5]) are a general class of divergences
between probability measures which include many common
divergences/distances like the Kullback Leibler divergence,
chi-squared divergence, total variation distance, Hellinger dis-
tance etc. For a convex function f : [0,∞) → R satisfying
f(1) = 0, the f -divergence between two probabilities P and
Q is given by

Df (P ||Q) :=
∫
f

(
dP

dQ

)
dQ

if P is absolutely continuous with respect to Q and ∞
otherwise.

Our proof of Theorem II.1 presented in section II is ex-
tremely simple. It just relies on the convexity of the function
f and the standard result that r̄w has the following exact
expression:

r̄w = 1−
∫
X

max
θ∈F
{wθpθ(x)} dµ(x), (3)
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where pθ denotes the density of Pθ with respect to a common
dominating measure µ (for example, one can take µ :=∑
θ∈F Pθ).
We show that Fano’s inequality is a special case (see

Example II.4) of Theorem II.1, obtained by taking f(x) =
x log x. Fano’s inequality is used extensively in the non-
parametric statistics literature for obtaining minimax lower
bounds, important works being [1], [6]–[11]. In the special
case when F has only two points, Theorem II.1 gives a sharp
inequality relating the total variation distance between two
probability measures to f -divergences (see Corollary II.3).
When f(x) = x log x, Corollary II.3 implies an inequality
due to Topsøe [12] from which Pinsker’s inequality can be
derived. Thus Theorem II.1 can be viewed as a generalization
of both Fano’s inequality and Pinsker’s inequality.

The bound given by Theorem II.1 involves the quantity
Jf := infQ

∑
θ∈F Df (Pθ||Q)/|F |, where the infimum is over

all probability measures Q and |F | denotes the cardinality
of the finite set F . It is usually not possible to calculate Jf
exactly and in section III, we provide upper bounds for Jf .
The main result of this section, Theorem III.1, provides an
upper bound for Jf based on approximating the set of |F |
probability measures {Pθ, θ ∈ F} by a smaller set of probabil-
ity measures. This result is motivated by and a generalization
to f -divergences of a result of Yang and Barron [1] for the
Kullback-Leibler divergence.

In section IV, we use the inequalities proved in sections II
and III to obtain minimax lower bounds involving only global
metric entropy attributes. Of all the lower bounds presented in
this paper, Theorem IV.1, the main result of section IV, is the
most application-ready method. In order to apply this in a par-
ticular situation, one only needs to determine suitable bounds
on global covering and packing numbers of the parameter
space Θ and the space of probability measures {Pθ, θ ∈ Θ}
(see section V for an application).

Although the main results of sections II and III hold true
for all f -divergences, Theorem IV.1 is stated only for the
Kullback-Leibler divergence, chi-squared divergence and the
divergences based on f(x) = xl − 1 for l > 1. The reason
behind this is that Theorem IV.1 is intended for applications
where it is usually the case that the underlying probability
measures Pθ are product measures and divergences such as
the Kullback-Leibler divergence and chi-squared divergence
can be computed for product probability measures.

The inequalities given by Theorem IV.1 for the chi-squared
divergence and divergences based on f(x) = xl − 1 for
l > 1 are new while the inequality for the Kullback-Leibler
divergence is due to Yang and Barron [1]. There turn out to be
qualitative differences between these inequalities in the case of
estimation problems involving finite dimensional parameters
where the inequality based on chi-squared divergence gives
minimax lower bounds having the optimal rate while the one
based on the Kullback-Leibler divergence only results in sub-
optimal lower bounds. We shall explain this happening in
section IV by means of elementary examples.

We shall present two applications of our bounds. In sec-
tion V, we shall prove a new lower bound for the minimax risk
in the problem of estimation/reconstruction of a d-dimensional

convex body from noisy measurements of its support function
in n directions. In section VI, we shall provide a different proof
of a recent result by Cai, Zhang and Zhou [13] on covariance
matrix estimation.

II. LOWER BOUNDS FOR THE TESTING RISK r̄w

We shall prove a lower bound for r̄w defined in (2) in
terms of f -divergences. We shall assume that the N := |F |
probability measures Pθ, θ ∈ F are all dominated by a sigma
finite measure µ with densities pθ, θ ∈ F . In terms of these
densities, r̄w has the exact expression given in (3). A trivial
consequence of (3) that we shall often use in the sequel is that
r̄ ≤ 1 − 1/N (recall that r̄ is r̄w in the case when w is the
uniform probability measure on F ).

Theorem II.1. Let w be a probability measure on F . Define
T : X → F by T (x) := arg maxθ∈F {wθpθ(x)}, where wθ :=
w {θ}. For every convex function f : [0,∞) → R and every
probability measure Q on X , we have∑
θ∈F

wθDf (Pθ||Q) ≥Wf

(
1− r̄w
W

)
+(1−W )f

(
r̄w

1−W

)
,

(4)
where W :=

∫
X wT (x)dQ(x). In particular, taking w to be

the uniform probability measure, we get that∑
θ∈F

Df (Pθ||Q) ≥ f (N(1− r̄)) + (N − 1)f
(

Nr̄

N − 1

)
. (5)

The proof of this theorem relies on a simple application of
the convexity of f and it is presented below.

Proof: We may assume that all the weights wθ are strictly
positive and that the probability measure Q has a density q
with respect to µ. We start with a simple inequality for non-
negative numbers aθ, θ ∈ F with τ := arg maxθ∈F {wθaθ}.
We first write∑

θ∈F

wθf(aθ) = wτf(aτ ) + (1− wτ )
∑
θ 6=τ

wθ
1− wτ

f(aθ)

and then use the convexity of f to obtain that the quantity∑
θ wθf(aθ) is bounded from below by

wτf(aτ ) + (1− wτ )f
(∑

θ∈F wθaθ − wτaτ
1− wτ

)
.

We now fix x ∈ X such that q(x) > 0 and apply the inequality
just derived to aθ := pθ(x)/q(x). Note that in this case τ =
T (x). We get that∑

θ∈F

wθf

(
pθ(x)
q(x)

)
≥ A(x) +B(x), (6)

where

A(x) := wT (x)f

(
pT (x)(x)
q(x)

)
and

B(x) := (1− wT (x))f
(∑

θ∈F wθpθ(x)− wT (x)pT (x)(x)
(1− wT (x))q(x)

)
.
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Integrating inequality (6) with respect to the probability mea-
sure Q, we get that the term

∑
θ∈F wθDf (Pθ||Q) is bounded

from below by∫
X
A(x)q(x)dµ(x) +

∫
X
B(x)q(x)dµ(x).

Let Q′ be the probability measure on X having the density
q′(x) := wT (x)q(x)/W with respect to µ. Clearly∫

X
A(x)q(x)dµ(x) = W

∫
X
f

(
pT (x)(x)
q(x)

)
q′(x)dµ(x),

which, by Jensen’s inequality, is larger than or equal to
Wf((1− r̄w)/W ). It follows similarly that∫

X
B(x)q(x)dµ(x) ≥ (1−W )f

(
r̄w

1−W

)
.

This completes the proof of inequality (4). When w is the
uniform probability measure on the finite set F , it is obvious
that W equals 1/N and this leads to inequality (5).

Let us denote the function of r̄ on the right hand side of (5)
by g:

g(a) := f (N(1− a)) + (N − 1)f
(

Na

N − 1

)
. (7)

Inequality (5) provides an implicit lower bound for r̄. This is
because r̄ ∈ [0, 1 − 1/N ] and g is non-increasing on [0, 1 −
1/N ] (as can be seen in the proof of the next corollary in the
case when f is differentiable; if f is not differentiable, one
needs to work with right and left derivatives which exist for
convex functions).

The convexity of f also implies trivially that g is convex,
which can be used to convert the implicit bound (5) into an
explicit lower bound. This is the content of the following
corollary. We assume differentiability for convenience; to
avoid working with one-sided derivatives.

Corollary II.2. Suppose that f : [0,∞) is a differentiable
convex function and that g is defined as in (7). Then, for every
a ∈ [0, 1− 1/N ], we have

r ≥ r̄ ≥ a+
infQ

∑
θ∈F Df (Pθ||Q)− g(a)

g′(a)
, (8)

where the infimum is over all probability measures Q.

Proof: Fix a probability measure Q. Inequality (5) says
that

∑
θ∈F Df (Pθ||Q) ≥ g(r̄). The convexity of f implies

that g is also convex and hence, for every a ∈ [0, 1 − 1/N ],
we can write∑

θ∈F

Df (Pθ||Q) ≥ g(r̄) ≥ g(a) + g′(a)(r̄ − a). (9)

Also,
g′(a)
N

= f ′
(

Na

N − 1

)
− f ′ (N(1− a)) .

Because g is convex, we have g′(a) ≤ g′(1 − 1/N) = 0
for a ≤ 1 − 1/N (this proves that g is non-increasing on
[0, 1−1/N ]). Therefore, by rearranging (9), we obtain (8).

Let us now provide an intuitive understanding of inequal-
ity (5). When the probability measures Pθ, θ ∈ F are tightly

packed i.e., when they are close to one another, it is hard to
distinguish between them (based on the observation X) and
hence, the testing Bayes risk r̄ will be large. On the other
hand, when the probability measures are well spread out, it is
easy to distiguish between them and therefore, r̄ will be small.
Indeed, r̄ takes on its maximum value of 1 − 1/N when the
probability measures Pθ, θ ∈ F are all equal to one another
and it takes on its smallest value of 0 when max pθ =

∑
pθ

i.e., when Pθ, θ ∈ F are all mutually singular.
Now, one way of measuring how packed/spread out the

probability measures Pθ, θ ∈ F are is to consider the quantity
infQ

∑
θ∈F Df (Pθ||Q), which is small when the probabilities

are tightly packed and large when they are spread out. It
is therefore reasonable to expect a connection between this
quantity and r̄. Inequality (5) makes this connection explicit
and precise. The fact that the function g in (7) is non-
increasing means that when infQ

∑
θ∈F Df (Pθ||Q) is small,

the lower bound on r̄ implied by (5) is large and when
infQ

∑
θ∈F Df (Pθ||Q) is large, the lower bound on r̄ is small.

Theorem II.1 implies the following corollary which provides
sharp inequalities between total variation distance and f -
divergences. The total variation distance between two prob-
ability measures is defined as half the L1 distance between
their densities.

Corollary II.3. Let P1 and P2 be two probability measures on
a space X with total variation distance V . For every convex
function f : [0,∞)→ R, we have

inf
Q

(Df (P1||Q) +Df (P2||Q)) ≥ f (1 + V ) + f (1− V ) ,

(10)
where the infimum is over all probability measures Q. More-
over this inequality is sharp in the sense that for every
V ∈ [0, 1], the infimum of the left hand side of (10) over all
probability measures P1 and P2 with total variation distance
V equals the right hand side of (10).

Proof: In the setting of Theorem II.1, suppose that
F = {1, 2} and that the two probability measures are P1 and
P2 with densities p1 and p2 respectively. Since 2 max(p1, p2)
equals p1 + p2 + |p1 − p2|, it follows that 2r̄ equal 1 − V .
Inequality (10) is then a direct consequence of inequality (5).

The following example shows that (10) is sharp. Fix
V ∈ [0, 1]. Consider the space X = {1, 2} and define the
probabilities P1 and P2 by P1 {1} = P2 {2} = (1 + V )/2
and of course P1 {2} = P2 {1} = (1 − V )/2. Then the
total variation distance between P1 and P2 equals V . Also
if we take Q to be the uniform probability measure Q {1} =
Q {2} = 1/2, then one sees that Df (P1||Q) + Df (P2||Q)
equals f(1 + V ) + f(1− V ) which is same as the right hand
side in (10).

What we have actually shown in the above proof is that
inequality (10) is sharp for the space X = {1, 2}. However,
the result holds in more general spaces as well. For example,
if the space is such that there exist two disjoint nonempty
subsets A1 and A2 and two probability measures ν1 and ν2

concentrated on A1 and A2 respectively, then we can define
P1 := ν1(1 + V )/2 + ν2(1− V )/2 and P2 := ν1(1− V )/2 +
ν2(1 + V )/2 so that V (P1, P2) = V and (10) becomes an
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equality (with Q = ν1/2 + ν2/2).
There exist many inequalities in the literature relating the f -

divergence of two probability measures to their total variation
distance. We refer the reader to [15] for the sharpest results
in this direction and for earlier references. Inequality (10),
which is new, can be trivially converted into an inequality
between Df (P1||P2) and V by taking Q = P2. The resulting
inequality will not be sharp however and hence will be inferior
to the inequalities in [15]. As stated, inequality (10) is a sharp
inequality relating not Df (P1||P2) but a symmetrized form
of f -divergence between P1 and P2 to their total variation
distance.

In the remainder of this section, we shall apply Theorem II.1
and Corollary II.3 to specific f -divergences.

Example II.4 (Kullback-Leibler Divergence). Let f(x) :=
x log x. Then Df (P ||Q) becomes the Kullback-Leibler
divergence D(P ||Q) between P and Q. The quantity∑
θ∈F D(Pθ||Q) is minimized when Q = P̄ :=

(
∑
θ∈F Pθ)/N . This is a consequence of the following identity

which is sometimes referred to as the compensation identity,
see for example [12, Page 1603]:∑

θ∈F

D(Pθ||Q) =
∑
θ∈F

D(Pθ||P̄ ) +ND(P̄ ||Q).

Using inequality (5) with Q = P̄ = (
∑
θ∈F Pθ)/N , we obtain

1
N

∑
θ∈F

D(Pθ||P̄ ) ≥ (1− r̄) log(N(1− r̄)) + r̄ log
(

Nr̄

N − 1

)
.

The quantity on the left hand side is known as the Jensen-
Shannon divergence. It is also Shannon’s mutual informa-
tion [16, Page 19] between the random parameter θ distributed
according to the uniform distribution on F and the obser-
vation X whose conditional distribution given θ equals Pθ.
The above inequality is stronger than the version of Fano’s
inequality commonly used in nonparametric statistics. It is
implicit in [17, Proof of Theorem 1] and is explicitly stated
in a slightly different form in [18, Theorem 3]. The proof
in [17] is based on the Fano’s inequality from information
theory [16, Theorem 2.10.1]. To obtain the usual form of
Fano’s inequality as used in statistics, we turn to inequality (8).
For a0 := (N − 1)/(2N − 1) ≤ 1− 1/N and the function g
in (7), it can be checked that

g(a0) =
N2

2N − 1
logN +N log

(
N

2N − 1

)
and g′(a0) = −N logN . Using inequality (8) with a = a0,
we get that

r̄ ≥ 1−
log((2N − 1)/N) + 1

N

∑
θ∈F D(Pθ||P̄ )

logN
.

Since log((2N − 1)/N) ≤ log 2, we have obtained

r ≥ r̄ ≥ 1−
log 2 + 1

N

∑
θ∈F D(Pθ||P̄ )

logN
, (11)

which is the commonly used version of Fano’s inequality.
By taking f(x) = x log x in Corollary II.3, we get that

D(P1||P̄ )+D(P2||P̄ ) ≥ (1+V ) log(1+V )+(1−V ) log(1−V ).

This inequality relating the Jensen-Shannon divergence be-
tween two probability measures (also known as capacitory
discrimination) to their total variation distance is due to
Topsøe [12, Equation (24)]. Our proof is slightly simpler
than Topsøe’s. Topsøe [12] also explains how to use this
inequality to deduce Pinsker’s inequality with sharp constant:
D(P1||P2) ≥ 2V 2. Thus, Theorem II.1 can be considered
as a generalization of both Fano’s inequality and Pinsker’s
inequality to f -divergences.

Example II.5 (Chi-Squared Divergence). Let f(x) = x2 −
1. Then Df (P ||Q) becomes the chi-squared divergence
χ2(P ||Q) :=

∫
p2/q − 1. The function g can be easily seen

to satisfy

g(a) =
N3

N − 1

(
1− 1

N
− a
)2

≥ N2

(
1− 1

N
− a
)2

.

Because r̄ ≤ 1 − 1/N , we can invert the inequality
infQ

∑
θ∈F χ

2(Pθ||Q) ≥ g(r̄) to obtain

r ≥ r̄ ≥ 1− 1
N
− 1√

N

√
infQ

∑
θ∈F χ

2(Pθ||Q)
N

. (12)

Also it follows from Corollary II.3 that for every two proba-
bility measures P1 and P2,

inf
Q

(
χ2(P1||Q) + χ2(P2||Q)

)
≥ 2V 2. (13)

The weaker inequality χ2(P1||P̄ ) +χ2(P2||P̄ ) ≥ 2V 2 can be
found in [12, Equation (11)].

Example II.6 (Hellinger Distance). Let f(x) = 1 −
√
x.

Then Df (P ||Q) = 1 −
∫ √

pqdµ = H2(P,Q)/2, where
H2(P,Q) =

∫
(
√
p − √q)2dµ is the square of the Hellinger

distance between P and Q. It can be shown, using the Cauchy-
Schwarz inequality, that

∑
θ∈F Df (Pθ||Q) is minimized when

Q has a density with respect to µ that is proportional to
(
∑
θ∈F
√
pθ)2. Indeed if u :=

∑
θ∈F
√
pθ, then

∑
θ∈F

Df (Pθ||Q) = N −
∫ √

qu2dµ ≥ N −

√∫
u2dµ,

by the Cauchy-Schwarz inequality with equality when q is
proportional to u2. The inequality (5) can then be simplified
to

√
1− r̄ +

√
(N − 1)r̄ ≥

√∫
u2dµ

N
. (14)

We now observe that∫
u2dµ = N+

∑
θ 6=θ′

∫
√
pθpθ′dµ = N2− 1

2

∑
θ 6=θ′

H2(Pθ, Pθ′).

We let h2 :=
∑
θ,θ′ H

2(Pθ, Pθ′)/N2 so that
∫
u2dµ =

N2(1 − h2/2). As a consequence, we have
∫
u2dµ ≤ N2.

Also note that
∫
u2dµ ≥

∫
(
∑
θ pθ)dµ = N . Therefore, the

right hand side of the inequality (14) lies between 1 and
√
N .

On the other hand, it can be checked that, as a function of r̄,
the left hand side of (14) is strictly increasing from 1 at r̄ = 0
to
√
N at r̄ = 1−1/N . It therefore follows that inequality (14)

is equivalent to r̄ ≥ r̆ where r̆ ∈ [0, 1− 1/N ] is the solution
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to the equation obtained by replacing the inequality in (14)
with an equality.

This equation can be solved in the usual way by squaring
etc., until we get a quadratic equation in r̄ which can be solved
resulting in two solutions. One of the two solutions can be
discarded by continuity considerations (the solution has to be
continuous in

∫
u2dµ/N ) and the fact that r̄ ≤ 1− 1/N . The

other solution equals r̆ and is given by

r̆ = 1− 1
N
− N − 2

N

h2

2
−
√
N − 1
N

√
h2(2− h2).

We have thus shown that

r ≥ r̄ ≥ 1− 1
N
− N − 2

N

h2

2
−
√
N − 1
N

√
h2(2− h2).

In the case when N = 2 and F = {1, 2}, it is clear that
h2 = (H2(P1, P2) + H2(P2, P1))/4 = H2(P1, P2)/2. Also
since 2r̄ equals 1 − V , where V denotes the total variation
distance between P1 and P2, the above inequality implies that
for every pair of probability measures P1 and P2, we have

V ≤ H(P1, P2)

√
1− H2(P1, P2)

4
.

This inequality is usually attributed to Le Cam [19].

Example II.7 (Total Variation Distance). Let f(x) = |x −
1|/2. Then Df (P ||Q) becomes the total variation distance
between P and Q. The function g satisfies

g(r̄) =
1
2
|N(1− r̄)− 1|+ N − 1

2

∣∣∣∣ Nr̄

N − 1
− 1
∣∣∣∣ .

Since r̄ ≤ 1 − 1/N , we have N(1 − r̄) ≥ 1 and Nr̄/(N −
1) ≤ 1 so that the above expression for g(r̄) simplifies to
N − 1−Nr̄. Inequality (5), therefore, results in

r ≥ r̄ ≥ 1− 1
N
−

infQ
∑
θ∈F Vθ

N
.

where Vθ denotes the total variation distance between Pθ and
Q.

Example II.8. Let f(x) = xl−1 where l > 1. The case l = 2
has already been considered in Example II.5. The function g
has the expression

g(r̄) = N l(1− r̄)l −N + (N − 1)
(

Nr̄

N − 1

)l
.

It therefore follows that infQ
∑
θ∈F Df (Pθ||Q) ≥ g(r̄) ≥

N l(1− r̄)l −N which results in the inequality

r ≥ r̄ ≥ 1−
(

1
N l−1

+
infQ

∑
θ∈F Df (Pθ||Q)
N l

)1/l

. (15)

When l = 2, inequality (15) results in a bound that is weaker
than inequality (12) although for large N , the two bounds are
almost the same.

Example II.9 (Reverse Kullback-Leibler divergence). Let
f(x) = − log x so that Df (P ||Q) = D(Q||P ). Then from
Corollary II.3, we get that for every two probability measures
P1 and P2,

inf
Q
{D(Q||P1) +D(Q||P2)} ≥ log

(
1

1− V 2

)
.

This can be rewritten to get

V ≤

√
1− exp

(
− inf

Q
{D(Q||P1) +D(Q||P2)}

)
. (16)

Unlike Example II.4, it is not true that D(Q||P1) +D(Q||P2)
is minimized when Q = P̄ . This is easy to see because
D(P̄ , P1) + D(P̄ , P2) is finite only when P1 << P2 and
P2 << P1. By taking Q = P1 and Q = P2, we get that

V ≤
√

1− exp (−min (D(P1||P2), D(P2||P1))).

The above inequality, which is clearly weaker than inequal-
ity (16), can also be found in [20, Proof of Lemma 2.6].

III. BOUNDS FOR Jf

In order to apply the minimax lower bounds of the previous
section in practical situations, we must be able to bound the
quantity Jf := infQ

∑
θ∈F Df (Pθ||Q)/N from above. We

shall provide such bounds in this section. It should be noted
that for some functions f , it may be possible to calculate Jf
directly. For example, the quantity infQ

∑
θ∈F H

2(Pθ, Q) can
be written in terms of pairwise Hellinger distances (Exam-
ple II.6) and may be calculated exactly for certain probability
measures Pθ. This is not the case for most functions f
however.

The following is a simple upper bound for Jf which, in
the case when f(x) = x log x or Kullback-Leibler divergence,
has been frequently used in the literature (see for example [10]
and [21]).

Jf ≤
1
N

∑
θ∈F

Df (Pθ||P̄ )

≤ 1
N2

∑
θ,θ′∈F

Df (Pθ||Pθ′) ≤ max
θ,θ′∈F

Df (Pθ||Pθ′).

We observed in section II that Jf measures the spread
of the probability measures Pθ, θ ∈ F i.e., how tightly
packed/spread out they are. It should be clear that the simple
bound maxθ,θ′ Df (Pθ||Pθ′) does not adequately describe this
aspect of Pθ, θ ∈ F and it is therefore desirable to look for
alternative upper bounds for Jf that capture the notion of
spread in a better way.

In the case of the Kullback-Leibler divergence, Yang and
Barron [1, Page 1571] provided such an upper bound for
Jf . They showed that for any finite set {Qα : α ∈ G} of
probability measures,

1
N

∑
θ∈F

D(Pθ||P̄ ) ≤ log |G|+ max
θ∈F

min
α∈G

D(Pθ||Qα). (17)

Let us now take a closer look at this beautiful inequality of
Yang and Barron [1]. The |G| probability measures Qα, α ∈
G can be viewed as an approximation of the N probability
measures Pθ, θ ∈ F . The term maxθ minαD(Pθ||Qα) then
denotes the approximation error, measured via the Kullback-
Leibler divergence. The right hand side of inequality (17) can
therefore be made small if it is possible to choose not too
many probability measures Qα which well approximate the
given set of probability measures Pθ.
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It should be clear how the upper bound (17) measures
the spread of the probability measures Pθ, θ ∈ F . If the
probabilities are tightly packed, it is possible to approximate
them well with a smaller set of probabilities and then the
bound will be small. On the other hand, if Pθ, θ ∈ F
are well spread out, we need more probability measures for
approximation and consequently the bound will be large.

Another important aspect of inequality (17) is that it can be
used to obtain lower bounds for R depending only on global
metric entropy properties of the parameter space Θ and the
space of probability measures {Pθ, θ ∈ Θ} (see section IV).
On the other hand, the evaluation of inequalities resulting
from the use of Jf ≤ maxθ,θ′ D(Pθ||Pθ′) requires knowledge
of both metric entropy and the existence of certain special
localized subsets. We refer the reader to [1] for a detailed
discussion of these issues.

The goal of this section is to generalize inequality (17) to
f -divergences. The main result is given below. In section IV,
we shall use this theorem along with the results of the previous
section to come up with minimax lower bounds involving
global entropy properties.

Theorem III.1. Let Qα, α ∈ G be M := |G| probability
measures having densities qα, α ∈ G with respect to µ and
let j : F → G be a mapping from F to G. For every convex
function f : [0,∞)→ R, we have

Jf ≤
1
N

∑
θ∈F

∫
X

qj(θ)

M
f

(
Mpθ
qj(θ)

)
dµ+

(
1− 1

M

)
f(0). (18)

Proof: Let Q̄ :=
∑
α∈GQα/M and q̄ :=

∑
α∈G qα/M .

Clearly for each θ ∈ F , we have

Df (Pθ||Q̄) =
∫
X
q̄

[
f

(
pθ
q̄

)
− f(0)

]
dµ+ f(0).

The convexity of f implies that the map y 7→ y[f(a/y)−f(0)]
is non-increasing for every nonnegative a. Using this and the
fact that q̄ ≥ qj(θ)/M , we get that for every θ ∈ F ,

Df (Pθ||Q̄) ≤
∫
X

qj(θ)

M

[
f

(
Mpθ
qj(θ)

)
− f(0)

]
dµ+ f(0).

Inequality (18) now follows as a consequence of the inequality
Jf ≤

∑
θ∈F Df (Pθ||Q̄)/N .

In the following examples, we shall demonstrate that The-
orem III.1 is indeed a generalization of the bound (17) to
f -divergences. We shall also see that Theorem III.1 results in
inequalities that have the same qualitative structure as (17), at
least for the convex functions f of interest such as xl−1, l > 1
and (

√
x− 1)2.

Example III.2 (Kullback-Leibler divergence). Let f(x) =
x log x. In this case, Jf equals

∑
θ∈F D(Pθ||P̄ )/N and in-

voking inequality (18), we get that

1
N

∑
θ∈F

D(Pθ||P̄ ) ≤ logM +
1
N

∑
θ∈F

D(Pθ||Qj(θ)).

Inequality (17) now follows if we choose j(θ) :=
arg minα∈GD(Pθ||Qα). Hence Theorem III.1 is indeed a
generalization of (17).

Example III.3. Let f(x) = xl − 1 for l > 1. Applying
inequality (18), we get that

Jf ≤M l−1

(
1
N

∑
θ∈F

Df (Pθ||Qj(θ)) + 1

)
− 1.

By choosing j(θ) = arg minα∈GDf (Pθ||Qα), we get that

Jf ≤M l−1

(
max
θ∈F

min
α∈G

Df (Pθ||Qα) + 1
)
− 1. (19)

In particular, in the case of the chi-squared divergence i.e.,
when l = 2, the quantity Jf = infQ

∑
θ∈F χ

2(Pθ||Q)/N is
bounded from above by

M

(
max
θ∈F

min
α∈G

χ2(Pθ||Qα) + 1
)
− 1. (20)

Just like (17), each of the above two inequalities is also a
function of the number of probability measures Qα and the
approximation error which is now measured in terms of the
chi-squared divergence.

Example III.4 (Hellinger distance). Let f(x) = (
√
x − 1)2

so that Df (P ||Q) = H2(P,Q), the square of the Hellinger
distance between P and Q. Using inequality (18), we get that

Jf ≤ 2− 1√
M

(
2− 1

N

∑
θ∈F

H2(Pθ, Qj(θ))

)
.

If we now choose j(θ) := arg minα∈GH2(Pθ, Qα), then we
get

Jf ≤ 2− 1√
M

(
2−max

θ∈F
min
α∈G

H2(Pθ, Qα)
)
.

Notice, once again, the trade-off between M and the approx-
imation error which is measured in terms of the Hellinger
distance.

IV. BOUNDS INVOLVING GLOBAL ENTROPY

In this section, we shall apply the results of the previous
two sections to obtain lower bounds for the minimax risk R
depending only on global metric entropy properties of the
parameter space. The theorem is stated below, but we shall
need to establish some notation first.

1) For η > 0, let N(η) ≥ 1 be a real number for which
there exists a finite subset F ⊆ Θ with cardinality ≥
N(η) satisfying ρ(θ, θ′) ≥ η whenever θ, θ′ ∈ F and
θ 6= θ′. In other words, N(η) is a lower bound on the
η-packing number of the metric space (Θ, ρ).

2) For a convex function f : [0,∞) → R satisfying
f(1) = 0, a subset S ⊆ Θ and a positive real
number ε, let Mf (ε, S) be a positive real number
for which there exists a finite set G with cardinality
≤ Mf (ε, S) and probability measures Qα, α ∈ G such
that supθ∈S minα∈GDf (Pθ||Qα) ≤ ε2. In other words,
Mf (ε, S) is an upper bound on the ε-covering number
of the space {Pθ : θ ∈ S} when distances are measured
by the square root of the f -divergence. For purposes of
clarity, we write MKL(ε, S),MC(ε, S) and Ml(ε, S) for
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Mf (ε, S) when the function f equals x log x, x2−1 and
xl − 1 and respectively.

We note here that the probability measures Qα, α ∈ G in the
definition of Mf (ε, S) do not need to be included in the set
{Pθ, θ ∈ Θ} and the set G just denotes the index set and need
not have any relation to S or Θ.

Theorem IV.1. The minimax risk R satisfies the inequality
R ≥ supη>0,ε>0 `(η/2)(1− ?) where ? stands for any of the
following quantities

log 2 + logMKL(ε,Θ) + ε2

logN(η)
(21)

1
N(η)

+

√
(1 + ε2)MC(ε,Θ)

N(η)
(22)

and for l > 1, l 6= 2,(
1

N(η)l−1
+

(1 + ε2)Ml(ε,Θ)l−1

N(η)l−1

)1/l

. (23)

In the sequel, by inequality (22), we mean the inequality
R ≥ supη>0,ε>0 `(η/2)(1 − ?) with ? representing (22) and
similarly for inequalities (21) and (23).

Proof: We shall give the proof of inequality (22). The
remaining two inequalities are proved in a similar manner. Fix
η > 0. By the definition of N(η), one can find a finite subset
F ⊂ Θ with cardinality |F | ≥ N(η) such that ρ(θ, θ′) ≥ η
for θ, θ′ ∈ F and θ 6= θ′. We then employ the inequality
R ≥ `(η/2)r, where r is defined as in (1). Inequality (12) can
now be used to obtain

r ≥ 1− 1√
|F |

√
infQ

∑
θ∈F χ

2(Pθ||Q)
|F |

− 1
|F |

.

We now fix ε > 0 and use the definition of MC(ε, F ) to get
a finite set G with cardinality ≤ MC(ε, F ) and probability
measures Qα, α ∈ G such that supθ∈S minα∈G χ2(Pθ||Qα) ≤
ε2. We then use inequality (20) to get that

inf
Q

1
|F |

∑
θ∈F

χ2(Pθ||Q) ≤MC(ε, F )
(
1 + ε2

)
− 1.

The proof is complete by the trivial observation MC(ε, F ) ≤
MC(ε,Θ).

The inequality (21) is due to Yang and Barron [1, Proof
of Theorem 1]. In their paper, Yang and Barron mainly
considered the problem of estimation from n independent
and identically distributed observations. However their method
results in inequality (21) which applies to every estimation
problem. Inequalities (22) and (23) are new.

Note that the lower bounds for R given in Theorem IV.1
all depend only on the quantities N(η) and Mf (ε,Θ), which
describe packing/covering properties of the entire parame-
ter space Θ. Consequently, these inequalities only involve
global metric entropy properties. This is made possible by
the use of inequalities in Theorem III.1. In applications
of Fano’s inequality (11) with the standard bound Jf ≤
maxθ,θ′∈F D(Pθ||Pθ′) as well as in the application of other
popular methods for obtaining minimax lower bounds like Le
Cam’s method or Assouad’s lemma, one needs to construct

the finite subset F of the parameter space in a very special
way: the parameter values in F should be reasonably separated
in the metric ρ and also, the probability measures Pθ, θ ∈ F
should be close in some probability metric. In contrast, the
application of Theorem IV.1 does not require the construction
of such a special subset F .

Yang and Barron [1] have successfully applied inequal-
ity (21) to achieve minimax lower bounds of the optimal
rate for many nonparametric density estimation and regression
problems where N(η) and MKL(ε,Θ) can be deduced from
standard results in approximation theory for function classes.
We refer the reader to [1] for examples. In some of these
examples, inequality (22) can also be applied to get optimal
lower bounds. In section V, we shall employ inequality (22)
to obtain a new minimax lower bound in the problem of
reconstructing convex bodies from noisy support function
measurements.

But prior to that, let us assess the performance of inequal-
ity (22) in certain standard parametric estimation problems.
In these problems, an interesting contrast arises between the
two minimax lower bounds (21) and (22): the inequality (21)
only results in a sub-optimal lower bound on the minimax risk
(this observation, due to Yang and Barron [1, Page 1574], is
also explained in Example IV.2 below) while (22) produces
rate-optimal lower bounds.

Our intention here is to demonstrate, with the help of the
subsequent three examples, that inequality (22) works even for
finite dimensional parametric estimation problems, a scenario
in which it is already known [1, Page 1574] that inequality (21)
fails. Of course, obtaining optimal minimax rates in such
problems is facile in most situations. For example, a two-points
argument based on Hellinger distance gives the optimal rate, as
is widely recognized since Le Cam [22]. But the point here is
that even in finite dimensional situations, global metric entropy
features are adequate for obtaining rate-optimal minimax lower
bounds. This is contrary to the usual claim that in order to
establish rate-optimal lower bounds in parametric settings, one
needs more information than global entropy characteristics [1,
Page 1574].

In each of the ensuing three examples, we take the parameter
space Θ to be a bounded interval of the real line and we
consider the problem of estimating a parameter θ ∈ Θ from n
independent observations distributed according to mθ, where
mθ is a probability measure on the real line. The probability
measure Pθ accordingly equals the n-fold product of mθ. We
shall work with the squared error loss so that `(x) = x2, ρ is
the Euclidean distance on the real line and N(η) can be taken
to c1/η for η ≤ η0 where c1 and η0 are positive constants
depending on the bounded parameter space alone. We shall
encounter more positive constants c, c2, c3, c4, c5, ε0 and ε1 in
the examples all of which depend possibly on the parameter
space alone and thus, independent of n.

Example IV.2. Suppose that mθ equals the normal distribution
with mean θ and variance 1. It can be readily verified that, for
θ, θ′ ∈ Θ, one has

D(Pθ||Pθ′) =
n

2
|θ − θ′|2
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and
χ2(Pθ||Pθ′) = exp

(
n|θ − θ′|2

)
− 1.

It follows directly that D(Pθ||Pθ′) ≤ ε2 if and only if |θ−θ′| ≤√
2ε/
√
n and χ2(Pθ||Pθ′) ≤ ε2 if and only if |θ − θ′| ≤√

log(1 + ε2)/
√
n. As a result, we can take

MKL(ε,Θ) =
c2
√
n

ε
and MC(ε,Θ) =

c2
√
n√

log(1 + ε2)
(24)

for ε ≤ ε0. Now, inequality (21) says that the minimax risk
Rn satisfies

Rn ≥ sup
η≤η0,ε≤ε0

η2

4

(
1− log 2 + log(c2

√
n/ε) + ε2

log(c1/η)

)
.

The function ε 7→ ε2 − log ε is minimized on [0, ε0] at, say,
ε = ε1 and we then get

Rn ≥ sup
η≤η0

η2

4

(
1− log n+ c3

2 log c1 + 2 log(1/η)

)
, (25)

where c3 is a function of c2 and ε1. We now note that when
η = c/

√
n for a constant c, the quantity inside the parantheses

on the right hand side of (25) converges to 0 as n goes to ∞.
This means that inequality (21) only gives lower bounds of
inferior order for Rn, the optimal order being, of course, 1/n.

On the other hand, we shall show below that inequality (22)
gives Rn ≥ c/n for a positive constant c. Indeed, inequal-
ity (22) says that

Rn ≥ sup
η≤η0,ε≤ε0

η2

4

(
1− η

c1
−
√
η
√
n

√
c2(1 + ε2)

c1
√

log(1 + ε2)

)
.

Taking ε = ε0 and η = c3/
√
n, we get

Rn ≥
c23
4n

(
1− c3

c1
√
n
− c4
√
c3

)
, (26)

where c4 depends only on c1, c2 and ε0. Hence by choosing
c3 small, we get that Rn ≥ c/n for all large n.

Example IV.3. Suppose that Θ is a compact interval of the
positive real line that is bounded away from zero and suppose
that mθ denotes the uniform distribution on [0, θ]. It is then
elementary to check that the chi-squared divergence between
Pθ and Pθ′ equals (θ′/θ)n − 1 if θ ≤ θ′ and ∞ otherwise. It
follows accordingly that χ2(Pθ||Pθ′) ≤ ε2 provided

0 ≤ θ′ − θ ≤ θ log(1 + ε2)
n

. (27)

Because the parameter space is a compact interval bounded
away from zero, in order to ensure (27), it is enough to require
that 0 ≤ θ′ − θ ≤ c2 log(1 + ε2)/n. Therefore, we can take

MC(ε,Θ) =
c3n

log(1 + ε2)

for ε ≤ ε0. Inequality (22) now implies that

Rn ≥ sup
η≤η0,ε≤ε0

η2

4

(
1− η

c1
−√ηn

√
c3(1 + ε2)

c1 log(1 + ε2)

)
.

Taking ε = ε0 and η = c4/n, we get that

Rn ≥
c24

4n2

(
1− c4

nc1
−
√
c4c5

)
,

where c5 depends only on c1, c3 and ε0. Hence by choosing
c4 sufficiently small, we get that Rn ≥ c/n2 for all large n.
This is the optimal minimax rate for this problem as can be
seen by estimating θ by the maximum of the observations.

Example IV.4. Suppose that mθ denotes the uniform distri-
bution on the interval [θ, θ+1]. We shall argue that MC(ε,Θ)
can be chosen to be

MC(ε,Θ) =
c2

(1 + ε2)1/n − 1
(28)

for a positive constant c2 at least for large n. To see this, let
us define ε′ so that 2ε′ := (1 + ε2)1/n−1 and let G denote an
ε′-grid of points in the interval Θ; G would contain at most
c2/ε

′ points when ε ≤ ε0. For a point α in the grid, let Qα
denote the n-fold product of the uniform distribution on the
interval [α, α+ 1 + 2ε′]. Now, for a fixed θ ∈ Θ, let α denote
the point in the grid such that α ≤ θ ≤ α + ε′. It can then
be checked that the chi-squared divergence between Pθ and
Qα is equal to (1 + 2ε′)n − 1 = ε2. Hence MC(ε,Θ) can be
taken to be the number of probability measures Qα, which is
the same as the number of points in G. We thus have (28). It
can be checked by elementary calculus (Taylor expansion, for
example) that the inequality

(1 + ε2)1/n − 1 ≥ ε2

n
− 1

2n

(
1− 1

n

)
ε4

holds for ε ≤
√

2 (in fact for all ε, but for ε >
√

2, the
right hand side above may be negative). Therefore for ε ≤
min(ε0,

√
2), we get that

MC(ε,Θ) ≤ 2nc2
2ε2 − (1− 1/n)ε4

.

From inequality (22), we get that for every η ≤ η0 and ε ≤
min(ε0,

√
2),

Rn ≥
η2

4

(
1− η

c1
−√nη

√
2(1 + ε2)c2

c1 (2ε2 − (1− 1/n)ε4)

)
.

If we now take ε = min(ε0, 1) and η = c3/n, we see that the
quantity inside the parantheses converges to 1−√c3c4 where
c4 depends only on c1, c2 and ε0. Therefore by choosing c3
sufficiently small, we get that Rn ≥ c/n2. This is the optimal
minimax rate for this problem as can be seen by estimating θ
by the minimum of the observations.

The fact that inequality (22) produced optimal lower bounds
for the minimax risk in each of the above three examples is
reassuring but not really exciting because, as we mentioned
before, there are other simpler methods of obtaining such
bounds in these examples. We presented them as simple toy
examples to evaluate the performance of (22), to present a
difference between (21) and (22) (which provides a justifi-
cation for using divergences other than the Kullback-Leibler
divergence for lower bounds) and also to stress the fact that
global packing and covering characteristics are enough to
obtain optimal minimax lower bounds. In order to convince the
reader of the effectiveness of (22) in more involved situations,
we now apply it to obtain the optimal minimax rate in a d-
dimensional normal mean estimation problem. We are grateful
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to an anonymous referee for communicating this example to
us. Another non-trivial application of (22) is presented in the
next section.

Example IV.5. Let Θ denote the ball in Rd of radius Γ
centered at the origin. Let us consider the problem of esti-
mating θ ∈ Θ from an observation X distributed according to
the normal distribution with mean θ and variance covariance
matrix σ2Id, where Id denotes the identity matrix of order
d. Thus Pθ denotes the N(θ, σ2Id) distribution. We assume
squared error loss so that `(x) = x2 and ρ is the Euclidean
distance on Rd.

We shall use inequality (22) to show that the minimax risk
R for this problem is larger than or equal to a constant multiple
of dσ2 when Γ ≥ σ

√
d. We begin by arguing that we can take

N(η) =
(

Γ
η

)d
,MC(ε,Θ) =

(
3Γ

σ
√

log(1 + ε2)

)d
(29)

whenever σ
√

log(1 + ε2) ≤ Γ.
For N(η), we first note that the η-packing number of the

metric space (Θ, ρ) is bounded from below by its η-covering
number. Now, for any η-covering set, the space Θ is contained
in the union of the balls of radius η with centers in the covering
set and hence the volume of Θ must be smaller than the sum
of the volumes of these balls. Therefore, the number of points
in the η-covering set must be at least (Γ/η)d. Since this is true
for every η-covering set, it follows that the η-covering number
and hence the η-packing number is not smaller than (Γ/η)d.

For MC(ε,Θ), we first observe that for θ, θ′ ∈ Θ, the
chi-squared divergence between Pθ and Pθ′ can be easily
computed (because they are normal distributions with the same
covariance matrix) to be χ2(Pθ||Pθ′) = exp

(
ρ2(θ, θ′)/σ2

)
−

1. Therefore χ2(Pθ||Pθ′) ≤ ε2 if and only if ρ(θ, θ′) ≤
ε′ := σ

√
log(1 + ε2). As a result, MC(ε,Θ) can be taken

to be any upper bound on the ε′-covering number of (Θ, ρ).
The ε′-covering number, as noted previously, is bounded from
above by the ε′-packing number. Now, for any ε′-packing
set, the balls of radius ε′/2 with centers in the packing
set are all disjoint and their union is contained in the ball
of radius Γ + (ε′/2) centered at the origin. Consequently,
the sum of the volumes of these balls is smaller than the
volume of the ball of radius Γ + (ε′/2) centered at the origin.
Therefore, the number of points in the ε′-packing set is at most
(1 + (2Γ/ε′))d ≤ (3Γ/ε′)d provided ε′ ≤ Γ. Since this is true
for every ε′-packing set, it follows that the ε′-packing number
and hence the ε′-covering number is not larger than (3Γ/ε′)d.

We can thus apply inequality (22) with (29) to get that, for
every η > 0 and ε > 0 such that σ

√
log(1 + ε2) ≤ Γ, we

have

R ≥ η2

4

(
1−

( η
Γ

)d
−
(

3η
σ

)d/2 √
1 + ε2

(log(1 + ε2))d/4

)
.

Now by elementary calculus, it can be checked that the
function ε 7→

√
1 + ε2/(log(1 + ε2))d/4 is minimized (subject

to σ
√

log(1 + ε2) ≤ Γ) when 1 + ε2 = ed/2. We then get that

R ≥ sup
η>0

η2

4

(
1−

( η
Γ

)d
−
(

18eη2

σ2d

)d/4)
.

We now take η = c1σ
√
d and since Γ ≥ σ

√
d, we obtain

R ≥ c21σ
2d

4

(
1− cd1 − (18ec21)d/4

)
.

We can therefore choose c1 small enough (independent of d)
to obtain that R ≥ cdσ2. Note that, up to constants, this lower
bound is optimal for R because Eρ2(X, θ) = dσ2.

V. RECONSTRUCTION OF CONVEX BODIES FROM NOISY
SUPPORT FUNCTION MEASUREMENTS

In this section, we shall present a novel application of the
global minimax lower bound (22). Let d ≥ 2 and let K be a
convex body in Rd, i.e., K is compact, convex and has a non-
empty interior. The support function of K, hK : Sd−1 → R,
is defined by

hK(u) := sup {〈x, u〉 : x ∈ K} for u ∈ Sd−1,

where Sd−1 :=
{
x ∈ Rd :

∑
i x

2
i = 1

}
is the unit sphere. We

direct the reader to [23, Section 1.7] or [24, Section 13] for
basic properties of support functions. An important property
is that the support function uniquely determines the convex
body, i.e., hK = hL if and only if K = L.

Let {ui, i ≥ 1} be a sequence of d-dimensional unit vectors.
Gardner, Kiderlen and Milanfar [25] (see their paper for
earlier references) considered the problem of reconstructing
an unknown convex body K from noisy measurements of hK
in the directions u1, . . . , un. More precisely, their problem was
to estimate K from observations Y1, . . . , Yn drawn according
to the model Yi = hK(ui) + ξi, i = 1, . . . , n where ξ1, . . . , ξn
are independent and identically distributed mean zero gaussian
random variables. They constructed a convex body (estimator)
K̂n = K̂n(Y1, . . . , Yn) having the property that, for nice
sequences {ui, i ≥ 1}, the L2 norm ||hK − hK̂n

||2 (see (30)
below) converges to zero at the rate n−2/(d+3) for dimensions
d = 2, 3, 4 and at a slower rate for dimensions d ≥ 5 (see [25,
Theorem 6.2]).

We shall show here that in the same setting, it is impossible
in the minimax sense to construct estimators for K converging
at a rate faster than n−2/(d+3). This implies that the least
squares estimator in [25] is rate optimal for dimensions d =
2, 3, 4. We shall need some notation to describe our result.

Let Kd denote the set of all convex bodies in Rd and for
Γ > 0, let Kd(Γ) denote the set of all convex bodies in Rd
that are contained in the closed ball of radius Γ centered at
the origin so that Kd(1) denotes the set of all convex bodies
contained in the unit ball, which we shall denote by B. Note
that estimating K is equivalent to estimating the function hK
because the support function uniquely determines the convex
body. Thus we shall focus on the problem of estimating hK .

An estimator for hK is allowed to be a bounded function on
Sd−1 that depends on the data Y1, . . . , Yn. The loss functions
that we shall use are the Lp norms for p ∈ [1,∞] defined by

||hK − ĥ||p :=
(∫

Sd−1
|hK(u)− ĥ(u)|pdu

)1/p

(30)

for p ∈ [1,∞) and ||hK− ĥ||∞ := supu∈Sd−1 |hK(u)− ĥ(u)|.
For convex bodies K and L and p ∈ [1,∞], we shall also write
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δp(K,L) for ||hK − hL||p and refer to δp as the Lp distance
between K and L.

We shall consider the minimax risk of the problem of
estimating hK from Y1, . . . , Yn when K is assumed to belong
to Kd(Γ) i.e., we are interested in the quantity

rn(p,Γ) := inf
ĥ

sup
K∈Kd(Γ)

EK ||hK − ĥ(Y1, . . . , Yn)||p.

The following is the main theorem of this section.

Theorem V.1. Fix p ∈ [1,∞) and Γ > 0. Suppose the errors
ξ1, . . . , ξn are independent normal random variables with
mean zero and variance σ2. Then the minimax risk rn(p,Γ)
satisfies

rn(p,Γ) ≥ cσ4/(d+3)Γ(d−1)/(d+3)n−2/(d+3), (31)

for a constant c that is independent of n.

Remark V.1. In the case when p = 2, Gardner, Kiderlen
and Milanfar [25] showed that the least squares estimator
converges at the rate given by the right hand side of (31)
for dimensions d = 2, 3, 4. Thus, at least for p = 2, the lower
bound given by (31) is optimal for dimensions d = 2, 3, 4.

We shall use inequality (22) to prove (31). First, let us put
the support function estimation problem in the general estima-
tion setting of the last section. Let Θ :=

{
hK : K ∈ Kd(Γ)

}
and let A be the collection of all bounded functions on the
unit sphere Sd−1. The metric ρ on A is just the Lp norm and
`(x) = x.

Finally, let X = Rn and for f ∈ Θ, let Pf be the n-variate
normal distribution with mean vector (f(u1), . . . , f(un)) and
variance-covariance matrix σ2In, where In is the identity
matrix of order n.

In order to apply inequality (22), we need to determine
N(η) and MC(ε,Θ). The quantity N(η) is a lower bound on
the η-packing number of the set Kd(Γ) under the Lp norm.
When p = ∞, Bronshtein [26, Theorem 4 and Remark 1]
proved that there exist positive constants c′ and η0 depending
only on d such that exp

(
c′(η/Γ)(1−d)/2

)
is a lower bound for

the η-packing number of Θ for η ≤ η0. It is a standard fact
that p =∞ corresponds to the Hausdorff metric on Kd(Γ).

It turns out that Bronshtein’s result is actually true for every
p ∈ [1,∞] and not just for p =∞. However, to the best of our
knowledge, this has not been proved anywhere in the literature.
By modifying Bronshtein’s proof appropriately and using the
Varshamov-Gilbert lemma (see for example [27, Lemma 4.7]),
we provide, in Theorem VII.1, a proof of this fact. Therefore
from Theorem VII.1, we can take

logN(η) = c′
(

Γ
η

)(d−1)/2

for η ≤ η0, (32)

where c′ and η0 are constants depending only on d and p.
Now let us turn to MC(ε,Θ). For f, g ∈ Θ, Pf and Pg

are normal distributions with the same covariance matrix and
hence the chi-squared divergence between Pf and Pg can be

seen to be

χ2(Pf ||Pg) = exp

[
1
σ2

n∑
i=1

(f(ui)− g(ui))
2

]
− 1

≤ exp
[
n||f − g||2∞

σ2

]
− 1.

It follows that

||f − g||∞ ≤ ε′ =⇒ χ2(Pf ||Pg) ≤ ε2. (33)

where ε′ := σ
√

log(1 + ε2)/
√
n. Let Wε′ be the smallest W

for which there exist sets K1, . . . ,KW in Kd(Γ) having the
property that for every set K ∈ Kd(Γ), there exists a Kj

such that the Hausdorff distance between K and Kj is less
than or equal to ε′. It must be clear from (33) that MC(ε,Θ)
can be taken to be a number larger than Wε′ . Bronshtein [26,
Theorem 3 and Remark 1] showed that there exist positive
constants c′′ and ε0 depending only on d such that

logWε′ ≤ c′′
(

Γ
ε′

)(d−1)/2

for ε′ ≤ ε0.

Hence for all ε such that log(1 + ε2) ≤ nε20/σ2, we can take

logMC(ε,Θ) = c′′

(
Γ
√
n

σ
√

log(1 + ε2)

)(d−1)/2

. (34)

We are now ready to prove inequality (31). We shall define
two quantities

η(n) := cσ4/(d+3)Γ(d−1)/(d+3)n−2/(d+3)

and

u(n) :=
(

Γ
√
n

σ

)(d−1)/(d+3)

.

where c = c(d, p) will be specified shortly. Also let ε(n) be
such that log(1 + ε2(n)) = u2(n). Clearly as n → ∞, we
have η(n) → 0, u(n) → ∞ and u(n)/

√
n → 0. As a result

η(n) ≤ η0 and u2(n) ≤ nε20/σ
2 for large n and therefore

from (32) and (34), we get that

logN(η(n)) = c′
(

Γ
η(n)

)(d−1)/2

=
c′

c(d−1)/2
u2(n).

and

logMC(ε(n),Θ) = c′′
(

Γ
√
n

σu(n)

)(d−1)/2

= c′′u2(n).

We now apply inequality (22) (recall that `(x) = x) to obtain
that rn(p,Γ) is bounded from below by

η(n)
2

[
1− 1

N(η(n))
− exp

(
u2(n)

2

(
1 + c′′ − c′

c(d−1)/2

))]
for all large n. If we now choose c so that c(d−1)/2 = c′/(2 +
2c′′), we get that

rn(p,Γ) ≥ η(n)
2

[
1− 1

N(η(n))
− exp

(
−u2(n)

2
(1 + c′′)

)]
.

Now observe that as n→∞, the quantity η(n) goes to 0 and
hence N(η(n)) goes to∞. Further, as we have already noted,
u(n) goes to ∞. It follows hence that rn(p,Γ) ≥ η(n)/4
for all large n. By choosing c even smaller, we can make
inequality (31) true for all n.
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VI. A COVARIANCE MATRIX ESTIMATION EXAMPLE

In the previous section, we have used the global minimax
lower bound (22). However, in some situations, the global
entropy numbers might be difficult to bound. In such cases,
inequalities (21) and (22) are, of course, not applicable and we
are unaware of the use of inequality (17) in conjuction with
Fano’s inequality (11) in the literature. The standard examples
use (11) with the bound Jf ≤ minθ,θ′∈F D(Pθ||Pθ′) while the
examples in [1] all deal with the case when global entropies are
available. In this section, we shall demonstrate how a recent
minimax lower bound due to Cai, Zhang and Zhou [13] can
also be proved using inequalities (11) and (17).

Cai, Zhang and Zhou [13] considered n independent p× 1
random vectors X1, . . . , Xn distributed according to Np(0,Σ).
Suppose that the entries of the p × p covariance matrix
Σ = (σij) decay at a certain rate as we move away from the
diagonal. Specifically, let us suppose that for a fixed positive
constant α > 0, the entries σij of Σ satisfy the inequality
σij ≤ |i − j|−α−1 for i 6= j. Cai, Zhang and Zhou [13]
showed that when p is large compared to n, it is impossible
to estimate Σ from X1, . . . , Xn in the spectral norm at a rate
faster than n−α/(2α+1). More precisely, they showed that when
p ≥ Cn1/(2α+1),

Rn(α) := inf
Σ̂

sup
Σ∈Θ

EΣ||Σ̂− Σ|| ≥ c n−α/(2α+1), (35)

where c and C denote positive constants depending only on
α. Here Θ denotes the collection of all covariance matrices
Σ = (σij) satisfying σij ≤ |i − j|−α−1 for i 6= j and the
norm ||.|| is the spectral norm (largest eigenvalue).

Cai, Zhang and Zhou [13] used Assouad’s lemma for the
proof of the inequality (35). We shall use inequalities (11)
and (17). Moreover, the choice of the finite subset F that we
use is different from the one used in [13, Equation (17)]. This
makes our approach different from the general method, due to
Yu [28], of replacing Assouad’s lemma by Fano’s inequality.

Throughout, ∆ denotes a constant that depends on α alone.
The value of the constant might vary from place to place.

Consider the matrix A = (aij) with aij = 1 for i = j and
aij = 1/(∆|i − j|α+1) for i 6= j. For ∆ sufficiently large
(depending on α alone), A is positive definite and belongs to
Θ. Let us fix a positive integer k ≤ p/2 and partition A as

A =

[
A11 A12

AT12 A22

]
,

where A11 is k × k and A22 is (p − k) × (p − k). For each
τ ∈ Rk, we define the matrix

A(τ) :=

[
A11 A12(τ)

(A12(τ))T A22

]
,

where A12(τ) is the k × (p− k) matrix obtained by premul-
tiplying A12 with the k × k diagonal matrix with diagonal
entries τ1, . . . , τk. Clearly, A(τ) ∈ Θ for all τ ∈ {0, 1}k.
We shall need the following two lemmas in order to prove
inequality (35).

Lemma VI.1. For τ, τ ′ ∈ {0, 1}k , τ 6= τ ′, we have

||A(τ)−A(τ ′)|| ≥ 1
∆kα

√
Υ(τ, τ ′)

k
, (36)

where Υ(τ, τ ′) :=
∑k
r=1 {τr 6= τ ′r} denotes the Hamming

distance between τ and τ ′.

Proof: Fix τ, τ ′ ∈ {0, 1}k with τ 6= τ ′. Let v denote the
p × 1 vector (0k, 1k, 0p−2k)T , where 0k denotes the k × 1
vector of zeros etc. Clearly ||v||2 = k and (A(τ) − A(τ ′))v
will be a vector of the form (u, 0)T for some k × 1 vector
u = (u1, . . . , uk)T . Moreover ur =

∑k
s=1(τr− τ ′r)ar,k+s and

hence

|ur| =
{τr 6= τ ′r}

∆

k∑
s=1

1
|r − k − s|α+1

≥ {τr 6= τ ′r}
∆

2k−1∑
i=k

1
iα+1

≥ {τr 6= τ ′r}
∆

1
kα
.

Therefore,

|| (A(τ)−A(τ ′)) v||2 ≥
k∑
r=1

u2
r ≥

1
∆2k2α

Υ(τ, τ ′).

The proof is complete because ||v||2 = k.

Lemma VI.2. Let 1 ≤ m < k, τ ∈ {0, 1}k and τ ′ :=
(0, . . . , 0, τm, . . . , τk). Then

D (N(0, A(τ))||N(0, A(τ ′))) ≤ ∆
(k −m)2α

.

Proof: The key is to note that one has the inequality
D (N(0, A(τ))||N(0, A(τ ′))) ≤ ∆||A(τ) − A(τ ′)||2F , where

||A||F :=
(∑

i,j a
2
ij

)1/2

denotes the Frobenius norm. The
proof of this assertion can be found in [13, Proof of Lemma
6]. We can now bound

||A(τ)−A(τ ′)||2F ≤ 2
m−1∑
r=1

τ2
r

p−k∑
j=1

a2
r,k+j

≤ ∆
m−1∑
r=1

p−k∑
j=1

1
|r − k − j|2α+2

≤ ∆
m−1∑
r=1

∞∑
j=1

1
|k − r + j|2α+2

≤ ∆
m−1∑
r=1

1
(k − r)2α+1

≤ ∆
(k −m)2α

.

The proof is complete.
The Varshamov-Gilbert lemma (see for example [27,

Lemma 4.7]) asserts the existence of a subset W of {0, 1}k
with |W | ≥ exp(k/8) such that Υ(τ, τ ′) ≥ k/4 for all
τ, τ ′ ∈ W with τ 6= τ ′. Let F := {A(τ) : τ ∈W}. From
inequality (11) and Lemma VI.1, we get that

Rn(α) ≥ 1
∆

1
kα

(
1−

log 2 + 1
|W |

∑
A∈F D(PA||P̄ )

k/8

)
,

(37)
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where PA denotes the n-fold product of the N(0, A) prob-
ability measure and P̄ :=

∑
A∈F PA/|W |. Now for 1 ≤

m < k and for t ∈ {0, 1}k−m+1, let Qt denote the n-
fold product of the N(0, A(0, . . . , 0, t1, . . . , tk−m+1)) prob-
ability measure. Applying inequality (17), we get the quantity∑
A∈F D(PA||P̄ )/|W | is bounded from above by

(k −m+ 1) log 2 + max
A∈F

min
t∈{0,1}k−m+1

D(PA||Qt).

Now we use Lemma VI.2 to obtain
1
|W |

∑
A∈F

D(PA||P̄ ) ≤ ∆
[
(k −m) +

n

(k −m)2α

]
.

Using the above in (37), we get

Rn(α) ≥ 1
∆

1
kα

[
1− ∆

k

(
(k −m) +

n

(k −m)α

)]
.

Note that the above lower bound for Rn(α) depends on k and
m, which are constrained to satisfy 2k ≤ p and 1 ≤ m < k.
To get the best lower bound, we need to optimize the right
hand side of the above inequality over k and m. It should
be obvious that in order to prove (35), it is enough to take
k − m = n1/(2α+1) and k = 4∆n1/(2α+1). The condition
2k ≤ p will be satisfied if p ≥ Cn1/(2α+1) for a large enough
C. It is elementary to check that with these choices of k and
m, inequality (35) is established.

VII. A PACKING NUMBER LOWER BOUND

In this section, we shall prove that for every p ∈ [1,∞]
the η-packing number N(η; p,Γ) of Kd(Γ) under the Lp

metric is at least exp
(
c(η/Γ)(1−d)/2

)
for a positive c and

sufficiently small η. This means that there exist at least
exp

(
c(η/Γ)(1−d)/2

)
sets in Kd(Γ) separated by at least η

in the Lp metric. This result was needed in the proof of
Theorem V.1. Bronshtein [26, Theorem 4 and Remark 1]
proved this for p =∞ (the case of the Hausdorff metric).

Theorem VII.1. Fix p ∈ [1,∞]. There exist positive constants
η0 and C depending only on d and p such that for every
η ≤ η0, we have

N(η; p,Γ) ≥ exp

(
C

(
Γ
η

)(d−1)/2
)
. (38)

Proof: Observe that by scaling, it is enough to prove for
the case Γ = 1. We loosely follow Bronshtein [26, Proof of
Theorem 4]. Fix ε ∈ (0, 1). For each point x ∈ Sd−1, let Sx
denote the supporting hyperplane to the unit ball B at x and
let Hx be the hyperplane intersecting the sphere that is parallel
to Sx and at a distance of ε from Sx. Let H+

x and H−x denote
the two halfspaces bounded by Hx where we assume that H+

x

contains the origin. Let Tx := Sd−1∩H−x and Ax := B∩Hx,
where B stands for the unit ball. It can be checked that the
(Euclidean) distance between x and every point in Tx (and Ax)
is less than or equal to

√
2
√
ε. It follows that if the distance

between two points x and y in Sd−1 is strictly larger than
2
√

2
√
ε, then the sets Tx and Ty are disjoint.

By standard results (see for example [26, Proof of Theorem
4] where it is referred to as Mikhlin’s result), there exist

positive constants C1, depending only on d, and ε0 such
that for every ε ≤ ε0, there exist N ≥ C1(

√
ε)1−d points

x1, . . . , xN in Sd−1 such that the Euclidean distance between
xi and xj is strictly larger than 2

√
2
√
ε whenever i 6= j.

From now on, we assume that ε ≤ ε0. We then consider
a mapping Φ : {0, 1}N → Kd(1), which is defined, for
τ = (τ1, . . . , τN ) ∈ {0, 1}N , by

Φ(τ) := B ∩D1(τ1) ∩D2(τ2) ∩ · · · ∩DN (τN ),

where for i = 1, . . . , N ,

Di(0) := H+
xi

and Di(1) := B.

It must be clear that the Hausdorff distance between Φ(τ)
and Φ(τ ′) is not less than ε (in fact, it is exactly equal to
ε) if τ 6= τ ′. Thus,

{
Φ(τ) : τ ∈ {0, 1}N

}
is an ε-packing

set for Kd(1) under the Hausdorff metric. However, it is not
an ε-packing set under the Lp metric. Indeed, the Lp distance
between Φ(τ) and Φ(τ ′) is not necessarily larger than ε for all
pairs (τ, τ ′), τ 6= τ ′. The Lp distance between Φ(τ) and Φ(τ ′)
depends on the Hamming distance Υ(τ, τ ′) =

∑
i {τi 6= τ ′i}

between τ and τ ′. We make the claim that

δp (Φ(τ),Φ(τ ′)) ≥ C2ε
(√
ε
)(d−1)/p (Υ(τ, τ ′))1/p

, (39)

where C2 depends only on d and p. The claim will be proved
later. Assuming it is true, we recall the Varshamov-Gilbert
lemma from the previous section to assert the existence of
a subset W of {0, 1}N with |W | ≥ exp(N/8) such that
Υ(τ, τ ′) ≥ N/4 for all τ, τ ′ ∈ W with τ 6= τ ′. Because
N ≥ C1(

√
ε)1−d, we get from (39) that for all τ, τ ′ ∈ W

with τ 6= τ ′, we have

δp (Φ(τ),Φ(τ ′)) ≥ C3ε where C3 := C2

(
C1

4

)1/p

.

Taking η := C3ε, we have obtained, for each η ≤ η0 := C3ε0,
an η-packing subset of Kd(1) with size M , where

logM ≥ N/8 ≥ C1

8

(
1√
ε

)d−1

= C4

(
1
√
η

)d−1

.

The constant C4 only depends on d and p thereby proving (38).
It remains to prove the claim (39). Fix a point x ∈ Sd−1

and ε ∈ (0, 1). We first observe that it is enough to prove that

δp(Ax, Tx)p ≥ C5ε
p
(√
ε
)d−1

, (40)

for a constant C5 depending on just d and p, where Ax and Tx
are as defined in the beginning of the proof. This is because
of the fact that for every τ, τ ′ ∈W with τ 6= τ ′, we can write

δp (Φ(τ),Φ(τ ′))p =
∑
i∈I

δp(Axi , Txi)
p, (41)

where I := {1 ≤ i ≤ N : τi 6= τ ′i}. The equality (41) is a
consequence of the fact that the points x1, . . . , xN are chosen
so that Tx1 , . . . , TxN

are disjoint.
We shall now prove the inequality (40) which will complete

the proof. Let u0 denote the point in Ax that is closest to the
origin. Also let u1 be a point in Ax ∩Sd−1. Let α denote the
angle between u0 and u1. Clearly, α does not depend on the
choice of u1 and cosα = 1 − ε. Now let u be a fixed unit
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vector and let θ be the angle between the vectors u and u0.
By elementary geometry, we deduce that

hTx(u)− hAx(u) =

{
1− cos (α− θ) if 0 ≤ θ ≤ α,
0 otherwise.

Because the difference of support functions only depends on
the angle θ, we can write, for a constant C6 depending only
on d, that

δp(Ax, Tx)p = C6

∫ α

0

(1− cos(α− θ))p sind−2 θdθ.

Now suppose β is such that cos(α−β) = 1− ε/2. Then from
above, we get that

δp(Ax, Tx)p ≥ C6

∫ β

0

(1− cos(α− θ))p sind−2 θdθ

≥ C6

( ε
2

)p ∫ β

0

sind−2 θdθ

≥ C6

( ε
2

)p ∫ β

0

sind−2 θ cos θdθ

=
C6

d− 1

( ε
2

)p
sind−1 β.

We shall show that sinβ ≥ (
√
ε) /(2

√
2) which will

prove (40). Recall that cosα = 1− ε. Thus

1− ε

2
= cos(α− β)

≤ cosα+ sinα sinβ

= 1− ε+
√

1− (1− ε)2 sinβ

≤ 1− ε+
√

2
√
ε sinβ,

which when rearranged gives sinβ ≥ (
√
ε) /(2

√
2). The proof

is complete.

VIII. CONCLUSION

By a simple application of convexity, we proved an in-
equality relating the minimax risk in multiple hypothesis
testing problems to f -divergences of the probability measures
involved. This inequality is an extension of Fano’s inequality.
As another corollary, we obtained a sharp inequality between
total variation distance and f -divergences. We also indicated
how to control the quantity Jf which appears in our lower
bounds. This leads to important global lower bounds for the
minimax risk. Two applications of our bounds are presented.
In the first application, we used the bound (22) to prove a new
lower bound (which turns to be rate-optimal) for the minimax
risk of estimating a convex body from noisy measurements of
the support function in n directions. In the second application,
we employed inequalities (11) and (17) to give a different
proof of a recent lower bound for covariance matrix estimation
due to Cai, Zhang and Zhou [13].
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