Preamble: Neural Net Approximation

@ Linear combinations of parameterized functions
m
f(x,0) = Wi b, (X)
k=1

@ parameters 0 = (ax, bx, W)
@ Dictionary of functions ® = {¢,} for the linear comb.
@ Single Hidden Layer Neural Nets use ridge functions on R
built from univariate functions o
$ab(X) =o(a-x+b)
@ Interested in approximation using the squared L, norm

I917 = [ (g(x))?P(ax)
@ Empirical measure or population measure P on inputs x
@ Assume ||¢|| < 1 for each ¢ in ®.
@ For the ReLU, with x in [-1,1]9, may constrain ||a||; < 1.



Preamble: Neural Net Approximation

Variation of f(-,0) is >, |wk|, the ¢4 norm of these
coefficients.

The Variation, denoted ||f||+, of a general function f with
respect to ¢ is the infimum of such ), |w| achieved by
networks that arbitrarily well approximate f. Also called the
atomic norm, and, in the context of neural nets, sometimes
called the Barron norm.

Approximation bounds, first for functions of finite variation
f 2
I~ 2 < 11l

and, more generally, for functions close to those of finite
variation

. 4
If = ol < mn {1~ g1+ -5 a1}



Preamble: Neural Net Approximation

@ These approximation bounds are achieved by certain greedy fits:
given fp_4

fm(X) = afp_1(X) + 5 dan(X)
with the parameters chosen to best improve ||f — f]|2.

@ Also achieved by other iterative fits, such as forward stepwise
regression (also known as forward stepwise projection or
adaptive Gram-Schmidt).

@ Similar bounds bound hold, but with the 4 replaced by 8, with
Orthogonal Matching Pursuit, in which the parameters (a, b) are
chosen to maximize < f — fn_1, ¢ap >.

@ Ref: Barron 1993, Barron, Cohen, Dahmen, deVore 2008. The
m + 3 denominator obtained in conversation with Sebastian
Pokutta 2023 who noted relationship to work on Frank, Wolf
coordinate descent algorithms.

@ Analogous Deep RelLu Network approximation bounds
(Klusowski, Barron 2018, 2019).



Preamble: Neural Net Approximation

@ Related generalization error bounds, also called statistical
risk bounds, are obtained in Barron 1994, Cong et al 2004,
Barron, Cohen, Dahmen, deVore 2008, for bounded
functions (or data with Bernstein constant bounded by C)
and sample size n, in the form of oracle inequalities:

m(dn—&-1) CZ |Og n}

and, a more specialized result for large d, from Klusowski
and Barron 2020,

log d
E|f — 2 < mgm{rf—kc/rz+41guq>c\/T }

IEJ||f—;‘||2 < mniqn{|f—fm|2—|-

@ These risk bounds and associated confidence bounds
arise in a general context that we discuss next, concerning
minimum description length and other penalized likelihood
procedures.
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Models and Likelihood

@ Likelihood: Early statistical foundations
Bayes, Laplace, Gauss shared a Bayesian perspective.
R. A. Fisher championed likelihood.
@ Model: For inputs X, outputs Y, e.g. with center f( X, 0).
For instance, a linear model or an artificial neural net.
@ Probability Model: for finite precision X, Y.
Design distribution p(x), output condit. distrib. p(y|x, 0).
o Data: For training and for future evaluation
data = (X, Y)); data’ = (X/, Y})L
@ LIKELIHOOD: p(datald)
Independent observations case: [[; p( y,\x,,

@ Likelihood Criterion: Prefer 6 with smaII
log 1/p(data|d)
@ Information Theory Viewpoint: Shannon, Cover, Rissanen
Prefer shorter codelength.
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Maximum Likelihood Estimation

What'’s good about the maximum likelihood estimate ,?
@ Short codelength interpretation provides motivation.
Target log1/p*(data) may be log1/p(data|6*)

@ Consistency: Wald(1948) iid case.
Proof idea: Maximizing likelihood is same as minimizing

5 2_i-q log p*(data;)/p(data;|6),
which (akin to the AEP) is asymptotically close to its expectation
E|log p*(data;)/p(datas|6) |,

uniformly so with Wald’s finite expected infimum condition, so the

empirical minimizer approaches the minimizer of the expectation.
@ Expected Favorability: Wald(1948), credited to Doob, showed

that this expectation, later called Kullback divergence, is indeed

positive (also known as the Gibbs, Shannon inequality).

@ Empirical Risk Min: Gauss, Vapnik least squares, other settings

@ Accuracy: The finite sample risk is controlled by the best
trade-off of Kullback approximation error and metric entropy
relative to sample size, as discussed later here.
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Maximum Likelihood Estimation

What can go wrong with likelihood maximization?

@ Lack of Parsimony: For nested models, it prefers larger,
more complex, models.

@ Non-adaptive: Accuracy (or lack thereof) dictated by the
largest size, in metric entropy, of the models considered.

@ Over-fit: Suppose the family includes the target, then
log 1/p(data|f) will be smaller than log 1/p(datal|6*).

Such over-fit is traditionally regarded as problematic.
We will come back to that.
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Penalized Likelihood

Penalized Log Likelihood
log 1/p(datald) + pen,(0)
Aims of Penalized Log Likelihood

@ Overcome limitations of maximum likelihood
@ Allow adaptivity

@ Overcome problematic over-fit

Andrew Barron Approximation, Risk and Confidence for Stat Learning  9/22



Penalized Likelihood

Forms of penalized log-likelihood:
@ Bayes: Prior provides a penalty. Posterior favors smallest
log 1/p(data|d) + log 1/prior(0)

@ Minimum Description Length (MDL):

Codelength L,(0) for 6, plus codelength for data given 6

log 1/p(datald) + L,(0)
@ Parameter Dimension Penalty:
diTmlog n Schwartz BIC, Rissanen MDL.
@ Fisher Information Penalty:
dmlog /= + log(|/(0)|"/?/w(0)) Barron, Clarke, Rissanen.

@ /4 Norm Penalty: prop.to [0[; = S_¢™, |¢;] in linear models.
@ /1 Norm of Path Weights: In deep ReLU networks.

(e.g. Klusowski, Barron 2020).

@ Roughness Penalty: e.g. Tapia, Thompson (1978).
@ Structural Minimization: Vapnik.
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Information-Theoretic Unification of Pen Likelihood

Information-Theoretically Valid Penalty: Codelength valid if the
Shannon, Kraft inequality . 2-L() < 1 holds for the criterion
L(data) = (5“6‘8 {log 1/p(datal|6) + pen,(6)}

Description length interpretation that remains valid for continuous 6.

Mechanisms to Establish Information-Theoretic Validity
@ Compare L(data) to the Bayes Mixture Codelength:
log1/ [ p(datal@)w(0)d6
Laplace approx. shows Fisher Info penalty is codelength valid
@ Compare L(data) to a Discrete Two-Stage MDL:
gﬁg {log 1/p(data|d) + La(6)}
where 8 is a discfete set and L,(f) satisfies the Kraft inequality.

@ The ¢4 norm penalty pen,(6) = \y|0|; is codelength valid
for A\, > v/nlogdim (Barron, Huang, Li, Liu 2008)
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Information-Theoretic Unification of Pen Likelihood

Penalty doubling produces statistical generalization benefits.
Information-Theoretically Valid Penalty: Codelength valid if the
Shannon, Kraft inequality > 2-L() < 1 holds for the criterion
L(data) = min {log 1/p(datal6) + pen,(6)}
S
Description length interpretation that remains valid for continuous 6.

Mechanisms to Establish Information-Theoretic Validity
@ Compare L(data) to the Bayes Mixture Codelength:
log1/ [ p(datal@)w(0)d6
Laplace approx. shows Fisher Info penalty is codelength valid
@ Compare L(data) to a Discrete Two-Stage MDL:
min {log 1/p(data|d) + 2Ln(f)}
where 8 is a disegrite set and L,(f) satisfies the Kraft inequality.

@ The ¢4 norm penalty pen,(f) = A\p|6|1 is codelength valid
for A\, > 24/nlogdim (Barron, Huang, Li, Liu 2008)
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Statistical Aim

@ From training data X, Y obtain an estimator p = Pa

@ Generalize to subsequent data’ = X', Y’

@ Want log 1/p(data’) to compare favorably to log 1/p(data’)
@ For targets p which are close to or even inside the families

@ With data’ expectation, loss becomes Kullback divergence

@ Bhattacharyya, Hellinger loss also relevant
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Loss

@ Kullback Information-divergence:
Dn(67]|6) = E| log p(data|6*)/p(data|6) |
@ Bhattacharyya, Hellinger divergence:
dn(0%]|0) = 2log 1/E[p(data|d)/p(data|6*)] /2

@ Indep. ident. distrib. case: data = (datay, ..., data,)
Dn(67(16) = n D(67(|0)
dn(0*,6) = nd(6*,0)
@ Relationship: d < D < (2+ B) d if the log density ratio < B.
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Index of Resolvability

The empirical criterion
min {log[1/p(datal6)] + pen,(6)}
equivalently
gneig {log [p(data|6*)/p(data|f)] + pen,(6)}

has the population counterpart
min { Da(6"(/6) + peny(0) }
The minimizing parameter 6;, best resolves the target.
Dividing by n yields a statistical rate, the index of resolvability
Rn(6%) = ‘E(Teig {Dn(6*|6) + pen,(6) }

For instance, in the i.i.d. case 0)
* H * pen
Rn(07) = min {D(O"16) + ==}

Conservative bound *
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One-sided empirical analysis reveals generalization

Idea: empirical process error may be complexity dependent

@ log likelihood-ratio discrepancy for training and future data
p(data|f*) *
————2= — dn(0%,0
{ € "p(datal0) In(0", )}
@ Instead, we examine the penalized discrepancy
. p(datalo*) .
gnelg{[m odatalg) ~ O ,e)] + peny(6)
@ Risk validity condition: Penalized discrepancy is at least
min{[lo p(datal”) on(6", )] + 2L,,(§)}
2e) p(data|6)
where & is a discrete set and L,(0) satisfies the Kraft inequality.

@ Key to statistical analysis:
With risk valid penalty, the penalized discrepancy
e has expectation greater than or equal to zero and
e is stochastically greater than minus an exponential(1) r.v.

Li, Barron 1998; extended in Barron, Huang, Li, Luo 2008.

Andrew Barron



Risk Bounds and Confidence Bounds

For any risk valid pen,(9), the penalized discrepancy

{{Io m — dn(e*,e)} + penn(e)}

@ has expectation greater than or equal to zero and
@ is stochastically greater than minus an exponential(1) r.v.

min
fco

Risk bound: Apply the expectation inequality at the penalized log
likelihood optimizer f to get the risk bound (from Li, Barron 1998,
Grunwald 2007, with extension in Barron, Huang, Li, Liu 2008 )

E[d(0*,0)] < %Egneig {Iog m + penn(e)}.
Hence, since the expected min is less than the min of expectations,
E[d(6%,8)] < Ra(67).
Thus the population resolvability controls the estimation risk.
Analogous conclusion holds for general (non-iid) models.
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Risk Bounds and Confidence Bounds

For any risk valid pen,(6), the penalized discrepancy

min { [log m — dn(67, 9)} n penn(a)}

@ has expectation greater than or equal to zero and
@ is stochastically greater than minus an exponential(1) r.v.
Confidence region: Apply the stochastic inequality to any

estimate 4 to get the following confidence statement. In an event
of probability at least 1 — ¢

1|0 p(datalo*) n penn(0) n log1/é

d(9*,0) < .
n = p(datald) n n

In particular, for any over-fit estimate 0, with the same prob,

pen,;,(é) N log1/6

d(or,0) < p
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Risk Bounds and Confidence Bounds

@ Confidence region: In an event of probability at least 1 — §

A

llo p(data\HA) N penn(6) N |og1/5'
n = p(datald) n n

In particular, for any over-fit estimate @, with the same prob,

penn(0)  log1/é
n o
@ Implication for linear models and for deep ReLU nets:
for any over-fit estimate @, with prob at least 14,

A A i log1/6
d(o*,0) < 210, Iogrc71|m n CO:SI‘ n ogn/

@ A fitted over-parameterized deep net with small /; path

norm compared to /n/ logdim yields appropriately
confident in the indicated accuracy of generalization.

@ Provides understanding of sometimes benign over-fitting.

d(6*,d) <

d(9*,0) <
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Statistics and information theory are fundamentally intertwined.
General one-sided penalized empirical proc. analysis provides:
@ Risk bound by the index of resolvability.
@ Confidence bound from observed penalty, log-likelihood

@ Fundamental connection between empirically valid
penalties and information -theoretically valid penalties.

@ Surprisingly valid penalties.

@ Explanation for benign over-fitting.
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Extra: Better Risk Bounds for Bayes Estimation

@ From prior 7(#) and data get posterior (6|data”)
@ Suppose (datay, ..., datay, data’) are i.i.d. ps(-) = p(-|6*)
@ Bayes predictive distribution provides a density estimate

pn(data’) = p(data’|data”) = / p(data’|f)r(0|data”)de

e Time average Kullback risk 7y (6*) = 5 S0 IE D(pg- [|Pn)
@ Resolvability bound (Barron 1986,1998)

- * . 1 1
n(67) < min {@”:é‘ D(po-lpe) + Nq'og w(B)}

@ Example: Discrete parameter and singleton sets B = {0}

w(e") < min { Dlpw-ll00) + 5 08 0 |

and in particular

(0%) < L

N1 %8 ()
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Extra: Better Risk Bounds for Bayes Estimation

@ Consequence using convexity of Kullback divergence
@ Time average estimate

N
p(datd) = S > p(datd|data")

N+1n:0

where data” may use the n most recent observations.
@ Kullback risk

~
~

p) <Tn

@ Thus have estimator with risk at least as good as the time
average risk of Bayes predictive estimators

E D(po-

@ As we saw, this risk is controlled by the resolvability
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